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Abstract
The missing data problem is common in longitudinal or repeated measurements data.
When the missingness mechanism is nonignorable, the distribution of the observed
response and indicators of missingness should bemodelled jointly using either ‘shared
random-effectsmodel’ or ‘correlated random-effectsmodel’. However, computational
challenges arise in the model fitting due to intractable numerical integration involved
in the log-likelihood function.We provide alternativemodeling of ‘correlated random-
effects model’ using latent variables and propose a simple algorithm based on Gibbs
sampling for estimation of associated parameters. The method is illustrated through
simulation and the analysis of a real data set arising from an autism study.

Keywords Latent variable · Legendre polynomial · Time-varying coefficients ·
MCMC · Non-informative prior

1 Introduction

In designed longitudinal studies, the aim is to estimate the mean response at a cer-
tain time based on fixed or time-varying covariates. For studies with long follow up
periods, the proportion of individuals with missing data can be substantial. Inference
based on the observed data may lead to biased and unreliable results. Ample amount
of research works on the modeling of longitudinal data with ignorable missingness are
available in the literature (Little and Rubin 2002). In this paper, we focus on modeling
of longitudinal data when the missingness mechanism is nonignorable. In these cases,
the distribution of the observed response and indicators of missingness should bemod-
elled jointly. Such joint models can be classified into either pattern mixture models or
selection models. Little (1995) provided a detailed overview of pattern mixture mod-
els and selection models for longitudinal studies with missing data due to informative
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dropout. Siddiqui and Ali (1998) considered random-effects pattern-mixture mod-
els and provided estimates of the associated parameters by averaging the estimates
obtained from different subsets of the data depending on the missing data-patterns.
Daniels and Hogan (2000) proposed a reparameterization of the patternmixture model
that allows consideration of a wide range of nonignorable missing-data mechanisms.
Diggle and Kenward (1994) proposed the use of a selection model with a logistic
regression form to deal with informative dropout. Baker (1995) considered repeated
binary data with nonignorable and non-monotone missingness. Troxel et al. (1998)
extended those of Diggle and Kenward (1994) for non-monotone and nonignorable
missing data. However, its implementation is computationally challenging. Rotnitzky
et al. (1998) considered inverse probability weighted estimating equations for the non-
ignorable missing and provided a simultaneous estimation of the dropout probability
and mean response based on the selection model. Minini and Chavance (2004) consid-
ered a log-linear model and provided a sensitivity analysis for the longitudinal binary
data with nonignorable missingness.

In the context of survival analysis, shared random-effects (SRE)model proposed by
Wu and Carrol (1998), is popularly used as an alternative to the selection models. De
and Tu (1994) and Schluchter (1994) suggested some extensions of SREmodels. Have
et al. (1998) and Pulkstenis et al. (1998) adopted the SREmodel for binary longitudinal
data with the informative dropouts. Tsonaka et al. (2009) considered semi-parametric
shared parameter model for themodelling of the response variable with non-monotone
andnonignorablemissingness. In the aforementionedSREmodels, the selectionmodel
and the response model have exactly the same random component.

In many situations, the latent factors affecting the missingness could be different
from those affecting the response; however, they are correlated due to common risk
factors. In order to model such phenomena, Lin et al. (2010) considered an interesting
generalization of SREmodel by using correlated random effectsmodel. An underlying
assumption for the random-effects model is that, conditional on the random effects,
the missingness is independent of the response. Note that ignorable missingness is a
special case of the correlated random-effects model if the two random effects are inde-
pendent. A main concern in the random-effects models is computational challenges
arise in the model fitting due to intractable numerical integration involved in the log-
likelihood function. In order to overcome such difficulties, well-known approximation
methods like theGauss–Hermite quadrature (Pinheiro andBates 1995) and theLaplace
approximation (Breslow and Clayton 1993) are exploited for estimation purposes. Lin
et al. (2010) expressed the likelihood as a ratio of two integrals and then approximated
the numerator and denominator using the Laplace formula. In order to estimate the
associated model parameters, one needs to evaluate first and second derivatives and
maximize the two integrands.

