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Abstract Considering linear dynamic panel data models with fixed effects, existing
outlier–robust estimators based on the median ratio of two consecutive pairs of first-
differenced data are extended to higher-order differencing. The estimation procedure
is thus based on many pairwise differences and their ratios and is designed to com-
bine high precision and good robust properties. In particular, the proposed two-step
GMMestimator based on the corresponding moment equations relies on an innovative
weighting scheme reflecting both the variance and bias of those moment equations,
where the bias is assumed to stem from data contamination. To estimate the bias, the
influence function is derived and evaluated. The robust properties of the estimator
are characterized both under contamination by independent additive outliers and the
patches of additive outliers. The proposed estimator is additionally compared with
existing methods by means of Monte Carlo simulations.
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1 Introduction

Dynamic panel data models with fixed effects have been used in many empirical
applications in economics; see Bun and Sarafidis (2015) and Harris et al. (2008) for
an overview of the methodology and applications. Despite the complex data structure
of dynamic panels, a vast majority of literature focuses on the models assuming that
data are free of influential observations or outliers. This is often not the case in reality
(Janz 2002; Verardi and Wagner 2011; Zaman et al. 2001), and procedures robust to
outliers are thus very important in the case of panel data, where erroneous observations
can be easily masked by the complex data structure.

The robust methods for panel data have been studied only to a limited extent till
now. There are some methods available for static models (e.g., Bramati and Croux
2007; Aquaro and Čížek 2013) and just a handful for the dynamic models. Locally
robust estimation procedures have been proposed by Lucas et al. (2007), based on
the generalized method of moment estimator with a bounded influence function, and
by Galvao (2011), using quantile regression techniques. On the other hand, Dhaene
and Zhu (2017) and Aquaro and Čížek (2014) propose globally robust estimators that
are based on the median ratios of the first differences of the dependent variable and
of the first- or higher-order differences of the lagged dependent variable [note that
previously studied median-unbiased estimation such as Cermeño (1999) was based on
the least squares method and was thus not robust to outliers]. The main shortcomings
of these methods follow from the use of a fixed number of the differences and their
ratios. On the one hand, using just the first differences as in Dhaene and Zhu (2017)
can be beneficial for the robustness of the estimator, but it results in a lower precision
of estimates. On the other hand, Aquaro and Čížek (2014) employmultiple differences
of the explanatory variables to improve the precision of estimation, but it leads to a
high sensitivity to sequences of outliers. Additionally, estimation using higher-order
differences of the dependent variables has not been explored in neither case.

Our aim is to extend these median-based estimators of Dhaene and Zhu (2017) and
Aquaro and Čížek (2014) by employing multiple pairwise difference transformations
in such a way that the resulting estimator is robust and also exhibits good finite-
sample performance in data without outliers. The use of higher-order differences of
the dependent variable is not new (see Aquaro and Čížek 2013), but presents two big
challenges when applied in dynamic models. In particular, higher-order differences
have not been previously used since (1) they can result in a substantial increase in bias
in the presence of particular types of outliers and (2) their number grows quadratically
with the number of time periods, which can lead to additional biases due to weak
identification or outliers. We address this by proposing a data-driven weighting and
selection of the median ratios of differenced data since the traditional strategy used in
the robust statistics—using an initial robust estimator to detect outlying observations,
and after removing them, applying an efficient non-robust estimator (c.f., Gervini
and Yohai 2002)—is not feasible in this context. Even in the case of using the first
differences only, removing a single observation means that the observation and its two
or three following data points (depending on the actual estimation method) cannot
be used in estimation. Especially in short panels with less than five time periods,
removing a single observation for a given individual thus means that no observations
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of that individual can be used in estimation and the problem gets worse if higher-order
differences are used.

In this paper, we generalize the estimation method of Dhaene and Zhu (2017) to
a combination of the pth and sth order differences, p, s ∈ N, and combine multi-
ple pairwise differences by means of the generalized method of moments (GMM).
To account for the shortcomings of the current methods and to extend the analysis
of Aquaro and Čížek (2014), we first analyze the robustness of the median-based
moment conditions, derive their influence functions, and quantify the bias caused by
data contamination. Subsequently, we use the maximum bias and propose a two-step
GMM estimator, which weights the (median-based) moment conditions both by their
variance and bias; this guarantees that imprecise or biased moment conditions get low
weights in estimation. Finally, as the number of applicable moment conditions grows
quadratically with the number of time periods, a suitable number of moment condi-
tions for the underlying data generating process needs to be selected using a robust
version of moment selection procedure of Hall et al. (2007).

In the rest of the paper, the new estimator is introduced first in Sect. 2. Its robust
properties are studied in Sect. 3 and are used to define the data-dependent GMM
weights. The existing and proposed methods are then compared by means of Monte
Carlo simulations in Sect. 4 and the proofs can be found in the “Appendix”.

2 Median-based estimation of dynamic panel models

The dynamic panel data model (Sect. 2.1) and its median-based estimation (Sect. 2.2)
will be now discussed. Later, the two-step GMM estimation procedure (Sect. 2.3) and
the moment selection method (Sect. 2.4) will be introduced.

