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Abstract
The cost-effectiveness of interventions (e.g. newmedical therapies or health care tech-
nologies) is often evaluated in randomized clinical trials, where individuals are nested
within clusters, for instance patients within general practices. In such two-level cost-
effectiveness trials, one can randomly assign treatments to individuals within clusters
(multicentre trial) or to entire clusters (cluster randomized trial). Such trials need
careful planning to evaluate the cost-effectiveness of interventions within the avail-
able research resources. The optimal number of clusters and the optimal number of
subjects per cluster for both types of cost-effectiveness trials can be determined by
using optimal design theory. However, the construction of the optimal design requires
information on model parameters, which may be unknown at the planning stage of
a trial. To overcome this problem, a maximin strategy is employed. We have devel-
oped a computer program SamP2CeT in R to perform these sample size calculations.
SamP2CeT provides a graphical user interface which enables the researchers to opti-
mize the numbers of clusters and subjects per cluster in their cost-effectiveness trial as
a function of study costs and outcome variances. In case of insufficient knowledge on
model parameters, SamP2CeT also provides safe numbers of clusters and subjects per
cluster, based on a maximin strategy. SamP2CeT can be used to calculate the smallest
budget needed for a user-specified power level, the largest power attainablewith a user-
specified budget, and also has the facility to calculate the power for a user-specified
design. Recent methodological developments on sample size and power calculation
for two-level cost-effectiveness trials have been implemented in SamP2CeT. This
program is user-friendly, as illustrated for two published cost-effectiveness trials.

Keywords Cluster randomized trials · Cost-effectiveness analysis · Maximin design ·
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1 Introduction

There is an increasing demand from decision makers for information not just on the
effectiveness of new interventions, but on their cost-effectiveness (value for money).
Cost-effectiveness studies of new medical therapies, treatments or health care tech-
nologies are therefore increasingly carriedout and such studies frequently have anested
design, that is, costs and effectiveness data are collected at the individual person level,
but these persons are nested within larger units called clusters, for instance, patients
are nested within general practices. In such two-level nested designs, treatments are
randomly assigned either to whole clusters (cluster randomized trial (CRT)) or to indi-
viduals within clusters (multicentre trial). Examples of cost-effectiveness CRTs are
the SPHERE study (Ng et al. 2016) and the PONDER study (Morrell et al. 2009).
Examples of multicentre cost-effectiveness trials are the EVALUATE trial (Sculpher
et al. 2004; Manca et al. 2005) and the Comparison of European Stroke Costs and
Survival study (Grieve et al. 2001, 2007).

The planning of such trials itself involves cost-effectiveness considerations, as the
trial must have sufficient power and precision for testing and estimating the cost-
effectiveness of the new treatment within the constraints of a budget for sampling,
treating and measuring clusters and individuals. In particular, the question is how
many clusters and how many individuals per cluster are needed to prove the cost-
effectiveness of treatments. This problem can be addressed by optimal design theory.
The optimal design, henceforth called the optimal sample size, is the design which
maximizes the efficiency of the treatment effect estimator, and thus results inmaximum
power for testing the treatment effect, given a constraint on the total cost for sampling
and measuring clusters and individuals. Alternatively, and equivalently, the optimal
design is the design which minimizes the total costs for sampling and measuring
given a constraint on the statistical power or efficiency. This paper presents software
for computing the optimal design for cost-effectiveness CRTs and multicenter cost-
effectiveness trials. The optimal design usually depends on some model parameters
which are unknown in the design stage and is thus optimal only for a specific set of
parameter values. This is known as the local optimality problem. One solution to this
problem is the so-calledmaximin design (MMD). This designmaximizes theminimum
efficiency and can be considered a design which is efficient for a plausible range of
values for the unknown model parameters (Berger and Wong 2009; Atkinson et al.
2007).

The statistical theory for constructing both optimal design and MMD for cost-
effectiveness CRTs and multicentre cost-effectiveness trials is presented by Manju
et al. (2014), Manju et al. (2015) This paper presents its software implementa-
tion in a computer program with a graphical user-interface (GUI). This computer
program, called SamP2CeT (Sample size and Power calculation for 2-level Cost-
effectiveness Trials), provides a user-friendly environment for researchers to design
cost-effectiveness trials (CRT and multicentre trial) with regard to the optimal number
of clusters and the optimal number of subjects per cluster. In case of limited informa-
tion on model parameters, the SamP2CeT also provides maximin (i.e., worst case)
numbers of clusters and subjects per cluster. The software presented here can either
be used to minimize the budget for a desired level of power, or to maximize the power
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for a fixed budget. In addition to fixing a budget or power, SamP2CeT also evaluates
the power if the design is fixed. Note that other software programs have been devel-
oped for sample size calculation for cluster randomized and multicentre trials, such as
OD (Raudenbush and Liu 2000; Spybrooka et al. 2011), PINT (Snijders and Bosker
1993; Bosker et al. 2003) and ML-DE (Cools et al. 2008). These programs only take
into account the effectiveness of interventions, whereas SamP2CeT also considers
the costs of interventions. Furthermore, these software programs do not allow for
optimizing the power for a given budget or minimizing the costs for a desired power
level.

The paper is organized as follows. In Sect. 2, the design problem for cost-
effectiveness trials is briefly discussed. The methodologies for CRTs and multicentre
trials are outlined respectively in Sects. 3 and 4. The model, the cost function, the opti-
mal design and theMMD for both CRTs andmulticentre trials are explained. Section 5
describes the computer program and its input values. An illustration of the computer
program with practical examples for both a CRT and a multicentre trial is provided in
Sect. 6. Section 7 addresses the benefits of using optimal design and MMD. Finally,
a discussion and conclusion are presented in Sect. 8.