We propose alternative modeling of the observed response and indicators of miss-
ingness based on correlated latent variables. In particular, we develop regression
models with the covariates having a time-varying effect and time-invariant effects
on the latent variables involving correlated random effects. A simple Gibbs sampler
is developed following Albert and Chib (1993), where in each iteration, we sample
the model parameters as well as the latent variables. Our method is simple because
it is based on the Gibbs sampler, and it is fast since we estimate the parameters for

123



Estimation of random-effects model for longitudinal data… 1695

both the models simultaneously in an automated manner and avoids the computational
challenges posed by intractable log-likelihood functions typically encountered in the
frequentist method. The rest of the paper is organized as the follows. In Sect. 2, we
discuss our proposed model and the Bayesian estimation method in detail. We analyze
data from a longitudinal study of the social development of children with autism in
Sect. 3. Simulation studies are performed for assessing the effectiveness of the pro-
posed method and the results are finally summarized in Sect. 4. In Sect. 5, we provide
outlines of possible future work and some concluding remarks.

2 Proposedmodel

In the following presentation, we consider a continuous response measured over m
different time points from n subjects. We consider a set of covariates, some of which
possibly have a time-varying effect on the response. The response for the i th subject at
the t th time point, which we denote by Yi (t), can thus be modelled as the following:

Yi (t) =
J∑

j=1

β j (t)X ji (t) +
J ′∑

j ′=1

γ j ′ Z j ′i (t) +
L∑

l=1

uli Z̃li (t) + ei (t), (1)

where we consider J , J ′ and L denote the number of covariates with time-varying
fixed effects, time-invariant fixed effects and random effects on response, respectively.
Subject-specific random effects ui = (u1i , . . . , uLi )’s capture the longitudinal depen-
dence and are assumed to be iid NL(0,Σu). The residuals ei (t)’s are assumed to be iid
N (0, σ 2

e ). Note that the abovemodel is a special case of generalized varying coefficient
model for longitudinal data, introduced by Sentrk et al. (2013).

In general, the data from longitudinal studies involving large number of people
possesses some missing responses. In many situations, the missing data mechanism
is ignorable and it can be well handled using several available methodologies under
the assumption of missing at random (MAR) (Little 1995). However, when there
are nonignorable missing values in the response variable, the models in Eq. (1) will
produce biased estimates under theMARassumption. Such data are not so uncommon,
specially in biomedical studies and social sciences (Little and Rubin 1987, Ch-1). In
order to address such issues, we first define Ui (t) as

Ui (t) =
{
1, if Yi (t) is observed,
0, if Yi (t) is missing,

and rewrite Yi (t) as

Yi (t) =
{
Y ∗
i (t), if Ui (t) = 1,

missing, if Ui (t) = 0,

where Y ∗
i (t) is a latent random variable. We then rewrite the regression model given

in Eq. (1) in terms of the latent random variables as follows
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Y ∗
i (t) =

J∑

j=1

β j (t)X ji (t) +
J ′∑

j ′=1

γ j ′ Z j ′i (t) +
L∑

l=1

uli Z̃li (t) + ei (t). (2)

In addition, we consider the latent variable U∗
i (t) and write

Ui (t) =
{
1, if U∗

i (t) > 0,
0, if U∗

i (t) ≤ 0.

Now we consider the following model for missing data mechanism with some covari-
ates as

U∗
i (t) =

K∑

k=1

θk(t)Wki (t) +
K ′∑

k′=1

δk′ Sk′i (t) +
L∑

l=1

vli Z̃li (t) + εi (t), (3)

where the random effects vi = (v1i , . . . , vLi )’s are assumed to be iid NL(0,Σv),
and the residuals εi (t) are iid N (0, 1). In order to incorporate the possible correlation
between the response variable Yi (t) and the missing indicator Ui (t), we consider ui
and vi are correlated random vectors following a multivariate normal distribution
with mean vector 0 and covariance matrix Σ = (

Σu Σuv
Σuv Σv

)
. For the aforementioned

models, we can use the usual models for multivariate longitudinal data (Diggle et al.
2002, p. 332) but this requires values of the latent variables at each step. We propose a
Bayesian estimation method for simultaneous estimation of the parameters associated
with the joint model using Gibbs sampling.