2.1 Dynamic panel data model

Consider the simple dynamic panel data model (i = 1, . . . , n; t = 1, . . . , T ; T ≥ 3)

yit = αyit−1 + ηi + εit, (1)

where yit denotes the response variable, ηi is the unobservable fixed effect, and εit

represents the idiosyncratic error. Parameter |α| < 1 so that this data generating
process can be stationary. The number T of time periods is fixed, which implies
that fixed or stochastic effects ηi are nuisance parameters and cannot be consistently
estimated. Finally note that the extension of the discussed estimators to a model with
exogenous covariates is straightforward (see Dhaene and Zhu 2017, Section 4.1).

As in Aquaro and Čížek (2014) and similarly to Cermeño (1999) and Han et al.
(2014), we will consider model (1) under the following assumptions:

A.1 Errors εit are independent across i = 1, . . . , n and t = 1, . . . , T and possess
finite second moments. Errors {εit}T

t=1 are also independent of fixed effects ηi .

A.2 The sequences {yit}T
t=1 are time stationary for all i = 1, . . . , n. In particular, the

first and second moments of yit conditional on ηi exist and do not depend of time.
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678 P. Čížek, M. Aquaro

A.3 Errors εit ∼ N(0, σ 2
ε ), σ 2

ε > 0, for all i = 1, . . . , n and t = 1, . . . , T .

Except of the independence in Assumption A.1, there are no assumptions are made
about the unobservable fixed effects ηi . Although we impose rather strict Assump-
tions A.1 and A.3 on idiosyncratic errors, they can be relaxed. The errors εit do
not have to follow the same distribution across cross-sectional units i , allowing for
heteroscedasticity. Additionally, the consistency of the estimators introduced below
requires that the joint distributions of errors {εit}T

t=1 are elliptically contoured, making
the normality AssumptionA.3 sufficient, but not necessary (see Dhaene and Zhu 2017,
Section 4.2). On the other hand, the violation of the time-homoscedasticity inAssump-
tion A.3 leads to the inconsistency of the discussed estimators. If εit ∼ N(0, σ 2

εt ) for
t = 1, . . . , T , themodel equation (1) has to be therefore rescaled by unknown standard
deviations σεt , which can be treated as unknown parameters and estimated along with
α by GMM. Finally, the stationarity Assumption A.2 is used not only by the proposed
estimators, but also by frequently applied GMMestimators such as Blundell and Bond
(1998) and it is implied by the assumptions of Han et al. (2014) if |α| < 1.

2.2 Median-based moment conditions

To generalize the estimator byDhaene and Zhu (2017), let�s denote the sth difference
operator, that is, �sυt := υt − υt−s (cf. Abrevaya 2000; Aquaro and Čížek 2013).
Given model (1), stationarity Assumption A.2 implies for any integers s, q, p ∈ N

that

E(�s yit |�p yit−q) = r j�
p yit−q , (2)

where the triplet j = (s, q, p) and r j = cov(�s yit,�
p yit−q)/var(�p yit−q) are inde-

pendent of i and t , max{s, p+q} < T . Consequently, the variables�s yit −r j�
p yit−q

and �p yit−q are uncorrelated, and by Assumption A.3, independent and symmetri-
cally distributed around zero. Hence, E[sgn(�s yit − r j�

p yit−q) sgn(�p yit−q)] = 0
and E

[
sgn

(
�s yit/�

p yit−q − r j
)] = 0. The estimation of r j can be therefore based

on the sample analog of this moment condition:

r̂n j = med

{
�s yit

�p yit−q
; t = p + q + 1, . . . , T ; i = 1, . . . , n

}
. (3)

To relate r j to the autoregressive coefficient α in (1), Aquaro and Čížek (2014) derived
underAssumptionsA.1 and A.2 that the correlation coefficient r j satisfies themoment
condition

g j (α) = 2(1 − α p)r j − αq + αq+p + α|s−q| − α|s−p−q| = 0. (4)

If s = q = p = 1, (4) defines Dhaene and Zhu (2017)’s estimator: α ∈ (−1, 1)
is identified by g111(α) = (1 − α)(2r111 + 1 − α) = 0. Dhaene and Zhu’s (DZ)
estimator α̂n therefore simply equals to 2r̂n111 + 1 and it was proved to be consistent
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and asymptotically normal. Aquaro and Čížek (2014)’s estimator (AC-DZ) of α uses
s = q = 1 and p being odd, p < T − 1. They do not use differences with s > 1 due
to their robustness properties: while they seem robust to sequences of outliers, they
can lead to large biases if outliers occur at random times.

