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Abstract

This paper presents an iterative algorithm that bounds the lower and upper partial
moments of an arbitrary univariate random variable X by using the information con-
tained in a sequence of finite moments of X. The obtained bounds on the partial
moments imply bounds on the moments of the transformation f(X) for a certain
function f : R — R. Two examples illustrate the performance of the algorithm.

Keywords Moment problem - Bounds - Censored distributions - Iteration
convergence

1 Introduction

Statistical computations for insurance policy, inventory management, Bayesian point
estimation, and other areas often involve the computation of partial moments (Winkler
et al. 1972). Bawa and Lindenberg (1977) derive a capital asset pricing model from
utility functions based on lower partial moments. The i -th upper (lower) partial moment
of a univariate real-valued random variable X with cumulative distribution function
F is defined as the i-th moment in excess of (below) a certain threshold a € R,

©i (@) :=/ (x —a) dF(x) 1y () :=/ (a—x)dF(x). (1)

This paper presents an algorithm that bounds the partial moments of X using informa-
tion contained in a sequence of (full) moments of X. This approach is strongly related
to the moment problem.

The moment problem originally considered whether a certain sequence of moments
corresponds to at least one univariate probability measure. This problem has been
extensively discussed in the mathematical literature (Akhiezer 1965; Krein and Nudel-
man 1977; Shohat and Tamarkin 1943; Stoyanov 2013). The admissible support of the

B Sander Muns
s.muns@uvt.nl

1 Tilburg University, Netspar, P.O. Box 90153, 5000 LE Tilburg, Netherlands

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s00180-018-0825-8&domain=pdf
http://orcid.org/0000-0001-8914-2424

90 S.Muns

probability measure splits the moment problem in three different subproblems: The
admissible support can be unrestricted (Hamburger moment problem), restricted to
the positive half-line (Stieltjes), or restricted to a bounded interval (Haussdorff). The
algorithm presented in this paper fits into the Hamburger moment problem as it allows
for X with support at both tails.

In case a sequence of moments is known to correspond to at least one probability
measure, an important follow-up question involves what information on the distribu-
tion is contained in this sequence. Research on this question has focused on several
characteristics:

(i) class of probability measure (Berg 1995; Gut 2002; Lin 1997; Pakes et al. 2001;
Stoyanov 2000)
(ii) tail of the distribution (Goria and Tagliani 2003; Lindsay and Basak 2000)
(iii) mode (Gavriliadis 2008)
(iv) cumulative distribution function (Mnatsakanov 2008b; Mnatsakanov and
Hakobyan 2009)
(v) density function (Gavriliadis and Athanassoulis 2009; Mnatsakanov 2008a)
(vi) Shannon entropy (Milev et al. 2012)

The above-mentioned literature can differ in the admissible support of the probability
measure.

By using a sequence of moments, this paper adds to the literature on the moment
problem by presenting an iterative algorithm that bounds the partial moments (1)
at a = 0. More specifically, the algorithm bounds the partial moments from the
positive part, max (X, 0), and the negative part, max(— X, 0), of aunivariate real-valued
random variable X by using information contained in known (ratios of) subsequent
finite moments of X. In case one is interested in the partial moments at a # 0, obtain
moments of X, := X —a from the sequence of moments of X and bound the moments
of max(X,, 0) and max(—X,, 0).

The bounds on the partial moments imply bounds on unobserved higher order
moments of X. Using a Taylor expansion, one can obtain bounds on the moments of
the transformation f(X) for a certain function f : R — R.

Where applicable, procedures from related literature can be added to our algorithm.
If the random variable X belongs to the class of Pearson distributions,! a recursive
relationship on partial moments is in Winkler et al. (1972). In case X has a known
finite support, the information on the support implies additional bounds (Barnett et al.
2002) and suitable numerical optimization routines can be invoked (Dokov and Morton
2005; Frauendorfer 1988; Kall 1991). Because the sequence of known moments of
X typically consists of more than six moments, an unrestricted support can hamper a
numerical optimization routine that restricts the sequence of moments.

The paper proceeds as follows. Preliminaries are in Sect. 2. Section 3 presents
the iterative algorithm that bounds partial moments, and how these bounds imply
bounds on other expressions. In Sect. 4, the algorithm is demonstrated for two example
distributions. Section 5 is reserved for concluding remarks and points of discussion.

! The density function of a Pearson distribution is proportional to exp (— S 5 dx) with constants

X—d
bo+b1x+byx
a, by, b1, and by. Example distributions include the normal, beta, uniform, Gamma, Chi-squared, Student’s
t, and Pareto distribution.
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2 Preliminaries

Let R(J)r := [0, oo) denote the set of nonnegative real numbers in the set R of real
numbers. The sets Ng‘ = {0,1,...} and NT = {1,2,...} denote sets of natural
numbers. Let X : 2 — R be a univariate real-valued random variable defined on
the probability space (§2, F, IP) with unknown cumulative distribution function (cdf)
F:R—[0,1].

The known moments iy, ..., u, of X are finite. Assume @y > 0 to avoid trivial
outcomes where all moments are zero. Denote the positive and negative part of X by
Xt := max(X,0) and X~ := max(—X, 0), respectively. Let ,ul* and p; represent
the i-th moment of X and X, respectively (i € N*). Thus, u; := ;" (0) and
u; = p; (0) denote the partial moments of X ata = 0 in (1). Set ,uaL =P(X > 0),
Ho = P(X <0), and o := P(X # 0). The latter definition is a convention that
enables tighter bounds.

For a quasi-degenerate random variable X, there exists x € RwithP(X € {0, x}) =
1. A nonquasi-degenerate (nqd) random variable X is a random variable that is not
quasi-degenerate, thus P(X € {0, x}) < 1 forall x € R. A degenerate X is necessarily
quasi-degenerate, while a nqd X is necessarily non-degenerate.

Define the i-th moment ratio of X as m; := w;/ui—1 withm; = oo if u;_1 =0
(i € N*). Let ml+ and m; refer to the i-th moment ratio of the positive part X +
and the negative part X, respectively. Both ratios can be referred to as a partial
moment ratio of X. Lower bounds and upper bounds are denoted by underlines and
bars, respectively. For instance, E;r is a lower bound on u;r and m;" is an upper bound

onm; = pu; /u;_;. The negation of s € {+, —} is denoted by —s. The operation
s x denotes x if s = 4 and —x if s = —. The operation s/x means 1/x if s = +
and —1/x if s = —. The equivalence X = Y means that X = Y holds almost surely:
PX=Y)=1.

3 The algorithm

This section outlines the algorithm in a number of lemmas and a theorem. By using
some simple constraints, the first lemma provides bounds on partial moments and
partial moment ratios. This enables an initialization of the bounds.

