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Abstract
This paper presents an iterative algorithm that bounds the lower and upper partial
moments of an arbitrary univariate random variable X by using the information con-
tained in a sequence of finite moments of X . The obtained bounds on the partial
moments imply bounds on the moments of the transformation f (X) for a certain
function f : R → R. Two examples illustrate the performance of the algorithm.

Keywords Moment problem · Bounds · Censored distributions · Iteration
convergence

1 Introduction

Statistical computations for insurance policy, inventory management, Bayesian point
estimation, and other areas often involve the computation of partial moments (Winkler
et al. 1972). Bawa and Lindenberg (1977) derive a capital asset pricing model from
utility functions basedon lower partialmoments. The i-th upper (lower) partialmoment
of a univariate real-valued random variable X with cumulative distribution function
F is defined as the i-th moment in excess of (below) a certain threshold a ∈ R,

μ+
i (a) :=

∫ ∞

a
(x − a)i dF(x) μ−

i (a) :=
∫ a

−∞
(a − x)i dF(x). (1)

This paper presents an algorithm that bounds the partial moments of X using informa-
tion contained in a sequence of (full) moments of X . This approach is strongly related
to the moment problem.

Themoment problem originally considered whether a certain sequence of moments
corresponds to at least one univariate probability measure. This problem has been
extensively discussed in themathematical literature (Akhiezer 1965; Kreı̆n andNudel-
man 1977; Shohat and Tamarkin 1943; Stoyanov 2013). The admissible support of the
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90 S. Muns

probability measure splits the moment problem in three different subproblems: The
admissible support can be unrestricted (Hamburger moment problem), restricted to
the positive half-line (Stieltjes), or restricted to a bounded interval (Haussdorff). The
algorithm presented in this paper fits into the Hamburger moment problem as it allows
for X with support at both tails.

In case a sequence of moments is known to correspond to at least one probability
measure, an important follow-up question involves what information on the distribu-
tion is contained in this sequence. Research on this question has focused on several
characteristics:

(i) class of probability measure (Berg 1995; Gut 2002; Lin 1997; Pakes et al. 2001;
Stoyanov 2000)

(ii) tail of the distribution (Goria and Tagliani 2003; Lindsay and Basak 2000)
(iii) mode (Gavriliadis 2008)
(iv) cumulative distribution function (Mnatsakanov 2008b; Mnatsakanov and

Hakobyan 2009)
(v) density function (Gavriliadis and Athanassoulis 2009; Mnatsakanov 2008a)
(vi) Shannon entropy (Milev et al. 2012)

The above-mentioned literature can differ in the admissible support of the probability
measure.

By using a sequence of moments, this paper adds to the literature on the moment
problem by presenting an iterative algorithm that bounds the partial moments (1)
at a = 0. More specifically, the algorithm bounds the partial moments from the
positive part,max(X , 0), and the negative part,max(−X , 0), of a univariate real-valued
random variable X by using information contained in known (ratios of) subsequent
finite moments of X . In case one is interested in the partial moments at a �= 0, obtain
moments of Xa := X−a from the sequence of moments of X and bound the moments
of max(Xa, 0) and max(−Xa, 0).

The bounds on the partial moments imply bounds on unobserved higher order
moments of X . Using a Taylor expansion, one can obtain bounds on the moments of
the transformation f (X) for a certain function f : R → R.

Where applicable, procedures from related literature can be added to our algorithm.
If the random variable X belongs to the class of Pearson distributions,1 a recursive
relationship on partial moments is in Winkler et al. (1972). In case X has a known
finite support, the information on the support implies additional bounds (Barnett et al.
2002) and suitable numerical optimization routines can be invoked (Dokov andMorton
2005; Frauendorfer 1988; Kall 1991). Because the sequence of known moments of
X typically consists of more than six moments, an unrestricted support can hamper a
numerical optimization routine that restricts the sequence of moments.

The paper proceeds as follows. Preliminaries are in Sect. 2. Section 3 presents
the iterative algorithm that bounds partial moments, and how these bounds imply
bounds on other expressions. In Sect. 4, the algorithm is demonstrated for two example
distributions. Section 5 is reserved for concluding remarks and points of discussion.

1 Thedensity function of aPearson distribution is proportional to exp
(
−∫ x−a

b0+b1x+b2x2
dx

)
with constants

a, b0, b1, and b2. Example distributions include the normal, beta, uniform, Gamma, Chi-squared, Student’s
t , and Pareto distribution.
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2 Preliminaries

Let R+
0 := [0,∞) denote the set of nonnegative real numbers in the set R of real

numbers. The sets N
+
0 = {0, 1, . . .} and N

+ = {1, 2, . . .} denote sets of natural
numbers. Let X : Ω → R be a univariate real-valued random variable defined on
the probability space (Ω,F ,P) with unknown cumulative distribution function (cdf)
F : R → [0, 1].

The known moments μ1, . . . , μn of X are finite. Assume μ2 > 0 to avoid trivial
outcomes where all moments are zero. Denote the positive and negative part of X by
X+ := max(X , 0) and X− := max(−X , 0), respectively. Let μ+

i and μ−
i represent

the i-th moment of X+ and X−, respectively (i ∈ N
+). Thus, μ+

i := μ+
i (0) and

μ−
i := μ−

i (0) denote the partial moments of X at a = 0 in (1). Set μ+
0 := P(X > 0),

μ−
0 := P(X < 0), and μ0 := P(X �= 0). The latter definition is a convention that

enables tighter bounds.
For a quasi-degenerate randomvariable X , there exists x ∈ RwithP(X ∈ {0, x}) =

1. A nonquasi-degenerate (nqd) random variable X is a random variable that is not
quasi-degenerate, thus P(X ∈ {0, x}) < 1 for all x ∈ R. A degenerate X is necessarily
quasi-degenerate, while a nqd X is necessarily non-degenerate.

Define the i-th moment ratio of X as mi := μi/μi−1 with mi = ∞ if μi−1 = 0
(i ∈ N

+). Let m+
i and m−

i refer to the i-th moment ratio of the positive part X+
and the negative part X−, respectively. Both ratios can be referred to as a partial
moment ratio of X . Lower bounds and upper bounds are denoted by underlines and
bars, respectively. For instance,μ+

i
is a lower bound onμ+

i and m̄−
i is an upper bound

on m−
i := μ−

i /μ−
i−1. The negation of s ∈ {+,−} is denoted by −s. The operation

s x denotes x if s = + and −x if s = −. The operation s/x means 1/x if s = +
and −1/x if s = −. The equivalence X ≡ Y means that X = Y holds almost surely:
P(X = Y ) = 1.

3 The algorithm

This section outlines the algorithm in a number of lemmas and a theorem. By using
some simple constraints, the first lemma provides bounds on partial moments and
partial moment ratios. This enables an initialization of the bounds.

Lemma 1 [Initialization I] For s ∈ {+,−},

0 ≤ μs
2n ≤ μ2n n ∈ N

+
0 (2)

μs
2n−1 ≥ s μ2n−1 ms

2n−1 ≥ s m2n−1
1

ms
2n

≥ s

m2n
n ∈ N

+. (3)

(i) The nonnegativity constraint in (2) holds with equality if and only if Xs ≡ 0.
The constraint μs

2n ≤ μ2n in (2) holds with equality if and only if X−s ≡ 0.
(ii) Each of the constraints in (3) holds with equality if and only if X−s ≡ 0.
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92 S. Muns

Consider the Christoffel function associated with cdf F of a non-degenerate X :

λk(x) := 1∑k
j=0

[
Pj (x)

]2 k ∈ N
+,

where P0(x) ≡ 1 and

Pj (x) := Dj (x)√
H2 j H2 j−2

Dj (x) :=

∣∣∣∣∣∣∣∣∣∣∣

1 μ1 · · · μ j

μ1 μ2 · · · μ j+1
...

...
. . .

...

μ j−1 μ j · · · μ2 j−1

1 x · · · x j

∣∣∣∣∣∣∣∣∣∣∣
H0 := 1

H2 j :=

∣∣∣∣∣∣∣∣∣

1 μ1 · · · μ j

μ1 μ2 · · · μ j+1
...

...
. . .

...

μ j μ j+1 · · · μ2 j

∣∣∣∣∣∣∣∣∣
j ∈ N

+.

Let

L(i)
j := 1 −

j∑
l=i

λ j

(
x (l)
j

)
U (i)

j :=
i∑

l=1

λ j

(
x (l)
j

)
i = 1, 2, . . . , j j ∈ N

+,

where x (1)
j ≤ · · · ≤ x ( j)

j are the j zeros of the j-th degree polynomial Pj .
Using the definitions above, the following lemma from Gavriliadis and Athanas-

soulis (2009) bounds the distribution function at certain points.