2.3 Two-step GMM estimation

To increase the precision and robustness of the estimation, we propose to extend the
(AC-)DZ estimator by allowing for multiple differences with s = q ≥ 1 and p ≥ 1.
We consider only s = q as the moment conditions (4) do not allow distinguishing
outlying and regular observations for s �= q as shown in Aquaro and Čížek (2014).
For s = q, (4) simplifies after dividing by 1−α p and accordingly redefining g j (α) to

g j (α) = 2r j + 1 − αs = 0. (5)

The full set of moment conditions in (5) can be then written as

g(α) = 0, (6)

where g(α) = {g j (α)} j∈J and a fixed finite set J contains all triplets j = (s, q, p)

that are considered in estimation. TheDZestimator then corresponds to the special case
J = {(1, 1, 1)} and the AC-DZ relies on a set J = {(1, 1, p): 1 ≤ p < T − 1 odd}.
Here we consider all combinations with any s = q odd and p odd, J ⊆ Jo =
{(s, s, p): s ∈ N odd, p ∈ N odd, 1 ≤ s + p < T }, as the single moment conditions
do not identify uniquely α for even values of s or p and this could negatively affect
the bias caused by contamination.

Given the system of equations in (6), the parameter α can be estimated by the
GMM procedure. This GMM estimator is referred to here as the pairwise-difference
DZ (PD-DZ) estimator and is defined by

α̂n = arg min
c∈(−1,1)

gn(c)
′An gn(c), (7)

where gn(c) = (gn j (c)) j∈J is the sample analog of g(α) and corresponds to (5) with
r j being replaced by r̂n j defined in (3).

The weighting matrix An can be initially chosen as in Aquaro and Čížek (2014)
proportional to the number of observations available for the estimation of eachmoment
equation: An = A = diag{(T −p−s)/T }. The traditional variance-minimizing choice
of theGMMweightingmatrix An however equals the inverse of the variancematrixV n

of the moment conditions gn(α), which converges to the asymptotic variance matrix
V of the moment conditions (5); see the Appendix for the asymptotic distribution of
α̂n and the asymptotic variance matrix V previously obtained by Aquaro and Čížek
(2014).

On the other hand, we aim to account also for the presence of outlying observations
that can substantially bias the estimates. Since simply removing outliers would result
in a substantial data loss as explained in the introduction, we propose instead to use

123
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the moment conditions (5) and minimize the mean squared error (MSE) of estimates
instead of the asymptotic variance. First, let us denote the MSE of gn(α) by Wn ,

Wn = MSE{gn(α)} = Bias{gn(α)}Bias{gn(α)}′ + Var{gn(α)} = bnb′
n + V n .

Given a weightingmatrix An and the asymptotic linearity of α̂n (see Aquaro and Čížek
2014, the proof of Theorem 1)

α̂n − α = (d ′And)−1d ′An gn(α) + op(1) (8)

as n → ∞, it immediately follows that the MSE of α̂n equals

(d ′And)−1d ′AnWn And(d ′And)−1 + op(1),

which is (asymptotically)minimized by choosing An = W−1
n (Hansen 1982, Theorem

3.2).
Next, to create a feasible procedure, both the variance and squared bias matrices

have to be estimated. The estimation thus proceeds in two steps: first, the (AC-)DZ
estimator is applied to obtain an initial parameter estimates; then—after estimating
the bias bn and variance V n of moment conditions—the GMM estimator with all
applicable pairwise differences is evaluated using an estimate of the weighting matrix
An = [bnb′

n +V n]−1. On the one hand, the estimate V̂ n of V n can be directly obtained
from Theorem 5 in the “Appendix” using initial estimates of r j and α because both
the responses yit as well as estimates α̂n are continuously distributed with bounded
densities due to the stationarityAssumptionsA.2 andA.3.On theother hand, estimating
bn by b̂n requires first studying the biases of median-based moment conditions and
constructing a feasible estimate thereof in Sect. 3. Using estimates V̂ n and b̂n to

construct Ŵn = b̂n b̂
′
n + V̂ n and Ân = Ŵ

−1
n then leads to the proposed second-step

GMM estimator

α̂n = arg min
c∈(−1,1)

gn(c)′ Ân gn(c) = arg min
c∈(−1,1)

gn(c)
′[b̂n b̂

′
n + V̂ n]−1gn(c). (9)

2.4 Robust moment selection

The proposed two-step GMM estimator is based on the moment conditions (5),
and given that we consider only odd s and p, their number equals approximately
T (T − 1)/8 and grows quadratically with the number of time periods. Although the
extra moment conditions based on higher-order differences might improve precision
of estimation for larger values of |α|, their usefulness is rather limited if α is close
to zero. At the same time, a large number of moment conditions might increase esti-
mation bias due to outliers. More specifically, Aquaro and Čížek (2014) showed for
α close to 0 that the original moment condition of the DZ estimator s = q = p = 1
is least sensitive to random outliers, for instance; including higher-order moment
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conditions then just increases bias, does not improve the variance, and is thus harm-
ful.

To account for this, we propose to select the moment conditions used in estimation
by a robust analog of a moment selection criterion (e.g., see Cheng and Liao 2015, for
an overview). Since all moments are valid and no weak instruments are involved, the
information content of the moment equations and their number have to be balanced
as in Hall et al. (2007), whose approach to moment selection in the presence of nearly
redundant moment conditions can be adapted to robust estimation. They propose the
so-called relevant moment selection criterion (RMSC) that—for a given set ofmoment
conditions defined by triplets J in our case—equals

RMSC(J ) = ln(|V̂ n,J |) + κ(|J |, n).