Lemma 1 [Initialization I] For s € {4, —},

0 < 3, < u2n neNJ )
1 K
>

— = neNT, 3)
my, map

s s
Hop_1 = S U2n—1 my, | = SMmMau—1

(1) The nonnegativity constraint in (2) holds with equality if and only if X* = 0.
The constraint (5, < [Lo, in (2) holds with equality if and only if X=° = 0.
(i1) Each of the constraints in (3) holds with equality if and only if X5 = 0.
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Consider the Christoffel function associated with cdf F' of a non-degenerate X:

1

Mx) = —— k e NT,
k 2
Zj:O [Pj(x)]
where Py(x) = 1 and
Loy oy
M1 M2 - Mgl
Pj(x) ;:M Dj(x) := .. : Hy =1
/—szsz_z : : :
Hj—1 Mjosee H2j—1
1 x - xJ
Lo e
M1 M2t 4l
sz = . X j€N+
Hj Hj+1 - K2
Let

L0 ZA((Z)) v ka) f=12...) jeN

where x‘V <..-< x') are the J zeros of the j-th degree polynomial P;.

Using the definitions above, the following lemma from Gavriliadis and Athanas-
soulis (2009) bounds the distribution function at certain points.

Lemma 2 Suppose the moments (L1, ..., Lo, of a non-degenerate X are known (n €

N*). The cumulative distribution function F satisfies at the j zeros xﬁ ) ., x(.j ) of

polynomial P;,
LE.i)fF(x;i))SU;i) i=1...,n

Let V) < ... < ¥™ represent the strictly increasing sequence of the N distinct
zeros of the set of polynomials {P;};_,

N n )
U =UUs
Define the increasing step functions

x <iM

L(x) = i i
x) {maxi’j{L?) :x;l) <x} x> M
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@ L (@) ~(N)
U(x):{mm"J{Uf X >x} x <X

x> i,
Notice that for L(x) (respectively U (x)), one can simply take for each j the largest
(smallest) i that satisfies x§ ) <x (x( ) > x) since LY u (l)) is nondecreasing with i.

It follows from Lemma 2 that L(x) < F(x) < U (x) holds for all x € R. Using these
bounds on the cdf F(x), Lemma 3 produces lower bounds on the partial moments:

Lemma 3 (Initialization II) Given the notation above,
N Jo -1 ;
W= Z ( m) S (_xm) dL; ieNy, @
j=1

where j;” = argmin n{EY >0} dLy = LGED), dUy =1 - UGEWN), and

je{l,...,
dL; =LGEY) —LEY™Y)y Uy =UuGEY)—UuGEYY) j=2,...,N

Upper bounds on the partial moments /ﬁ“ and u; are not available along the lines
in Lemma 3. For instance, the summation Z;V_j ( Y )) dL  is not an upper bound
—Jo

on ,u,f since d Ly is not a bound for dF on (x™), 00). The iterative algorithm we
develop derives upper bounds on uj’ and u; under certain assumptions. In addition,
the algorithm can sharpen the lower bounds obtained in Lemma 3.

The next lemma is useful to apply in the iterative algorithm as well as for proving
some inequalities.

Lemma4 (Moment ordering)
(i) For nonnegative X and n > 2, or for arbitrary X and even n > 2,
2
My—1 = Hnln—2.

(ii) For nonnegative X with 1 > 0 the moment ratio m; = [4;/lLi—1 increases with
i e NT:

O<mi<mpy<m3=<---.

The inequalities are all strict if and only if X is nqd.

Lemma 5 produces bounds on the moment ratio of certain summations of nonneg-
ative random variables.

Lemma5 Consider Y = Zje] Y; where each Y; : 2 — R(“)L is a nonnegative
random variable with strictly positive first moment. Leti € NV,

(i) Suppose the following two conditions both hold
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94 S.Muns

(@) Y is a mixture

(b) foreach j € J,m;(Y;) = gihjandm;1(Y;) = gix1hj where g;, giy1,hj €
R,
then

mi+1(Y; miy1(Y
ma l+l( j) < l+1( ) (5)
jel mi(Y;) m;(Y)
(ii) If Y is a mixture, i.e., for almost all outcomes w € §2 at most one Y;(w) is
nonzero, then

m;(Y) < maxm;(Y;). (6)
jelJ
(iii) If each Y| is independent,
mi(Y) <Y mi(Y)). @)
jeJ

(iv) Suppose the following two conditions both hold

(a) each Y; is independent
(b) each Y; is logconcave,

then for each nonempty I € J, jer Yjis logconcave and

mi | v | <mi). ®)

Jjel

Sufficient condition (b) in (i) reflects that the moment ratio m; (¥ ;) must be separable
into two parts with acommon functional form across i and j. Nonnegative distributions
with moment ratios that satisfy this condition include the Gamma distribution and
distributions with a single, scalar parameter such as the half-normal distribution and
uniform distributions of the type U[0, b] with b > 0. The moment ratio of the log-
normal distribution has not a separable form.

It is natural to inquire about the necessity of the sufficient conditions in Lemma 5.
We provide for each condition a counterexample where the sufficient condition is not
satisfied and the corresponding inequality fails to hold.

(i) (a) Distributions that violate sufficient condition (a) may not satisfy (5) as one
can verify using ¥ = Y; 4+ Y» with independent Y7, Y> ~ exp(1).
(b) For instance, the mixture Y withP(Y = Y;) =P(Y = Y1,) = %Where YI=1
and Y, ~ exp(1) satisfies (a), but violates (b). Inequality (5) is invalid here since
my(Y2)/m1(Y2) =2 > 3 = my(Y)/my(Y).

(i) Equation (6) can be invalid if the mixture condition on Y is dropped. This follows
for the case where Y} = Y, = 1.
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An iterative algorithm to bound partial moments 95

(iii) Dependence between different ¥; can make inequality (7) invalid. For instance,
the case where P((Y1,Y2) = (0,3)) = P((Y1,Y2) = (1,1)) = 1 leads to
m3(Y)) +m3(Y2) =19 < 1.91--- = ms(Y).

(iv) (a) Consider Y = Y| + Y» with the log-concave distributions ¥; ~ Exp(1) and
Y2 ~ Exp (3).

To violate (a), impose a perfect negative correlation on the quantiles Fy, (Y1)
and Fy,(Y2) by letting Fy,(Y;) = 1 — Fy,(Y2). In other words, (Y1, Y2) ~
{(=In(1 = U), —2In(U)) : U ~ U[0, 1]} suchthatE[Y?] = jo‘ In? (u?(1 — u))
du = 18 — 372, It follows that mo(Y) = 6 — 372 < 4 = my(Y»).
(b) For the independent, non-logconcave case where P(Y; =0) = %,
P(Y) =10) = {5, and Yo = Lmy (Y1 + Yo) = B < 10 = mo(1)).

The following lemma can be supplemented with bounds from Lemma 5. This is
helpful in the examples in Sect. 4.