Lemma 2 Suppose the moments μ1, . . . , μ2n of a non-degenerate X are known (n ∈
N

+). The cumulative distribution function F satisfies at the j zeros x (1)
j , . . . , x ( j)

j of
polynomial Pj ,

L(i)
j ≤ F

(
x (i)
j

)
≤ U (i)

j j = 1, . . . , n.

Let x̃ (1) < · · · < x̃ (N ) represent the strictly increasing sequence of the N distinct
zeros of the set of polynomials {Pj }nj=1:

N⋃
j=1

x̃ ( j) =
n⋃
j=1

j⋃
i=1

x (i)
j

Define the increasing step functions

L(x) =
{
0 x < x̃ (1)

maxi, j {L(i)
j : x (i)

j ≤ x} x ≥ x̃ (1)
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An iterative algorithm to bound partial moments 93

U (x) =
{
mini, j {U (i)

j : x (i)
j ≥ x} x ≤ x̃ (N )

1 x > x̃ (N ).

Notice that for L(x) (respectively U (x)), one can simply take for each j the largest
(smallest) i that satisfies x (i)

j ≤ x (x (i)
j ≥ x) since L(i)

j (U (i)
j ) is nondecreasing with i .

It follows from Lemma 2 that L(x) ≤ F(x) ≤ U (x) holds for all x ∈ R. Using these
bounds on the cdf F(x), Lemma 3 produces lower bounds on the partial moments:

Lemma 3 (Initialization II) Given the notation above,

μ+
i ≥

N∑
j= j+0

(
x̃ ( j)

)i
dU j μ−

i ≥
j+0 −1∑
j=1

(
−x̃ ( j)

)i
dL j i ∈ N

+
0 , (4)

where j+0 = argmin j∈{1,...,N }{x̃ ( j) > 0}, dL1 = L(x̃ (1)), dUN = 1 −U (x̃ (N )), and

dL j = L(x̃ ( j)) − L(x̃ ( j−1)) dU j−1 = U (x̃ ( j)) −U (x̃ ( j−1)) j = 2, . . . , N .

Upper bounds on the partial moments μ+
i and μ−

i are not available along the lines

in Lemma 3. For instance, the summation
∑N

j= j+0

(
x̃ ( j)

)i
dL j is not an upper bound

on μ+
i since dLN is not a bound for dF on (x (N ),∞). The iterative algorithm we

develop derives upper bounds on μ+
i and μ−

i under certain assumptions. In addition,
the algorithm can sharpen the lower bounds obtained in Lemma 3.

The next lemma is useful to apply in the iterative algorithm as well as for proving
some inequalities.

Lemma 4 (Moment ordering)

(i) For nonnegative X and n ≥ 2, or for arbitrary X and even n ≥ 2,

μ2
n−1 ≤ μnμn−2.

(ii) For nonnegative X with μ1 > 0 the moment ratio mi = μi/μi−1 increases with
i ∈ N

+:

0 < m1 ≤ m2 ≤ m3 ≤ · · · .

The inequalities are all strict if and only if X is nqd.

Lemma 5 produces bounds on the moment ratio of certain summations of nonneg-
ative random variables.

Lemma 5 Consider Y = ∑
j∈J Y j where each Y j : Ω → R

+
0 is a nonnegative

random variable with strictly positive first moment. Let i ∈ N
+.

(i) Suppose the following two conditions both hold
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94 S. Muns

(a) Y is a mixture
(b) for each j ∈ J , mi (Y j ) = gi h j and mi+1(Y j ) = gi+1h j where gi , gi+1, h j ∈

R,
then

max
j∈J

mi+1(Y j )

mi (Y j )
≤ mi+1(Y )

mi (Y )
. (5)

(ii) If Y is a mixture, i.e., for almost all outcomes ω ∈ Ω at most one Y j (ω) is
nonzero, then

mi (Y ) ≤ max
j∈J

mi (Y j ). (6)

(iii) If each Y j is independent,

mi (Y ) ≤
∑
j∈J

mi (Y j ). (7)

(iv) Suppose the following two conditions both hold

(a) each Y j is independent
(b) each Y j is logconcave,

then for each nonempty I ⊆ J ,
∑

j∈I Y j is logconcave and

mi

⎛
⎝∑

j∈I
Y j

⎞
⎠ ≤ mi (Y ). (8)

Sufficient condition (b) in (i) reflects that the moment ratio mi (Y j ) must be separable
into two partswith a common functional form across i and j . Nonnegative distributions
with moment ratios that satisfy this condition include the Gamma distribution and
distributions with a single, scalar parameter such as the half-normal distribution and
uniform distributions of the type U [0, b] with b > 0. The moment ratio of the log-
normal distribution has not a separable form.

It is natural to inquire about the necessity of the sufficient conditions in Lemma 5.
We provide for each condition a counterexample where the sufficient condition is not
satisfied and the corresponding inequality fails to hold.

(i) (a) Distributions that violate sufficient condition (a) may not satisfy (5) as one
can verify using Y = Y1 + Y2 with independent Y1,Y2 ∼ exp(1).
(b) For instance, themixture Y withP(Y = Y1) = P(Y = Y2) = 1

2 where Y1 ≡ 1
and Y2 ∼ exp(1) satisfies (a), but violates (b). Inequality (5) is invalid here since
m2(Y2)/m1(Y2) = 2 > 3

2 = m2(Y )/m1(Y ).
(ii) Equation (6) can be invalid if the mixture condition on Y is dropped. This follows

for the case where Y1 ≡ Y2 ≡ 1.
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(iii) Dependence between different Y j can make inequality (7) invalid. For instance,
the case where P

(
(Y1,Y2) = (

0, 1
2

)) = P((Y1,Y2) = (1, 1)) = 1
2 leads to

m3(Y1) + m3(Y2) = 1.9 < 1.91 · · · = m3(Y ).
(iv) (a) Consider Y = Y1 + Y2 with the log-concave distributions Y1 ∼ Exp(1) and

Y2 ∼ Exp
( 1
2

)
.

To violate (a), impose a perfect negative correlation on the quantiles FY1(Y1)
and FY2(Y2) by letting FY1(Y1) = 1 − FY2(Y2). In other words, (Y1,Y2) ∼
{(− ln(1 −U ),−2 ln(U )) : U ∼ U [0, 1]} such thatE[Y 2

] = ∫ 1
0 ln2

(
u2(1 − u)

)
du = 18 − 2

3π
2. It follows that m2(Y ) = 6 − 2

9π
2 < 4 = m2(Y2).

(b) For the independent, non-logconcave case where P(Y1 = 0) = 9
10 ,

P(Y1 = 10) = 1
10 , and Y2 ≡ 1: m2(Y1 + Y2) = 13

2 < 10 = m2(Y1).

The following lemma can be supplemented with bounds from Lemma 5. This is
helpful in the examples in Sect. 4.

Lemma 6 (Initialization III) Let i ∈ N
+.

(i) Suppose X = ∑
j∈I X j is a mixture of random variables X j : Ω → R, i.e., for

almost all outcomes ω ∈ Ω at most one X j (ω) is nonzero, then

m+
i := mi (X

+) ≤ max
j∈I mi (X

+
j ). (9)

(ii) If X = Y − Z with Y = ∑
j Y j and the following conditions hold

(a) Y and Z are independent and nonnegative random variables
(b) each Y j is independent
(c) each Y j is log-concave,2

then

mi (X
+) ≤ mi (Y ). (10)

(iii) If X = Y − Z is a mixture of nonnegative random variables Y and Z, i.e.,
P({Y = 0} ∪ {Z = 0}) = 1, then X+ ≡ Y and

mi (X
+) = mi (Y ). (11)

Similar relations apply to m−
i := mi (X−) and mi (Z).

Condition (c) in Lemma 6(ii) on logconcave distributions is satisfied by many
univariate distributions. Examples include the exponential distribution, the normal
distribution, the uniform distribution, and the Gamma distribution with shape param-
eter at least one. The Gamma distribution with shape parameter less than one, the
Student’s t-distribution, and the log-normal distribution are not log-concave.

We provide for each sufficient condition in Lemma 6 an example where the condi-
tion is not satisfied and the corresponding inequality is violated.

2 The density function of a log-concave distribution is proportional to exp(ψ(y))withψ a concave function
on the domain of the distribution. Log-concave distributions are necessarily unimodal.
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96 S. Muns

(i) Inequality (9) fails to hold for the nonmixture casewhere X ≡ 2with X1 ≡ X2 ≡
1. Here, X , is not a mixture and mi (X+) = 2 > 1 = max(mi (X1),mi (X2))

where i ∈ N
+.