2 Design problem for cost-effectiveness trials

A fundamental issue in both types of cost-effectiveness trials (CRTs and multicentre
trials) is that individuals are nested within clusters, and that there will usually be
variability in costs and effects not only between persons within clusters, but also
between clusters, and so there is sampling variance at both design levels: person and
cluster. Statistical methods that accommodate between cluster variability of outcomes
in the analysis of cost-effectiveness CRTs and multicentre cost-effectiveness trials are
relatively well established in the literature (Grieve et al. 2010; Gomes et al. 2012;
Manju et al. 2014; Grieve et al. 2007; Manju et al. 2015). These methods address the
variability in both costs and effects at both design levels, clusters and persons, and
they also take into account the correlation between costs and effects at each level. The
methods start fromabivariatemixed-effectsmodelwhere costs and effects are assumed
to follow a bivariate normal distribution1. This bivariate mixed-effects model is then
used to estimate average incremental costs and effects from treatment as compared
with the control condition. These average incremental costs and effects in turn are
combined into a single outcome called the average incremental net-monetary benefit
(INMB), which is a widely used measure of a treatment’s cost-effectiveness (Stinnett
and Mullahy 1998). The new treatment or intervention is said to be cost-effective if
the average INMB exceeds 02. In this case the intervention is considered for adoption

1 Costs usually have a skewed distribution, but Gomes et al. (2012) and Manju (2016) show that statistical
analysis of cost-effectiveness trials with the bivariate normal model is quite robust against skewed costs.
2 If there is a health gain, this is equivalent to the Incremental Cost-Effectiveness Ratio (ICER) being
smaller than the threshold willingness-to-pay parameter for a unit increase in health gain, and if there is
a health loss, equivalent to the ICER being larger than the threshold willingness to pay parameter (Willan
and Briggs 2006).
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in health care practice. Technical details of the average INMB procedure are given in
the next two sections.

When constructing an optimal design for cost-effectiveness trials, we want to esti-
mate the average INMB as precisely, and to test it with as much power, as possible.
Therefore, the optimal design minimizes the sampling variance (i.e. the squared stan-
dard error) of the estimator of the average INMB, subject to a certain cost function.
This cost function relates the required research budget to the sampling costs per per-
son and per cluster. The result of the design optimization are sample size formulae for
the numbers of individuals and clusters that maximize the study power and precision
given a fixed research budget, or that minimize the study costs given a desired level
of precision and power for testing the average INMB.

These optimal design or sample size formulae depend on some model parameters
which are not known in the planning stage, and so the optimal design is said to be
locally optimal,(Berger and Wong 2009; Atkinson et al. 2007) that is, it typically
only is optimal for specific values of model parameters, and not for other values.
The maximin approach solves this local optimality problem by the following two-step
procedure: (i) First, find that set of model parameter values within their plausible range
of values, which minimizes the design efficiency, as expressed by the inverse of the
sampling variance of the estimator of average INMB, and (ii) then choose that design
which maximizes this minimum efficiency, thereby also maximizing the precision and
power in the worst case scenario, given a fixed budget. The resulting design called the
MMD, actually is the optimal design for the worst case.

3 Cluster randomized trials (CRTs)

3.1 Model

Suppose that the cost-effectiveness of a new treatment is evaluated in a CRT, where
kt and kc clusters (e.g., general practices or hospitals) are randomly assigned to the
new treatment and control treatment respectively. Within each treatment cluster j ( j=
1,2, …, kt ) there are m individuals (e.g., patients), and within each control cluster j
( j= kt+1, kt+2, …, kt+kc) there are n individuals. All individuals receive the treat-
ment to which their cluster is allocated. To describe the modeling framework for the
cost-effectiveness analysis of CRTs, the following bivariate linear mixed model is
considered (Grieve et al. 2010; Gomes et al. 2012; Manju et al. 2014):

Ei j = βe
0 + βe

1x j + ue0 j + εei j , and Ci j = βc
0 + βc

1x j + uc0 j + εci j ,[
ue0 j
uc0 j

]
∼ N

([
0
0

]
,

[
σ 2
e0 ρu0σe0σc0

σ 2
c0

])
and

[
εei j

εci j

]
∼ N

([
0
0

]
,

[
σ 2

εe ρεσεeσεc

σ 2
εc

])
,

(1)

where Ei j and Ci j are the effects and costs for individual i in cluster j respectively.
The variable x j represents the treatment assigned to cluster j and will be coded 0 and
1 for the control and treatment clusters respectively, although other coding schemes
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are also possible and lead to the same sample size formulas for the optimal design and
MMD. The coefficients βe

0 and βc
0 can be regarded as the average effects and costs

respectively for the group of individuals receiving the control treatment. The random
intercepts ue0 j and uc0 j reflect the deviations from the averages βe

0 and βc
0 for the j th

cluster respectively and are assumed to follow a bivariate normal distribution, with
variances σ 2

e0 and σ 2
c0 and correlation ρu0(−1 ≤ ρu0 ≤ 1). The slope coefficients

βe
1 and βc

1 correspond to the average incremental effects and costs from treatment
respectively. Finally, εei j and εci j are individual level residuals for effects and costs

respectively, assumed to follow a bivariate normal distribution, with variances σ 2
εe and

σ 2
εc and correlation ρε(−1 ≤ ρε ≤ 1).
In Eq. (1), the costs and effects are expressed on their original scales, but the net-

monetary benefit (NMB) framework, where both the effects and costs of interventions
are scaled onto the same monetary scale on the basis of a threshold value λ, offers
a convenient way of modeling the data from cost-effectiveness CRTs (Stinnett and
Mullahy 1998). Here NMB can be calculated for each individual i in cluster j as:
NMBi j = λEi j − Ci j , where the value λ(0 ≤ λ < ∞) is the threshold willingness
to pay for a unit of health gain. Costs and effects are thus combined into the average
incremental net-monetary benefit, INMB (β1), a measure of relative value for money
of intervention as compared with control, which is defined as β1 = λβe

1 − βc
1. In a

CRT, the outcomes of two individuals in an arbitrary cluster are correlated, and these

intraclass correlations (ICCs) for effects and costs are equal to 0 ≤ ρe = σ 2
e0

σ 2
e0+σ 2

εe
≤ 1

and 0 ≤ ρc = σ 2
c0

σ 2
c0+σ 2

εc
≤ 1 respectively. We furthermore define ϕ = λ2(σ 2

e0+σ 2
εe )

σ 2
c0+σ 2

εc
, and

this ϕ(0 ≤ ϕ < ∞), which we call the variance ratio, can be interpreted as the ratio
of total variance for effects translated into costs (λEi j ) to the total variance for costs
(Ci j ). The ICCs and the variance ratio will be seen to play an important role in the
design optimization.

