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Abstract
We consider the problem of learning to detect anomalous time series from an unla-
beled data set, possibly contaminatedwith anomalies in the training data. This scenario
is important for applications in medicine, economics, or industrial quality control,
in which labeling is difficult and requires expensive expert knowledge, and anoma-
lous data is difficult to obtain. This article presents a novel method for unsupervised
anomaly detection based on the shapelet transformation for time series. Our approach
learns representative features that describe the shape of time series stemming from the
normal class, and simultaneously learns to accurately detect anomalous time series.
An objective function is proposed that encourages learning of a feature representa-
tion in which the normal time series lie within a compact hypersphere of the feature
space, whereas anomalous observations will lie outside of a decision boundary. This
objective is optimized by a block-coordinate descent procedure. Our method can effi-
ciently detect anomalous time series in unseen test data without retraining the model
by reusing the learned feature representation. We demonstrate on multiple benchmark
data sets that our approach reliably detects anomalous time series, and is more robust
than competing methods when the training instances contain anomalous time series.

Keywords Unsupervised learning · Feature learning · Support vector data
description · Block-coordinate descent

1 Introduction

Detecting anomalous instances in temporal sequence data is an important problem in
domains such as economics (Hyndman et al. 2015b), medicine (Chuah and Fu 2007),
astronomy (Rebbapragada et al. 2009), and computer safety and intrusion detection
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(Zhong et al. 2007). Consider for example the application in medicine for monitor-
ing electrocardiogram data by a wearable sensor. A person’s healthy heartbeat shows
more or less the same electrocardiographic measurement pattern. So for each heart-
beat, we have a temporal sequence ofmeasurements, resulting in a data set of heartbeat
measurements of a single person. Now the patient develops some first signs of arrhyth-
mia which cause deviations from the healthy heartbeats, the anomalies. The anomaly
detection model in the sensor detects these anomalous measurements and can raise an
alarm or inform the patient’s doctor.

Here we address the problem of learning to detect anomalous time series without
having access to labels that indicate which instances in the training set are normal and
which are not. This is a highly relevant scenario, since anomalies by definition occur
very rarely, and are of diverse, unpredictable nature. It is therefore difficult to collect
a large enough set of anomalous time series, and it would require domain experts to
spot these few anomalies within a large database containing mostly normal instances.
Whereas several anomaly detection methods learn models of normal time series under
the assumption that all training data is normal (Mahoney andChan 2005; Salvador and
Chan 2005;Rebbapragada et al. 2009),we present a novelmethod based on the Support
Vector Data Description (SVDD) (Tax and Duin 2004) that learns to detect anoma-
lous time series even if the training set is contaminated with occasional anomalies.
Simultaneously, our method characterizes what constitutes normal behavior of a time
series. Despite the practical relevance of detecting entire time series as anomalies, this
research field has attracted moderate attention (Hyndman et al. 2015b) and learning
representative features from unlabeled data containing anomalies for testing new data
without retraining the model is—to the best of our knowledge—even less examined.

Mining of entire time series may lead to intractable memory and time requirements.
It is thus desirable to trainmodels thatwork on a smaller number of extractable features.
Apopular approach is to let experts design characteristic features that reveal anomalous
instances according to their experience (Hyndmanet al. 2015b), but suchdomain expert
knowledge is often not available (Zhong et al. 2007). Since important characteristics
of time series are likely contained in short sub-sequences (Forrest et al. 1996), Ye
and Keogh (2009) proposed so called shapelets, i.e., representative subsequences of
time series, which yield state-of-the-art results in classification benchmarks (Bagnall
et al. 2017a). Whereas the original approach considered only subsequences that were
observed in the training set, Grabocka et al. (2014) extended the framework towards
learning optimal shapelets for supervised classification.

In this article, we demonstrate the first application of shapelet learning in the context
of unsupervised time series anomaly detection. Shapelets have shown good perfor-
mance when indeed relevant information is contained in subsequences, but are of
limited use in scenarios where statistics or spectral features over the whole time series
determine the class. The focus of the present article is thus on time series problems
where recurring short temporal patterns are indicative of normality or class member-
ship.

The main contribution of this article is a novel unsupervised method to learn
shapelet-based features that are representative of the normal class from a training set
of time series contaminated with anomalies and—at the same time—detect anoma-
lous instances in this set of time series. Those learned features can then be efficiently
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Fig. 1 Unsupervised anomaly detection in time series with shapelet learning. Starting from an unlabeled
data set, our method optimizes an objective function F(·) and simultaneously detects anomalies (red) in the
training set. The anomalies are detected based on a set of learned shapelet features S, short subsequences
that characterize normal (green) time series, and a decision boundary R. The learned features and decision
boundary can be used to detect time series on novel test data without retraining the model (color figure
online)

used for further time series analysis without retraining the model, and without storing
entire training time series. Furthermore, our method only requires a small number of
time series for training and still generalizes well. The basic concept of our method is
displayed in Fig. 1.

This is the first approach that combines shapelet features for time series, shapelet
learning, and unsupervised anomaly detection. There are notmany competingmethods
that can deal with this scenario, hence we additionally propose a baseline approach,
which uses extracted shapelets for anomaly detection. In a series of experiments we
demonstrate the superior performance of our combined method, in particular when
training sets contain anomalies.

The remainder of this article is organized as follows: Sect. 2 starts with an overview
of related work on time series anomaly detection and shapelet-based methods for time
series classification. The latter is described in more detail in Sect. 3 together with the
theory of detecting anomalous observations with SVDD. We motivate how the con-
cept of shapelets is suitable for anomaly detection in Sect. 4, and propose a baseline
approach that extracts shapelets. Additionally, we introduce a modification of SVDD
which is adapted to the problem of shapelet-based anomaly detection. We propose
our novel unsupervised method that in contrast to the proposed baseline method from
Sect. 4 learns shapelet-based features and simultaneously detects anomalous instances
in Sect. 5. We explain our experimental setup in Sect. 6 before we evaluate our pro-
posed method in Sect. 7, and discuss our results and the applicability of shapelets
for anomaly detection in Sect. 8. We conclude our article with general remarks and
recommendations on when to use our proposed method in Sect. 9.

2 Related work

Anomalies are in general defined as deviations from normal behavior (Chandola 2009;
Chandola et al. 2009), assuming that normal instances originate from some common
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data generating process. The main assumption of anomaly detection is therefore that
the data set is mostly made up of normal instances, which share common character-
istics, and only a small percentage of instances will be anomalous. Since anomalies
are rare and there may be many diverse types, it cannot be assumed that the space of
all possible anomalies can be exhaustively sampled. In many real-world applications,
it cannot be assumed either that it is a priori known which examples are anomalous.
The setup of anomaly detection as an unsupervised and highly unbalanced problem is
different from typical supervised classification tasks. A detailed overview of anomaly
detection can be found in Chandola (2009).

Detecting anomalies in time series is a particularly challenging topic, because abnor-
mal behavior may manifest itself in any short sub-sequence, as well as in longer trends
(Forrest et al. 1996). Two major types of anomaly detection problems for time series
can be distinguished: On the one hand, the task can be to identify entire time series as
anomalous in relation to a set of other time series (Mahoney and Chan 2005; Salvador
and Chan 2005; Hyndman et al. 2015b). On the other hand, the task can be to identify
short parts or even single points within a time series as anomalous (Ma and Perkins
2003; Keogh et al. 2005; Fu et al. 2006; Chatfield 2016).We focus here on the first sce-
nario of detecting entire time series as anomalous, which has numerous applications
and has been extensively studied, e.g., for light curves in astronomy (Rebbapragada
et al. 2009), server monitoring (Hyndman et al. 2015b), or identification of failures in
space shuttle valves (Salvador and Chan 2005).