(ii) (a) Suppose Y ∼ U [0, 1] and Z = Y1Y< 1
2
. The independence assumption (a)

fails to hold, while assumptions (b) and (c) are satisfied. Inequality (10) is not
satisfied: m2(X+) = 7

9 > 2
3 = m2(Y ).

(b) Consider again the counterexample of Lemma 5(iv) where Y = Y1 + Y2
with the log-concave distributions Y1 ∼ Exp(1) and Y2 ∼ Exp

( 1
2

)
, and let

Z ≡ 5. This satisfies conditions (a) and (c). To violate (b), impose a perfect
negative correlation on the quantiles FY1(Y1) and FY2(Y2) by letting FY1(Y1) =
1− FY2(Y2). It can be verified thatm2(X+) = 3.88 · · · > 3.81 · · · = 6− 2

9π
2 =

m2(Y ).
(c) Suppose P(Y = 1) = 9

10 , P(Y = 9) = 1
10 , and Z ≡ 1. While conditions

(a) and (b) are satisfied, condition (c) on logconcavity of each Y j fails to hold.
Inequality (10) also fails to hold: m2(X+) = 8 > 5 = m2(Y ).

(iii) The nonmixture case with Y ≡ 2 and Z ≡ 1 corresponds for each i ∈ N
+ to

X ≡ X+ ≡ 1 and m+
i = 1 �= 2 = mi (Y ).

The next theorem presents the theoretical novelty of the paper. For a nqd X , the
moment μs

i is bounded in terms of the bounds on ms
i , which are in turn in the proof

derived from the bounds on the moments of X−s . The requirement of a nqd X can
be easily verified, since the moments of a quasi-degenerate distribution are uniquely
characterized by finite m1 = m2 = . . . and μi = (μn)

i/n (i ∈ N
+
0 ). To identify a

quasi-degenerate X , it therefore suffices if μi = (μn)
i/n holds for some odd i and

even n. The requirements on i and n exclude X that are restricted to the set {−x, 0, x}
for certain x ∈ R.

Theorem 1 (μs
i in terms of the bounds onms

i ) Consider a nqd X with known moments
μn−2, μn−1, μn with n ≥ 2 even. Define

a := μnμn−2 − μ2
n−1 b :=

√
μn

μn−2
(12)

with constants (s ∈ {+,−})

us(x):= a

μn/x − 2s μn−1 + xμn
vs (c, d):=

⎧⎪⎪⎨
⎪⎪⎩

us(b) d < b < c
min{us(c), us(d)} c ≤ b ≤ d
us(d) b < min(c, d)

us(c) b > max(c, d).

(13)

Assume for the bounds on the partial moment ratios

(Lemma 1) ms
n−1 ≥ s mn−1 1/m̄s

n ≥ s/mn (14)

(Lemma 4(ii)) ms
n−1 ≤ ms

n m̄s
n−1 ≤ m̄s

n . (15)
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An iterative algorithm to bound partial moments 97

The moments of Xs are bounded by

μs
n−2 ≤ 1

ms
n−1

vs(ms
n−1,m

s
n) μs

n−1 ≤ vs(m̄s
n−1,m

s
n) μs

n ≤ m̄s
n vs(m̄s

n−1, m̄
s
n).

(16)

The next lemma bounds μs
i using previously obtained bounds.

Lemma 7 (μs
i in terms of the bounds onms

j ,μ
s
j , andμ−s

j )For i ∈ N
+ and s ∈ {+,−},

μs
i+1 ≥

(
μs
i

)2
μ̄s
i−1

(17)

μs
i ≥ max

j<i

(
μs

j

)i/ j
μs
i ≥ max

⎛
⎜⎝
(
μs
i+1

)2
μ̄s
i+2

,ms
i μ

s
i−1

,
μs
i+1

m̄s
i+1

⎞
⎟⎠ (18)

μs
i ≤ min

j>i

(
μ̄s

j

)i/ j
μs
i ≤ min

(√
μ̄s
i−1μ̄

s
i+1, m̄

s
i μ̄

s
i−1,

μ̄s
i+1

ms
i+1

)
(19)

μs
2i−1 ≥ μ−s

2i−1
+ sμ2i−1 μs

2i−1 ≤ μ̄−s
2i−1 + sμ2i−1 (20)

μs
2i ≥ μ2i − μ̄−s

2i μs
2i ≤ μ2i − μ−s

2i
. (21)

Lemma 8 bounds the moment ratios in terms of the bounds on the moments.

Lemma 8 (ms
i in terms of the bounds on μs

i )

μs
i

μ̄s
i−1

≤ ms
i ≤ μ̄s

i

μs
i−1

i ∈ N
+ (22)

√
μs
i

μ̄s
i−2

≤ ms
i ≤

√
μ̄s
i+1

μs
i−1

i = 2, 3, . . . . (23)

The bounds in (22) hold with equality if and only if the bounds on μi−1 and μi hold
with equality. The bounds in (23) hold with equality if and only if the bounds on μs

j
( j ∈ {i − 2, . . . , i + 1}) hold with equality and Xs is quasi-degenerate.

The algorithm below is the iterative algorithm that bounds the partial moments μ+
i

and μ−
i and the corresponding moment ratios m+

i = μ+
i /μ+

i−1 and m
−
i = μ−

i /μ−
i−1.

Algorithm 1 (Partial moments) The moments μ1, . . . , μn of the random variable X
are known. Before proceeding to the next step, each step is executed for i = 1, . . . , n
[and also for i = 0 in (iii)–(iv)]. The index j denotes an index that may depend on i .

(i) Initialize bounds on m+
i and m−

i (Lemma 1, 3, and 6).
(ii) Bound m+

i and m−
i in terms of the bounds on m+

j and m−
j (Lemma 4(ii)).

(iii) Bound μ+
i and μ−

i in terms of the bounds on m+
j and m−

j (Theorem 1).
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98 S. Muns

(iv) Bound μ+
i and μ−

i in terms of the bounds on μ+
j , μ

−
j , m

+
j , and m

−
j (Lemma 7).

(v) Bound m+
i and m−

i in terms of the bounds on μ+
j and μ−

j (Lemma 8).
(vi) Stop if the change in the bounds since step (ii) is smaller than somepredetermined

tolerance, otherwise go to step (ii).

Within each step, apply all applicable inequalities. The different assumptions in par-
ticularly Lemmas 5 and 6 must be checked in advance. Some may be valid for a given
random variable X , while some others may not.

The following algorithm applies Lemma 6(iii) and is helpful for bounding unob-
served higher order moments.

Algorithm 2 (Extrapolation) The momentsμ1, . . . , μn of X = Y − Z are knownwith
P({Y = 0} ∪ {Z = 0}) = 1. Execute Algorithm 1 to obtain bounds on μs

0, . . . , μ
s
n

(s ∈ {+,−}). For a certain ν ∈ N
+, construct bounds on μs

i using bounds on ms
i

where i = n + 1, . . . , n + ν:

(i) Lower bounds If (a) Xs is a mixture, and (b) mi (Xs
j ) = gih j where i > n and

gi , h j ∈ R: apply Lemma 5(i)
else apply Lemma 4(ii).

(ii) Upper bounds If Xs is a mixture: apply Lemma 5(ii)
else if Xs = ∑

j X
s
j with each Xs

j independent: apply Lemma 5(iii).

Conditions on Xs are needed for an upper bound on partial moments μs
i (i > n)

in Algorithm 2(ii). To see this, the tail of any Xs can admit P(Xs = x) = 1/xi−ε for
arbitrarily large x and ε ∈ (0, i). By Markov’s inequality, the probability mass at x of
such Xs has unbounded impact on moments i ∈ N

+ and higher if x → ∞:

E

[(
Xs)i] ≥ xi P

((
Xs)i ≥ xi

)
≥ xi

xi−ε
= xε → ∞

The bounds on the moments of X+ and X− from Algorithm 2 provide bounds
on the unobserved higher order moments of X through μi = μ+

i + (−1)iμ−
i with

i = n+1, n+2, . . .. This can be used in aTaylor expansion of the transformation f (X).
For an expansion of f (X) around a nonzero a, one can consider using max(Xa, 0)
and max(−Xa, 0) with Xa := X − a.

4 Examples

The example in Sect. 4.1 reports bounds on partial moments for a case usingAlgorithm
1. Section 4.2 contains an example that uses Algorithm 1 and bounds a Taylor series
expansion by extrapolating the results to higher order moments.