2.1 Modelling time-varying coefficients

One of the major advantages of the longitudinal studies is to incorporate age effect
in the modeling and its capacity to distinguish changes in the response within and
across individuals over time (Diggle et al. 2002, p. 1). In order to model the effects of
the respective covariates over time, we have considered the time-varying coefficients
β j (t) and θk(t) in Eqs. (2) and (3), respectively. Since parametric nature of β j (t) and
θk(t) is not known in advance, we consider semi-parametric approach of modelling
the time-varying coefficients using Legendre polynomials (LP) basis functions. These
Polynomials have already been proven as powerful tool by several authors for semi-
parametric regression (Marie and Sen 1985; Meyer 2000; Cui and Zhu 2006; Bhuyan
et al. 2019).

The general form of a Legendre Polynomial of order r is given by the following
sum

Pr (x) =
L∑

l=0

(−1)l
(2r − 2l)!

2r l!(r − l)!(r − 2l)! x
r−2l ,
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where L = r
2 or r−1

2 , whichever is an integer. These polynomials are defined over
[−1, 1] and are orthogonal to each other in this interval in the sense that the inner
product

∫ 1
−1 Pr (x)Ps(x)dx = 0, for r �= s. First few LPs are as the following:

P0(x) = 1, P1(x) = x, P2(x) = 1

2
(3x2 − 1), P3(x) = 1

2
(5x3 − 3x).

In our context, we denote the r th order Legendre polynomial (LP) at time t
by Pr (t). We transform the original time points t to the adjusted time points
t
′ = −1 + 2( t−tmin

tmax−tmin
), for fitting the orthogonal LP over the range [−1, 1],

where tmin and tmax are the smallest and the highest time points respectively. Let
P(r)(t

′
) = [P0(t ′), P1(t ′), . . . , Pr (t ′)]T denote the family of the first r +1 basis func-

tions and express the functions β j (t
′
) and θk(t

′
) as some linear combinations of these

basis functions:
β j (t) = aTj P

(r1)(t); θk(t) = bTk P
(r2)(t),

where a j = (a j0, a j1, . . . , a jr1)
T , and bk = (bk0, bk1, . . . , bkr2)

T are called base
vectors. The optimal orders r1 and r2 may be chosen by the information criteria, e.g.
AIC/BIC etc. Unless great flexibility is required, very low values of rl such as 1 or
2 will suffice, for l = 1, 2. For example, let us consider J = 2, J ′ = 0, L = 1,
r1 = r2 = 1, X1i (t) = 1, Z̃1i (t) = 1 and X2i (t) ≡ X2i is a time-invariant covariate.
Then Eqs. (2) and (3) reduces to

Y ∗
i (t) = α10 + α11t + α20X2i + α21t X2i + u1i + ei (t), (4)

and

U∗
i (t) = λ10 + λ11t + λ20X2i + λ21t X2i + v1i + εi (t), (5)

respectively, where α j = (α j0, α j1)
T ’s and λ j = (λ j0, λ j1)

T ’s are suitably adjusted
for the change in location and scale in time, for j = 1, 2. The models (4) and (5)
account for the age effects and its interaction with the covariate X2i (t). Note that
the parameters involved in LPs possesses interesting interpretations and it is easy to
implement. Moreover, computational complexities (e.g., knot selection, knot location)
related to the other basis functions can be automated.

2.2 Bayesian estimation using Gibbs sampler

We employ a Bayesian approach of estimating the model parameters for the Eqs. (2)
and (3) using the Gibbs sampler. Let Θ = [a,b, γ , δ, σ 2

e ,Σ] denote the set of all the
model parameters involved in the Eqs. (2) and (3), where the bold symbols denote
the vector of the respective coefficients. Note that, one needs to sample from the joint
posterior of the model parameters and unknown latent variables.

Let us denote Y ∗ = (Y ∗
11(t), . . . ,Y

∗
nm(t)), U∗ = (U∗

11(t), . . . ,U
∗
nm(t)), Y =

(Y11(t), . . . ,Ynm(t)), and U = (U11(t), . . . ,Unm(t)), and write the joint posterior
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density for the latent variables and the parameters associated with the proposed model
as

π(Θ,Y ∗,U∗|Y ,U ) ∝ π(a,b, γ , δ, σ 2
e ,Σ) ×

n∏

i=1

∫ m∏

t=1

f (Y ∗
i (t),U∗

i (t)|ui , vi )