Lemma 6 (Initialization III) Let i € N*.
(1) Suppose X = Zjel X j is a mixture of random variables X ; : 2 — R, i.e., for
almost all outcomes w € §2 at most one X j(w) is nonzero, then

mt = mi(XT) < maxm;(XT). )
jel J

i

) If X =Y —ZwithY = Zj Y; and the following conditions hold
(a) Y and Z are independent and nonnegative random variables
(b) each Y; is independent
(c) each Y is log-concave,
then

2

mi(X1) < m;(Y). (10)

(i) If X = Y — Z is a mixture of nonnegative random variables Y and Z, i.e.,
PH{Y =0U{Z=0})=1,then Xt =Y and

mi(XF) = m;(Y). (1)

Similar relations apply to m; := m;(X™) and m;(Z).

Condition (c) in Lemma 6(ii) on logconcave distributions is satisfied by many
univariate distributions. Examples include the exponential distribution, the normal
distribution, the uniform distribution, and the Gamma distribution with shape param-
eter at least one. The Gamma distribution with shape parameter less than one, the
Student’s ¢-distribution, and the log-normal distribution are not log-concave.

We provide for each sufficient condition in Lemma 6 an example where the condi-
tion is not satisfied and the corresponding inequality is violated.

2 The density function of a log-concave distribution is proportional to exp(y (y)) with v a concave function
on the domain of the distribution. Log-concave distributions are necessarily unimodal.

@ Springer



96 S.Muns

(1) Inequality (9) fails to hold for the nonmixture case where X = 2 with X| = X, =
1. Here, X, is not a mixture and m; (X)) = 2 > 1 = max(m;(X1), m; (X2))
where i € N*.

(i) (a) Suppose ¥ ~ U[0,1]and Z = Y1, _ 1. The independence assumption (a)
fails to hold, while assumptions (b) and (c) are satisfied. Inequality (10) is not
satisfied: ma(XT) = § > 2 = my(¥).

(b) Consider again the counterexample of Lemma 5(iv) where Y = Y| + 1>
with the log-concave distributions ¥; ~ Exp(1) and Y, ~ Exp (%), and let
= 5. This satisfies conditions (a) and (c). To violate (b), impose a perfect
negatlve correlation on the quantiles Fy, (Y1) and Fy, (Yz) by lettlng Fy, (Y1) =
1 — Fy,(Y2). It can be verified that mp(X*) = 3.88--- >3.81--- = 6— %n
ma(Y).
(c) Suppose P(Y =1) = 10, P(Y=9) = 10, and Z = 1. While conditions
(a) and (b) are satisfied, condition (c) on logconcavity of each Y; fails to hold.
Inequality (10) also fails to hold: 75 (XT) = 8 > 5 = my(Y).

(iii) The nonmixture case with ¥ = 2 and Z = 1 corresponds for each i € N* to

X=Xt=landm =1#2=m(¥).

The next theorem presents the theoretical novelty of the paper. For a nqd X, the
moment 7 is bounded in terms of the bounds on mj, which are in turn in the proof
derived from the bounds on the moments of X~°. The requirement of a nqd X can
be easily verified, since the moments of a quasi-degenerate distribution are uniquely
characterized by finite m; = my = ... and u; = ()™ (i € NS‘). To identify a
quasi-degenerate X, it therefore suffices if ; = (1,,)"/" holds for some odd i and
even n. The requirements on i and n exclude X that are restricted to the set {—x, 0, x}
for certain x € R.

Theorem 1 (] in terms of the bounds on mj) Consider a nqd X with known moments
Un—2, Un—1, Un With n > 2 even. Define

m
a = fnin—2 — th_| = [ (12)
Mn—2
with constants (s € {+, —})
u®(b) d<b<c
5 a s min{u®(c), u*(d)} ¢ <b <d
= ,d):= :
u(x) /X — 28 hp—1 + Xy v (e.d) u®(d) b < min(c, d)
u®(c) b > max(c, d).
(13)
Assume for the bounds on the partial moment ratios
(Lemma 1) my_; > S| 1/m; > s/my, (14)
(Lemma 4(ii)) my_, <m; my,_y < mj. (15)
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An iterative algorithm to bound partial moments 97

The moments of X* are bounded by

U (my_ymy) g SV, my) <y, v (my, g, ).

MZ,Q =
—n—1

(16)

The next lemma bounds w; using previously obtained bounds.

Lemma7 (;L‘l? in terms of the bounds on m; ,u; and /L;S) Fori e Ntands e {+, -},

N
Hit1 = — (17)
" [
2
s s
i/j (E- 1) 0
Wi = max (E-) i > max | = it = (18)
j<i N Kiyo Tomiyy
s 1 0> i N : -5 =5 -5 =5 llts'-ﬁ-l
i = min (“/) p; < min m mipd_, — (19)
= m;
Moy =ty Hspaict My S Aoy T Spai-1 (20)
Wi Z i = i) 1S < i — 1y 21)

Lemma 8 bounds the moment ratios in terms of the bounds on the moments.

Lemma 8 (m] in terms of the bounds on 1)

s =S
_%" <m! < ’f" ieNT (22)
Ki K
I 7y
= <mi < [ i=2,3,.... (23)
Hi—a K

The bounds in (22) hold with equality if and only if the bounds on p;—1 and wu; hold
with equality. The bounds in (23) hold with equality if and only if the bounds on /Lj
(jefi—2,...,i+ 1}) hold with equality and X® is quasi-degenerate.

The algorithm below is the iterative algorithm that bounds the partial moments ,u?'

and u; and the corresponding moment ratios mlJr = p,f / u;r_l andm; = p; /1.
Algorithm 1 (Partial moments) The moments (1, ..., u, of the random variable X
are known. Before proceeding to the next step, each step is executed fori = 1,...,n

[and also for i = 0 in (iii)—(iv)]. The index j denotes an index that may depend on i.

(i) Initialize bounds on ml+ and m; (Lemma 1, 3, and 6).

(i1) Bound ml+ and m;" in terms of the bounds on mj' and mj_ (Lemma 4(i1)).

(iii)) Bound ,uf and u; in terms of the bounds on mj and m; (Theorem 1).
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+
j
(v) Bound ml+ and m;" in terms of the bounds on wh and /,L; (Lemma 8).

(vi) Stopifthe change inthe bounds since step (ii) is smaller than some predetermined
tolerance, otherwise go to step (ii).

(iv) Bound ut+ and p; in terms of the bounds on ,u;r, u;, mT, and m/_ (Lemma 7).

Within each step, apply all applicable inequalities. The different assumptions in par-
ticularly Lemmas 5 and 6 must be checked in advance. Some may be valid for a given
random variable X, while some others may not.

The following algorithm applies Lemma 6(iii) and is helpful for bounding unob-
served higher order moments.