The typical approach for detecting entire time series as anomalies is to first learn
a representative model for normality, and then identify anomalies by their deviation
from this normal model. Whereas our approach explicitly allows occasional anoma-
lies in the training data, previous methods rely on a training set consisting entirely
of normal instances. Salvador and Chan (2005) segment the normal training data into
characteristic states and learn logical rules for state transitions in the form of a deter-
ministic finite automaton. At test time, time series are classified as normal if they lead
to a valid state sequence in the automaton. The automaton learns to produce valid state
sequences for every time series in the training set, hence anomalies in the training data
can lead to misclassifications at test time. Mahoney and Chan (2005) map time series
into a 3-dimensional feature space, and learn sequences of minimal enclosing bound-
ing boxes that contain the trajectories of every instance of the training set. Anomalous
instances in the training data would result in too large bounding boxes, and leads to
misclassifications at test time. Additionally, clustering approaches based on similarity
measures between the time series or subsequences can be used for anomaly detection
(Protopapas et al. 2006; Wei et al. 2006; Rebbapragada et al. 2009). The basic princi-
ple is that anomalies will have large distance to any cluster formed from instances in
the training set. Anomalies in the training set may result in a cluster containing those
observations, which again will lead to misclassifications.

The approach closest to ours is the recentwork ofHyndman et al. (2015b),which can
learn from an unlabeled set of time series containing anomalies. Their method extracts
basic representative features such as mean and trend, and additional domain specific
features such as the number of zero-crossings. The features are then projected onto
the first two principal components, and anomalies are detected either by estimating
the density in the PCA space (Hyndman 1996), or by learning an enclosing region of
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the normal data points with the α-hull method (Pateiro-López and Rodríguez-Casal
2010).

Our method is based on kernel methods for anomaly detection, such as One-class
Support Vector Machines (Schölkopf et al. 2000) and SVDD (Tax and Duin 2004),
which have been used successfully in a broad range of applications. Since those meth-
ods are not directly applicable to time series data without first extracting features,
Ma and Perkins (2003) apply the method to time series data by using a time-delay
embedding process to generate a feature vector representation for each point in a time
series. In the resulting feature space a one-class SVM is used to detect anomalous
observations within the series.

To detect anomalous time series, our method utilizes shapelets to create a repre-
sentative set for normal characteristics. The concept of shapelets to characterize time
series was first proposed by Ye and Keogh (2009). They considered a supervised sce-
nario and defined shapelets as time series primitives that are maximally representative
of a class. Shapelets are found by first extracting all potential subsequences and select-
ing a representative subset based on the information gain of each candidate shapelet
for classification in a decision tree. Lines et al. (2012) defined the shapelet transform
of time series by computing the minimal distance between the time series and each of
the k shapelets. The resulting k-dimensional feature vectors can then be fed to stan-
dard classifiers. Grabocka et al. (2014) proposed the method of shapelet learning for
linear classification of time series instances. Their objective is to learn shapelets that
optimize the linear separability of the time series data after the shapelet transform.
Shapelets learned in this way need not be present in the original data. Using shapelet
learning for unsupervised anomaly detection is a novel concept that we introduce in
this article.

3 Preliminaries

In the following, Ti , i = 1, . . . , N , denote N univariate time series with feature
representation Φ(Ti ;ψ) = xi ∈ R

K , where K is the number of features, and ψ the
transformation parameter vector. Assuming that all time series are of length Q, they
can be combined into one matrix T = (T�

1 , . . . , T�
N ), T ∈ R

N×Q . For evaluation we
also define a class label yi ∈ {0, 1} for an entire time series where yi = 0 denotes the
normal class and yi = 1 indicates an anomaly. However, during training we assume
that the true class label is unknown. The result of the anomaly detection learning
procedure is a linear prediction model ŷi = w�xi + w0, w ∈ R

K , w0 ∈ R.

3.1 One-class support vector data description

Our anomaly detection framework is based on SVDD (Tax and Duin 2004). The data
points xi , i = 1, . . . , N , are assumed to lie within a single high density region that
can be circumscribed—in a first approximation—by a minimal-volume hypersphere
with radius R and center a, see Fig. 2a. Finding this sphere is equivalent to solving
the optimization problem
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(a) (b)

Fig. 2 Anomaly detection with a the standard SVDD (Tax and Duin 2004) and b our modified SVDD∗. A
black ‘+’ indicates instances from the normal class, a red ‘−’ indicates anomalies. The green cross is the
center of the enclosing hypersphere that represents the anomaly boundary. In b, we fix the center of the
hypersphere to the origin of the feature space to account for the shapelet-based feature values (color figure
online)

min
R,a,ξ

R2 + C ·
N∑

i=1

ξi ,

s.t . ‖xi − a‖2 ≤ R2 + ξi , ξi ≥ 0, ∀i = 1, . . . , N (1)

with slack variables ξ = (ξ1, . . . , ξN ). By introducing ξ , we allow data points to lie
outside the hypersphere. These points are however penalized linearly in the objective
to keep the amount of outlying points low. This encourages a trade-off between the
volume of the hypersphere and the number of data points that lie outside. A kernel
function is typically applied to transform the feature space. After solving (1), a new
data point xtest can be easily tested, and is detected as anomalous if ‖xtest −a‖2 > R2.

3.2 Shapelet transformation

Shapelets S1, . . . , SK are defined as subsequences of fixed length L of a time series Ti .
In Ye and Keogh (2009) the set of shapelets is chosen so as to optimize prediction of
the discriminative class yi .

The shapelet transformation Φ(Ti ;S) as defined by Lines et al. (2012) depends on
the chosen set of shapelets S = {S1, . . . , SK }. For a given shapelet Sk of length L , its
distance Di,k, j to a time series subsequence (Ti, j , . . . , Ti,( j+L−1)) with initial time
point j (and length L) is defined as

Di,k, j = 1

L

L∑

l=1

(Ti,( j+l−1) − Sk,l)
2.

The distance between shapelet Sk and an entire time series Ti is then defined as

Mi,k := min
j=1,...,J

Di,k, j , (2)

123



Time series anomaly detection based on shapelet learning 951

Fig. 3 Shapelets S1 and S2 learned from the time series data set provided by Ferrell and Santuro (2015).
Each time series is transformed into a vector in a 2-dimensional feature space via Φ(T ; S1, S2). The two
time series Ti and Tj show the normal and the anomalous class, respectively. Note that we set K = 2, i.e.,
the number of shapelets, only for illustrative reasons

where J is the number of all subsequences of length L within Ti . The K -dimensional
feature representation of time series Ti is then given as

Φ(Ti ;S) := Φ(Ti ; S1, . . . , SK ) = (Mi,1, . . . , Mi,K )�. (3)

An example of the shapelet transformation can be seen in Fig. 3.
In their original formulation, shapelets are always subsequences of time series con-

tained in the training set. Grabocka et al. (2014) extend this concept to learnmaximally
representative shapelets for classification. Learned shapelets need not necessarily be
present as exact duplicates in the training data. For training, a regularized empirical
risk formulation with logarithmic loss is used, i.e.,

min
S,w

F(S,w) = min
N∑

i=1

L (yi , ŷi ) + λw‖w‖2, (4)

where L (yi , ŷi ) = −yi · ln σ(ŷi ) − (1 − yi ) · ln(1 − σ(ŷi )) with σ(yi ) =
(1 + exp(−yi ))−1, and linear prediction model ŷi = w�xi + w0 with shapelet trans-
formation

xi = Φ(Ti ; S1, . . . , SK ) = (Mi,1, . . . , Mi,K )�.
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For minimizing this empirical loss, the gradients w.r.t. the shapelets S need to be
calculated which implies (by the chain rule) to differentiate Mi,k w.r.t. Di, j,k . Since
theminimumoperator withinMi,k is not differentiable, Grabocka et al. (2014) propose
to apply the smooth-minimum approximation for gradient calculation. Formally,

M̂i,k =
∑J

j=1 Di,k, jeμDi,k, j

∑J
j ′=1 e

μDi,k, j ′
, μ < 0 (5)

which is the smoothed minimum function of the distance between one shapelet Sk
and one time series Ti . The distance function is created by sliding the shapelet over
the time series and measuring the L2-distance for each window, yielding the windows
starting at different time points j with smaller distances higher values. The parameter
μ defines how smooth the function is, i.e., how many peaks the function has. The
shapelets are initialized for the learning procedure with the k-means centroids of all
potential shapelets. For a more detailed explanation, see (Grabocka et al. 2014).

4 Anomaly detection with shapelets

This section motivates why and how the concept of shapelets is suitable for anomaly
detection. The main components are the use of shapelet-based features for anomaly
detection, a modified version of SVDD, and a baseline algorithm for detecting anoma-
lies, which uses extracted shapelets.