3.2 Sample size calculation

The aim of optimal design theory is to find the design which minimizes some func-
tion of the covariance matrix of one or more parameter estimators of interest, and
this function is called the optimality criterion. Here, the optimality criterion is simply
the sampling variance of β̂1, the maximum likelihood (ML) estimator of the average
INMB, β1, which measures the treatment’s cost-effectiveness. The following asymp-
totic variance of the ML estimator of β1 has been derived from the general expression
for the variance-covariance matrix of the fixed-effects estimators for a linear mixed
model as proposed by Verbeke and Molenberghs (2000) and Manju et al. (2014):

var(β̂1) =
{( 1

kt
+ 1

kc

)
A +

( 1

ktm
+ 1

kcn

)
B

}
vc, (2)

where A = ϕρe + ρc − 2ρu0
√

ρeρcϕ, B = ϕ (1 − ρe) + (1 − ρc) − 2ρε√
(1 − ρe) (1 − ρc) ϕ and vc = var(Ci j ) = σ 2

c0 + σ 2
εc . Note that A is the contribution
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of random cluster effects, andB is the contribution of random person andmeasurement
error effects, to the sampling variance of β̂1.

Designs are usually restricted by a budget. Therefore, it is important to take the
costs for measuring and sampling clusters and individuals into account when planning
a CRT. Let C represent the total budget for sampling, treating and measuring clusters
and persons and let ct > 0 and cc > 0 be the cost per cluster in the treatment and
control arm, respectively. Furthermore, let st > 0 and sc > 0 be the cost per individual
in the treatment and control cluster, respectively. The required budget (or total costs)
is then given by Tokola et al. (2011) and Manju et al. (2014):

C = kt ct + kccc + ktmst + kcnsc. (3)

Finding an optimal design means finding the m, n, kt and kc which minimize var(β̂1)

in Eq. (2), and thus maximize the statistical power, given the budget constraint in
Eq. (3). The optimal design formulas have been derived by Manju et al. (2014) and
are here provided in Appendix A.

Computing the optimal design requires knowledge about the model parameters
ρe, ρc, ρu0, ρε and ϕ. As described in the previous section, since specifying these
parameter values may not be possible at the planning stage of a trial, a MMD can be
determined as an efficient design over a plausible range of values for these unknown
model parameters. The expressions for the MMDs for planning a cost-effectiveness
CRT, as derived by Manju et al. (2014), are presented in Appendix A. These MMDs
depend on the upper bounds for plausible ranges of ρe and ρc.

The optimal design and the MMD as proposed by Manju et al. (2014) have been
derived for a fixed budget. Therefore, these designs give the smallest variance of the
treatment effect estimator and thus the largest precision and power, given the budget
and given either the model parameter values (optimal design) or plausible ranges of
these model parameters (maximin design). In designing a cost-effectiveness study,
however, one will often aim at achieving a certain power for the treatment effect test
instead of fixing the budget beforehand. This can be achieved by the same optimal and
maximin design equations as for a fixed budget, however, by noting that the optimal
respectively maximin cluster sizes m and n do not depend on the budget, whereas the
optimal respectively maximin numbers of clusters do (see Appendix A for details).
So if a given budget does not give sufficient power even after design optimization,
then the budget must be increased and this will lead to an increase of the number of
clusters kt and kc, not of the cluster sizes m and n. The required budget can thus be
calculated either by repeated increases of the budget followed by computation of the
optimal cluster sizes and power until the desired power is attained, or by rewriting the
optimal sample size equations for a given budget into those for a given power. The
latter approach underlies the present computer program SamP2CeT. To compute the
power and required budget the user will also need to specify the effect size (ES) of
interest. The program uses as measure of ES an adaptation of the classical Cohen’s d
(Cohen 1992), to the present nested design. For details, see Appendix A.

A third and lastwayof usingSamP2CeT, is to calculate the power for a fixed design,
that is, for user-specified values of m, n, kt and kc. This is relevant if a researcher has
several designs that are practically feasible, and wants to evaluate these in terms of
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their power. In this case, the same procedure as above for computing the power of the
optimal design for a given budget is followed, except that user-specified values of m,
n, kt and kc are used instead of the optimal m, n, kt and kc. Furthermore, if the user
does not have precise information on the model parameters that affect the power, the
user can evaluate the worst case (lowest) power. In this case, the power of the user
specified design in a worst case scenario results, comparable to the power of theMMD
for a given budget.