4.1 Example 1: a sum of random variables

Consider X = 1
2T −U + Z with T an exponential distribution with intensity one, U

a uniform distribution on [0, 1], and Z a standard normal distribution. The variables

123



An iterative algorithm to bound partial moments 99

T , U , and Z are independent. Since the odd moments of Z are zero, the moments μi

of X can be obtained from the expansion

E

[
Xi

]
=

�i/2∑
j=0

i−2 j∑
k=0

(
i

i − 2 j − k, k, 2 j

)
E

[(
1

2
T

)i−2 j−k
]
E

[
(−U )k

]
E

[
Z2 j

]

(24)

where i ∈ N
+
0 , �i/2 denotes the largest natural number not greater than i/2 (�i/2 =

max j∈N+
0
{ j : j ≤ i/2}), and

E

[
T i

]
= i ! E

[
Uk

]
= 1

1 + k
E

[
Z2 j

]
= (2 j)!

2 j ( j !) . (25)

We obtain the i-th moment of X from (24) for i = 0, 1, . . . , 16.
We are interested in bounding the moments of X+ := max(X , 0) and X− :=

max(−X , 0). Write X = ( 1
2T + Z+) − (U + Z−), where the components T ,U , Z+,

and Z− are logconcavedistributions.Notice that (i) X+ �≡ 1
2T+Z+ and X− �≡ U+Z−

and (ii) the convolutions 1
2T + Z+ and U + Z− are logconcave (Lemma 5(iv)).

Consider the independent distributions (i) T1, T2
d= T , (ii) U1,U2

d= U , and (iii)

Z1, Z2
d= Z . Since P(Z ≥ 0) = 1

2 , the distribution of X is equal in distribution to a
mixture of two distributions:

X
d=
{( 1

2T0 + |Z0|
) −U0 with probability 1

2
1
2T1 − (U1 + |Z1|) with probability 1

2

(26)

Both components in (26) consist of three independent log-concave distributions.Upper
bounds onm+

i := m+
i (X) andm−

i := m−
i (X) are initialized by applying Lemma 6(i)–

(ii) and then Lemma 5(iv),

m+
i ≤ max

(
mi

(
1

2
T + |Z |

)
,mi (|Z |)

)
= mi

(
1

2
T + |Z |

)
(27)

m−
i ≤ max (mi (U ) ,mi (U + |Z |)) = mi (U + |Z |) . (28)

The initial moment ratios in (27)–(28) follow from

E

[(
1

2
T + |Z |

)i
]

=
i∑

j=0

(
i

j

)
E

[(
1

2
T

)i− j
]
E

[
|Z | j

]

E

[
(U + |Z |)i

]
=

i∑
j=0

(
i

j

)
E

[
Ui− j

]
E

[
|Z | j

]
, (29)
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where the moments of T and U are in (25), and

E

[
|Z | j

]
=

√
2 j

π
	

(
j + 1

2

)
.

As a measure of convergence after iteration k, consider the change in the width of the
error bounds:

εk := max
i=0,...,16
s∈{+,−}

{
1 −

μ̄s
i,k − μs

i,k

μ̄s
i,k−1 − μs

i,k−1

}
k ∈ N

+, (30)

where the first subscript i of each moment bound refers to the considered order of the
partialmoments, and the second subscript k refers to the iteration numberwith iteration
0 immediately after the initialization. A small εk indicates a small improvement in the
error bounds.

Using εk < 10−10 as a stopping condition, Algorithm 1 stops after 83 iterations and
151ms of CPU time.3 Table 1 reports the bounds on themomentsμ+

i of X+ andμ−
i of

X−. By (20)–(21), the difference μ̄s
i − μs

i
is independent of the sign s ∈ {+,−} (3rd

column). This difference relative to the moment μi tends to decrease with the order
i of the moment (4th column). This can be helpful for bounding Taylor expansions
because the moments of the highest observed order are most important for bounding
unobserved higher order moments of X (here, themoments greater than order sixteen).

The difference between the bounds relative to μ+
i
is also decreasing with the order

(7th column). In contrast, the differencebetween thebounds relative toμ−
i
increases for

the higher order moments to 43.7% (rightmost column). This higher percentage may
reflect that the sequence of 16 moments cannot uniquely pin down the characteristics
of particularly X−. The reason is that X+ tends to be larger than X−, as indicated by
the moment bounds. As such, the higher order moments of X are mainly determined
by the higher order moments of X+.

The convergence by iteration is for the partial moments of order 10 in Table 2.
Here, 25 iterations suffice for having each of the bounds with a difference less than
0.03% of the bounds after the final iteration on the 10-th moment. The final bounds on
μ+
10 and μ−

10 differ from each other by 2.2 and 22.0%, respectively. Table 3 indicates
that for this example, executing 25 iterations gives bounds with a difference of at most
0.14% to the final bounds on the 16-th partial moments of X . The relative difference
between the final bounds on μ+

16 is, by coincidence, also 0.14%.
Figure 1 depicts the series εk as a function of the iteration k. The linear trend in εk

suggests that for some ã, b̃ ∈ R,

log(εk) ≈ ã + b̃k. (31)

A small number of numerical experiments suggest that the exponential convergence
of εk in (31) might hold in general. A proof of this conjecture is beyond the scope of
this paper.

3 All computations are on an i5-6300 CPU with 2.4 GHz dual core and 16 GB RAM.
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Fig. 1 Relative decrease εk in the width of the error bound μ̄i − μi of subsequent iterations (see (30)).
Maximum is taken over moments i = 0, 1, . . . 16

The product
∏∞

k=1 (1 − εk) is a measure for the cumulative decrease in the width
of the error bound over all iterations. Provided (31) is the correct model and b̃ ≤ 0,
the lower bound and upper bound do not converge to each other:

log
∞∏
k=1

(1 − εk) =
∞∑
k=1

log (1 − εk) ≈ −
∞∑
k=1

εk = −
∞∑
k=1

eã+b̃k

= −a
∞∑
k=1

bk = − ab

1 − b
�= 0, (32)

where a = eã and b = eb̃. An estimation of the linear regression (31) using
ε20, . . . , ε83 of this example gives ã = 1.45 and b̃ = −0.299. This predicts a small
cumulative relative decrease in the width of the error bounds after iteration 83:

log
∞∏

k=84

(1 − εk) = − ab84

1 − b
≈ −2.05 × 10−10 (33)

Because εk is a maximum over different orders of moments, the value in (33) can
be interpreted as an upper bound on the cumulative decrease of the partial moments
0, 1, . . . , 16.

In some cases, initial bounds on the moment ratios can be difficult to obtain. Instead
of the initial bounds (27)–(28), suppose we were to initialize the upper bounds on the
moment ratios by

m+
i ≤ mi

(
1

2
T

)
+ mi (|Z |) m−

i ≤ mi (U ) + mi (|Z |) i = 1, . . . , 16. (34)
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Table 4 Initialization of the upper bounds m̄+
i and m̄−

i on the moment ratios using the bounds (27)–(28)
and the weaker bounds in (34)

m̄+
i m̄−

i

Table 1: (27) Table 5: (34) Table 1: (28) Table 5: (34)

i mi

(
1
2 T + |Z |

)
mi

(
1
2 T

)
+ mi (|Z |) mi (U + |Z |) mi (U ) + mi (|Z |)

1 1.297884561 1.297884561 1.297884561 1.297884561

2 1.770484549 2.253314137 1.642070457 1.919980804

3 2.194451388 3.095769122 1.944265621 2.345769122

4 2.594931663 3.879971206 2.217710144 2.679971206

5 2.98780916 4.627692162 2.466624793 2.961025495

6 3.383670411 5.349964007 2.694189748 3.207106865

7 3.789507816 6.053230595 2.903662984 3.428230595

8 4.20945247 6.741624675 3.098069248 3.630513564

9 4.645191724 7.417977822 3.279945116 3.817977822

10 5.096404819 8.08432776 3.451307413 3.993418669

11 5.561330189 8.74219758 3.613732271 4.158864247

12 6.037415265 9.392760536 3.768455453 4.315837459

13 6.521919256 10.03694281 3.916458278 4.465514244

14 7.012352809 10.67549058 4.05853235 4.608823914

15 7.506709879 11.30901534 4.195326246 4.746515339

16 8.003520007 11.93802562 4.327378953 4.879202092

By Lemma 5(iii), this gives less strict initial bounds on the moment ratios than (27)–
(28) (Table 4).

The effect of the initial bounds on the final bounds is substantial as can be seen by
comparing Tables 1 and 5. Each difference μ̄s

i − μs
i
is higher in Table 5 than in Table

1. This underlines the importance of providing initial bounds in Algorithm 1 that are
as strict as possible. Particularly, the bounds on the moments of X− are sensitive to
the initial bounds. More specifically, the accuracy of the bounds on the highest order
moment of X− decreases by three orders of magnitude when the less strict initial
bounds in (34) are imposed (rightmost column in Tables 1 and 5).