Matrix V̂ n,J represents an estimate of the variance matrix VJ of moment conditions
(6) defined by triplets J and κ(·, ·) is a deterministic penalty term depending on
the number |J | of triplets (or moment conditions) and on the sample size n used for
estimating the elements of V n (see Theorem 5). To select relevant moment conditions,
this criterion has to be minimized:

Ĵ = arg min
J⊆Jo

RMSC(J ).

Two examples of the penalization term used by Hall et al. (2007) are the Bayesian
information criterion (BIC) with κ(c, n) = (c − K ) · ln(√n)/

√
n and the Hannan–

Quinn information criterion (HQIC) with κ(c, n) = (c − K ) · κc ln(ln(
√

n))/
√

n,
where the number of estimated parameters K = 1 in model (1) and constant
κc > 2.

As in Sect. 2.3, the proposed robust estimator (9) should minimize the MSE error
rather than just the variance of the estimates. We therefore suggest to use the relevant
robust moment selection criterion (RRMSC),

RRMSC(J ) = ln(|Ŵn,J |) + κ(|J |, n), (10)

which is based on the determinant of an estimate Ŵn of the MSE matrix Wn rather
than on the variance matrix estimate V̂ n of the moment conditions. The relevant robust
moment conditions are then obtained by minimizing

Ĵ = arg min
J⊆Jo

RRMSC(J ).

3 Robustness properties

There are many measures of robustness that are related to the bias of an estimator, or
more typically, the worst-case bias of an estimator due to an unknown form of outlier
contamination. In this section, various kinds of contamination are introduced and
some relevant measures of robustness are defined (Sect. 3.1). Using these measures,
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we characterize the robustness ofmoment conditions (5) in Sect. 3.2 and the robustness
of the GMMestimator (7) in Sect. 3.3. Next, we use these results to estimate of the bias
of the moment conditions (5) as discussed in Sect. 3.4. Finally, the whole estimation
procedure is summarized in Sect. 3.5.

3.1 Measures of robustness

Given that the analyzed data from model (1) are dependent, the effect of outliers can
depend on their structure. Therefore, we first describe the considered contamination
schemes and then the relevant measures of robustness.

More formally, let Z be the set of all possible samples Z = {zit} of size (n, T ) fol-
lowingmodel (1) and let Zε = {zε

it} be a contaminating sample of size (n, T ) following
a fixed data-generating process, where the index ε of Zε indicates the probability that
an observations in Zε is different from zero. The observed contaminated sample is
Z + Zε = {zit + zε

it}n, T
i=1,t=1. Similarly to Dhaene and Zhu (2017), we consider the

contamination by independent additive outliers following a degenerate distribution
with the point mass at ζ ,

Z1
ε,ζ = {zε

it}n, T
i=1,t=1 = {ζ · I (νε

it = 1)}n, T
i=1,t=1,

P(νε
it = 1) = ε, P(νε

it = 0) = 1 − ε, (11)

and by patches of k additive outliers,

Z2
ε,ζ = {zε

it}n, T
i=1,t=1 = {

ζ · I
(
νε

it = 1 or . . . or νε
i t−k+1 = 1

)}n,

i=1,
T
t=1, (12)

where νε
it follows the Bernoulli distribution with the parameter ε̃ such that (1− ε̃)k =

1 − ε. Additionally, a third contamination scheme Z3
ε,ζ = {zε

it}n,
i=1,

T
t=1 is considered,

where

zε
it =

{
ait−l(−1)l if the smallest index l ≥ 0 with νε

i t−l = 1 satisfies l ≤ k − 1,

0 otherwise,
(13)

where Pr (ait−l = ζ ) = 1/2 and Pr (ait−l = −ζ ) = 1/2 and where νε
it is defined as in

Z2
ε,ζ . Note that (12) and (13) are special cases of a more general type of contamination

Z4
ε,ζ = {zε

it}n,
i=1,

T
t=1, where

zε
it =

{
ait−lρ

l if the smallest index l ≥ 0 with νε
i t−l = 1 satisfies l ≤ k − 1,

0 otherwise,
(14)

and − 1 ≤ ρ ≤ 1. Note that this general type of contamination closely corresponds
to the contamination by innovation outliers for large k and ρ = α and it is therefore
important to study. As we can however conjecture from Dhaene and Zhu (2017)’s
results for s = p = 1 that the contamination scheme Z4

ε,ζ biases estimates towards ρ
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for ζ → +∞ and ρ is unknown in practice, we are not analysing thismost general case
with ρ ∈ [− 1, 1]. Instead, we concentrate on themost extreme cases of ρ = 1 and ρ =
− 1 as they can arguably bias the estimate most. Hence, the contamination schemes
Z1

ε,ζ , Z2
ε,ζ , and Z3

ε,ζ bias theDZestimates ofα towards 0, 1, and− 1, respectively—see
Sect. 3.2 and Dhaene and Zhu (2017).