Algorithm 2 (Extrapolation) The moments 1, ..., u, of X = Y — Z are known with
P({Y =0} U{Z =0}) = 1. Execute Algorithm 1 to obtain bounds on puy, ..., i),
(s € {4, =)). For a certain v € NT, construct bounds on w; using bounds on m;}
wherei =n+1,...,n+v:

(i) Lower bounds If (a) X* is a mixture, and (b) m,-(Xj'.) = gih; where i > n and
gi» hj € R: apply Lemma 5(i)
else apply Lemma 4(ii).

(i) Upper bounds If X* is a mixture: apply Lemma 5(ii)
elseif X* =) ;X i with each X i independent: apply Lemma 5(iii).

Conditions on X* are needed for an upper bound on partial moments u; (i > n)
in Algorithm 2(ii). To see this, the tail of any X* can admit P(X*® = x) = 1/x/~¢ for
arbitrarily large x and ¢ € (0, i). By Markov’s inequality, the probability mass at x of
such X* has unbounded impact on moments i € N and higher if x — oo:

i

E[(x') ]z P((X°) z4') 2 5 =" > o0

xi—¢

The bounds on the moments of X and X~ from Algorithm 2 provide bounds
on the unobserved higher order moments of X through u; = ;Li+ + (—1) u; with
i =n+1,n+42,....Thiscan beused in a Taylor expansion of the transformation f (X).
For an expansion of f(X) around a nonzero a, one can consider using max(X,, 0)
and max(—X,, 0) with X, := X —a.

4 Examples
The example in Sect. 4.1 reports bounds on partial moments for a case using Algorithm

1. Section 4.2 contains an example that uses Algorithm 1 and bounds a Taylor series
expansion by extrapolating the results to higher order moments.

4.1 Example 1: a sum of random variables

Consider X = 37 — U + Z with T an exponential distribution with intensity one, U
a uniform distribution on [0, 1], and Z a standard normal distribution. The variables
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An iterative algorithm to bound partial moments 99

T, U, and Z are independent. Since the odd moments of Z are zero, the moments x;
of X can be obtained from the expansion

22 . 2k |
)= & & <i 2jkk 21)E[(%T) }E[(‘U)k]E[ZZJ]
4

wherei € N(J)r , Li/2] denotes the largest natural number not greater than i /2 (i /2] =
maxjeNaf{j 1 j <i/2}),and

]E[Tf] — i E[U"] - ﬁ E[ZZj] = 2(]2(];,') (25)

We obtain the i-th moment of X from (24) fori = 0,1, ..., 16.

We are interested in bounding the moments of X* := max(X,0) and X~ :=
max(—X, 0). Write X = (%T + Z*") — (U + Z~), where the components T, U, Z ™,
and Z~ are logconcave distributions. Notice that (i) X+ # %T+Z Tand X~ £ U+Z~
and (ii) the convolutions %T + Z% and U + Z~ are logconcave (Lemma 5(iv)).

Consider the independent distributions (i) Ty, T» < T, (i) Uy, Us % U, and (i)

d . . . e
Zi1,Zy = Z.Since P(Z > 0) = %, the distribution of X is equal in distribution to a
mixture of two distributions:

] M oqe ]
x £ {(5 Tp + |Z0|) — Uy with probability 5 6

3Ty — (Ui +1Z1])  with probability 1

Both components in (26) consist of three independent log-concave distributions. Upper
bounds on ml‘Ir = ml+ (X)andm; :=m; (X) areinitialized by applying Lemma 6(i)-
(i1) and then Lemma 5(iv),

2
m; < max (m; (U),m; (U +|Z])) =m; (U +|Z]). (28)

mfgmax (mi (%T+|Z|),m,~(|Z|)> =m; (lT—i—IZI) 27

The initial moment ratios in (27)—(28) follow from

o) ]-50HC) o

]E[(U+|Z|)i] =Xi:<;>E[Ui_j]E[|Z|j], (29)

j=0
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100 S.Muns

where the moments of 7" and U are in (25), and

]E[|Z|j] =\/§r (%)

As a measure of convergence after iteration k, consider the change in the width of the
error bounds:

i Kk W
er = max {1 -k 1 keNt, (30)
(i) Pik—1 = B g

where the first subscript i of each moment bound refers to the considered order of the
partial moments, and the second subscript k refers to the iteration number with iteration
0 immediately after the initialization. A small &; indicates a small improvement in the
error bounds.

Using & < 10710 as a stopping condition, Algorithm 1 stops after 83 iterations and
151 ms of CPU time.> Table 1 reports the bounds on the moments /fr of X+ and u; of
X™. By (20)—(21), the difference [} — ,u is independent of the sign s € {+, —} (3rd
column). This difference relative to the moment i tends to decrease with the order
i of the moment (4th column). This can be helpful for bounding Taylor expansions
because the moments of the highest observed order are most important for bounding
unobserved higher order moments of X (here, the moments greater than order sixteen).

The difference between the bounds relative to &j is also decreasing with the order
(7th column). In contrast, the difference between the bounds relative to 2% increases for
the higher order moments to 43.7% (rightmost column). This higher percentage may
reflect that the sequence of 16 moments cannot uniquely pin down the characteristics
of particularly X ~. The reason is that X tends to be larger than X ~, as indicated by
the moment bounds. As such, the higher order moments of X are mainly determined
by the higher order moments of X .

The convergence by iteration is for the partial moments of order 10 in Table 2.
Here, 25 iterations suffice for having each of the bounds with a difference less than
0.03% of the bounds after the final iteration on the 10-th moment. The final bounds on
/Lf'o and py, differ from each other by 2.2 and 22.0%, respectively. Table 3 indicates
that for this example, executing 25 iterations gives bounds with a difference of at most
0.14% to the final bounds on the 16-th partial moments of X. The relative difference
between the final bounds on u}% is, by coincidence, also 0.14%.

Figure 1 depicts the series €, as a function of the iteration k. The linear trend in gy
suggests that for some a, be R,

log(er) ~ a + bk. (31)

A small number of numerical experiments suggest that the exponential convergence
of g in (31) might hold in general. A proof of this conjecture is beyond the scope of
this paper.

3 Al computations are on an i5-6300 CPU with 2.4 GHz dual core and 16 GB RAM.
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maximal relative decrease in width of subsequent bounds

1e-04 1e-01

1e-07

1e-10

0 20 40 60 80
iteration

Fig. 1 Relative decrease ¢ in the width of the error bound f; — M, of subsequent iterations (see (30)).
Maximum is taken over moments i =0, 1,...16

The product [ 7, (1 — &) is a measure for the cumulative decrease in the width
of the error bound over all iterations. Provided (31) is the correct model and b <0,
the lower bound and upper bound do not converge to each other:

00 00 00 00 B
logl_[ (1 —¢p) = Zlog(l — &)~ —Zsk = —ZeéH’k
k=1 k=1 k=1 k=1

> ab
=—a)y b=- 0, 32
ay’ — # (32)
k=1
where @ = ¢@ and b = eP. An estimation of the linear regression (31) using
€20, - - . , €83 of this example gives a = 1.45 and b = —0.299. This predicts a small

cumulative relative decrease in the width of the error bounds after iteration 83:

84

o0
b
log [T(1—e0) = - la_ S~ =205 107 (33)
k=84

Because g is a maximum over different orders of moments, the value in (33) can
be interpreted as an upper bound on the cumulative decrease of the partial moments

0,1,...,16.
In some cases, initial bounds on the moment ratios can be difficult to obtain. Instead
of the initial bounds (27)—(28), suppose we were to initialize the upper bounds on the

moment ratios by

1
mfgmi(ET)eriqu m- <miU)+mi(|Z) i=1,...,16. (34)
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Table 4 Initialization of the upper bounds m and m on the moment ratios using the bounds (27)—(28)
and the weaker bounds in (34)

mi .