4.2 Example 2: the exponential function on a quadratic form

Suppose one is interested in E
[
exp(X)

]
with the quadratic form X = Z ′ ÃZ =

1
2 Z

′
[
Ã + Ã′

]
Z where Z ∼ N (0, I ) has dimension d and Ã is a d × d matrix with

eigenvalues less than 1
2 . Diagonalize the symmetric matrix A := 1

2

[
Ã + Ã′

]
as VΛV ′

with Λ a diagonal matrix with diagonal entries the eigenvalues λ1 ≤ · · · ≤ λd < 1
2 .

Since V ′Z ∼ Z , the random variable X is a weighted summation of d independent
Chi-squared distributions with one degree of freedom,
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X = Z ′AZ ∼ Z ′ΛZ =
d∑

i=1

λi Z
2
i .

We can infer the exact outcome of E
[
exp(X)

]
from the moment generating function

of a Chi-squared distribution:

E
[
exp(X)

] =
d∏

i=1

E

[
exp(λi Z

2
i )
]

= 1∏d
i=1

√
1 − 2λi

if max
i

(λi ) <
1

2
(35)

The expectation of exp(X) is infinite if maxi λi ≥ 1
2 . The outcome in (35) enables a

direct comparison with the bounds that we obtain. It should be stressed that an exact
representation of E[ f (X)] is in general unavailable.

Consider the Taylor series expansion

E
[
exp(X)

] =
∞∑
i=0

1

i !E
[
Xi

]
. (36)

The moments of X are (Magnus 1986, Lemma 3)

E

[
Xi

]
=

∑
ν

γi (ν)

i∏
j=1

(∑
k

λ
j
k

)n j

γi (ν) = i !2i∏i
j=1[n j !(2 j)n j ] . (37)

where the summation is over all ν = (n1, . . . , ni )with each n j ∈ N0 and
∑i

j=1 n j j =
i . This procedure is computationally expensive for moments of a high order i . A
procedure based on Algorithm 2 enables us to bound high moments of X , and thus
E
[
exp(X)

]
in (36). The bounds follow from a few additional steps we outline below.

Using a polar coordinate system, it can be verified that X ∼ Z ′ΛZ ∼
(
√
RUd)

′Λ(
√
RUd) where the direction vector Ud follows a uniform distribution

on the unit d-sphere Sd and R, which is the squared distance to the origin, fol-
lows a χ2(d)-distribution. The latter distribution is a Gamma distribution with shape
parameter d/2 and scale parameter 2. This means that X is an infinite mixture of
Gamma distributions Xu with each component characterized by some u ∈ Sd . More
specifically, each component Xu in the mixture is a Gamma distribution scaled by
λ(u) := u′Λu. The scaling parameter λ(u) varies between λmin = mini λi = λ1 and
λmax = maxi λi = λd . For each component Xu, a positive (negative) λ(u) indicates
that the corresponding Gamma distribution is added (subtracted). We loosely write
Xu ∼ Gamma(d/2, 2λ(u)) for all λ(u), including negative λ(u).

Define the scaled remainder ξn(Y ) of a random variable Y by the functional

ξn(Y ) := 1

E[Yn]

∞∑
i=1

E
[
Yn+i

]
(n + i)! n ∈ N

+
0 . (38)

For a random variable Y that degenerates at x , i.e., Y ≡ x , the functional in (38) can
be written as a function of x ,
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108 S. Muns

ξn(x) =
∞∑
i=1

xi

(n + i)! = 1F1(1, n + 2; x) − 1

(n + 1)! n ∈ N
+
0 ,

where 1F1(a, b; x) is the confluent hypergeometric function of the first kind with
parameters a and b. By (36) and (38),

E
[
exp(X)

] = 1 +
n∑

i=1

1

i !μi + μ+
n ξn(X

+) + μ−
n ξn(−X−) n ∈ N

+. (39)

The momentsμ1, . . . , μn are obtained from (37), while Algorithm 1 produces bounds
onμ+

n andμ−
n . The following lemma derives bounds on ξn(X+) and ξn(−X−) in (39).

Lemma 9 Let n ∈ N
+.

(i) The functionals ξn(X+) and ξn(−X−) are bounded by

0 ≤ ξn(m
+
n+1) ≤ ξn(X

+)

ξn(−m̄−
n+1) ≤ ξn(−X−) ≤ ξn(−m−

n ) ≤ 0.

(ii) If the random variable X is a mixture of Gamma distributions Tθ ∼ Gamma(k, θ)

with fixed shape parameter k > 0, scale parameter θ ∈ [θmin, θmax] ⊆ (−1, 1),
and Tθ = −T−θ for θ < 0, then

ξn

(
(k + n)m+

n

k + n − 1

)
≤ ξn(X

+) ≤ 1

n!
[
2F1

(
1, k + n; n + 1; [θmax]+

) − 1
]

1

n!
[
2F1

(
1, k + n; n + 1; −[θmin]−

) − 1
] ≤ ξn(−X−),

where 2F1 is the Gaussian hypergeometric function.

The bounds in Lemma 9(i) can deal with any distribution X , particularly any eigen-
value of A. In contrast, the two bounds in Lemma 9(ii) that are based on the Gaussian
hypergeometric function 2F1 require that each absolute eigenvalue of A is less than
1
2 , because Xu has scale parameter θ(u) = 2uT Au = 2λ(u) with u ∈ Sd .

We present example cases where the minimal eigenvalue λmin is − 0.1, − 0.2,
− 0.3, or − 0.4, while the maximal eigenvalue λmax is 0.1, 0.2, 0.3, or 0.4. The other
eigenvalues are either equally spaced between λmin and λmax, or equally split at the
two extremes.

Define

Y := exp(X) r := μ̄Y − μ
Y

μY
w := μY − μ

Y

μ̄Y − μ
Y

, (40)

where μ
Y
and μ̄Y are a lower and an upper bound on the mean μY of Y , respectively.

The ratio r represents the size of the maximal error relative to the mean μY . A small r
indicates more accurate bounds. The weight w ∈ [0, 1] is the normalized location of

μY on the interval
[
μ
Y
, μ̄Y

]
. A value of w close to zero (one) reflects that the lower
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(upper) bound is the most accurate bound on μY . The bounds are equally accurate if
w = 1

2 .
Algorithm 1 stops after iteration k if εk < 10−6 with εk as in (30), or if k = 100.

Subsequently, the expression in (39) can be bounded. Table 6 reports several statistics
for the casewith two eigenvalues (d = 2). ThemeanμY is in all cases of the same order
of magnitude. The maximal relative error r is minimal when both extreme eigenvalues
λmin and λmax are close to zero; a similar observation holds with d = 20 in Table 7
(eigenvalues equally spaced on the interval [λmin, λmax]) and inTable 8 (10 eigenvalues
at both λmin and λmax). Indeed, we can perfectly estimate μY = 1 for the case where
each eigenvalue equals zero.

It follows from w in Table 6 that with d = 2, the upper bound tends to be more
accurate than the lower bound if λmax is high, thus when X+ tends to be large. This
observation is reversed for d = 20 (Tables 7 and 8). Compared to λmax, the value of
λmin has a smaller impact on w. The accuracy decreases with the dimension d and the
magnitude of the eigenvalues of A. More specifically, we observe a lower accuracy r
if d = 20 and max(|λmin| , |λmax|) ≥ 0.3.

The computation time in Tables 6, 7, 8 is the mean CPU time of 5,000 computations
of each model. The standard error is at most 0.12 ms. The computation time and the
number of iterations are lower in cases where |λmin| = |λmax|.

5 Discussion and conclusions

This paper has presented an iterative algorithm that bounds the lower and upper par-
tial moment at a ∈ R of the random variable X with a known finite sequence of
moments of X . In a numerical example, particularly the higher order partial moments
can have narrow bounds. The obtained bounds imply bounds on unobserved higher
ordermoments of X which is useful for boundingmoments of the transformation f (X).
In another application, a transformation f (x) = ex is considered for the quadratic form
X = Z ′AZ where Z is amultivariate normal distribution. Numerical experiments sug-
gest that the obtained bounds on E

[
exp(X)

]
are most accurate if X+ is not too large.