Given the contamination schemes, one of the traditional measures of the global
robustness of an estimator is the breakdown point. It can be defined as the smallest
fraction of the data that can be changed in such a way that the estimator will not reflect
any information concerning the remaining (non-contaminated) observations. Aquaro
and Čížek (2014) derived the breakdown points of the estimators r̂ j , j ∈ J , for
contamination schemes Z1

ε,ζ , Z2
ε,ζ , and Z3

ε,ζ , and under some regularity conditions,
proved that the breakdown point of the GMM estimator (7) equals the breakdown
point of the DZ estimator r̂(1,1,1) if (1, 1, 1) ∈ J . While such results characterize the
global robustness of the PD-DZ estimators, they are not informative about the size of
the bias caused by outliers.

We therefore base the estimation of the bias due to contamination on the influence
function. It is a traditional measure of local robustness and can be defined as follows.
Let T (Z + Zε) denote a generic estimator of an unknown parameter θ based on a
contaminated sample Z + Zε = {zit + zε

it}n,
i=1,

T
t=1, where Z and Zε have been defined

at the beginning of Sect. 3. As the definition is asymptotic, let T (θ, ζ, ε, T ) be the
probability limit of T (Z + Zε) when T is fixed and n → ∞. Note that T (θ, ζ, ε, T )

depends on the unknown parameter θ describing the data generating process, on the
fraction ε of data contamination, on the non-zero value ζ characterizing the outliers,
and on the number of time periods T . Assume T is consistent under non-contaminated
data, that is, T (θ, ζ, 0, T ) = θ . The influence function (IF) of estimator T at data
generating process Z due to contamination Zε is defined as

IF
(
T ; θ, ζ, T

) := lim
ε→0

T (θ, ζ, ε, T ) − θ

ε
= ∂ bias(T ; θ, ζ, ε, T )

∂ε

∣∣
∣∣
ε=0

, (15)

where the equality follows by the definition of asymptotic bias of T due to the data
contamination Zε , bias(T ; θ, ζ, ε, T ) := T (θ, ζ, ε, T )− θ. (If IF does not depend on
the number T of time periods, T can be omitted from its arguments.)

Clearly, the knowledge of the influence function allows us to approximate the bias
of an estimator T at Z + Zε by ε · IF(T ; θ, ζ, T ). Although such an approximation is
often valid only for small values of ε > 0 (e.g., in the linear regression model, where
the bias can get infinite), it is relevant in a much wider range of contamination levels
ε in model (1) given that the parameter space (− 1, 1) is bounded and so is the bias
(the dependence of the bias on the contamination level ε has been studied by Dhaene
and Zhu 2017).

The disadvantage of approximating bias by ε · IF(T ; θ, ζ, T ) is that it depends on
the unknown magnitude ζ of outliers. We therefore suggest to evaluate the supremum
of the influence function, the gross error sensitivity (GES)
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684 P. Čížek, M. Aquaro

GES(T ; θ, T ) = sup
ζ

|IF(T ; θ, ζ, T )| , (16)

and approximate the worst-case bias by ε · GES(T ; θ, T ). For the PD-DZ estimator
and the corresponding moment conditions, IF and GES are derived in the following
Sects. 3.2 and 3.3, where T will equal to α̂ and r̂ j , respectively (without the sub-
script n since the IF and GES definitions depend only on the probability limits of the
estimators).

3.2 Influence function

The GMM estimator (7) is based on moment conditions depending on the data only
by means of the medians r j . We therefore derive first the influence functions of the
estimators r̂ j and then combine them to derive the influence function of the GMM
estimator. Building on Dhaene and Zhu (2017, Theorems 3.2 and 3.7), the IFs of r̂ j
in model (1) under contamination schemes Z1

ε,ζ , Z2
ε,ζ , and Z3

ε,ζ are derived in the
following Theorems 1–3. Only the point-mass distribution Gζ with the mass at ζ ∈ R
is considered. In all theorems, � denotes the cumulative distribution function of the
standard normal distribution N(0, 1).

Theorem 1 Let Assumptions A.1–A.3 hold and j ∈ Jo. Then it holds in model (1)
under the independent-additive-outlier contamination Z1

ε,ζ with point-mass distribu-
tion at ζ �= 0 that

IF(r̂ j ;α, ζ ) = −π

√
1 − αs

1 − α p
− 1

4
(1 − αs)2

×

⎡

⎢⎢
⎣�

⎛

⎜⎜
⎝

ζ(1 + αs)/2
√
2 σ 2

ε

1−α2

(
1 − αs − (1−αs )2

4 (1 − α p)
)

⎞

⎟⎟
⎠

−�

⎛

⎜⎜
⎝

−ζ(1 − αs)/2
√
2 σ 2

ε

1−α2

(
1 − αs − (1−αs )2

4 (1 − α p)
)

⎞

⎟⎟
⎠

⎤

⎥⎥
⎦

×
⎡

⎣�

⎛

⎝ ζ
√
2σ 2

ε
1−α p

1−α2

⎞

⎠ − �

⎛

⎝− ζ
√
2σ 2

ε
1−α p

1−α2

⎞

⎠

⎤

⎦ . (17)