I mi

Table 1: (27) Table 5: (34) Table 1: (28) Table 5: (34)
i m; (37 +121) mi (3T)+mi (2D mi@H1ZD) o ) +mi (12D
1 1.297884561 1.297884561 1.297884561 1.297884561
2 1.770484549 2.253314137 1.642070457 1.919980804
3 2.194451388 3.095769122 1.944265621 2.345769122
4 2.594931663 3.879971206 2217710144 2.679971206
5 2.98780916 4.627692162 2.466624793 2.961025495
6 3.383670411 5.349964007 2.694189748 3.207106865
7 3.789507816 6.053230595 2.903662984 3.428230595
8 4.20945247 6.741624675 3.098069248 3.630513564
9 4.645191724 7.417977822 3.279945116 3.817977822
10 5.096404819 8.08432776 3.451307413 3.993418669
11 5.561330189 8.74219758 3.613732271 4.158864247
12 6.037415265 9.392760536 3.768455453 4.315837459
13 6.521919256 10.03694281 3.916458278 4.465514244
14 7.012352809 10.67549058 4.05853235 4.608823914
15 7.506709879 11.30901534 4.195326246 4.746515339
16 8.003520007 11.93802562 4.327378953 4.879202092

By Lemma 5(iii), this gives less strict initial bounds on the moment ratios than (27)-
(28) (Table 4).

The effect of the initial bounds on the final bounds is substantial as can be seen by
comparing Tables 1 and 5. Each difference /1] — u is higher in Table 5 than in Table
1. This underlines the importance of providing initial bounds in Algorithm 1 that are
as strict as possible. Particularly, the bounds on the moments of X~ are sensitive to
the initial bounds. More specifically, the accuracy of the bounds on the highest order
moment of X~ decreases by three orders of magnitude when the less strict initial
bounds in (34) are imposed (rightmost column in Tables 1 and 5).

4.2 Example 2: the exponential function on a quadratic form

Suppose one is interested in E[exp(X )] with the quadratic form X = Z/AZ =
%Z/[A + A/]Z where Z ~ N(0, I) has dimension d and A is a d x d matrix with

eigenvalues less than % Diagonalize the symmetric matrix A := % [A~ + A~’] asvVAvV/

with A a diagonal matrix with diagonal entries the eigenvalues A < --- < Ay < %

Since V'Z ~ Z, the random variable X is a weighted summation of d independent
Chi-squared distributions with one degree of freedom,
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d
X=ZAZ~ZAZ=Y NZ].
i=1

We can infer the exact outcome of E[exp(X )] from the moment generating function
of a Chi-squared distribution:

QU

_ N 1 ~ N
exp(X) = lj [exp(A,Zi )] = ]_[le —re if ml_ax(M) < > (35)

The expectation of exp(X) is infinite if max; A; > % The outcome in (35) enables a
direct comparison with the bounds that we obtain. It should be stressed that an exact
representation of [E[ f(X)] is in general unavailable.

Consider the Taylor series expansion

E[exp(X)] = il_l'E[ ] (36)
i=0

The moments of X are (Magnus 1986, Lemma 3)

E[X"]=ijy,-(v)/1:[l<2ij,{) p =2 @)

[T [nj12)"]

where the summationis overallv = (ny, ..., n;) witheachn; € Ny and Z;zl njj=
i. This procedure is computationally expensive for moments of a high order i. A
procedure based on Algorithm 2 enables us to bound high moments of X, and thus
E[exp(X )] in (36). The bounds follow from a few additional steps we outline below.

Using a polar coordinate system, it can be verified that X ~ Z'AZ ~
(vRUy)' A(WRUy) where the direction vector Uy follows a uniform distribution
on the unit d-sphere S; and R, which is the squared distance to the origin, fol-
lows a x2(d)-distribution. The latter distribution is a Gamma distribution with shape
parameter d/2 and scale parameter 2. This means that X is an infinite mixture of
Gamma distributions X, with each component characterized by some u € S¢. More
specifically, each component X, in the mixture is a Gamma distribution scaled by
A(u) := u’ Au. The scaling parameter A(u) varies between Ay, = min; A; = A1 and
Amax = max; A; = A4. For each component X, a positive (negative) A(u) indicates
that the corresponding Gamma distribution is added (subtracted). We loosely write
Xu ~ Gamma(d /2, 2A(u)) for all A(u), including negative A(u).

Define the scaled remainder &,(Y) of a random variable Y by the functional

3 1 e} E[Yl’l+i] n
£,(Y) = Ty - Z T neNT. (38)

For a random variable Y that degenerates at x, i.e., ¥ = x, the functional in (38) can
be written as a function of x,
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00 i .
X 1Fi(l,n+2;x)—1 +
= E = Ny,
5n () P (n+1i)! (n+ 1) € Mo

where | F|(a, b; x) is the confluent hypergeometric function of the first kind with
parameters a and b. By (36) and (38),

"1
E[exp(0] = 1+ ) —ti + 16X + 7 60(=XT)  meNT. (39)
i=1

The moments (1, ..., U, are obtained from (37), while Algorithm 1 produces bounds
on u; and 1, . The following lemma derives bounds on &, (X ") and &, (— X ™) in (39).

Lemma9 Letn € NT.
(i) The functionals &,(X™) and &,(—X ™) are bounded by
0<&(m ) <E(XT)
En(—ny ) < Ep(—=X7) < §(—m,) = 0.

(i1) Ifthe random variable X is a mixture of Gamma distributions Ty ~ Gammal(k, 6)
with fixed shape parameter k > 0, scale parameter 6 € [6pin, Omax] € (—1, 1),
and Ty = —T—g for 6 < 0, then

: ((k +nym;t

1
pa— ) <&(XT) < p} [2F1 (L k+n; n+1; [Oma]t) — 1]

1
[F1 (1 k+n; n+1; —[0min]l ") — 1] < &(=X7),

n!
where > F1 is the Gaussian hypergeometric function.