The accuracy depends on the dimension as well as the eigenvalues of A.
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Appendix

Proof of Lemma 1 Since the equality cases are straightforward, we prove strict bounds
for X with both X+ �≡ 0 and X− �≡ 0. The constraints in (2) and the first inequality
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in (3) follow from the identity μi = μ+
i + (−1)iμ−

i (i ∈ N
+
0 ). The second and third

inequality in (3) follow from (n ∈ N
+)

m+
2n−1 = μ+

2n−1

μ+
2n−2

>
μ+
2n−1 − μ−

2n−1

μ+
2n−2 + μ−

2n−2

= m2n−1

1

m+
2n

= μ+
2n−1

μ+
2i

>
μ+
2n−1 − μ−

2n−1

μ+
2i + μ−

2i

= 1

m2n

m−
2n−1 = μ−

2n−1

μ−
2n−2

>
μ−
2n−1 − μ+

2n−1

μ+
2n−2 + μ−

2n−2

= −m2n−1

1

m−
2n

= μ−
2n−1

μ−
2n

>
μ−
2n−1 − μ+

2n−1

μ+
2n + μ−

2n

= − 1

m2n
.

��
Proof of Lemma 2 See Theorem 3.1 in Gavriliadis and Athanassoulis (2009). ��
Proof of Lemma 3 The j zeros x (1)

j < x (2)
j < · · · < x ( j)

j of each polynomial Pj are
real and distinct (Akhiezer 1965; Szegö 1975). Lemma 2 implies that the functions L
and U are a lower bound and an upper bound of the cdf F of X , respectively:

L(x) ≤ F(x) ≤ U (x)

Therefore,

μ+
i =

∫ ∞

0
xi dF(x) ≥

∫ ∞

0
xi dU (x) =

N∑
j= j+0

(
x̃ ( j)

)i
dU j

μ−
i =

∫ 0

−∞
(−x)i dF(x) ≥

∫ 0

−∞
(−x)i dL(x) =

j+0 −1∑
j=1

(
−x̃ ( j)

)i
dL j ,

where j+0 , dL j , and dU j ( j = 1, . . . , N ) are defined in Lemma 3. ��
Proof of Lemma 4 (i) The Cauchy–Schwarz inequality with the inner product 〈Y , Z〉

= E[Y Z ] is |E[Y Z ]|2 ≤ E
[
Y 2

]
E
[
Z2

]
. Substituting Y = Xn/2−1 and Z = Xn/2

leads to the desired result for n > 2, and for n = 2 providedμ0 := P(X �= 0) = 1.
An additional step is needed for the case where n = 2 and μ0 < 1. Consider

the Cauchy–Schwarz inequality μ̃2
1 = E

[
X̃
]2 ≤ E

[
X̃0

]
E

[
X̃2

]
= μ̃0μ̃2 with

X̃ ∼ XX �=0. Since μ̃i = μi/P(X �= 0),multiplyingboth hand sides of this inequal-
ity by [P(X �= 0)]2 gives the result with n = 2 and μ0 < 1.
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The Cauchy–Schwarz inequality holds with equality if and only if (iff) Y = λZ
for some constant λ, Y ≡ 0, or Z ≡ 0. None of these three conditions holds if X
is nqd. It follows that μ2

n−1 = μnμn−2 holds iff X is quasi-degenerate.
(ii) Follows from μ1 > 0 and (i).

��

Proof of Lemma 5 Without loss of generality, assume J = {1, . . . , |J |} and 0 < h1 ≤
h2 ≤ · · · . When summing over all j ∈ J , the set J is omitted for convenience.

(i) Notice that

0 < mi (Y1) = gih1 ≤ mi (Y2) = gih2 ≤ · · · .

A convex combination of largermi (Y j ), j ≥ j0, is larger than a convex combina-
tion of this combination and another convex combination of smaller mi (Y j ) with
j < j0:

∑
j≥ j0

mi (Y j )
E

[
Y i−1
j

]
∑

r≥ j0 E

[
Y i−1
r

] ≥
∑
j

mi (Y j )
E

[
Y i−1
j

]
∑

r E

[
Y i−1
r

]

Rearranging terms,

∑
j≥ j0 E

[
Y i
j

]
∑

j E

[
Y i
j

] =
∑

j≥ j0 mi (Y j )E
[
Y i−1
j

]
∑

j mi (Y j )E
[
Y i−1
j

] ≥
∑

r≥ j0 E
[
Y i−1
r

]
∑

r E

[
Y i−1
r

] . (41)

Letw(i)
j := E

[
Y i−1
j

]
/
∑

r∈J E
[
Y i−1
r

]
. By (41), the measurew(i+1) stochastically

dominates the measure w(i):

∑
j≥ j0

w
(i+1)
j =

∑
j≥ j0

E

[
Y i
j

]
∑

r E
[
Y i
r

] ≥
∑

j≥ j0 E

[
Y i−1
j

]
∑

r E

[
Y i−1
r

] =
∑
j≥ j0

w
(i)
j

Write

mi (Y ) =
E

[(∑
j Y j

)i]

E

[(∑
r Yr

)i−1
] =

∑
j

E

[
Y i
j

]
∑

r E

[
Y i−1
r

] =
∑
j

E

[
Y i−1
j

]
∑

r E

[
Y i−1
r

] E

[
Y i
j

]

E

[
Y i−1
j

]

=
∑
j

w
(i)
j mi (Y j ) = gi

∑
j

w
(i)
j h j .
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Because {h j } j∈J is a positive nondecreasing sequence and w(i+1) stochastically
dominates w(i), for each r ∈ J ,

mi+1(Y )

mi+1(Yr )
= gi+1

∑
j w

(i+1)
j h j

gi+1hr
= 1

hr

∑
j

w
(i+1)
j h j ≥ 1

hr

∑
j

w
(i)
j h j = mi (Y )

mi (Yr )
.

(42)

Inequality (5) follows from rearranging (42) and mi ,mi+1 > 0.
(ii) Under the assumption that Y is a mixture, i.e., P

(
Y jYr = 0

) = 1 ( j �= r ),
the moment ratio mi (Y ) is a weighted average of mi (Y j ) with positive weights

E

[
Y i−1
j

]
/
∑

r E
[
Y i−1
r

]
:

mi (Y ) =
E

[
(
∑

j Y j )
i
]

E
[
(
∑

r Yr )
i−1

] =
∑

j E

[
Y i
j

]
∑

r E

[
Y i−1
r

] =
∑
j

E

[
Y i
j

]

E

[
Y i−1
j

] E

[
Y i−1
j

]
∑

r E

[
Y i−1
r

]

≤ max
j

⎛
⎝ E

[
Y i
j

]

E

[
Y i−1
j

]
⎞
⎠ = max

j
mi (Y j )

(iii) The highest moment in the expansion of
(∑

r∈J Yr
)i−1 equals i − 1. By Lemma

4(ii),

E

[
Y
r j+1
j

]
≤ E

[
Y
r j
j

] E

[
Y i
j

]

E

[
Y i−1
j

] r j + 1 ≤ i . (43)

Hence, by independence of each {Yr }r∈J and Lemma 4(ii),

E

⎡
⎣
(∑

r

Yr

)i−1

Y j

⎤
⎦ =

∑
∑

j r j=i−1

(
i − 1

r1, . . . , r|J |

)
E
[
Yr1
1

]
. . .E

[
Y
r j+1
j

]
. . .E

[
Y
r|J |
|J |

]

=
∑

∑
j r j=i−1

(
i − 1

r1, . . . , r|J |

)
E
[
Yr1
1

]
. . .E

[
Y
r|J |
|J |

]E[Yr j+1
j

]

E

[
Y
r j
j

]

≤
∑

∑
j r j=i−1

(
i − 1

r1, . . . , r|J |

)
E
[
Yr1
1

]
. . .E

[
Y
r|J |
|J |

] E

[
Y i
j

]

E

[
Y i−1
j

]

= E

⎡
⎣
(∑

r

Yr

)i−1
⎤
⎦ E

[
Y i
j

]

E

[
Y i−1
j

] . (44)
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Substituting (44),

mi (Y ) = E
[
Y i

]
E
[
Y i−1

] =
∑

j E
[
(
∑

r Yr )
i−1Y j

]
E
[
(
∑

r Yr )
i−1

] ≤
∑
j

E

[(∑
r Yr

)i−1
]

E

[(∑
r Yr

)i−1
] E

[
Y i
j

]

E

[
Y i−1
j

]

=
∑
j

E

[
Y i
j

]

E

[
Y i−1
j

] =
∑
j

mi (Y j ).