4.1 Shapelet-based features for anomaly detection

The underlying assumption for anomaly detection is that the normal time series are
generated by the same unknown data generating process. Hence, they show similar
temporal characteristics, i.e., the information is available in the shape of the time series
(Esling and Agon 2012). Here we have chosen shapelets as a natural fit to represent
features of time series suitable for anomaly detection. The basic idea is to find a set
of shapelets that can reliably be detected in normal time series, but at least some of
them do not match in the anomalies. Given a set of shapelets S = {S1, . . . , SK }, we
use the shapelet transformation from Eq. (3) to obtain the feature representation of a
time series Ti as xi = Φ(Ti ;S). Since Φ(Ti ;S) computes distances between the best
match of the shapelet and the time series, it is clear that all feature vectors xi contain
only non-negative values. Furthermore, feature values will be small if there is a good
match to the corresponding shapelet in the time series.

This implies that if the shapelets S are representative of the normal class, then all
feature vectors for normal time series should lie close to the origin, and form a compact
hypersphere with a small radius. Thus, finding shapelets that yield small values for
normal time series is equivalent to finding shapelets that are representative for normal
data.
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4.2 Modified one-class SVDD

We present a modification of the original SVDD from Sect. 3.1, which we denote as
SVDD∗, and which is adapted to the problem of shapelet-based anomaly detection. In
this modification, the center a of the hypersphere is fixed to the origin of the feature
space, i.e., a = 0. Consequently, only the radius R and the slack variables ξ remain
as optimization parameters.

Definition 1 The SVDD∗ constrained optimization problem is

min
R,ξ

R2 + C ·
N∑

i=1

ξi , (6)

s.t . ‖xi‖2 ≤ R2 + ξi , ξi ≥ 0, ∀i = 1, . . . , N

with data points xi ∈ R
K , i = 1, . . . , N , the radius of the hypersphere R, the regular-

ization parameter C , and slack variables ξ = ξ1, . . . , ξN , respectively.

Similar to SVDD, we require the data points to lie within a single high-density
region, in our case close to the origin. We use the linear kernel, i.e., the dot product of
two vectors in R

K . Without loss of generality, we assume non-negative data points.
This simplifies the optimization problem, and is guaranteed when using the shapelet
transform. The idea of this modification is depicted in Fig. 2b.

4.3 Shapelet extraction for anomaly detection as a baselinemethod

Based on the previously introduced formalism, we propose a simple baseline approach
for detecting anomalous instances in a set of unlabeled time series contaminated with
anomalies. This method directly extracts shapelets from the original training data set
by searching through all subsequences present in the data set, and extracting those
that are most representative of the normal class. The anomaly detector is then learned
afterwards with SVDD∗ using the extracted shapelets. The proposed baseline shapelet
extraction algorithm is outlined in Algorithm 1.

First, all P subsequences of length L from the time series data base T =
(T�

1 , . . . , T�
N ) are extracted as potential shapelets Sp, p = 1, . . . , P . Next the

overall distances Mp = ∑
i Mi,p of each potential shapelet Sp to the time series

Ti , i = 1, . . . , N , are calculated and sorted, resulting in M(1) ≤ M(2) ≤ · · · ≤ M(P).
The subsequences Sp can be ordered according to their overall distance value Mp, i.e.,
S(1), . . . , S(P). The subsequence S(1) corresponding to the minimal overall distance
M(1) is extracted as the first shapelet.

In the next step, a distance boundary is computed based on the inter-shapelet dis-
tance ISD(S(1), p) = ∑L

l=1(S(1),l − Sp,l)2 of all remaining subsequences Sp, p =
1, . . . , P − 1, to the shapelet S(1) to avoid redundancy. All subsequences with dis-
tances within this boundary are deleted. The procedure continues on the remaining
candidates, and is repeated until K shapelets S1, . . . , SK are extracted.
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Algorithm 1 Shapelet Extraction for Anomaly Detection

1: procedure ExtractShapelets(Time series set T = (T�
1 , . . . , T�

N ), number of shapelets K )
2: extract S1, . . . , SP from T
3: calculate Mp = ∑N

i Mi,p∀p ∈ 1, . . . , P
4: order M1, . . . , MP resulting in M(1) ≤ M(2) ≤ . . . ≤ M(P)

5: sort S1, . . . , SP according to corresponding Mp ordering, resulting in S(1), . . . , S(P)

6: repeat
7: extract S(1) as shapelet

8: calculate ISD(S(1), p) = ∑L
l=1(S(1),l − Sp,l )

2

9: set similarity boundary:
10: 0.1 · median(ISD(S(1), m))
11: delete Sp with
12: ISD(S(1), p) < boundary
13: until K shapelets extracted
14: return K shapelets
15: end procedure

At test time, a new time series Z with feature representation z = Φ(Z; S1, . . . , SK )

will be classified as normal if ‖z‖2 ≤ R2, otherwise it is detected as an anomaly.

5 Joint shapelet learning and anomaly detection

Wenow turn to the problem of jointly learning a representative set of shapelets S, while
using S to solve the unsupervised anomaly detection problem. Learning the shapelets
no longer restricts the candidate shapelets to those that are actually present in the data
set, but finds shapes that are optimally suited to characterize normal time series.

5.1 Anomaly detection with shapelet-based feature learning

This section introduces our new method called Anomaly Detection algorithm with
Shapelet-based Feature Learning (ADSL), c.f. Fig. 3. ADSL detects anomalous
instances in a set of unlabeled time series contaminated with anomalies and—at the
same time—learns features that are highly representative of the normal class. The
learned features are shapelet-based and can be efficiently used for analyzing further
test data. In contrast to the previously introduced shapelet extraction procedure for
anomaly detection outlined in Algorithm 1, our joint learning approach learns repre-
sentative subsequences that may not necessarily be present in any training instance.
For a given set of shapelets, we can solve the anomaly detection problem by solving the
optimization problem defined in (6). However, the shapelets in S need to be optimized
to become representative of the normal class leading to a shapelet transformation as
visualized in Fig. 4.

In Sect. 4.1, we noted that the shapelet features of normal time series are expected
to be small if the shapelets are representative of the normal class. By regularizing the
feature learningwith �(xi ) = ‖xi‖2 = ∑K

k=1 M
2
i,k , we can encourage that the (normal)

data points will be pulled towards the origin during learning. The regularization stabi-
lizes the convergence of the learned model, and guarantees that shapelets are learned
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Fig. 4 Anomaly detection with learned shapelets: On the left side, the initial features based on the initial
shapelets Sk , k = 1, 2, are displayed. Both, the normal (+) and anomalous (−) class are scattered in the
feature space. On the right, the transformed setting after learning the shapelet transformation by optimizing
the objective function F(R,S) are visualized. The learned normality boundary is shown in green (color
figure online)

that are representative of the normal class. This gives rise to our key contribution, the
ADSL algorithm for learning representative shapelets for anomaly detection:

Definition 2 The ADSL model for shapelet-based anomaly detection is given as the
solution of the constrained optimization problem

arg min
R,S,ξ

F(R,S) = R2 + C ·
N∑

i=1

ξi +
N∑

i=1

�(xi ),

s.t . ‖xi‖2 ≤ R2 + ξi , ξi ≥ 0, ∀i = 1, . . . , N

(7)

where xi = Φ(Ti ; S1, . . . , SK ) = (Mi,1, . . . , Mi,K )� and �(xi ) = ‖xi‖2 =∑K
k=1 M

2
i,k , the radius of the decision boundary R, regularization parameter C , and

slack variables ξ .

Similar to the heuristic in Schölkopf et al. (2000), the regularization parameterC is set
in relation to the assumed anomaly rate α as C = 1

α·N . We thus force the algorithm to
assume α · N observations being anomalous. That is, we choose the hyperparameter
C using prior information about the amount of anomalies we expect in the training
data. In the experiments in Sect. 6.2, we will show that a conservative setting of C that
assumes an anomaly rate of α = 5% can reliably solve anomaly detection problems
where the true anomaly rate lies between 0 and 5%.

The procedure for detecting an anomalous time series instance remains the same as
for the extraction approach: at test time, a new time series Z with feature representation
z = Φ(Z;S) will be classified as an anomaly if ‖z‖2 > R2.