The bounds in Lemma 9(i) can deal with any distribution X, particularly any eigen-
value of A. In contrast, the two bounds in Lemma 9(ii) that are based on the Gaussian
hypergeometric function , F| require that each absolute eigenvalue of A is less than
%, because X, has scale parameter 6 (u) = 2u’ Au = 2A(u) withu € 5.

We present example cases where the minimal eigenvalue Api, is — 0.1, —0.2,
— 0.3, or — 0.4, while the maximal eigenvalue Anmyx is 0.1, 0.2, 0.3, or 0.4. The other
eigenvalues are either equally spaced between A, and Apax, or equally split at the
two extremes.

Define

fy — [y Ky — Ky
— w'— —

Y :i=exp(X) r:= = = )
j15% Ry — iy

(40)

where My and puy are a lower and an upper bound on the mean py of Y, respectively.
The ratio r represents the size of the maximal error relative to the mean py. A small r
indicates more accurate bounds. The weight w € [0, 1] is the normalized location of

iy on the interval [EY’ [Ly]. A value of w close to zero (one) reflects that the lower
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(uppef) bound is the most accurate bound on py. The bounds are equally accurate if

Algorithm 1 stops after iteration k if gy < 10~° with & as in (30), or if kK = 100.
Subsequently, the expression in (39) can be bounded. Table 6 reports several statistics
for the case with two eigenvalues (d = 2). The mean puy is in all cases of the same order
of magnitude. The maximal relative error r is minimal when both extreme eigenvalues
Amin and Amax are close to zero; a similar observation holds with d = 20 in Table 7
(eigenvalues equally spaced on the interval [Amin, Amax]) and in Table 8 (10 eigenvalues
at both Amin and Amax). Indeed, we can perfectly estimate ny = 1 for the case where
each eigenvalue equals zero.

It follows from w in Table 6 that with d = 2, the upper bound tends to be more
accurate than the lower bound if Amax is high, thus when X7 tends to be large. This
observation is reversed for d = 20 (Tables 7 and 8). Compared to Anax, the value of
Amin has a smaller impact on w. The accuracy decreases with the dimension d and the
magnitude of the eigenvalues of A. More specifically, we observe a lower accuracy r
if d = 20 and max(|Amin| , [Amax|) > 0.3.

The computation time in Tables 6, 7, 8 is the mean CPU time of 5,000 computations
of each model. The standard error is at most 0.12 ms. The computation time and the
number of iterations are lower in cases where |Amin| = |Amax|-

5 Discussion and conclusions

This paper has presented an iterative algorithm that bounds the lower and upper par-
tial moment at @ € R of the random variable X with a known finite sequence of
moments of X. In a numerical example, particularly the higher order partial moments
can have narrow bounds. The obtained bounds imply bounds on unobserved higher
order moments of X which is useful for bounding moments of the transformation f (X).
In another application, a transformation f(x) = e* is considered for the quadratic form
X = Z' AZ where Z is a multivariate normal distribution. Numerical experiments sug-
gest that the obtained bounds on E[exp(X )] are most accurate if X is not too large.
The accuracy depends on the dimension as well as the eigenvalues of A.
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Appendix

Proofof Lemma 1 Since the equality cases are straightforward, we prove strict bounds
for X with both X* % 0 and X~ % 0. The constraints in (2) and the first inequality
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in (3) follow from the identity u; = /Lj' + (—l)i,ul._ (i e Na’ ). The second and third
inequality in (3) follow from (n € NT)

+ + -
mt _ Hopg Mop_1 = Mop—1 Mon_1
2n—1 — + + — - n—
Mon—a  Mop—p + Moy
+ + —
L Hoar Popr —Hopr L
my, Wai iy Mo
- - +
— HMop—1  Hop—y T Hop—1
Mop_1 = —Z > —F - = —Mm2p—1
Mon—a  Mopot Hy s
- - +
L Moy Moy Moy 1
—_— == > ~ = = — .
my, Hop Hop + Hop m2n
O
Proofof Lemma 2 See Theorem 3.1 in Gavriliadis and Athanassoulis (2009). O
Proof of Lemma 3 The j zeros x < x® <o < x4 of each polynomial P; are

real and distinct (Akhiezer 1965; Szeg6 1975). Lemma 2 implies that the functions L
and U are a lower bound and an upper bound of the cdf F of X, respectively:

L(x) < F(x) <U(x)

Therefore,

00 oo N i
e :f x'dF(x) z/ x'dU (x) = Z (i(f)) dU;
0 0 -
J=Jy
0 ' 0 , jo 1 N
T =/ (—x)' dF (x) z/ (—x) dL(x) = ) (—20)) dL;,

j=1
where jgr, dLj,anddU; (j =1, ..., N) are defined in Lemma 3. O

Proof of Lemma 4 (i) The Cauchy—Schwarz inequality with the inner product (Y, Z)
= E[YZ]is |E[Y Z]* < E[Y?]E[Z?]. Substituting ¥ = X"/>~! and Z = X"/?
leads to the desired result forn > 2, and forn = 2 provided ug :=P(X #0) = 1.
An additional step is needed for the case where n = 2 and ug < 1. Consider

~12 ~ ~
the Cauchy—Schwarz inequality ,42% = E[X] < E[XO]IE[X2] = [lofty with
X~ X x0.9ince fi; = u;/P(X # 0), multiplying both hand sides of this inequal-
ity by [P(X # 0)]? gives the result with n = 2 and pg < 1.
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The Cauchy—Schwarz inequality holds with equality if and only if (iff) ¥ = AZ
for some constant A, Y = 0, or Z = 0. None of these three conditions holds if X
is nqd. It follows that ,ufh] = W MUn—2 holds iff X is quasi-degenerate.

(i) Follows from @1 > 0 and (7).

Proof of Lemma 5 Without loss of generality, assume J = {1, ...,|J|} and 0 < h; <
hy < ---. When summing over all j € J, the set J is omitted for convenience.

(i) Notice that
0 <m;(Y1) =gh1 <mi(Y2) =gihy <---
A convex combination of larger m; (Y;), j > jo, is larger than a convex combina-

tion of this combination and another convex combination of smaller m; (¥;) with
J < Jo

]E[Y’ 1] IEI[Y’ 1]
domi) e E[Y, 1] >Zm (Y)Z ]E[Y, 1]

jzjo r=jo
Rearranging terms,

%= E[Y)] _ Nk L T BT
ZJE[Yf] iji(yj)E[Y,’:”] - ZrlE[Yri’l]

(41)

Letw = E[Y’ 1]/Zr61 [Y’ 1] By (41), the measure w* 1 stochastically

dominates the measure w:

Sl = 3 E[T]]>21>10E[Y;_1
> E[YI] T

Jj=Jo J=Jjo

] 3w
= w .