Theorem 2 Let Assumptions A.1–A.3 hold and j ∈ Jo. Then it holds in model (1)
under the patched-additive-outlier contamination Z2

ε,ζ with point-mass distribution
at ζ �= 0 and patch length k ≥ 2 that
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IF(r̂ j ;α, ζ ) = −π

k

√
1 − αs

1 − α p
− (1 − αs)2

4

×
[
p′

C (0)

(
C(r j ; ζ, 0) − 1

2

)
+ p′

D(0)

(
D(r j ; ζ, 0) − 1

2

)]
,

(18)

where p′
C (0), p′

D(0), C(r j ; ζ, 0), and D(r j ; ζ, 0) are defined in (52), (53), (56), and
(57), respectively.

Theorem 3 Let Assumptions A.1–A.3 hold and j ∈ Jo. Then it holds in model (1)
under the patched-additive-outlier contamination Z3

ε,ζ with point-mass distribution
at ζ �= 0 and patch length k ≥ 2 that

IF(r̂ j ;α, ζ ) = −π

k

√
1 − αs

1 − α p
− (1 − αs)2

4

×
[
p′

CC
(
1

2

)
+ p′

DD
(
1

2

)
+ p′

EE
(
1

2

)
+ p′

GG
(
1

2

)
+ p′

II
(
1

2

)]

(19)

where p′
L , L ∈ {C, D, E, G, I }, are defined in Eqs. (73), (74), (75), (77), (79),

L(1/2) = L(r j ; ζ, 0) − 1/2 for L ∈ {C,D, E,G, I} and L ∈ {C, D, E, G, I }, and
L(r j ; ζ, 0) for L ∈ {C, D, E, G, I } are defined in Eqs. (82)–(86) in “Appendix A.3”.

The influence functions reported in Theorems 1–3 are complicated objects both due
to their algebraic forms and their dependence on the unknown parameter values α and
ζ . As ζ is generally unknown, we characterize the worst-case scenario by means of
the gross error sensitivity: recall that GES(r̂ j ;α) = supζ

∣∣IF(r̂ j ;α, ζ )
∣∣ by Eq. (16).

Inspection of the influence functions and their elements in Theorems 1–3 reveals
though that the largest effect can be attributed to outliers with magnitude |ζ | → +∞
(possibly with an exception of term E(1/2) in Theorem 3).

Given the results in Theorems 1–3, we thus have to compute the GES of estimators
r̂ j numerically for each j = (s, s, p) ∈ Jo and α ∈ (− 1, 1). Although this might
be relatively demanding if T is large and a dense grid for α is used, note that the
GES values are asymptotic and independent of a particular data set. They have to
be therefore evaluated just once and then used repeatedly during any application of
the proposed PD-DZ estimator. We computed the GES of r̂ j for j ∈ {(s, s, p); s =
1, 3, 5, 7 and p = 1, 3, 5, 7, 9, 11} with the variance σ 2

ε set equal to one without loss
of generality. The results corresponding to Theorems 1–3 are depicted on Figs. 1, 2 and
3. Irrespective of the contamination scheme, most GES curves display typically higher
sensitivity to outliers for |α| close to one than for values of the autoregressive parameter
around zero. One can also see that the DZ estimator corresponding to s = 1 and p = 1
is indeed biased towards 0, 1, and − 1 for the contamination schemes Z1

ε,ζ , Z2
ε,ζ , and

Z3
ε,ζ , respectively. Concerning the higher-order differences we propose to add to the

(AC-)DZ methods, Fig. 1 documents they do exhibit high sensitivity to independent
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Fig. 1 Gross-error sensitivity of r̂ j , j = (s, s, p) ∈ Jo, under contamination Z1
ε,ζ by independent additive

outliers. a s = 1, b s = 3, c s = 5, d s = 7

outliers. On the other hand, their sensitivity to the patches of outliers on Fig. 2, for
instance, decreases with an increasing s and becomes very low (relative to s = 1 and
p ≥ 1) if s is larger than the patch length k, for example, s = 7 > k = 6.

3.3 Robust properties of the GMM estimator α̂n

Given the results of the previous sections, we will now analyze the robust properties of
the general GMM estimator α̂ based on moment equations (6) for j = (s, s, p) ∈ Jo.
The results are stated first for the initial PD-DZ estimator (7) with a deterministic
weightmatrix and later for the second step of thePD-DZestimator (9). Since theweight
matrix and the bias in particular can be estimated in different ways, we consider in the
latter case a weight matrix as a general function of the parameter α and the considered
fraction ε of outliers.
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Fig. 2 Gross-error sensitivity of r̂ j , j = (s, s, p) ∈ Jo, under contamination Z2
ε,ζ by patch additive

outliers, length of the path k = 6. a s = 1, b s = 3, c s = 5, d s = 7

Theorem 4 Consider a particular additive outlier contamination Zε occurring with
probability ε, where 0 < ε < 1. Further, let J ⊆ Jo.