4 Multicentre trials

4.1 Model

Next toCRTs, alsomulticentre trials, with randomization of individualswithin clusters
or centres, are often employed in cost-effectiveness studies. This section describes the
modeling approach to analyze data frommulticentre cost-effectiveness trials involving
a treatment-by-centre interaction and assuming a m:n randomization in each centre j
( j= 1,2, …, k). We have the following bivariate linear mixed model for the effect of
treatment x on the quantitative outcomes, effects (Ei j ) and costs (Ci j ), for individual
i in centre j (Grieve et al. 2007; Manju et al. 2015):

Ei j = βe
0 j + βe

1xi j + ue1 j xi j + εei j , and Ci j = βc
0 j + βc

1xi j + uc1 j xi j + εci j ,[
ue1 j
uc1 j

]
∼ N

([
0
0

]
,

[
σ 2
e1 ρu1σe1σc1

σ 2
c1

])
, and

[
εei j

εci j

]
∼ N

([
0
0

]
,

[
σ 2

εe ρεσεeσεc

σ 2
εc

])
,

(4)

where xi j is coded as b for treated and a control individuals (a and b are real numbers
and a �= b), so that the average incremental effects and costs from treatment are
(b − a)βe

1 and (b − a)βc
1 respectively. In case of a multicentre trial, the NMBi j

and the average INMB are also defined as NMBi j = λEi j − Ci j and (b − a)β1 =
(b − a)(λβe

1 − βc
1) respectively. The intercepts βe

0 j and βc
0 j for centre j , the main

effect of centres for effects and costs respectively, may be either fixed or random.
If the randomization is m:n in each centre j ( j= 1,2, …, k), it makes no difference
for the optimal design and MMD whether the components βe

0 j and βc
0 j are treated

as random or fixed (Senn 2014). The random components uc1 j and ue1 j , represent the
treatment-by-centre interactions for costs and effects respectively and are assumed to
follow a bivariate normal distribution with the variances σ 2

c1 and σ 2
e1 and correlation

ρu1(−1 ≤ ρu1 ≤ 1). We make the same distributional assumptions regarding the
random individual level (εci j , ε

e
i j ) costs and effects in Eq. (4) as in Eq. (1). In deriving

the optimal design and MMD for multicentre cost-effectiveness trials, Manju et al.
(2015) used the following re-parameterization of the model parameters in Eq. (4):

0 ≤ θe = (b−a)2σ 2
e1

(b−a)2σ 2
e1+σ 2

εe
≤ 1, 0 ≤ θc = (b−a)2σ 2

c1
(b−a)2σ 2

c1+σ 2
εc

≤ 1 and 0 ≤ φ =
λ2{(b−a)2σ 2

e1+σ 2
εe }

{(b−a)2σ 2
c1+σ 2

εc }
< ∞. Here θe and θc play the same role as the ICCs in the CRT
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model as discussed in the previous part on cluster randomized trials, and φ is similar
to the ratio of the variance for effects translated into costs (i.e., λEi j ) to the variance
for costs, except that the intercept variances σ 2

e0 and σ 2
c0 are replaced with the slope

variances σ 2
e1 and σ 2

c1 multiplied with a scaling factor (b − a)2 which depends on the
coding of the treatment indicator xi j in Eq. (4). Note that the quantities (b−a)2σ 2

e1 and
(b − a)2σ 2

c1 do not depend on the treatment coding. For instance, changing from 0/1
coding to −1/+1 coding makes (b− a)2 four times larger, but σ 2

e1 four times smaller,
since βe

1 + ue1 j is the effects difference between treatment and control in centre j in
case of 0/1 treatment coding, but only half that difference in case of −1/+1 coding.
Because of the similarity with the ICCs and the variance ratio for cluster randomized
trials (CRTs), in the remainder of this paper we will call θe and θc the quasi-ICCs for
effects and costs respectively, and denote φ as the quasi-variance ratio.

4.2 Sample size calculation

If there are m and n individuals randomly allocated to the treatment and control
condition in each of the k centres, the following expression for the variance of the
average INMB estimator has been derived based on ML estimation as covered by
Verbeke and Molenberghs (2000), Manju et al. (2015)

var(β̂1) = v′
c

k

{
A′ +

( 1

m
+ 1

n

)
B ′}, (5)

where A′ = φθe + θc − 2ρu1
√

θeθcφ, B ′ = φ (1 − θe) + (1 − θc) − 2ρε√
(1 − θe) (1 − θc) φ and v′

c = σ 2
c1 + (b − a)−2σ 2

εc . Note that, the random slope
and random error variances for NMB as specified in the previous section are σ 2

1 =
var(λue1 j − uc1 j ) = A′v′

c and σ 2 = var(λεei j − εci j ) = (b − a)2B ′v′
c respectively.

Further, v′
c = σ 2

c1 + (b − a)−2σ 2
εc is analogous to the total cost variance vc in Eq. (2),

except that intercept variance is replaced with slope variance.
To find the optimal design, we need a function that relates sample size to costs.

Assume that the cost per included centre is c > 0, whereas the costs per included
individual in the treatment arm is st > 0 and in the control arm is sc > 0. The budget
C needed for including k centres of m + n individuals each is then (Liu 2003; Manju
et al. 2015):

C = k(c + mst + nsc). (6)

Similar to what has been discussed for CRTs, the optimal design as well as MMD
for the multicentre cost-effectiveness trials have been derived by Manju et al. (2015)
and the equations for these designs (optimal and MMD) are given in Appendix B.
Analogously to what was seen in the section on cluster randomized trials, these
equations for multicenter trials can be used to maximize the power for a given bud-
get, or to minimize the budget needed for a given power, or to evaluate the power
of a given design. And again, the effect size upon which the power depends is
expressed in a shape close to the classical Cohen’s d,(Cohen 1992) (seeAppendixB for
details).
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5 SamP2Cet program

The computer program SamP2CeT (Sample size and Power calculation for 2-level
Cost-effectiveness Trials) is an easy to use tool to design cost-effectiveness trials.
SamP2CeT runs within the R(≥ 3.2.4) system for statistical computing (R Devel-
opment Core Team 2015). The reason for choosing R is that R is a free software
environment for statistical computing. Also, R is a popular software program within
the field of medical science for the design and analysis of clinical trials (Bornkamp
et al. 2009; Peace and Chen 2010). The present computer program SamP2CeT asks
the user to specify various design characteristics as well as input parameters through a
Graphical User Interface (GUI). The GUI uses the R-Tcl/Tk(Welch 1995) interface
implemented in the R package: tcltk (Dalgaard 2001).