× {
1(U∗

i (t) > 0)1(Ui (t) = 1) + 1(U∗
i (t) ≤ 0)1(Ui (t) = 0)

}
g(ui , vi )duidvi ,

where π(·) is the joint prior for Θ , and f (·, ·) and g(·, ·) are the joint distribution of
(Y ∗

i (t),U∗
i (t)), and (ui , vi ), respectively. Following the traditional Bayesian regres-

sion, we consider the non-informative priors for (a, γ , σ 2
e ) and (b, δ). In addition,

we consider maximal data information prior for Σ . Therefore the joint prior distri-
bution π(a,b, γ , δ, σ 2

e ,Σ), can be expressed as the product of π(a, γ , σ 2
e ) ∝ 1

σ 2
e
,

π(b, δ) ∝ 1, and π(Σ) ∝ 1
|Σ | .

The posterior distributions of Θ conditional on Y ∗,U∗,Y ,U can be derived rou-
tinely and hence we skip the details. The full conditionals for (a,b, γ , δ), σ 2

e , and
Σ are normal, inverse gamma and inverse-Wishart, respectively. The latent variable
Y ∗
i (t) and U∗

i (t) are sampled from the conditional densities

⎧
⎪⎨

⎪⎩

Yi (t) with probability 1, if Ui (t) = 1,

N

(
J∑

j=1
β j (t)X ji (t) +

J ′∑
j ′=1

γ j ′ Z ji (t) +
L∑

l=1
uli Z̃li (t), σ 2

e

)
, if Ui (t) = 0,

(6)

and

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

N

(
K∑

k=1
θk(t)Wki (t) +

K ′∑
k′=1

δk′ Sk′i (t) +
L∑

l=1
vli Z̃li (t), 1

)
left truncated at 0, if Ui (t)=1,

N

(
K∑

k=1
θk(t)Wki (t) +

K ′∑
k′=1

δk′ Sk′i (t) +
L∑

l=1
vli Z̃li (t), 1

)
right truncated at 0, if Ui (t)=0,

(7)

respectively. Note that the full conditional densities of the latent variables, given by
(6) and (7), are also from standard densities, and hence, one can directly apply Gibbs
sampler algorithm for estimation of model parameters Θ .

3 Data analysis

We apply our proposed method on the data arising from a prospective longitudinal
study of the social development of children with autism. A total of 214 children par-
ticipated in the study who were divided into three diagnostic groups at 2years of
age: autism, pervasive developmental disorder (PDD), and nonspectrum children. We
consider a subset of 158 autism spectrum disorder (ASD) children, and social develop-
ment information was collected for each child at ages 2, 3, 5, 9 and 13years based on
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a parent-reported survey. The objective was to assess the development trajectories of
these children’s socialization for different language proficiency groups. The response
variable, Vineland socialization age equivalent (VSAE), was a combined score that
included assessments of interpersonal relationships, play/leisure time activities, and
coping skills. However, themeasurements corresponding to all children at each age are
not available, which resulted in 22% missing in the response variable. The children’s
language development was assessed by the Sequenced Inventory of Communication
Development (SICD) score at age 2, and children were categorized into three groups
(SICDEGP) based on their SICD scores. The data were collected by researchers at
the University of Michigan and analyzed in West et al. (2007, Ch-6) under MAR
assumption.

Let Yi (t) be the log(VSAE) score of the i th child at time t , where t = log(Age).
Lin et al. (2010) observed that the general trend of the VSAE score is increasing with
age, while there is a substantial variation of the VSAE scores among the children, and
hence the logarithmic transformation has been considered. In order to incorporate the
categorical variable SCIDEGP, we introduce two dummy variables SCI2 and SCI3
representing the second and third level of the SICD group, respectively, and we take
SICDEGP=1 as the reference group. As discussed in the Sect. 2.1, we consider first
order LP for modeling of time-varying coefficients and the models (4) and (5) can be
rewritten as

Y ∗
i (t)=α10+α11t+α20SIC22i +α21tSIC22i +α30SIC32i +α31tSIC32i +u1i +ei (t),

and

U∗
i (t)=λ10+λ11t+λ20SIC22i +λ21tSIC22i +λ30SIC32i +λ31tSIC32i +v1i +εi (t),

respectively. Themodel parameters are estimated by theGibbs sampler, as discussed in
Sect. 2.2.We runMCMC for 50,000 iterations and discard the first 10,000 iterations as
burn-in.We also thin the chains by saving every 10th iteration. The convergences of the
chains aremonitored graphically using trace plots, plots of the autocorrelation function
(ACF) and partial autocorrelation function (PACF) for the parameters of interest (see
“Appendix”). The results are summarized in Table 1, which are consistent with the