(iv) As the case I = J is straightforward, assume I ⊂ J . Define the complement
of I as I c := J\I . Since each Y j is independent and log-concave, the convolu-
tions YI := ∑

j∈I Y j , YIc := ∑
j∈I c Y j , and Y = YI + YIc have log-concave

distributions (Ibragimov 1956). Denote the probability density function (pdf)
of the nonnegative random variables YI , YIc , and Y by fYI (x), fYIc (x), and
fY (x) := ∫ ∞

0 fYI (x − z) dFYIc (z), respectively. For any i ≥ 1, consider ỸI and
Ỹ with pdf

fỸI (x) = xi−1 fYI (x)∫ ∞
0 xi−1 fYI (x) dx

fỸ (x) = xi−1 fY (x)∫ ∞
0 xi−1 fY (x) dx

. (45)

Because mi (YI ) = E
[
[YI ]i

]
E
[
[YI ]i−1] = E

[
ỸI

]
and mi (Y ) = E

[
Y i

]
E[Y i−1] = E

[
Ỹ
]
, we need

to show thatE
[
ỸI

]
≤ E

[
Ỹ
]
holds. To do this, it suffices to show that themarginal

likelihood ratio fỸ j
/ fỸ ∝ fY j / fY is nonincreasing on (0,∞) as this indicates

that Ỹ stochastically dominates Ỹ j . Since YI is a log-concave distribution, we
have that d

dx log fYI (x) is nonincreasing on [0,∞). This gives for the density
function of Y = YI + YIc ,

d

dx
log fYI (x) = d

dx
logE[ fY (x + YIc )] ≤ d

dx
log fY (x) x ≥ 0.

This proves that log
(
fYI (x)/ fY (x)

)
, and thus the ratio fỸI / fỸ , is nonincreasing

on [0,∞). Therefore, E
[
ỸI

]
≤ E

[
Ỹ
]
and thus mi (YI ) ≤ mi (Y ) for any i ≥ 1.

��
Proof of Lemma 6 We prove the bounds on m+

i := m(X+) and mi (Y ), the statements
on m−

i and mi (Z) follow analogously.

(i) Since X = ∑
j∈I X j is a mixture, the positive part of X is X+ = ∑

j∈I X
+
j .

Apply Lemma 5(ii).
(ii) Since each Y j is independent and log-concave, the convolution Y = ∑

j∈J Y j is
log-concave (Ibragimov 1956). Denote the probability density function (pdf) of
X and Y by fX (x) := ∫ ∞

0 fY (x + z) dFZ (z) and fY (x), respectively. For any
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i ≥ 1, consider X̃ and Ỹ with pdf

f X̃ (x) = xi−1 f X̃ (x)∫ ∞
0 xi−1 f X̃ (x) dx

fỸ (x) = xi−1 fỸ (x)∫ ∞
0 xi−1 fỸ (x) dx

. (46)

Because m+
i = mi (X+) = E

[
[X+]i

]

E

[
[X+]i−1

] = E

[
X̃
]
and mi (Y ) = E

[
Y i

]
E[Y i−1] = E

[
Ỹ
]
,

we need to show that E
[
X̃
]

≤ E

[
Ỹ
]
holds. To do this, it suffices to show that

the marginal likelihood ratio f X̃/ fỸ ∝ fX/ fY is nonincreasing on (0,∞) as this
indicates that Ỹ stochastically dominates X̃ . SinceY is a log-concave distribution,
d
dx log fY (x) is nonincreasing on [0,∞). This gives for the density function of
X = Y − Z with Z any nonnegative and independent distribution,

d

dx
log fX (x) = d

dx
logE[ fY (x + Z)] ≤ d

dx
log fY (x) x ≥ 0.

This proves that log ( fX (x)/ fY (x)), and thus the ratio f X̃/ fỸ , is nonincreasing

on [0,∞). Therefore,E
[
X̃
]

≤ E

[
Ỹ
]
and thusmi (X+) ≤ mi (Y ) for any i ∈ N

+.
(iii) Follows immediately from X+ = max(X , 0) ≡ Y .

��
Proof of Theorem 1 The moments μn−2, μn−1, and μn are known and satisfy μi =
μ+
i +(−1)iμ−

i (i ∈ {n−2, n−1, n} andn even). Combining thiswith 0 < m+
n−1 ≤ m+

n
from Lemma 4(ii) gives for t ∈ {0, 1}

0 ≤ μ−
n−2 = μn−2 − μ+

n−1

m+
n−1

≤ μn−2 − μ+
n−1

m+
n−t

(47)

μ−
n−1 = μ+

n−1 − μn−1 (48)

0 ≤ μ−
n = μn − m+

n μ+
n−1 ≤ μn − m+

n−tμ
+
n−1. (49)

Define for s ∈ {+,−}

gs(x) := μn

x
− 2s μn−1 + μn−2x x > 0.

The function gs is minimal at b := √
μn/μn−2, monotonically decreases on (0, b),

and monotonically increases on (b,∞). Apply Lemma 4(i) to the nqd X ,

gs(x) ≥ gs(b) = 2
(√

μnμn−2 − s μn−1
)

> 0 x > 0. (50)

By (47)–(50) and (12), for t ∈ {0, 1}

(μ−
n−1)

2 ≤ μ−
n−2μ

−
n ⇒ (

μ+
n−1 − μn−1

)2 ≤
(

μn−2 − μ+
n−1

m+
n−t

) (
μn − m+

n−tμ
+
n−1

)
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⇔ μ+
n−1 ≤ μnμn−2 − μ2

n−1

μn/m
+
n−t − 2μn−1 + μn−2m

+
n−t

⇔ μ+
n−1 ≤ u+(m+

n−t ) := a

g+(m+
n−t )

. (51)

Notably, the derivation above started with bounds on the moments of X− and ends
with bounds on the moments of X+.

Since −X = X− − X+, we can switch all superscript + and – signs and use
E
[
(−X)i

] = (−1)iμi−1 to generalize (51) to

μs
n−1 ≤ us(ms

n−t ) := a

gs(ms
n−t )

s ∈ {+,−} t ∈ {0, 1}. (52)

Using (52), we bound μs
n−1 by substituting appropriate values for the unobserved

ms
n−t . The function u

s increases on (0, b), while it decreases on (b,∞). Therefore, the
most conservative upper bound from (52) equals us(b) = a/gs(b). Possibly tighter
bounds on μs

n−1 follow from the more general bound min(us(c), us(d)) with c =
argminx {|x − b| : x ∈ [

ms
n−1, m̄

s
n−1

]} and d = argminx {|x − b| : x ∈ [
ms

n, m̄
s
n

]}.
Thus, the upper bound on μs

n−1 is u
s(b) in cases where both b ∈ [

ms
n−1, m̄

s
n−1

]
and

b ∈ [
ms

n, m̄
s
n

]
hold. By (15), this is equivalent to cases where b ∈ [

ms
n, m̄

s
n−1

]
.

If m̄s
n−1 ≤ b ≤ ms

n , one can use min(us(m̄s
n−1), u

s(ms
n)) as a bound, because

(15) and the monotonicity of us imply that m̄s
n−1 or m

s
n must give the lowest possible

upper bound on μs
n−1. The bottom two components of νs in (16) follow from the

monotonicity of the function us on (0, b) and (b,∞).
The obtained upper bound on μs

n−1 implies an upper bound on μs
n−2 from μs

n−2 ≤
μ̄s
n−1/m

s
n−1. A tighter bound is available if the previous bound on μs

n−1 is based on
m̄s

n−1. By (52),

μs
n−2 ≤ a

hs
(
ms

n−1

) s ∈ {+,−}, (53)

where

hs(x) := x gs(x) = μn − 2s μn−1x + μn−2x
2 x > 0.

In (53), an upper bound on μs
n−2 corresponds to a lower bound on h

s . The continuous
function hs monotonically decreases on (0, s mn−1) and monotonically increases on
([s mn−1]+,∞). By (14), ms

n−1 ≥ s mn−1 such that ms
n−1 gives the maximal upper

bound on μs
n−2 in (53). As a result, using ms

n−1 (instead of m̄s
n−1) can tighten the

upper bound on μs
n−2. This gives the bound on μs

n−2 in (16).
Similarly, the upper bound on μs

n−1 implies the upper bound μs
n ≤ m̄s

nμ̄
s
n−1. A

tighter bound is available if the previous bound on μs
n−1 is based on ms

n . By (52),

μs
n ≤ a

ks(ms
n)

s ∈ {+,−}, (54)
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where

ks(x) := gs(x)

x
= μn

x2
− 2s μn−1

x
+ μn−2 x > 0.