5.2 Optimization

To solve the optimization problem defined in Eq. (7), we employ a block coordinate
optimization algorithm (Boyd and Vandenberghe 2004). The algorithm utilizes (sub-)
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Algorithm 2 Learning Shapelet-Features for Anomaly Detection
procedure LearningShapelets(Shapelets S, step rate η)

2: Init: f best ← ∞, cnt ← 1
repeat

4: for i = 1, . . . , N do
for k = 1, . . . , K ; l = 1, . . . , L do

6: ui,k,l ← ∂Fi
∂Sk,l

� Sec 5.2

end for
8: ūk,l ← 1

N
∑

i ui,k,l
end for

10: Snew ← S − η · ū
f new ← F(Snew) � Equation (8)

12: update( f best , Sbest )
S ← Snew

14: cnt = cnt + 1
until cnt = 10

16: S ← Sbest

return S
18: end procedure

gradients and updates at any time just one or a few blocks of variables while leaving
the other blocks unchanged. In our case, there are two blocks with alternating updates:
either we update the radius R of the decision boundary, or the set of representative
shapelets S.

Anomaly Detection Keeping the shapelets S1, . . . , SK and thus the feature repre-
sentation x = (x1, . . . , xN )� fixed, we learn the radius of the decision boundary R for
anomaly detection. This reduces the optimization problem in Eq. (7) to the SVDD∗
anomaly detection formulation in Eq. (6). Applying Lagrangian multipliers for con-
strained optimization as in Tax and Duin (2004), this yields the linear problem

argmax
β

L(x;β) =
∑

i

βi

(
x�
i · xi

)
,

s.t .
∑

i

βi = 1, 0 ≤ βi ≤ C, ∀i = 1, . . . , N

which can be optimized with standard methods for linear programming.

Learning Shapelet Features Now, keeping the radius R of the decision boundary
fixed, we update the set of shapelets S with the goal of making it representative of the
normal class. Importantly, altering S will change all feature representations xi of all
time series Ti in Eq. (3). Since Eq. (7) now only depends on the shapelets S by fixing
the radius R, we can rewrite it as a regularized empirical risk minimization problem
yielding the shapelet learning problem

argmin
S

F(R,S) = R2 + C ·
N∑

i=1

max{0, ‖xi‖2 − R2} +
N∑

i=1

�(xi ), (8)

where �(xi ) = ‖xi‖2 = ∑K
k=1 M

2
i,k as motivated in Sect. 5.1.
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The shapelet learningproblem is non-convex andnon-differentiable (Grabocka et al.
2014). However, we can calculate the subgradients by using a suitable approximation
of the non-differentiable parts (Grabocka et al. 2014; Boyd et al. 2003):

A subgradient g of a function f (that is defined for dom( f )) at point γ fulfills
f (γ ) ≥ f (η) + g�(γ − η), ∀γ ∈ dom( f ), i.e., the subgradient is a lower bound to
the function f at γ (Boyd et al. 2003). Here, we apply subgradients on the hinge-loss
max{0, ‖xi‖2−R2}, which is not differentiable for ‖xi‖2 = R2. Additionally, we need
to differentiate Mi,k containing the minimum operator to calculate the subgradients.
We follow Grabocka et al. (2014) and approximate Mi,k with the smooth-minimum
M̂i,k in Eq. (2) that is differentiable.

To learn the optimal shapelets for detecting anomalies, we need to minimize the
learning function in Eq. (8) w.r.t. the shapelets S = {S1, . . . , SK }, which define the
shapelet transformation xi = Φ(Ti ; S1, . . . , SK ) = (Mi,1, . . . , Mi,K )�. We calculate
the subgradients for the set of shapelets S independently for each time series Ti and
use the average shapelet gradient over all time series Ti for updating in the learning
iteration.
The individual learning function of Eq. (8) for each time series Ti is

Fi (R,S) = R2

N
+ C · max{0, ‖xi‖2 − R2} + �(xi ). (9)

The derivative for each shapelet Sk, k = 1, . . . , K , at point l = 1, . . . , L is

∂Fi
∂Sk,l

= C · ∂

∂Sk,l
max{0, ‖xi‖2 − R2} + ∂

∂Sk,l
‖xi‖2.

With the smooth-minimum approximation M̂i,k from Eq. (2), we derive the approxi-
mated subgradients for the first summand as

C · ∂

∂Sk,l
max{0, ‖xi‖2 − R2} ≈ δ{‖xi‖2 ≥ R2} · 2CM̂i,k ·

·
(
1 − δ(‖xi‖2 = R2) · U [0, 1]

) ∑

j

∂ M̂i,k

∂Di,k, j

∂Di,k, j

∂Sk,l
,

and the second part of the derivative can be calculated as

∂

∂Sk,l
‖xi‖2 ≈ 2

∂

∂Sk,l
M̂i,k = 2M̂i,k

∑

j

∂ M̂i,k

∂Di,k, j

∂Di,k, j

∂Sk,l
.

The local optimum found by the algorithm depends on the initialization of the
shapelets. To overcome this multimodality problem, a standard approach is to repeat
the analysis with varying initialization which in our evaluation is carried out through
statistical replication. Tomake the shapeletsmore robust, we repeat the shapelet update
step 10 times in each shapelet learning iteration and keep track of the best solution
due to the subgradients. The pseudocode for our method is described in Algorithm 2.
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Fig. 5 Decision criteria to select a classification benchmark being suitable for transformation into an
anomaly detection problem. This process is based on data set characteristics such as length of time series,
number of classes, and number of normal training observations, and does not require domain knowledge

The iterative learning procedure is carried out until the relative change in the objective
function over two iterations is smaller than 0.0001.

6 Experiments

Our proposed model for anomaly detection is evaluated on a representative set of
publicly available benchmark data sets.1

6.1 Data set generation, performancemeasures and experimental setup

There is a lack of publicly available benchmark data sets for anomaly detection (Keogh
and Kasetty 2003; Emmott et al. 2013). We thus use data sets from the UCR Time
Series Classification Archive (Bagnall et al. 2017b), that were originally intended
for evaluating time series classification, and transform them into anomaly detection
problems. However, this transformation is not straightforward: Transforming a clas-
sification problem into an anomaly detection problem requires exhaustive data and
domain knowledge, e.g., which class is defined as normal and how is this class charac-
terized, that we do not have. We thus decide if a data problem is suitable for evaluating
our anomaly detection method ADSL based on several decision criteria, which is also
displayed in Fig. 5: first, time series longer than 700measurements per observation are
excludedbecause of processing capacities. To select amulticlass classificationproblem
as suitable for anomaly detection, one class needs to be (without domain knowledge)
visually distinguishable as normal class. The selected multiclass problems and all
binary classification problems are then transformed into anomaly detection data sets
following the procedure described in the next paragraph. To overcome further limi-
tations in memory capacity, we exclude data sets with more than 1000 training time

1 The complete code for our evaluation is available on request from the authors. Additionally, we provide
our method as an R package which will be publicly available. Currently, access to the package can also be
requested from the authors.
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series. Following this approach, 28 time series data sets from several problem domains
are left for evaluating our proposed methods.

To create data sets for anomalydetection fromclassificationbenchmarks,we loosely
follow the approach suggested by Emmott et al. (2013): first, the original split between
training and test data is lifted. For binary classification data, the most frequent class
is defined as the normal case (Emmott et al. 2013); if the number of observations
is identical, the class occurring first is chosen as the normal case. For multiclass
data, the class that is visually most distinct from the remaining classes is defined
as normal. This yields a variety of anomaly types. In order to generate independent
training and test sets for the transformed data, 80% of the normal time series are
randomly selected into the training set, and the remaining 20% become the test set.
The anomalous training instances are randomly selected from the available examples.
Their number is proportional to the number of normal instances, and the fraction α of
anomalous instances in the training set is fixed to either 0.1, 1, or 5%. This simulates
scenarios in which the training set contains no anomalies, a realistic proportion, or
an extreme proportion of anomalies, respectively. In this way studying of how much
the performance of anomaly detection algorithms is affected by contamination of the
training set with anomalies is allowed for. Since we want to use all observations for
our evaluation, the remaining anomalous time series are then added to the test set.
Because of this, the proportion of anomalies in the test data is rather high. However,
this does not influence the analysis of the performance itself, if a suitable performance
measure is chosen that is insensitive for imbalanced classes (Brodersen et al. 2010),
as described below. The large variety of anomalies in the test set additionally requires
our anomaly detector to identify various types of anomalies.

Each algorithm is evaluated on ten random train–test splits created from each data
set, and the median performance over the ten runs is reported for comparison. A
detailed description of the data sets is given in Table 1.