Table 1 The estimated parameters for the autism study

Predictor U∗
i (t) log(VSAE)

Mean SD 95% CI Mean SD 95% CI

Intercept 2.279 0.309 (1.712,2.909) 1.503 0.085 (1.332, 1.669)

log(Age) − 0.873 0.153 (−1.171, −0.586) 0.681 0.045 (0.593, 0.769)

SIC2 − 0.207 0.390 (−0.978, 0.568) 0.074 0.113 (−0.152, 0.295)

SIC3 − 0.309 0.442 (−1.195, 0.560) 0.328 0.126 (0.084, 0.580)

SIC2× log(Age) 0.119 0.196 (−0.287, 0.491) 0.118 0.059 (−0.002, 0.231)

SIC3× log(Age) 0.253 0.222 (−0.172, 0.685) 0.312 0.067 (0.183, 0.439)
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Fig. 1 Posterior probability
P (|ρuv | > δ|Data) for different
choices of δ
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finding of Lin et al. (2010) based on frequentist approach. Our primary interest is to
estimate the interaction effect between SICDEGP and age. Note that SICDEGP group
1 has been taken as the reference group and the estimate of the interaction effect of the
log(Age) with the corresponding SIC3 is larger than that of with SIC2 in magnitude.
One can interpret that children in higher SICD groups can easily be socialized as they
grow up. As expected, we find that age is positively associated with the missingness
of VSAE score. Interestingly, the children in higher SICD group are more likely to
be observed as age increases compared to those in lower SICD group. The estimates
of σ 2

e and Σ are 0.18 and
( 0.151 − 0.056

− 0.056 0.038

)
, respectively. The negative estimate for

Σuv suggests that children with higher VSAE scores are more likely to have missing
outcomes. In order to asses the usefulness of the joint analysis, we test H0: |ρuv| ≤ δ,
where ρuv is the correlation coefficient between the random effects u1i and v1i . We
calculate the posterior probability P(|ρuv| > δ|Data) for different choices of δ, and
the results are presented in Fig. 1. It is evident that the posterior probability against
the null hypothesis is very high and hence, we can conclude that the joint modeling is
useful for our analysis.

4 Simulation study

In order to study the performance of the proposed method, we generate data from the
following model:

Y ∗
i (t) = β1 + β2(t)X2i (t) + γ1Z1i + u1i + ei (t),

and
U∗
i (t) = θ1 + θ2(t)X2i (t) + δ1Z1i + v1i + εi (t),

where β2(t) = β20 + β21t , and θ2(t) = θ20 + θ21t . We first generate data for n = 100
subjects at m = 5 evenly spaced time points, with β1 = 10, β20 = 2, β21 = 5
γ1 = 15, θ1 = 0, θ20 = 15, θ21 = −3, and δ1 = −1. The time dependent covariate
X2i (t) is generated fromuniformdistributionwith support (0, 2) and the time-invariant
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Table 2 Results of the simulation study with 20% missing observations (n = 100 and m = 5)

Parameter Complete data Proposed MAR

RB SD CP RB SD CP RB SD CP

β1 − 0.791 0.402 0.96 0.287 0.426 0.95 − 1.270 0.436 0.94

β20 − 0.510 0.354 0.95 1.267 0.409 0.95 10.825 0.408 0.85

β21 0.393 0.084 0.96 − 0.383 0.102 0.94 − 0.802 0.102 0.93

γ1 0.067 0.403 0.93 − 0.296 0.392 0.93 − 0.546 0.411 0.94

σ 2
u 1.997 0.589 0.94 5.538 0.660 0.94 − 13.042 0.620 0.80

σ 2
e 1.328 0.657 0.95 2.669 0.719 0.95 4.825 0.774 0.90

covariate Z1i is generated from Bernoulli distribution with mean 0.6. We consider the
error variance σ 2

e = 9, and the covariance matrix associated with the random effect
parameters Σ = ( 2 − 1