In (54), an upper bound on μs
n corresponds to a lower bound on k

s . The function ks is
continuous on (0,∞) and monotonically increases on the interval ([s mn]+,∞). Pro-
vided s mn > 0, ks monotonically decreases on (0, s mn). By (14), 1/m̄s

n ≥ 1/(s mn)

such that m̄s
n gives the maximal upper bound on μs

n in (54). Thus, using m̄s
n (instead

of ms
n) can tighten the upper the bound on μs

n . This proves the last inequality in (16).
��

Proof of Lemma 7 The inequality in (17) follows from Lemma 4(i). Next, consider
Hölder’s inequality

E[|Y Z |] ≤ (
E
[|Y |p])1/p (E[|Z |q])1/q p, q ∈ (1,∞)

1

p
+ 1

q
= 1.

The first inequality in (18) is obtained by substituting Y = (Xs) j , Z ≡ 1, p = i/ j
and q = p/(p − 1). The first inequality in (19) follows from Y = (Xs)i , p = j/i ,
and q = p/(p−1). The second inequality in both (18) and (19) follows from Lemma
4(i) and μs

i = ms
i μ

s
i−1 (i ∈ N

+). The inequalities in (20)–(21) are based on μi =
μ+
i + (−1)iμ−

i where i ∈ N
+
0 . ��

Proof of Lemma 8 We prove the case with strict bounds, since the case with equality
signs is trivial. Both inequalities in (22) are straightforward by ms

i = μs
i /μ

s
i−1. The

two inequalities in (23) follow from Lemma 4(ii):

ms
i−1 <

√
ms

i−1m
s
i =

√
μs
i

μs
i−2

< ms
i

��
Proof of Lemma 9
(i) Define the function

rm,n(x) =
∞∑
i=m

xi

(n + i)! m ∈ {1, 2} n = 0, 1, . . .

We prove the properties of rm,n in Tabel 9. Notice that

r1,n(x) = ξn(x) = 1F1(1, n + 2; x) − 1

(n + 1)! . (55)

Apply Abramowitz and Stegun (1964, Eqs. (13.4.9) and (13.1.27)),

dk

dxk
r1,n(x) = dk

dxk
1F1(1, n + 2; x) − 1

(n + 1)!
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Table 9 Properties of r1,n(x),
and r2,n(x)

x r1,n r ′
1,n r ′′

1,n r2,n r ′
2,n r ′′

2,n

(− ∞, 0) − + + + − +

0 0 + + 0 0 +

(0, ∞) + + + + + +

= k!
(k + n + 1)! [1F1(k + 1, k + n + 2; x) − 1k=0] (56)

= k!
(k + n + 1)!

[
ex 1F1(n + 1, k + n + 2;−x) − 1k=0

]
k, n ∈ N

+
0

(57)

with 1A the indicator functionwhich equals 1 if the event A is true, and 0 otherwise.

Equations (56) and (57) indicate r1,n(0) = 0 and dk

dxk
r1,n(x) > 0 for all x ∈ R

and k ∈ {1, 2}. Thus, the function r1,n is increasing and convex with r1,n(x) < 0
if x < 0, r1,n(0) = 0, r1,n(x) > 0 if x > 0, and r ′

1,n(0) = 1/(n + 1)!.
Since r2,n(x) = x r1,n+1(x) and r2,n(x) = r1,n(x) − x/(n + 1)!, the function
r2,n is nonnegative and convex with r2,n(0) = r ′

2,n(0) = 0. Therefore, r2,n(x)
decreases on (−∞, 0) and increases on (0,∞).
Next, we apply the properties in Table 9 on ξn(x) = r1,n(x). Consider X̃n with
the cdf F̃n in terms of the cdf F of X ,

dF̃n(x) = xn dF(x)∫
xn dF(x)

= xn dF(x)

E[Xn]
.

It follows that E
[
r1,n(X̃n)

]
= ξn(X) and E

[
X̃n

]
= mn+1. Using Lemma 4(ii),

Jensen’s inequality, and the convexity of r1,n , we find the lower bounds on ξn(X+)

and ξn(−X−):

0 ≤ ξn(m
+
n+1) = r1,n(m

+
n+1) = r1,n

(
E

[
X̃+
n

])
≤ E

[
r1,n(X̃

+
n )

]
= ξn(X

+)

ξn(−m−
n+1) = r1,n(−m−

n+1) = r1,n
(
E

[
−X̃−

n

])
≤ E

[
r1,n(−X̃−

n )
]

= ξn(−X−).

The upper bound on ξn(−X−) follows by applying Jensen’s inequality to the
convex function r2,n−1:

ξn(−X−) = 1

m−
n E

[
(−X−)n−1

]
∞∑
i=1

E

[
(−X−)n+i

]

(n + i)! = − 1

m−
n

∞∑
i=2

E

[
(−X̃−

n−1)
i
]

(n − 1 + i)!

= − 1

m−
n

E

[
r2,n−1(−X̃−

n−1)
]
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≤ − 1

m−
n
r2,n−1

(
E

[
−X̃−

n−1

])
= − 1

m−
n

∞∑
i=2

(−m−
n )i

(n − 1 + i)! =
∞∑
i=1

(−m−
n )i

(n + i)!
= ξn(−m−

n ) = r1,n(−m−
n ) ≤ 0

(ii) The moments of Tθ ∼ 	(k, θ) are E
[
T n

θ

] = θn	 (k + n)/	 (k), which gives
mn+1(Tθ ) = θ(k + n). By Lemma 5(i), we have for any mixture of Gamma
distributions with fixed shape parameter k,

k + n

k + n − 1
≤ mn+1

mn
. (58)

Combining (58), ξ ′
n(x) = r ′

1,n(x) > 0 (x ∈ R), and Lemma 9(i) produces the
lower bound on ξn(X+) in Lemma 9(ii). The scaled remainder of Tθ is

ξn(Tθ ) := 1

E
[
T n

θ

]
∞∑
i=1

E

[
T n+i

θ

]

(n + i)!

= 	 (k)

n!θn	 (k + n)

∞∑
i=1

θn+i	 (k + n + i)

(n + 1) . . . (n + i) 0(k)

= 1

n!
∞∑
i=1

θ i
∏i

j=1

(
k − 1

n + j
+ 1

)

= 1

n! [2F1 (1, k + n; n + 1; θ) − 1] .

Bywell-known properties of theGaussian hypergeometric function 2F1, the func-
tion hn(θ) := ξn(Tθ ) increases monotonically on (−1, 1) with hn(0) = 0.
Because T[θmax]+ stochastically dominates the mixture X+ and ξ ′

n(x) > 0 for x ∈
R, we must have ξn(X+) ≤ ξn(T[θmax]+) if [θmin, θmax] ⊆ (−1, 1). Similarly, the
mixture− X− stochastically dominates− T[θmin]− , which leads to ξn(T−[θmin]−) ≤
ξn(− X−). This proves (ii).

��
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of P.L. Čebyšev and A.A. Markov and their further development. American Mathematical Society,
Providence

Lin GD (1997) On the moment problems. Stat Prob Lett 35(1):85–90
Lindsay BG, Basak P (2000) Moments determine the tail of a distribution (but not much else). Am Stat

54(4):248–251
Magnus JR (1986) The exactmoments of a ratio of quadratic forms in normal variables.Annales d’Économie

et de Statistique 4:95–109
Milev M, Novi Inverardi P, Tagliani A (2012) Moment information and entropy evaluation for probability

densities. Appl Math Comput 218(9):5782–5795
Mnatsakanov RM (2008a) Hausdorff moment problem: reconstruction of distributions. Stat Prob Lett

78(12):1612–1618
Mnatsakanov RM (2008b) Hausdorff moment problem: reconstruction of probability density functions. Stat

Prob Lett 78(13):1869–1877
Mnatsakanov RM, Hakobyan AS (2009) Recovery of distributions via moments. Lect Notes-monogr Ser

57:252–265
Pakes AG, Hung WL, Wu JW (2001) Criteria for the unique determination of probability distributions by

moments. Aust N Z J Stat 43(1):101–111
Shohat JA, Tamarkin JD (1943) The problem of moments, vol 1. American Mathematical Society, Provi-

dence
Stoyanov J (2000) Krein condition in probabilistic moment problems. Bernoulli 5(6):939–949
Stoyanov JM (2013) Counterexamples in probability. Courier Corporation, Chelmsford
Szegö G (1975) Orthogonal polynomials, 4th edn. American Mathematical Society, Providence
Winkler RL, Roodman GM, Britney RR (1972) The determination of partial moments. Manage Sci

19(3):290–296

123


	An iterative algorithm to bound partial moments
	Abstract
	1 Introduction
	2 Preliminaries
	3 The algorithm
	4 Examples
	4.1 Example 1: a sum of random variables
	4.2 Example 2: the exponential function on a quadratic form

	5 Discussion and conclusions
	Acknowledgements
	Appendix
	References