Performance Measure In order to quantify the performance of different anomaly
detection methods we measure the sensitivity ( T P

T P+FN ) and specificity ( T N
T N+FP ),

where a positive event is an anomaly, and a negative event is a normal time series.
High sensitivity indicates that all anomalies are reliably detected, whereas high speci-
ficity indicates that there are not many false alarms. Furthermore, we compute the
balanced accuracy (BA), defined as Sensitivity+Specificity

2 ∈ [0, 1]. The BA compensates
for imbalanced data, because in order to reach a high value, the method has to perform
well on both classes (Brodersen et al. 2010).

Comparison The performance of each method (ADSL and 2 baselines) is evaluated
separately for each of the three anomaly rates α ∈ {0.1%, 1%, 5%} in order to analyze
their ability to cope with anomalies in the training set. The Wilcoxon signed-rank
test (Gravetter and Wallnau 2017) is used to test for significant improvement in each
anomaly rate setting. For this, a pair-wise test (ADSL vs. Hyndman et al. (2015b) and
ADSL vs. Extract) on the vector of observations of balanced accuracy values over the
28 data sets is performed, using a significance level of 0.05.
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Table 1 Description of the 28 data sets used for evaluation

Data sets # TS # CL
(normal class)

# N
train/test

# A: α = 5%
train/test

# A: α = 1%
train/test

# A: α = 0.1%
train/test

Adiac 781 37 (9) 16/4 1/760 0/761 0/761

ArrowHead 211 3 (2) 52/13 3/143 1/145 0/146

Beef 60 5 (1) 10/2 0/48 0/48 0/48

BeetleFly 40 2 (1) 16/4 1/19 0/20 0/20

BirdChicken 40 2 (1) 16/4 1/19 0/20 0/20

CBF 930 3 (2) 248/62 12/608 2/618 0/620

Chlorine
Concentration

4307 3 (1) 800/200 40/3267 8/3299 1/3306

Coffee 56 2 (0) 23/6 1/26 0/27 0/27

ECG200 200 2 (1) 54/13 3/130 1/132 0/133

ECGFiveDays 884 2 (1) 354/88 18/424 4/438 0/442

FaceFour 112 4 (3) 23/6 1/82 0/83 0/83

GunPoint 200 2 (1) 80/20 4/96 1/99 0/100

Ham 214 2 (1) 82/21 4/107 1/110 0/111

Herring 128 2 (1) 62/15 3/48 1/50 0/51

Lightning2 121 2 (1) 38/10 2/71 0/73 0/73

Lightning7 143 7 (3) 15/4 1/123 0/124 0/124

Meat 120 3 (2) 32/8 2/78 0/80 0/80

MedicalImages 1141 10 (5) 36/9 2/1094 0/1096 0/1096

MoteStrain 1272 2 (1) 548/137 27/560 5/582 1/586

Plane 210 7 (5) 24/6 1/179 0/180 0/180

Strawberry 983 2 (1) 281/70 14/618 3/629 0/632

Symbols 1020 6 (6) 134/33 7/846 1/852 0/853

ToeSegmentation1 268 2 (0) 112/28 6/122 1/127 0/128

ToeSegmentation2 166 2 (0) 99/25 5/37 1/41 0/42

Trace 200 4 (1) 40/10 2/148 0/150 0/150

TwoLeadECG 1162 2 (1) 465/116 23/558 5/576 0/581

Wafer 7164 2 (1) 610/152 30/6372 6/6396 1/6401

Wine 111 2 (1) 46/11 2/52 0/54 0/54

# TS is the total number of time series instances in the data set. # CL describes the number of classes in the
original classification setup; the label of the class chosen as the normal class is given in parentheses. The
number of normal time series is denoted with # N, the number of anomalous instances with # A. The number
of normal time series for a data set remains unchanged for each train-test split. The last three columns give
the number of anomalous time series (# A) within the created data sets with 5%, 1%, and 0.1% of anomalies
in the training data

6.2 Sensitivity analysis for hyperparameters

A general problem in unsupervised anomaly detection is hyperparameter optimization
since standard optimization algorithms that rely on supervised metrics are not appli-
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Fig. 6 Sensitivity analysis for the hyperparameters K and L of ADSL, defined relative to the time series
lengths Q as K = K ∗ · Q and L = L∗ · Q. For each combination (K ∗, L∗), the median test performance
over all considered data sets is shown

cable. However the correct hyperparameters are critical for the anomaly detection
methods to perform (Thomas et al. 2016).

The ADSL optimization problem in Eq. (7) depends on the hyperparameters C , K
and L . The heuristic from Schölkopf et al. (2000) is used to set the penalty parameter
C in relation to the assumed anomaly rate α asC = 1

α·N . In order to choose the number
K and the length L of the shapelets, a sensitivity analysis is performed. To account for
the fact that different data sets contain time series of different lengths Q, we express
K and L relative to Q, i.e., K = K ∗ · Q and L = L∗ · Q. In the sensitivity analysis,
K ∗ and L∗ are varied in the intervals K ∗ ∈ [0.01, 0.1] and L∗ ∈ [0.05, 0.3]. Larger
values are not investigated to preserve the meaning of shapelets as short and character-
istic subsequences, and to achieve reasonable run time. During the sensitivity analysis
the anomaly rate is fixed to α = 5%. The sensitivity experiments are run on 11 data
sets (Adiac, Beef, BeetleFly, BirdChicken, ECGFiveDays, FaceFour,
Lightning7, MedicalImages, Symbols, Trace, TwoLeadECG), and the
median test performance for each (K ∗, L∗) combination over these data sets is
reported. There is no individual tuning for each data set. Figure 6 shows the results of
the hyperparameter sensitivity analysis.

A general trend can be observed in the sensitivity analysis, that ADSL performs
better with longer and a larger number of shapelets. The algorithm learns more char-
acteristics of the normal instances in the training data, and consequently detects
anomalies better. However, in this parameter regime there is an increased chance
of creating false alarms (i.e., detecting normal time series as anomalies) due to over-
fitting the training data, which leads to a decreased specificity. In contrast, reducing
the number of shapelets increases the specificity, because the small set of shapelets is
most discriminative of the normal class.

This analysis provides a guideline on how to choose K and L according to the
requirements of the application: if a higher true positive rate is required, we advise the
reader to set K ∗ close to 0.1 and L∗ close to 0.3. This is relevant, e.g., in healthcare,
where we would rather accept a false positive alarm than miss a medical issue. If
avoiding false alarms is of greater importance, L∗ should be close to 0.3 and K ∗
around 0.04. The latter applies, e.g., for alarm systems. For the evaluation in the
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remainder of the article, we choose K ∗ = 0.02 and L∗ = 0.2. This combination
does not bias the results in either of the two mentioned preferences. Furthermore, it is
computationally efficient for long time series.

6.3 Comparison to competingmethods

The performance of the ADSL algorithm (Algorithm 2) is compared to the state-
of-the-art algorithm for unsupervised anomaly detection for entire time series from
Hyndman et al. (2015b). The implementation of the method is available as an R pack-
age (Hyndman et al. 2015a). As described in Sect. 2, the algorithm is based on the
estimated density of the first two principle component scores extracted from 13 pre-
defined features. Anomalous series are detected by their deviation from the highest
density region. In the investigated data sets, some of these predefined features are
practically constant. We add random noise with standard deviation 10−5 by applying
the function jitter to the data since the method is not applicable in those cases.
Additionally, we implemented a method to extract the estimated density and the prin-
cipal components of the transformed training data and a test function, since the open
source implementation does not yield predictions for test data without retraining the
model. The test function extracts the 13 predefined features and projects them onto
the learned principal components. These transformed feature values are then evaluated
for their corresponding density value. The test time series instance is detected as an
anomaly if this value is below the density threshold for the corresponding anomaly
rate α ∈ {0.1%, 1%, 5%}.

In addition, we compare ADSL with shapelet learning to the shapelet extraction
method described in Sect. 4.3. This baseline method only searches over subsequences
that are actually present in the training data, but does not optimize shapelets. We use
the abbreviation “Extract” in the following to denote this baseline approach.