First, assume that An = A0 is a positive definite diagonal matrix. Then the influence
function of the GMM estimator α̂0 using moment conditions indexed by J is given by

IF(α̂0;α, ζ ) = −(d ′A0d)−1d ′A0ψ, (20)

where d is defined in Theorem 5 and ψ is the |J |× 1 vector of the influence functions
of each single r̂ j , ψ = (

IF(r̂ j ;α, ζ )
)
j∈J .

Next, assume that An = A(α̂0
n, ε) is a positive definite matrix function of the initial

estimate α̂0
n based on the deterministic weight matrix A0. If An = A(α̂0

n, ε) → A =
A(α, ε) has a finite probability limit and bounded influence function as n → ∞, then
the influence function of α̂ using moment conditions indexed by J is again given by
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Fig. 3 Gross-error sensitivity of r̂ j , j = (s, s, p) ∈ Jo, under contamination Z3
ε,ζ by patch additive

outliers, length of the path k = 6. a s = 1, b s = 3, c s = 5, d s = 7

IF(α̂;α, ζ ) = −(d ′Ad)−1d ′Aψ . (21)

Contrary to the breakdown point of Aquaro and Čížek (2014) mentioned earlier,
the bias of the proposed PD-DZ estimators is a linear combination of the biases of the
individual moment conditions depending on r̂ j . To minimize the influence of outliers
on the estimator, one could theoretically select the moment condition with the smallest
IF value,which could however result in a poor estimation if themoment condition is not
very informative of the parameter α. As suggested in Sect. 2.3, we aim to minimize
the MSE of the estimates and thus downweight the individual moment conditions
if their biases or variances are large. Obviously, this will also lead to lower effects
of biased or imprecise moment conditions on the IF in Theorem 4. To quantify the
maximum influence of generally unknown outliers on the estimate, the GES function
of the GMM estimator, that is, the supremum of IF in (21) with respect to ζ can be
used again.
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3.4 Estimating the bias

The IF and GES derived in Sect. 3.2 characterize only the derivative of the bias caused
by outlier contamination. We will refer to them in the case of contamination schemes
Z1

ε,ζ , Z2
ε,ζ , and Z3

ε,ζ by IFc
k and GESc

k , c = 1, 2, 3, respectively, where k denotes the

number of consecutive outliers (patch length) in schemes Z2
ε,ζ , and Z3

ε,ζ . Whenever
the sequence of consecutive outliers is mentioned in this section, we understand by
that a sequence of observations yit, t = t1, . . . , t2, that can all be considered outliers.

To approximate bn = Bias{gn(α)} introduced in Sect. 2.3, we therefore need
to estimate the type and amount of outliers in a given sample. Assuming that the
consecutive outliers form sequences of length k and the fraction of such outliers
in data is denoted εk , the bias can be approximated using the εk-multiple of | IF11 |
or GES11 if k = 1 and of max{| IF2k |, | IF3k |} or max{GES2k,GES3k} if k > 1 since
we cannot reliably distinguish contamination Z2

ε,ζ and Z3
ε,ζ . Given that the outlier

locations cannot be reliably computed either, GES is preferred for estimating the bias
due to contamination.

We therefore suggest to compute the bias vector bn in the following way, provided
that the estimates ε̂k of the fractions of outliers forming sequences or patches of length
k are available:

b̂n =
{

max
k=1,...,T

[
ε̂k · max

c
GESc

k(r̂ j ; α̂0
n)
]}

j∈J
, (22)

where α̂0
n is an initial estimate of the parameter α and the inner maximum is taken

over c ∈ {1} for k = 1 and c ∈ {2, 3} for k > 1. Note that if outliers (or particular
types of outliers) are not present, ε̂k = 0 and the corresponding bias term is zero.

To estimate ε̂k , an initial estimate α̂0
n is needed. Once it is obtained by the DZ or

AC-DZ estimator, the regression residuals ε̂it can be constructed, for example, by ûit =
yit − α̂0

n yit−1 and ε̂it = ûit − medt=2,...,T ûit for any i = 1, . . . , n and t = 2, . . . , T ;
the median medt=2,...,T ûit is used here as an estimate of the individual effect ηi

similarly to Bramati and Croux (2007). Having estimated residuals ε̂it , the outliers are
detected and the fractions εk of outliers in data forming the patches or sequences of k
consecutive outliers are computed.We consider as outliers all observationswith |ε̂it | >

γ σ̂ε, where σ̂ε estimates the standard deviation of εit , for example, by the median
absolute deviation σ̂ε = MAD(ε̂it)/�−1(3/4), and γ is a cut-off point. Although one
typically uses a fixed cut-off point such as γ = 2.5, it can be chosen in a data-adaptive
way by determining the fraction of residuals compatible with the normal distribution
function of errors, for instance. This approach pioneered by Gervini and Yohai (2002)
determines the cut-off point as the quantile of the empirical distribution function F+

n
of |ε̂it |/σ̂ε:

γ̂n = min
{
t : F+

n (t) ≥ 1 − dn
}

(23)

for

dn = sup
t≥2.5

max
{
0, F+

0 (t) − F+
n (t)

}
,
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690 P. Čížek, M. Aquaro

where F+
0 (t) = �(t) − �(−t), t ≥ 0, denotes the distribution function of |V |,

V ∼ N (0, 1).