This section describes theGUI of the programwhich calculates the optimal (ormax-
imin) number of clusters and number of individuals per cluster for a cost-effectiveness
CRT or a multicentre cost-effectiveness trial. The program also calculates the mini-
mumbudget for a desired level of power, themaximumpower for a given budget, or the
power for a user-specified design. The program is available as supplementary material
from the journal webpage. The program SamP2CeT was developed and tested on a
Windows 7 operating system.

To start the program theuser typeslibrary(SamP2CeT) and thenSamP2CeT()
in the command window of R and presses the enter key. The directory containing
SamP2CeT should be the current directory on the R desktop. The main window of the
SamP2CeTwill appear as presented inFig. 1. Themainmenu requires the user tomake
three different choices (see Fig. 1): (a) between a cluster randomized and a multicen-
tre trial, and (b) between minimizing the study costs, or maximizing the study power,
or computing the power of some user-specified design, and (c) between specific val-
ues and ranges for the outcome variances and correlations. Pushing the button Next
displays one of 12 different windows (submenus), depending on the user’s choices
concerning level of randomization, purpose and knowledge of parameters. The input
parameters for these 12 different submenus are discussed in the SamP2CeT user’s
manual, which is included as supplementary material.

6 Illustrations

The program SamP2CeTwill be illustrated for a cost-effectiveness CRT known as the
SPHERE study and for amulticentre cost-effectiveness trial known as the EVALUATE
trial. The user can calculate the sample sizes for both trials either for a fixed power
or for a fixed budget. Because of the similarity of the input and result windows for
fixed power and fixed budget, we will only consider a fixed power in the following
illustrations, but we will consider the case of a fixed budget in Sect. 7. In addition to
calculating the sample sizes, the user can evaluate the power of the actual design of
these trials. For the sake of illustration, we assume imprecise knowledge of variances
and correlations for the SPHERE study, leading to a maximin design and precise
knowledge for the EVALUATE trial, leading to an optimal design.
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Fig. 1 Main menu of the SamP2CeT program

6.1 Example of a cost-effectiveness CRT: the SPHERE study

We illustrate the program SamP2CeT on the SPHERE study which assessed the
cost-effectiveness of a secondary prevention strategy for patients with coronary heart
disease in general practice (Ng et al. 2016). General practices were randomised to
control (usual care) or treatment (tailored care). The data were collected from 48
general practices (24 treatment clusters and 24 control clusters) with, on the average,
18 and 19 patients in each of the treatment and control clusters respectively. The main
endpoints, costs and effects, were expressed in terms of Euros (e) and quality-adjusted
life-years (QALYs), respectively.

6.1.1 Maximin sample sizes

It is assumed that the user wants to calculate the MMD for a cost-effectiveness CRT
with the same research question as the SPHERE study, and that the power level is
fixed (so that the optimization minimizes the study costs). In that case, the user needs
to specify the upper bounds for the intraclass correlation (ICC) for effects (ρe) and the
intraclass correlation (ICC) for costs (ρc). The ICC upper bounds are based on Gomes
et al. (2012)), and the cluster and subject-specific costs were chosen by us for the sake
of illustration lacking any information on the actual costs of the SPHERE trial. All
input values are shown in Fig. 2, which yield the maximin design as shown in Fig. 3.
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Fig. 2 Entries in SamP2CeT submenu to calculate the MMD for the SPHERE study when the power is
fixed

Note that the small number of subjects per cluster is due to the large upper bound for
the ICCs (see appendix A for details).

6.1.2 Power calculation for a user-specified design

Suppose that the user wants to check the power of the SPHERE study. Choosing
in Fig. 1 for “Evaluate Power for a User-specified Design”, and
then filling in the parameter values and actual design as in Fig. 4 gives a power of
0.83 or 83%. Note that, for a power that is slightly larger than 80% this actual design
requires a budget of 156000 euro, more than twice as much as theMMD in Sect. 6.1.1.

6.2 Example of amulticentre cost-effectiveness trial: the EVALUATE trial

This section illustrates the program SamP2CeT for a multicentre cost-effectiveness
trial known as the EVALUATE trial which compared laparoscopic-assisted hysterec-
tomy (treatment) and standard hysterectomy (control) (Sculpher et al. 2004; Manca
et al. 2005). The data were collected from 25 centres with, on the average, 23 treated
and 11 control patients per centre.

6.2.1 Optimal sample sizes

Suppose that the user wants to calculate the optimal design for the EVALUATE trial
for a fixed power level. For this illustration, we use as parameter values the estimates
from the EVALUATE trial as published in Manca et al. (2005). These input values
are displayed in Fig. 5. Furthermore, costs per centre and costs per individual in
each treatment arm are assumed by us in the absence of empirical information on the
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Fig. 3 Result window of SamP2CeT appearing for the MMD for the SPHERE study when the power is
fixed

planning costs from the EVALUATE trial. Figure 6, shows the optimal design for the
EVALUATE trial for a given power level. To run this trial at a power level of 80% a
budget of e209000 is required.

6.2.2 Power calculation for a user-specified design

To evaluate the power for the actual design (k = 25, m = 23 and n = 11) of the
EVALUATE trial the user again needs to supply the information on correlation and
variance parameters (θe, θc, ρu1, ρε and φ) which is displayed in Fig. 7. The resulting
power of the actual design is close to 1.0, which is very high as the actual design of
the EVALUATE trial consists of a large number of centres and the price of this high
power is of course a high study budget, as the actual design requires C =e812500
when assuming the same costs as in the previous section.