7 Results

The first performance evaluation investigates the case where the true anomaly rate α

is known, and the hyperparameter C is set accordingly. The results for this case are
illustrated in Fig. 7. Table 2 contains the detailed numbers for each experiment, as well
as the aggregated performance and rank comparisons between the three investigated
methods. Averaged over all data sets, ADSL outperforms both baseline methods in
terms of median balanced accuracy for all levels of α. The difference is statistically
significant. Furthermore, ADSL’s performance on average is very stable across all
anomaly rate settings α, showing that the method yields reliable results even if the
expected number of anomalies is relatively large.

All three methods struggle with correctly detecting anomalies for several data
sets (ChlorineConcentration, ECG200, Ham, Herring, Wafer, Wine). On
closer examination, we observe that in each of those data sets the time series are not
clearly distinguishable even though belonging to different classes in the original classi-
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(a)

(b)

(c)

Fig. 7 Comparison of balanced accuracy (BA) on the 28 investigated data sets between ADSL and two
competing methods. The left column compares our method with Hyndman et al. (2015b), the right column
compares with the shapelet extraction method from Sect. 4.3. The x- and y-axes show the balanced accuracy
of the competing method and ADSL, respectively. Points above the diagonal show an advantage for ADSL.
The three rows correspond to three different settings of the true anomaly rate: a α = 5%, b α = 1%, c
α = 0.1%and setting the anomaly rate parameterC accordingly.ADSLoutperforms the competingmethods
on most data sets, with the most visible advantage over Hyndman et al. (2015b) for the high-anomaly case
α = 5%
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fication setting, leading to the conclusion that these classification benchmarks can not
be transformed into anomaly detection problems without further domain knowledge.

7.1 Analysis of limitations of shapelet-basedmethods

Shapelet-based methods are not necessarily optimal for all types of time series prob-
lems. When analyzing the cases in our experiments where ADSL does not outperform
the method of Hyndman et al. (2015b), we observe that this is for data sets with high
variability, which means there are no characteristic shapes for time series of one class.
The data set Lightning7 and Lightning2 fall into this category, where stan-
dard global time series features such as slope or trend, together with domain specific
features capture the characteristics of the data set better than shapelet features.

7.2 Comparing learned and extracted shapelets

The comparison to the Extract method from Sect. 4.3 shows that learning and opti-
mizing shapelets indeed helps in almost all cases. ADSL on average performs better
for all three anomaly settings and the difference is statistically significant. In contrast
to Extract, ADSL not only learns shapelets that are representative of the majority of
the data, but additionally forces the least similar training examples under this shapelet
transformation to lie outside the decision boundary. This advantage is slightly dimin-
ishedwhen the training set consists ofmany anomalous series since the overall distance
in Sect. 4.3 is sensitive to large values. This is the case for α = 5%, leading to a less
significant improvement of ADSL over the baseline method from Sect. 4.3. However,
in the cases where Extract outperforms ADSL, the improvement typically is small.

7.3 Influence of anomaly rate

In three data sets (TwoLeadECG, ECGFiveDays, MoteStrain) a noticeable drop
in balanced accuracy for ADSL can be observed if α is reduced. In the same data
sets, for the high anomaly setting, ADSL performs well, but the competitive methods
struggle. We now investigate the reasons for this behavior.

The data sets TwoLeadECG and ECGFiveDays are electrocardiogram measure-
ments, and contain time series showing only small differences between the two classes.
MoteStrain contains sensor measurements, however, the time series show similar
characteristics as electrocardiogram data. Fig. 8 illustrates the time series from the two
classes in ECGFiveDays, as well as the learned and extracted shapelets. In Table 3
the corresponding radius of SVDD∗ are displayed.

When the training set contains anomalies, ADSL with an appropriate setting of
parameter C will detect the least similar time series in the training set, and learns a
tighter description of normality, even though no labels are used. Comparing the normal
and anomalous time series, a very homogeneous peak around time point t = 50 can
be observed, whereas peaks of different amplitudes are present in the anomalies. The
anomalous time series have a prolonged and flattened plateau between t = 60 and
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Time series anomaly detection based on shapelet learning 967

Fig. 8 Analysis of anomaly detection in the ECGFiveDays data set. (top) Visualization of 50 instances of
the normal (left) and anomalous (right) class. (middle) The learned (left) and extracted (right) shapelets for
each anomaly rate α ∈ 5%, 1%, 0.1%. (bottom) The learned and extracted shapelets for the setting α = 5%
plotted at the minimal-distance location for a randomly chosen normal time series

t = 70. Moreover, normal time series show more variability towards the end of the
observation,whereas in anomalies the variability is bigger at the beginning. The K = 3
learned shapelets account for the smooth measurements at the beginning of the normal
time series and at the end, and for the slope of the curve between time points t = 60
and t = 80.

In contrast, the shapelets that are extracted (without shapelet learning) only rep-
resent characteristic patterns towards the end of the time series. Large parts are
overlapping in time, and are very similar in all anomaly rate settings. This hinders
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968 L. Beggel et al.

Table 3 Median radius of SVDD∗. We display the median radius of SVDD∗ over the 10 resampling
iterations on ECG5Days for ADSL with learned shapelets and for Extract from Sect. 4.3 with extracted
shapelets, respectively. The median radius is shown for each anomaly rate α ∈ {5%, 1%, 0.1%} and one
standard deviation is added in parentheses

Median radius (sd) 5% 1% 0.1%

ADSL 0.18 (0.003) 0.20 (0.018) 0.21 (0.015)

Extract 0.14 (0.010) 0.18 (0.016) 0.31 (0.026)

the baseline method from Sect. 4.3 to correctly detect anomalous time series in test
data even though the radius of the SVDD∗ is smaller for the extracted shapelets for
α ∈ {1%, 5%}.

For α = 0.1%, the model assumes that all time series are normal and thus all
training time series must be within the enclosing hypersphere. This results in a higher
radius compared to the other anomaly rate settings for both learned and extracted
shapelets. Nevertheless, the radius for ADSL is still small with 0.21, leading to a
better performance compared to Extract. Extract uses a radius of 0.31, which is large
in comparison to the radii for the settings α = {5%, 1%}.

7.4 ADSL with unknown anomaly rate

We now evaluate the behavior of the three methods in case the expected percentage
of anomalies in the training set is a priori unknown. In order to demonstrate that
ADSL can cope with an unknown number of expected anomalies during training, we
repeat the experiments and create training sets with true anomaly rates of α = 0.1%
and α = 1%. This time, however, the anomaly-rate related parameter C is set to a
non-ideal value that corresponds to α = 5% during training. The performance values
are visualized in Fig. 9, and the exact values for individual data sets can be found in
Table 4.

By assuming a higher anomaly rate than really present, we force the SVDD∗ to learn
a tighter anomaly boundary and consequently a more compact shapelet transformation
of our data, leading to an improved anomaly detection. Consequently, ADSL shows
an improved median performance under both true anomaly rates if we overestimate
the true anomaly rate. Compared to the method of Hyndman et al. (2015b), ADSL’s
performance is significantly better.

8 Discussion

In this article,wehave shown that learned shapelet features,whichhave so far only been
used for time series classification (Ye and Keogh 2009; Lines et al. 2012; Grabocka
et al. 2014), hold great promise for the unsupervised detection of anomalous time
series. Together with the modified SVDD framework (Tax and Duin 2004), and a
novel objective function for optimization (Sect. 5.1), a powerful mechanism has been
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Time series anomaly detection based on shapelet learning 969

(a)

(b)

Fig. 9 Same as Fig. 7, but under the assumption that the anomaly rate is unknown. The true anomaly rate
in the training set [α = 1% in (a), and α = 0.1% in (b)] does not match the setting of the C parameter,
which is set as if α = 5%. ADSL outperforms Hyndman et al. (2015b) significantly on most data sets. The
Extract method also benefits from the assumed higher anomaly rate, thus the difference to ADSL is not as
big

proposed that can not only learn to distinguish normal from anomalous time series in
a training set, but also learns characteristic features of normal time series.

To discuss our results, we additionally summarize the most important data set
characteristics in Table 5: the number of training observations, the length of the series
and the average normalized euclidean distance (ED) between the training series. The
latter is equivalent to the shapelet distance from Eq. (2) where a shapelet is now an
entire time series. Additionally, we evaluate the standard deviation of the differences
between two successive measurements within a time series as measure Ψ where a
smaller value indicates smoother time series.