._1 ]

ZrE[Yr' ] i

Write
o E[(Z/ in)J =Z B[] v E[vi'] B[]
 CERRE R CCRER
- Zw;")mi(yj) — g Zwﬁ”hj.
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Because {/} ;e is a positive nondecreasing sequence and w D stochastically
dominates w'?, for each r € J,

i+
mit1(Y) 8+l 2w hy 1 (i+1) 1 i, _ miY)
LS, = Ly, - D

mip1(Y,) gitihr  hy P mi ()
(42)

J

Inequality (5) follows from rearranging (42) and m;, m;y > 0.
(i) Under the assumption that Y is a mixture, i.e., ]P’(Yj Y, = O) =1 # r),
the moment ratio m; (Y) is a weighted average of m; (Y;) with positive weights

B[y 2 B

mi(Y) = LA R U N R

RO OIS ol il o el Dol el

2[v]

<max | ———= | = maxm;(¥;)
j E[y/{—l] j

(iii) The highest moment in the expansion of (Z,e 7 Yr)i_1 equals i — 1. By Lemma
4(ii),

B[] < E[Yff]m

! ! E[Y%*l]
J

Hence, by independence of each {Y}},c; and Lemma 4(ii),

ri1<i. (43)

i—1 . -
: (Z Yr) b= > Z <r1’l.'_.71rlj)E[Y{I]_..E-Y;j+l:| -~-E[Y|rj“|']
' jri=i—1
=1 , - ]E[YT/’“]
22121'—1<’1’l~-«»ru)E[Yll]”'E-Y"”']W
i=1 ] - E[Y%]
SZj;f_l<r1,...,r|J)E[Yll]_..IE_Yl}fl]W;il]
i—1 j
- (Zr:yr) %' (44)
J
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Substituting (44),

R B LA

BT L o]
il
R Gl

(iv) As the case I = J is straightforward, assume I C J. Define the complement
of I as I° := J\I. Since each Y; is independent and log-concave, the convolu-
tions Y; = Zjel Y, Y = Zjelc Yj,and Y = Y; + Y/c have log-concave
distributions (Ibragimov 1956). Denote the probability density function (pdf)
of the nonnegative random variables Yj, Yjc, and Y by fy,(x), fy,.(x), and
frx) = fooo fr;(x — 2) dFy,. (z), respectively. For any i > 1, consider )71 and
Y with pdf

Uy, ) o) = )
Jo7 X1 fy, (x) dx Y Jo X fy (o) dx

fi, (0 = (45)

Because m; (Y;) = HE[{I[’T]I’K]I] = ]E[I?I] and m;(Y) = E{%},’]l] = ]E[ ] we need

to show that £ [f 1] <E Y ] holds. To do this, it suffices to show that the marginal
likelihood ratio f}?j /[y o fy;/ fr is nonincreasing on (0, 00) as this indicates

L —

that ¥ stochastically dominates I? Since Y, is a log-concave distribution, we

have that - log fy,(x) is nonincreasing on [0, c0). This gives for the density
function of Y Y + Yye,

d d d
d_IngYz(x) —IOgE[fY(X + V)] < alngY(x) x>0.

This proves that log ( Sy, )/ fy (x)), and thus the ratio f?, / fy»1s nonincreasing
n [0, o0). Therefore, E[Y,] < IE[I?] and thus m; (Y;) < m;(Y) foranyi > 1.

O

i

Proof of Lemma 6 We prove the bounds on m;
onm; and m;(Z) follow analogously.

:=m(X7T) and m; (Y), the statements

(1) Since X = Z/GI X is a mixture, the positive part of X is XT = Z/GI X+
Apply Lemma 5(i1).

(i) Since each Y; is independent and log-concave, the convolution ¥ =, ¥; is
log-concave (Ibragimov 1956). Denote the probability density function (pdf) of
X and Y by fx(x) := fooo fr(x +z)dFz(z) and fy(x), respectively. For any
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i > 1, consider X and Y with pdf

g ()
Jo© X7 f(x) dx

X ()
Joo X fp o dx

fr@) = fy(x) = (40)

i Hyi-!
we need to show that E| X <E Y | holds. To do this, it suffices to show that
the marginal likelihood ratio f/ f; o fx/ fy is nonincreasing on (0, o0) as this

Because mT = mi(XT) = % = E[)}] and m;(Y) = E[Yi]] = EI:?:I,

indicates that ¥ stochastically dominates X . Since Y is alog-concave distribution,
% log fy(x) is nonincreasing on [0, co). This gives for the density function of
X =Y — Z with Z any nonnegative and independent distribution,

d d d
e log fx(x) = — log E[ fy(x + Z)] < — log fy(x) x>0.
X dx dx

This proves that log (fx (x)/ fy (x)), and thus the ratio fg/fy, is nonincreasing
on [0, 00). Therefore,E[f(] < IE[I?] and thus m; (X ) < m;(Y) foranyi € N*,
(iii) Follows immediately from X = max(X,0) = Y.
O
Proof of Theorem 1 The moments (t,_2, (t,—1, and w, are known and satisfy u; =

pi (=D (i € {n—2,n—1,n}andn even). Combining thiswith0 < m | < m;f
from Lemma 4(ii) gives for ¢ € {0, 1}

+ +

_ My, q My
0<p, »=pn2— r_i_ = Mn—2 — ’:_ 47)

m, n—t
- =ur - 48
Ky = Ky — Mn—1 (48)
0<py =pn—miw | <pn—m_ . (49)

Define for s € {+, —}
s . Han
g (x) = -~ 25 fp—1 + fn—2X x> 0.

The function g* is minimal at b := /u,/,—2, monotonically decreases on (0, b),
and monotonically increases on (b, 00). Apply Lemma 4(i) to the nqd X,

g° () > &' (b) = 2 (V/inbtn2 — S ftn-1) > 0 x>0 (50)

By (47)~(50) and (12), for ¢ € {0, 1}

m,_;

_ 2 _ _ 2 M -1
()% < oy = () — ta—1)” < (unz - = ) (tn —myi_ )
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Mnn—2 — /‘Lifl

+
< My =
" /Ln/m;gtz —2up-1+ l/Ln—Zm;:;[
a
& g Sutlm) = S
n—t

Notably, the derivation above started with bounds on the moments of X~ and ends
with bounds on the moments of X .

Since —X = X~ — X7, we can switch all superscript + and — signs and use
E[(—=X)"] = (1)’ wi—1 to generalize (51) to

a
wy_y < ut(my_,) = m s €{+,—} t €{0, 1}. (52)
Using (52), we bound u; _,; by substituting appropriate values for the unobserved
m? _,. The function u*® increases on (0, b), while it decreases on (b, 00). Therefore, the
most conservative upper bound from (52) equals u®(b) = a/g*(b). Possibly tighter
bounds on p; _; follow from the more general bound min(u*(c), u*(d)) with ¢ =
argmin {|x — b| : x € [m}_,,m_,]} and d = argmin {|x — b| : x € [m}, m}]}.
Thus, the upper bound on 4, is u*(b) in cases where both b € [m$_,,m}_,] and
be [mfl "_151] hold. By (15), this is equivalent to cases where b € [mfl rflf,_l .
If m)_, < b < mj, one can use min(u®(m} _,), u’(m})) as a bound, because
(15) and the monotonicity of u* imply that 725 _, or m;, must give the lowest possible
upper bound on . The bottom two components of v* in (16) follow from the
monotonicity of the function #* on (0, b) and (b, 00).