7 Benefits of using optimal andmaximin sample sizes

The benefits of optimal and maximin designs can be assessed by considering the
percentage budget gain (for fixed power) or the percentage power gain (for fixed
budget) of these designs compared with the actual design of a study. This comparison
is made for the SPHERE study and the EVALUATE trial in Table 1, using the cost
ratios in Manju et al. (2014), Manju et al. (2015), and the parameter values in Ng et al.
(2016), and Sculpher et al. (2004) and Manca et al. (2005) for the optimal designs,
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Fig. 4 Entries in SamP2CeT submenu to calculate power for the actual design of the SPHERE study when
the information on correlation and variance parameters is not precise

and the parameter boundaries in Gomes et al. (2012) and Manju et al. (2015) for the
maximin designs. The parameters values are ρe = 0.001, ρc = 0.007, ρu0 = −0.18,
ρε = −0.04, ϕ = 0.232 for the SPHERE study, and θe = 0.26, θc = 0.05, ρu1 =
0.66, ρε = −0.083, φ = 0.60 for the EVALUATE trial, and the chosen parameter
boundaries are the ICC upper bounds for effects = 0.30 and for costs = 0.30 for
the SPHERE study and the quasi-ICC upper bounds for effects = 0.30 and for costs
= 0.30 for the EVALUATE trial. In the power comparison of the designs we took
an ES of 0.20 which implies a power of 0.79 and 0.21 for the actual design of the
SPHERE study and of 0.59 and 0.25 for the actual design of the EVALUATE study
for the parameter values as obtained in these studies and as assumed for the maximin
scenarios respectively. In contrast, the ES does not play a role in the budget comparison
between actual, optimal and maximin designs. This is because the ratio of the budgets
needed for any two designs to have the same power for a given ES only depends on the
relative efficiency of these two designs, that is, on the ratio of their var(β̂1). The latter
in turn does not depend on the ES. Further, for given cost ratios, the actual design
defines the available budget, that is: from the assumed costs and the actual design
(nr of clusters, nr of individuals per cluster) the budget needed for the actual design
was computed. The optimal and maximin designs are then calculated for that budget
and the same cost ratios. The percentage power gains of these optimal and maximin
designs are shown in the last two columns for each set of cost ratios. The budget is
thus the same within each row (and thus allows for comparison of powers within a
row), but may differ from one row to the other.

Table 1 shows that using optimal and maximin designs can substantially reduce the
total study costs and increase the power of the study as comparedwith the actual design,
depending on the cost ratios. Table 1 shows that in some cases the MMD reduces the
budget and increases the power more than does the optimal design. This happens
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Fig. 5 Entries in SamP2CeT submenu to calculate the optimal design for the EVALUATE trial when the
power is fixed

Fig. 6 Result window of SamP2CeT appearing for the optimal design for the EVALUATE trial when the
power is fixed
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Fig. 7 Entries in SamP2CeT submenu to calculate power for the actual design of the EVALUATE trial
when the information on correlation and variance parameters is precise

because the optimal design and the MMD were computed based on two different
sets of parameters, making these two designs not directly comparable with each other
in Table 1, but only with the actual study designs of the SPHERE and EVALUATE
trials. Actually, the maximin design is the optimal design for those parameter values
within the chosen range of parameter values that give the largest (worst case) sampling
variance of the treatment effect (for details, see Manju et al. (2014), Manju et al.
(2015)). In the present examples, these worst case parameter values are ρe = 0.3 and
ρc = 0.30 for the SPHERE study, and θe = 0.3 and θc = 0.30 for the EVALUATE
trial. Choosing these values for the optimal design would have given the same design
as the maximin design.

8 Discussion

In this paper, we have briefly reviewed recent methodological developments on sample
size and power calculation for both cost-effectiveness CRTs and multicentre cost-
effectiveness trials, andwehave introduced a software implementationwith a graphical
user interface SamP2CeT. The sample sizes concern the numbers of clusters, and
subjects per cluster, in each treatment arm for a cost-effectiveness CRT, or the numbers
of centres and subjects per treatment armper centre for amulticentre cost-effectiveness
trial. This paper describes the use of the program SamP2CeT to compute the smallest
budget needed for a user-specified power level, or the largest power attainable with
a user-specified budget, as well as the corresponding sample sizes. In addition, the
program allows for power calculation for a user-specified design. Calculating either
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the sample sizes, or the power for a user-specified design, requires prior knowledge on
correlation and variance parameters. Therefore, the computer program allows the user
to either specify values for these parameters, or plausible ranges for them, depending
on the precision of the user’s knowledge on these parameters.

Following Manju et al. (2014), Manju et al. (2015) this paper and software use
maximin design to handle uncertainty about those parameter values on which the
optimal design depends. Twoother approaches in the literature are theBayesian and the
sequential approach. The Bayesian approach (Spiegelhalter et al. 2007) maximizes the
expected instead of minimum efficiency, which is a more optimistic but also less safe
approach than maximin design. Apart from this, Bayesian design has two drawbacks
that need consideration before preferring it to maximin design. First, maximizing
expected efficiency, or maximizing expected power, or minimizing expected sampling
variance, give different designs because efficiency, power and sampling variance are
nonlinearly related. In contrast, maximin design gives the same design for all three
criteria because they aremonotonically related. Secondly, Bayesian design depends on
the chosen prior for the parameters on which the design depends, whereas maximin
design only depends on the range for those parameters. The sequential procedure
handles parameter uncertainty by updating the design based on parameter estimates at
interim analyses (Wu 1985). This second approach could be combined with maximin
design, for instance by choosing the maximin design as initial design, which can then
be updated at interim.
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Appendix A

Cluster randomized trial (CRT)

Optimal sample sizes

Finding an optimal design means finding the m, n, kt and kc which minimize var(β̂1)

in Eq. (2), and thus maximizes the statistical power, given the budget constraint in
Eq. (3). It has been shown by Manju et al. (2014) that this gives the following optimal
design:

mopt =
√
ct B

st A
and nopt =

√
ccB

sc A
,

ktopt = C
√
A√

ct {(√cc A + √
scB) + (

√
ct A + √

st B)} and kcopt = ktopt
√
ct√

cc
,

(A.1)
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where A = ϕρe + ρc − 2ρu0
√

ρeρcϕ and B = ϕ (1 − ρe) + (1 − ρc) −
2ρε

√
(1 − ρe) (1 − ρc) ϕ, and the resulting optimal (= minimal) variance for the vec-

tor of parameters Π = (ρe, ρc, ρu0, ρε , ϕ, vc) is then given by:

var(β̂1|Π, opt) = {(√ct + √
cc)

√
A + (

√
st + √

sc)
√
B}2vc

C
. (A.2)

Note that, the optimal design in Eq. (A.1) does not depend on the coding of the
treatment indicator variable x j in any way, since changing the coding would only
affect the fixed intercepts in Eq. (1), but none of the model parameters on which the
optimality criterion in Eq. (2) depends. In this section the budget C was fixed and
the power was then maximized. However, the present equations can also be used to
minimize the budget needed for a given power, or to evaluate the power of a given
design, as will be seen in the section on power calculation.