Interpreting Table 5 together with the results from Sect. 7 and Table 2, we observe
that for smooth series (Ψ < 0.4) the shapelet-based methods perform better than the
method by Hyndman et al. (2015b) which uses fixed time series features. The smooth
shape makes it easier for the shapelet-based methods to find meaningful patterns.
Moreover, the length of the time series influences the results only in combination with
other data set characteristics: in general, longer time series are better for the shapelet-
based method to find representative shapes of the normal class. If however the time
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Table 5 Data set characteristics. We display additional data set characteristics, including the number of
normal time series in the training set, the length of the time series and the average normalized euclidean
distance (ED) between the training time series. Additionally, the standard deviation of the differences
between two successive measurements within a time series is provided as measure Ψ which is an inverse
estimate for smoothness. Smaller values indicate smoother behavior

# N in training Length Average ED Ψ (inv. smoothness)

Adiac 16 176 0.05 0.08

ArrowHead 52 251 0.09 0.06

Beef 10 470 1.16 0.08

BeetleFly 16 512 1.61 0.09

BirdChicken 16 512 1.13 0.04

CBF 248 128 1.31 0.70

ChlorineConcentration 801 166 0.51 0.64

Coffee 23 286 0.02 0.08

ECG200 54 96 1.11 0.27

ECGFiveDays 354 136 0.89 0.52

FaceFour 23 350 1.13 0.37

GunPoint 80 150 0.24 0.07

Ham 82 431 0.41 0.21

Herring 62 512 0.10 0.04

Lightning2 38 637 1.34 0.42

Lightning7 11 319 1.39 1.04

Meat 32 448 0.02 0.04

MedicalImages 36 99 0.25 0.54

MoteStrain 549 84 0.76 0.49

Plane 24 144 0.39 0.16

Strawberry 281 235 0.01 0.08

Symbols 134 398 0.14 0.02

ToeSegmentation1 112 277 1.97 0.20

ToeSegmentation2 99 343 1.95 0.14

Trace 40 275 1.07 0.23

TwoLeadECG 465 82 0.24 0.21

Wafer 611 152 1.72 0.38

Wine 46 234 0.00 0.12

series are short (Length< 100), more series are needed for training the shapelet-based
methods. In contrast, themethod proposed byHyndman et al. (2015b) is able to extract
meaningful features from few short series. In case the training set consists of many
normal series (in our case # N > 100), only ADSL shows a good performance. Here,
ADSL generalizes the characteristic shapelets over an already broad range of normal
observations and consequently can learn a very distinct description of the generalized
normal behavior. However, if the number of training observations is too large (in our
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case # N > 600), ADSL learns on a too broad spectrum of samples from normal
observations and thus struggles to learn a distinct description of normal behavior.

Our method shows good performance in an unsupervised scenario, i.e., no labels
are available a priori to indicate which training examples are anomalies. We believe
that this is practically the most relevant scenario, as it only requires a typical data set,
which contains mostly normal data, and an estimate of the anomaly rate to set the
anomaly rate related hyperparameter C . If the normal class is homogeneous (i.e., the
average ED between the training time series is small, in our case < 0.4), it is not even
necessary to have large training sets to obtain good performance, which can also be
seen in our results and in Table 5. However, if there is almost no variability in the
normal class (i.e., average ED < 0.02), ADSL requires more series for training.

The main assumption of shapelet-based methods is that short subsequences exist
that are characteristic of the different classes. This is of course not always the case, but
shapelets have shown state-of-the-art performance on many relevant time series clas-
sification benchmarks (Bagnall et al. 2017a). By evaluating ADSL on a variety of data
sets, we find that ADSL equally gives excellent performance for anomaly detection
in most cases. We also identified characteristics of the data sets that are challenging
for ADSL. The main requirement for ADSL to work well is to have representative
patterns and little variability in the normal class, which are common assumptions for
anomaly detection. This circumstance can be observed for the data set Lighting7:
this data set has a high inverse-smoothness value (Ψ > 1 in Table 5) indicating a
rather non-smooth time series. ADSL misses to learn a representative shapelet from
this data as discussed in Sect. 7.1. The same holds for MedicalImages, where the
training data shows an inverse-smoothness value of 0.54. This would not lead auto-
matically to ADSL performing worse (as can be seen in CBF and MoteStrain), but
in combination with only a small number of short series, ADSL is not able to learn
characteristic shapelet features. In those cases, the method of Hyndman et al. (2015b)
performs best.

The alternative approach of assuming a training set without anomalies implicitly
requires reviewing every time series by a domain expert, which in the end results in
a supervised scenario. Even less attractive is the case where a representative labeled
set of anomalies is needed, because this will require the collection and labeling of
an even larger data set. Even then, in practice no guarantee can be given that every
possible anomaly has been observed, or can be identified as such. Furthermore, inmany
real-world applications such as medicine or process control, the situations in which
anomalies occur are typically highly undesirable or unlikely to ever be observed. The
performance of ADSL does not depend on ever seeing any anomalies during training,
and neither is it required to learn from a completely clean training set as is the case
in most of the current literature (Mahoney and Chan 2005; Salvador and Chan 2005;
Rebbapragada et al. 2009).

Besides the accuracy and minimal requirements on the training data, ADSL is
also an efficient method for classifying new time series at test time: the method only
searches for the best match of each shapelet within the time series, and then performs
a simple comparison with the decision boundary. For a time series of length Q, and a
set of K shapelets with length L this results in a run time of O(Q · L · K ), which is
efficient since K and L are typically small. In contrast, in the current implementation
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of Hyndman et al. (2015b), testing an unseen series requires retraining the complete
model: extracting the 13 predefined features for all time series (training series and the
new unseen series), calculating the principal component transformation and the den-
sity, and finally evaluating if the transformed new observation is below a density value
threshold. This nevertheless is only an issue in the current implementation available in
Hyndman et al. (2015a) and its extension to a separate testing functionality by extract-
ing the learned principal component basis and density threshold is straightforward.

Furthermore, shapelet features have an intuitive explanation as the distance of the
best match between the shapelet and any subsequence of a time series. This implies
that we expect feature vectors for normal time series to have small norm, and that
we can choose a radius of the decision boundary that reflects our assumptions on
the expected anomaly rate. Optimizing shapelets as in our proposed ADSL method
via shapelet learning (Grabocka et al. 2014) had a positive impact on the anomaly
detection performance compared to simple shapelet extraction from Sect. 4.3. The
main reason is the better generalization capability of learned shapelets, which adapt
to the average over the whole training set, rather than representing a short piece of a
single time series. Since the decision is strongly influenced by the maximum shapelet
distance, tighter bounds for anomaly detection can be learned if the features generalize
well. This still holds when anomalies are present in the training data by setting the
hyperparameter C appropriately, and their presence is expected.

In general, we observe that overestimating the true anomaly rate α is a good recipe
to achieve robust anomaly detection. The performance remains at a high level, even if
the true anomaly rate is lower, and is consistently better than for the method of Hynd-
man et al. (2015b). The SVDD∗, which is largely responsible for this robustness, also
improves the performance in this scenario when shapelet features are extracted rather
than learned. By setting the anomaly-rate related parameter C to a higher anomaly
rate, ADSL has an incentive to detect more anomalies in the training data than are
actually present. This means that also the least similar normal time series instances
will be categorized as anomalies. On the other hand, a setting of C corresponding to
an underestimated anomaly rate will force the method to include anomalous charac-
teristics in the model for normality. This will clearly have a negative impact on the
performance. In the case where the training set is entirely made up of normal data,
which is a typical assumption for other methods (Rebbapragada et al. 2009; Mahoney
and Chan 2005; Salvador and Chan 2005), ADSL still performs well, even though
this is not the setup for which ADSL was originally intended. In summary, this means
that ADSL with an overestimated anomaly rate is well suited for anomaly detection
in real-world applications where the true anomaly rate is unknown.

9 Conclusion

In this paper, we proposed a novel method for detecting anomalous time series in
the scenario where the training set contains no labels and is contaminated with an
unknown amount of anomalies. The ADSL method is able to learn representative
features of normality by combining a shapelet learning approach with SVDD-based
anomaly detection method, making our method highly efficient for processing large
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sets of time series at test time. The shapelet approach, however, requires recurring
short temporal patterns to indicate normal behavior or classmembership, and a smooth
behavior of the time series (cf. Sect. 8). If these conditions are met, ADSL can learn
a representative set of shapelets from very small training sets. If the training set con-
sists of many normal time series, the smoothness requirement does not need to hold.
Moreover, we demonstrated that the use of a SVDD-based anomaly detection makes
our method robust against the occasional presence of anomalies in the training set.
Good performance with up to 5% of anomalies in training sets is shown on multiple
benchmarks, and ADSL still performs well even if the true anomaly rate is unknown.