− 1 2

)
. Under the above choice of the parameters, almost 20%

observations corresponding to the response variable are missing, which is in line with
the data in the real example discussed in the previous section. For the purpose of
comparison, we also generate complete data from the model

Yi (t) = β1 + β2(t)X2i (t) + γ1Z1i + u1i + ei (t),

with the same parameter choices. For each simulated data, we generates samples from
the posterior distribution of the parametersβ1,β20,β21, andγ1 using theGibbs sampler,
and computed posterior mean and posterior standard deviations. This is repeated 1000
and the estimates are averaged over the 1000 simulations. We have also performed
the same exercise under MAR assumption. In order to compare the performance of
these models, we presented relative bias (RB), posterior standard deviation (SD) along
with coverage probability in Table 2. Comparing the results from the complete and
missing data analysis, we find that the estimates from our proposed method based on
missing data mechanism is as good as complete data estimates. It is also evident that
the proposed model performs better compared to MAR in terms of relative bias. Next,
we generate data for n = 200 subjects at m = 10 evenly spaced time with the same
parameter choice, which resulted in 40%missing in the response variable. The results
are summarized in Table 3. As expected, posterior standard deviation decreases for the
estimates for both the complete and missing data analysis with increase in the number
of observations. Even with this higher percentage (40%) of missing observations, our
method seems to perform reasonably well in comparison with complete data analysis.
Here also, the proposed model is superior compared to MAR with respect to relative
bias and coverage probability.

In order to study the sensitivity of the proposed method under mis-specified selec-
tion model, we consider the aforementioned response model with the missing data
mechanism given by

U∗
i (t) = θ1 + θ2(t)X2i (t) + δ1Z1i + η(Yi (t) − ξ) + εi (t),
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Table 3 Results of the simulation study with 40% missing observations (n = 200 and m = 10)

Parameter Complete data Proposed MAR

RB SD CP RB SD CP RB SD CP

β1 0.239 0.226 0.94 0.589 0.279 0.95 − 2.173 0.297 0.93

β20 − 0.511 0.165 0.94 − 2.059 0.280 0.94 12.71 0.273 0.85

β21 0.019 0.020 0.96 − 0.004 0.071 0.95 − 0.913 0.070 0.88

γ1 0.001 0.246 0.94 − 0.295 0.254 0.93 − 0.670 0.294 0.95

σ 2
u − 1.079 0.295 0.96 2.731 0.441 0.95 − 8.465 0.445 0.88

σ 2
e 0.238 0.301 0.94 − 0.135 0.491 0.94 0.975 0.513 0.90

Table 4 Results of the simulation study under mis-specified selection model (n = 100 and m = 5)

Parameter Proposed MAR

RB SD CP RB SD CP

β1 14.556 0.646 0.40 17.219 0.672 0.31

β20 − 38.817 0.469 0.65 − 49.398 0.482 0.42

β21 − 0.202 0.085 0.96 0.207 0.087 0.94

γ1 − 1.648 0.415 0.85 − 2.627 0.447 0.83

σ 2
u − 6.261 0.511 0.83 − 18.670 0.669 0.83

σ 2
e 1.143 0.753 0.92 1.633 0.840 0.92

BIC −191,582 −167,753

Table 5 Results of the simulation study under mis-specified selection model ( n = 200 and m = 10)

Parameter Proposed MAR

RB SD CP RB SD CP

β1 17.473 0.340 0.01 18.943 0.363 0

β20 − 51.309 0.232 0.03 − 56.239 0.236 0

β21 0.245 0.021 0.92 0.326 0.021 0.85

γ1 − 2.378 0.222 0.65 − 2.687 0.271 0.65

σ 2
u − 5.605 0.263 0.80 − 6.058 0.334 0.86

σ 2
e − 1.873 0.355 0.87 − 2.460 0.369 0.89

BIC −2,207,775 −2,039,544

withη = 0.5 and ξ = 35.Note that themissing indicatorUi (t)depends on the response
Yi (t) through the fixed effect parameter η. Next, we generate data for n = 100,
m = 5, and n = 200, m = 10, which resulted in 30% missing in the response
variable. The summarized results are presented in Tables 4 and 5. It is not surprising
that the estimates from the proposed and existing method are biased. To compare the
performance of these models, we compute Bayesian information criterion (BIC) for
each of the simulated datasets and it is interesting to observe that the average BIC
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values for the proposed model are much smaller than those of MAR (see Tables 4, 5)
under the mis-specified selection mechanism. We have also computed the Deviance
information criterion (DIC), and the results are similar.