Maximin sample sizes

Equation (A.1) shows that computing the optimal design requires knowledge about the
model parameters ρe, ρc, ρu0, ρε , ϕ and vc. As described in the previous section, since
specifying these parameter values may not be possible at the planning stage of a trial,
a MMD can be determined as an efficient design over a plausible range of values for
these unknown model parameters. The MMD for planning a cost-effectiveness CRT
is given by the following expression (Manju et al. 2014):

mMMD =
√
ct (1 − ρ)

stρ
and nMMD =

√
cc(1 − ρ)

scρ
,

ktMMD = C
√

ρ√
ct {(√cc + √

ct )
√

ρ + (
√
sc + √

st )
√

(1 − ρ)} and kcMMD=ktMMD

√
ct√

cc
,

(A.3)

where ρ is the maximum of the upper bounds of ρe and ρc. The maximin (= worst
case) variance of the ML estimator β̂1 is then:

var(β̂1|Π1, MMD)

= {(√ct + √
cc)

√
ρ + (

√
st + √

sc)
√

(1 − ρ)}2(ϕU + 1 − 2r
√

ϕU )vUc

C
,

(A.4)

where r(−1 ≤ r < 0) is the minimum of the two lower boundaries of ρu0 and ρε ,
and ϕU and vUc are the upper bounds for plausible ranges of ϕ and vc, respectively,
therefore, Π1 = (ρ, r , ϕU , vUc ) denotes the vector of the maximin parameter bound-
aries. Just as in the previous section, the present equations can be used to maximize
the power, or to minimize the budget, or to evaluate the power of a given design. This
is explained in more detail in the next section.
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Power calculation

The optimal design in Eq. (A.1) and theMMD in Eq. (A.3) have been derived for a fixed
budget. Therefore, Eqs. (A.2) and (A.4) give the smallest variances of the treatment
effect estimator and the largest precision, given the budget and the model parameters
(optimal design) or plausible ranges of these model parameters (maximin design).
In designing a cost-effectiveness study, however, one will often aim at achieving a
certain power for the treatment effect test instead of fixing the budget beforehand. It
will now be shown how the equations in the preceding sections can be used to compute
the budget needed to achieve the desired power. To understand this it is important to
note that the optimal respectively maximin cluster sizes m and n do not depend on
the budget, whereas the optimal respectively maximin numbers of clusters do. So if
a given budget does not give sufficient power, then the budget must be increased and
this will lead to an increase of the number of clusters kt and kc, not of the cluster sizes
m and n.

To test the null hypothesis H0 : β1 = 0, that is, that the treatment and control
are equally cost-effective, against the alternative hypothesis HA : β1 �= 0, we have

the test statistic f = β̂2
1

ˆvar(β̂1) (Liu 2003). Under the alternative hypothesis, this test

statistic f follows the non-central F distribution, that is, F(1, kt + kc − 2; δ), with
numerator and denominator degrees of freedom 1 and kt + kc − 2, respectively, and

with non-centrality parameter δ = β2
1

var(β̂1)
. Under H0, δ = 0 and so the critical value

f0 for the test statistic is the (1−α)th-quantile of the central F(1, kt + kc − 2; δ = 0)
distribution and the power of the test for the treatment effect is:

1 − γ = 1 − Pr [ f < f0]. (A.5)

where Pr [ f < f0] obeys the non-central F-distribution. The power depends on the
non-centrality parameter δ, which can be rewritten in terms of the effect size (ES)
measure introduced by Cohen’s d,(Cohen 1992) that is, ES =| β1 | /

√
var(NMBi j ),

where the variance of NMBi j , var(NMBi j ) = (A + B)vc. More specifically,

δ = kt kcmnES2(A + B)

ktm(nA + B) + kcn(mA + B)
. (A.6)

The researcher may now choose an effect size (ES) based on clinical considerations
(e.g., smallest relevant effect size) and then calculate the maximum power for the
optimal design (or the MMD) in Eq. (A.1) (or Eq. (A.3)). Given this ES, the non-
centrality parameter δ in Eq. (A.6) does not depend on vc and so the researcher does
not need to specify vc. Further, for the MMD in Eq. (A.3) the expression for the
non-centrality parameter δ can be written as:

δ = kt kcmnES2

mnρ(kt + kc) + (1 − ρ)(ktm + kcn)
, (A.7)
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where ES =| β1 | /

√
(ϕU + 1 − 2r

√
ϕU )vUc . Note that, the expression in Eq. (A.7)

is obtained by substituting in A and B in Eq. (A.6) ρ for ρe and ρc, where ρ is the
maximum of the upper bounds of ρe and ρc, r for ρu0 and ρε , where r is the minimum
of the lower bounds of ρu0 and ρε , and ϕU for ϕ, where ϕU is the upper bound of ϕ.
The non-centrality parameter δ in Eq. (A.7) is independent of r , ϕU and vUc once the
ES has been chosen. As a consequence, the researcher can get rid of r , ϕU and vUc in
calculating the power for theMMD in Eq. (A.3). It is to be noted that, the denominator
of the ES for theMMD is the worst case (maximum) variance for the NMB and so the
ES for the MMD is the worst case ES.