The obtained upper bound on 1 _, implies an upper bound on pf _, from uj _, <

iy _y/m; . A tighter bound is available if the previous bound on (i _; is based on

m’_,. By (52),
A — s € {+ ), (53)
T (mfz—l)
where
B (x) = x g5 (X) = ftn — 2 fn—1X + Hp_2X" x > 0.

In (53), an upper bound on 1 _, corresponds to a lower bound on /. The continuous
function #° monotonically decreases on (0, s m,_1) and monotonically increases on
([s my—11T, 00). By (14), m3 | > sm,_; such that m® | gives the maximal upper
bound on pu;_, in (53). As a result, using m; _, (instead of m;_,) can tighten the
upper bound on w5 . This gives the bound on u;,_, in (16).

Similarly, the upper bound on w; _, implies the upper bound w; < mjy;_;. A
tighter bound is available if the previous bound on ) _, is based on mz). By (52),

P < 757 s € {+ -}, (54)
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where

S
25 by
K (x) ;=gix)=%— “;" L o x> 0.

In (54), an upper bound on u corresponds to a lower bound on k°. The function k* is
continuous on (0, co) and monotonically increases on the interval ([s m,]*, 0o). Pro-
vided s m,, > 0, k* monotonically decreases on (0, s m,). By (14), 1/m} > 1/(s m,)
such that m;, gives the maximal upper bound on ), in (54). Thus, using mz), (instead
of m;) can tighten the upper the bound on w;,. This proves the last inequality in (16).

O

Proof of Lemma 7 The inequality in (17) follows from Lemma 4(i). Next, consider
Holder’s inequality

1
ElYzl < E[lY©P)? €[1z19)"  p.g e o0 SHo=1

The first inequality in (18) is obtained by substituting ¥ = (X*)/, Z =1, p = i/j
and ¢ = p/(p — 1). The first inequality in (19) follows from ¥ = (X*)!, p = j/i,
and g = p/(p —1). The second inequality in both (18) and (19) follows from Lemma
4G) and i = miui_| (i € NT). The inequalities in (20)—(21) are based on u; =
/Ll-+ + (—l)iui_ where i € N(J)“. O

Proof of Lemma 8 We prove the case with strict bounds, since the case with equality
signs is trivial. Both inequalities in (22) are straightforward by m? = u?/u;_,. The
two inequalities in (23) follow from Lemma 4(ii):

Wi

md < /mf_ mS= o< mf

i—1 i—17% s i
)

O
Proof of Lemma 9
(1) Define the function
rm,n(x)=z(n+i)! m e (1,2} n=0,1,...
1=m
We prove the properties of r,, , in Tabel 9. Notice that
1Fi(l,n+2;x)—1
rin(x) = &u(x) = : (55

(n+ 1!
Apply Abramowitz and Stegun (1964, Eqgs. (13.4.9) and (13.1.27)),

irl (x)_d_lel(l,n+2;x)—1
sn -

dxk dxk (n+ 1)
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l’:gl:; (lj:)operties of ry (%), N Fin ri,n ri/,n Fam ré,n ré/,n
N
(—00,0) - + + + -
0
(0, 00) + + + + +
k!
Zm[]F](k+l,k+n+2,x)—1k:0] (56)
k!

[e“1Fi(n+ 1, k+n+2—x) — Li—o] k.neNg
(57)

T k+n+ D)

with 1 4 the indicator function which equals 1 if the event A is true, and 0 otherwise.
Equations (56) and (57) indicate r; ,(0) = 0 and %rl,n (x) > O0forallx € R
and k € {1, 2}. Thus, the function ry , is increasing and convex with ry ,(x) < 0
itx <0,r1,,(0)=0,r1,(x) >0if x > 0, and r{’n(O) =1/(n+ D

Since 12, (x) = xr1p41(x) and rp ,(x) = r;,(x) — x/(n + 1)!, the function
r2.» 1s nonnegative and convex with 2 ,(0) = rin (0) = 0. Therefore, 2 ,(x)
decreases on (— oo, 0) and increases on (0, 00).

Next, we apply the properties in Table 9 on &, (x) = ry ,(x). Consider f(n with
the cdf I:"n in terms of the cdf F of X,

x"dF(x) _ x"dF(x)

) = T ir e = B

It follows that ]E[rl,n(f(n)] = &,(X) and E[f(,,] = my+1. Using Lemma 4(ii),

Jensen’s inequality, and the convexity of 71, we find the lower bounds on &, (X )
and &,(—X7):

0= &umy ) = rialmiy) =i (B[%F]) = B[ra(8h] =600

(i) = ria(=m ) =i (B[ =X ]) < B[ra(- %) = &(-x7).

The upper bound on &,(—X ™) follows by applying Jensen’s inequality to the
convex function r; ,,—1:

s foxr] s oh]

( x—yn-1 ,221 n+D T my & =140

En(=X") =

= —% E[’Z,nfl (—5(,,__1)]

my
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o]

00 i o
- _L— ! <E[_X;_l]> B _% i=2 (”(—nzn-i-)i)! - Z ((nr—ni—nl;:

Mn i=1

=& (—m, ) =r|,(—=m,;) <0

(ii) The moments of Ty ~ I'(k,0) are E[T}'] = 6"T (k +n)/T (k), which gives
mu+1(Tp) = 6(k + n). By Lemma 5(i), we have for any mixture of Gamma
distributions with fixed shape parameter k,

k+n m
< n+1.

58
k4+n—17" my, (58)

Combining (58), &, (x) = ri’n(x) > 0 (x € R), and Lemma 9(i) produces the
lower bound on &,(X™) in Lemma 9(ii). The scaled remainder of Ty is

R
5 (00) 3= g 2 (n+0)!

i=1

o0

_ I (k) Z 0" (k+n+1i)
T nlonT (k +n) n+1)...(n+i)0k)

i=1

1 & i k—1
:EZQZHFI(”HH)

i=1

1
=;[2F1(1,k+n;n+1;9)—1].

By well-known properties of the Gaussian hypergeometric function » F, the func-
tion h,(0) := &,(Tp) increases monotonically on (—1, 1) with 4, (0) = 0.
Because 7y, |+ stochastically dominates the mixture X and &, (x) > O forx €
R, we must have &,(XT) < &n(Tip,00+) if [Omin, Omax] € (=1, 1). Similarly, the
mixture — X~ stochastically dominates — Tjy, . -, whichleadsto &, (T_jg,,.1-) <
&,(— X 7). This proves (ii).
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