In conclusion, the experimental results show that 1) using shapelet features instead
of statistic time series features as used in Hyndman et al. (2015b), and 2) an SVDD-
based anomaly detection approach in contrast to an high-density region approach
improves the performance in learning to detect anomalous time series instances. A
generalization of our method to a non-linear transformation of the anomaly boundary
in order to capture non-linear characteristics in the data thus looks promising. Future
work will also address the extension to multivariate time series.
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tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
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source, provide a link to the Creative Commons license, and indicate if changes were made.

References

Bagnall A, Lines J, Bostrom A, Large J, Keogh E (2017a) The great time series classification bake off: a
review and experimental evaluation of recent algorithmic advances. Data Min Knowl Disc 31(3):606–
660

Bagnall A, Lines J, Vickers W, Keogh E (2017b) The UEA & UCR time series classification repository.
www.timeseriesclassification.com. Accessed Dec 2017

Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, Cambridge
Boyd S, Xiao L, Mutapcic A (2003) Subgradient methods. Lecture Notes of EE392o, Stanford University,

Autumn Quarter 2004. http://web.mit.edu/6.976/www/notes/subgrad_method.pdf
Brodersen KH, Ong CS, Stephan KE, Buhmann JM (2010) The balanced accuracy and its posterior distri-

bution. In: Proceedings of the 20th international conference on pattern recognition, IEEE, Istanbul,
Turkey, pp 3121–3124

Chandola V (2009) Anomaly detection for symbolic sequences and time series data. Ph.D. thesis, University
of Minnesota

Chandola V, Banerjee A, Kumar V (2009) Anomaly detection: a survey. ACM Comput Surv (CSUR)
41(3):1–58

Chatfield C (2016) The analysis of time series: an introduction, 6th edn. Chapman and Hall, London, UK
Chuah MC, Fu F (2007) ECG anomaly detection via time series analysis. In: Thulasiraman P, He X, Xu

TL, Denko MK, Thulasiram RK, Yang LT (eds.), Frontiers of High Performance Computing and
Networking ISPA 2007 Workshops. Lecture Notes in Computer Science, vol 4743, Springer, Berlin,
Heidelberg, pp 123–135

Emmott AF, Das S, Dietterich T, Fern A, Wong WK (2013) Systematic construction of anomaly detection
benchmarks from real data. In: Proceedings of the ACM SIGKDD workshop on outlier detection and
description, ACM, Chicago, Illinois, pp 16–21

Esling P, Agon C (2012) Time-series data mining. ACM Comput Surv (CSUR) 45(1):1–34
Ferrell B, Santuro S (2015) Nasa shuttle valve data. http://www.cs.fit.edu/~pkc/nasa/data/

123

http://creativecommons.org/licenses/by/4.0/
www.timeseriesclassification.com
http://web.mit.edu/6.976/www/notes/subgrad_method.pdf
http://www.cs.fit.edu/~pkc/nasa/data/


976 L. Beggel et al.

Forrest S, Hofmeyr SA, Somayaji A, Longstaff TA (1996)A sense of self for unix processes. In: Proceedings
of the 1996 IEEE symposium on research on security and privacy, IEEE, pp 120–128

Fu AWC, Leung OTW, Keogh E, Lin J (2006) Finding time series discords based on haar transform. In:
Li X, Zaïane OR, Li Z (eds) Proceedings of international conference on advanced data mining and
applications, Springer, Berlin, Heidelberg, pp 31–41

Grabocka J, SchillingN,WistubaM, Schmidt-Thieme L (2014) Learning time-series shapelets. In: Proceed-
ings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining,
ACM, New York, USA, pp 392–401

Gravetter FJ, Wallnau LB (2017) Statistics for the behavioral sciences, 10th edn. Cengage Learning, Boston
Hyndman RJ (1996) Computing and graphing highest density regions. Am Stat 50(2):120–126
Hyndman RJ, Wang E, Laptev N (2015a) Anomalous—a R package for unusual time series detection.

https://github.com/robjhyndman/anomalous
Hyndman RJ, Wang E, Laptev N (2015b) Large-scale unusual time series detection. In: Proceedings of

the 2015 IEEE international conference on data mining workshop, IEEE, Atlantic City, NJ, USA, pp
1616–1619

Keogh E, Kasetty S (2003) On the need for time series data mining benchmarks: a survey and empirical
demonstration. Data Min Knowl Disc 7(4):349–371

Keogh E, Lin J, Fu A (2005) Hot sax: efficiently finding the most unusual time series subsequence. In:
Proceedings of the 5th IEEE international conference on data mining, IEEE, Houston, TX, USA, pp
226–233

Lines J, Davis LM, Hills J, Bagnall A (2012) A shapelet transform for time series classification. In: Proceed-
ings of the 18th ACM SIGKDD international conference on knowledge discovery and data mining,
ACM, Beijing, China, pp 289–297

Ma J, Perkins S (2003) Time-series novelty detection using one-class support vector machines. In: Proceed-
ings of the 9th international joint conference on neural networks, IEEE, Portland, OR, USA, vol 3, pp
1741–1745

Mahoney MV, Chan PK (2005) Trajectory boundary modeling of time series for anomaly detection. In:
Proceedings of the KDD workshop on data mining methods for anomaly detection, KDD, Las Vegas,
USA

Pateiro-López B, Rodríguez-Casal A (2010) Generalizing the convex hull of a sample: the R package
alphahull. J Stat Softw 34(5):1–28

Protopapas P, Giammarco JM, Faccioli L, StrubleMF, Dave R, Alcock C (2006) Finding outlier light curves
in catalogues of periodic variable stars. Mon Not R Astron Soc 369(2):677–696

Rebbapragada U, Protopapas P, Brodley CE, Alcock C (2009) Finding anomalous periodic time series.
Mach Learn 74(3):281–313

Salvador S, Chan P (2005) Learning states and rules for detecting anomalies in time series. Appl Intel
23(3):241–255

Schölkopf B, Smola AJ,Williamson RC, Bartlett PL (2000) New support vector algorithms. Neural Comput
12(5):1207–1245

Tax DM, Duin RP (2004) Support vector data description. Mach Learn 54(1):45–66
Thomas A, Clemencon S, Feuillard V, Gramfort A (2016) Learning hyperparameters for unsupervised

anomaly detection. In: Proceedings of the 2016 international conference onmachine learningworkshop
on anomaly detection, New York, USA

Wei L, Keogh E, Xi X (2006) SAXually explicit images: finding unusual shapes. In: Proceedings of the
2006 sixth IEEE international conference on data mining, IEEE, Hong Kong, China, pp 711–720

Ye L, Keogh E (2009) Time series shapelets: a new primitive for data mining. In: Proceedings of the
15th ACM SIGKDD international conference on knowledge discovery and data mining, ACM, Paris,
France, pp 947–956

Zhong S, Khoshgoftaar TM, Seliya N (2007) Clustering-based network intrusion detection. Int J Reliab
Qual Saf Eng 14(02):169–187

123

https://github.com/robjhyndman/anomalous

	Time series anomaly detection based on shapelet learning
	Abstract
	1 Introduction
	2 Related work
	3 Preliminaries
	3.1 One-class support vector data description
	3.2 Shapelet transformation

	4 Anomaly detection with shapelets
	4.1 Shapelet-based features for anomaly detection
	4.2 Modified one-class SVDD
	4.3 Shapelet extraction for anomaly detection as a baseline method

	5 Joint shapelet learning and anomaly detection
	5.1 Anomaly detection with shapelet-based feature learning
	5.2 Optimization

	6 Experiments
	6.1 Data set generation, performance measures and experimental setup
	6.2 Sensitivity analysis for hyperparameters
	6.3 Comparison to competing methods

	7 Results
	7.1 Analysis of limitations of shapelet-based methods
	7.2 Comparing learned and extracted shapelets
	7.3 Influence of anomaly rate
	7.4 ADSL with unknown anomaly rate

	8 Discussion
	9 Conclusion
	References