The procedure as to how to obtain the power of the optimal design for a given
budget using Eq. (A.5) is as follows. For a given budget C , model parameters and
sampling costs, one can compute the optimal m, n, kt and kc with Eq. (A.1). Using
these optimal m, n, kt and kc, the non-centrality parameter δ in Eq. (A.6) can be
calculated for a given effect size ES, and A and B. Also, given the optimal kt and kc,
the critical F-value, f0, in Eq. (A.5) can be obtained from the central F-distribution
for a given type I error risk α. The power 1 − Pr [ f < f0] is then obtained from the
non-central F-distribution. This power is the largest possible power, given the model
parameters, sampling costs, ES, type I error rate and budget. If this power is too low
(or high), then we have to increase (or decrease) the budget and repeat the process of
computing the optimal design, δ in Eq. (A.6), and f0, and the power, using Eq. (A.5)
until the desired level of power is attained. This budget is then the smallest possible
budget, given the model parameters, sampling costs, ES, and type I error rate yielding
a pre-specified power level. Note that, in a similar way, we can calculate the MMD,
either when fixing the budget or the power, this timemaking use of Eq. (A.3) instead of
Eq. (A.1). The same procedure as described above for the optimal design is followed,
the only difference being that the computation of δ is based on Eq. (A.7) instead of
Eq. (A.6).

Appendix B

Multicentre trial

Optimal sample sizes

The following optimal design of multicentre cost-effectiveness trials has been derived
from Eqs. (5) and (6), consisting of the number of centres (kopt ) and the number of
individuals in each treatment arm within each centre (mopt , nopt ) (Manju et al. 2015):

mopt =
√

cB ′
st A′ , nopt =

√
cB ′
sc A′ and kopt = C√

cB′
A′ (

√
st + √

sc) + c
. (B.1)

where A′ = φθe + θc − 2ρu1
√

θeθcφ, B ′ = φ (1 − θe) + (1 − θc) − 2ρε√
(1 − θe) (1 − θc) φ. The optimal (= minimal) variance of the average INMB esti-
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mator, given a vector of parameters Π ′ = (θe, θc, ρu1, ρε , φ, v′
c), is then:

var(β̂1|Π ′, opt) = {√B ′(√st + √
sc) + √

A′c}2v′
c

C
. (B.2)

Analogously to what was seen in the section on cluster randomized trials, the present
equations for multicenter trials can be used to maximize the power for a given budget,
or to minimize the budget needed for a given power, or to evaluate the power of a
given design.

Maximin sample sizes

If precise knowledge of themodel parameters θe, θc, ρu1, ρε ,φ and v′
c is lacking, which

is usually the case, then a MMD can again be chosen. We assume finite intervals for
each of the model parameters θe, θc, ρu1, ρε , φ and v′

c, where the lower bounds can be
negative for ρu1 and ρε , but not for the other three parameters. Four different MMDs
were derived based on the signs of the lower bounds for the correlations ρu1 and ρε

(Manju et al. 2015). Here we consider the case where both correlations can be negative
and up to −1, which is the worst case in terms of the maximum possible sampling
variance of the average INMB estimator (β̂1). This gives the followingMMD (Manju
et al. 2015):

mMMD=
√
c(1 − θ)

stθ
, nMMD=

√
c(1 − θ)

scθ
and kMMD= C√

c(1−θ)
θ

(
√
st + √

sc) + c
,

(B.3)
where θ is the maximum of the upper bounds of θe and θc. The maximin (= worst
case) variance of the ML estimator β̂1 is then:

var(β̂1|Π ′
1, MMD) = {√(1 − θ)(

√
st + √

sc) + √
θc}2(φU + 1 − 2r ′√φU )v′U

c

C
,

(B.4)
where r ′(−1 ≤ r ′ < 0) is the minimum of the two lower boundaries of ρu1

and ρε , and φU and v′U
c are the upper bounds for plausible ranges of φ and v′

c,
respectively, therefore, Π ′

1 = (θ , r ′, φU , v′U
c ) denotes the vector of the maximin

parameter boundaries.

Power calculation

A design minimizing the costs of the study,C , for given power (1−γ ), or maximizing
the power (1−γ ) for given total costsC , can be found if one uses the test statistic f =

β̂2
1

ˆvar(β̂1) . The test statistic f follows the non-central F distribution, that is F(1, k−1; δ),

with the numerator and denominator degrees of freedom 1 and k−1, respectively, and
with the non-centrality parameter δ = kmnES2

mnESv+m+n . Here, ES = |b−a|β1
σ

is the effect

size,(Cohen 1992) and ESv = (b−a)2σ 2
1

σ 2 is the effect size variability (Raudenbush and
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Liu 2000). Note that, in case of CRTs, the ES as defined in the Power calculation
section for CRT uses as denominator the square root of the total outcome variance of
NMB, whereas the ES in the multicentre trial uses as denominator the square root
of the individual level NMB variance only. Also note that by specifying θe, θc, ρu1,
ρε and φ the effect size variability (ESv) is already fixed, and need not be specified
anymore. The power function for a two-sided test becomes (Manju et al. 2015):

1 − γ = 1 − Pr [ f < f0], (B.5)

where f0 is the (1 − α)th-quantile of the central F(1, k − 1; δ = 0) distribution.
When fixing a clinically relevant effect size (ES) in calculating the optimal design in
Eq. (B.1) for a multicentre trial, similar to a cost-effectiveness CRT, the non-centrality
parameter δ does not depend on v′

c. Furthermore, when fixing ES in calculating the
MMD in Eq. (B.3), since the effect size variability (ESv), m, n and k do not depend
on r ′, φU and v′U

c , also the non-centrality parameter δ no longer depends on these
model parameters. Following the same procedure as described in the Power calculation
section for CRTs, but now using the corresponding equations from the Multicentre
trials section, Eq. (B.5) can be used to obtain the smallest possible budget for a desired
level of power, or to obtain the largest power for a given budget, or to compute the
power for a user-specified design in case of a multicentre trial.
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