5 Discussion

In this paper, a Bayesian methodology has been developed for estimation of the cor-
related random-effects model for longitudinal data with nonignorable missingness.
Unlike the existing frequentist methods that require approximation of the intractable
log-likelihood function, we provide a simple estimation methodology using Gibbs
sampler. Our method is easy to implement, and as a special case, it is applicable to
various other models. For example, traditional SRE models are special cases of the
correlated random-effects models, which are popularly used for modeling nonignor-
able missing data.Moreover, the proposedmethod is also readily applicable to the data
with ignorable missingness. The simulation results indicate that the estimates from
our proposed method with missing information in response, are as good as compared
to the estimates from complete data analysis. Moreover, the performance of the pro-
posed method is superior compared to MAR even under the mis-specified selection
mechanism.

In this paper, we have considered longitudinal data with a continuous response
variable. Since the underlying latent response is assumed to be continuous, one can also
consider our approach for the purpose of modeling a binary or count response variable
with minor modification. For non-normal error and/or random effects models, the full
conditionals may not be from standard distributions. One can generalize the proposed
method for such cases and employ the Metropolis–Hasting algorithm for estimation
purpose. Sometimes, the data sets from longitudinal studiesmay possess outliers along
with missing information not only in the response but also in the covariates. It may be
an interesting problem to deal with such data and develop a Bayesian methodology
for detection of outliers in the presence of missing values.
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Appendix

See Figs. 2, 3 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 and 19.
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Fig. 2 Trace plot for the intercept corresponding to U∗
i (t) (left) and log(VSAE) (right)
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Fig. 3 Trace plot for the log(Age) corresponding to U∗
i (t) (left) and log(VSAE) (right)
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Fig. 4 Trace plot for the SIC2 corresponding to U∗
i (t) (left) and log(VSAE) (right)
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Fig. 5 Trace plot for the SIC3 corresponding to U∗
i (t) (left) and log(VSAE) (right)

0 500 1000 1500 2000 2500

−0
.5

0.
0

0.
5

1.
0

Iteration

S
IC

2×
lo

g(
A

ge
)

0 500 1000 1500 2000 2500

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Iteration

S
IC

2×
lo

g(
A

ge
)

Fig. 6 Trace plot for the SIC2 × log(Age) corresponding to U∗
i (t) (left) and log(VSAE) (right)
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Fig. 7 Trace plot for the SIC3 × log(Age) corresponding to U∗
i (t) (left) and log(VSAE) (right)
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Fig. 8 ACF plot for the intercept corresponding to U∗
i (t) (left) and log(VSAE) (right)
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Fig. 9 ACF plot for the log(Age) corresponding to U∗
i (t) (left) and log(VSAE) (right)
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Fig. 10 ACF plot for the SIC2 corresponding to U∗
i (t) (left) and log(VSAE) (right)
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Fig. 11 ACF plot for the SIC3 corresponding to U∗
i (t) (left) and log(VSAE) (right)
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Fig. 12 ACF plot for the SIC2 × log(Age) corresponding to U∗
i (t) (left) and log(VSAE) (right)
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Fig. 13 ACF plot for the SIC3 × log(Age) corresponding to U∗
i (t) (left) and log(VSAE) (right)
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Fig. 14 PACF plot for the intercept corresponding to U∗
i (t) (left) and log(VSAE) (right)
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Fig. 15 PACF plot for the log(Age) corresponding to U∗
i (t) (left) and log(VSAE) (right)
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Fig. 16 PACF plot for the SIC2 corresponding to U∗
i (t) (left) and log(VSAE) (right)
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Fig. 17 PACF plot for the SIC3 corresponding to U∗
i (t) (left) and log(VSAE) (right)
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Fig. 18 PACF plot for the SIC2 × log(Age) corresponding to U∗
i (t) (left) and log(VSAE) (right)
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Fig. 19 PACF plot for the SIC3 × log(Age) corresponding to U∗
i (t) (left) and log(VSAE) (right)
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