3.5 Algorithm

The whole procedure of the bias estimation, and subsequently, the proposed GMM
estimation with the robust moment selection can be summarized as follows.

1. Obtain an initial estimate α̂0
n by DZ or AC-DZ estimator.

2. Compute residuals ûit = yit − α̂0
n yit−1 and ε̂it = ûit −medt=2,...,T ûit and estimate

their standard deviation σ̂ε.
3. Using the data-adaptive cut-off point (23), determine the fractions ε̂k of outliers

present in the data in the forms of outlier sequences of length k.
4. Approximate the bias bn due to outliers by b̂n using (22) and estimate the variance

matrix V n in Theorem 5 by V̂ n for all moment conditions (5) defined for indices
j ∈ Jo.

5. For all j = (s, s, p) ∈ Jo,
(a) set J = {(k, k, l): 1 ≤ k ≤ s is odd, 1 ≤ l ≤ p is odd};
(b) compute the GMM estimate α̂n,J defined in (9) using the moment conditions

selected by J and the weighting matrix defined as the inverse of the corre-

sponding submatrix of Ŵn = b̂n b̂
′
n + V̂ n ;

(c) evaluate the criterion RRMSC(J ) defined in (10).
6. Select the set of moment conditions by

Ĵ = arg min
J⊆Jo

RRMSC(J ).

7. The final estimate equals α̂n,Ĵ .

Let us note that the algorithm in step 5 does not evaluate the GMM estimates for all
subsets of indices J ⊆ Jo and the corresponding moment conditions as that would
be very time-consuming. It is therefore suggested to limit the number of Jo subsets
and one possible proposal, which always includes the DZ condition in the estimation,
is described in point 5 of the algorithm. If an extensive evaluation of many GMM
estimators has to be avoided, it is possible to opt for a simple selection between the
DZ, AC-DZ, and PD-DZ estimator, where PD-DZ uses all moment conditions defined
by Jo.

4 Monte Carlo simulation

In this section, we evaluate the finite sample performance of the proposed and existing
estimators byMonte Carlo simulations to seewhether the proposedmethod canweight
the moment conditions so that it picks and mimicks the performance of the better
estimator (e.g., out of those with fixed sets of moment conditions such as DZ and
AC-DZ) for each considered data generating process.
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Let {yit} follow model (1). We generate T + 100 observations for each i and
discard the first 100 observations to reduce the effect of the initial observations and to
achieve stationarity. We consider cases with α = 0.1, 0.5, 0.9, n = 25, 50, 100, 200,
T = 6, 12, ηi ∼ N(0, σ 2

η ), and εit ∼ N(0, 1). If data contamination is present, it
follows the contamination schemes (11) and (12) for ε = 0.20.More specifically, Z1

ε,ζ

and Z2
ε,ζ usedwith p = 3 are both based on ζ drawn for each outlier or patch of outliers

randomly from U (10, 90); U (·, ·) denotes here the uniform distribution. The extreme
values of outliers are chosen as they are supposed to have the largest influence on
the estimates—cf. Theorem 1, for instance. Note that we have also considered mixes
of two contamination schemes, for example, mixing equally independent additive
outliers and patches of outliers, but the results are not reported as they are just convex
combinations of the corresponding results obtained with only the first and only the
second contamination schemes.

All estimators are compared by means of the mean bias and the root mean squared
error (RMSE) evaluated using 1000 replications. The included estimators are chosen
as follows. The non-robust estimators are represented by theArellano–Bond (AB) two-
step GMM estimator1 (Arellano and Bond 1991), the system Blundell and Bond (BB)
estimator2 (Blundell and Bond 1998), and the X-differencing (XD) estimator (Han
et al. 2014). The globally robust estimators are represented by the original DZ andAC-
DZ estimators and by the proposed PD-DZ estimator. For the latter, we consider two
different moment selection criteria RRMSC: BIC and HQIC with κc = 2.1 introduced
in Sect. 2.4.

Considering the clean data first (see Table 1), most estimators exhibit small RMSEs
except of the AB estimator that is usually strongly negatively biased if α is close
to 1. The BB estimator performs well under these circumstances as expected, but
is outperformed by the XD estimation. Regarding the robust estimators, the results
are closer to each other for T = 6 than for T = 12 since there are only three
possible moment conditions (5) if T = 6. The DZ estimator based on the first moment
condition only is lacking behind AC-DZ and PD-DZ when α is not close to zero
and additional higher-order moment conditions thus improve estimation. The results
for AC-DZ and PD-DZ are rather similar in most situations, with PD-DZ becoming
relatively more precise as n increases due to less noisy moment selection. Overall,
adding moment conditions improves performance of AC-DZ and PD-DZ relative to
DZ; the performance of PD-DZ is worse than that of the AB and BB estimators for
α = 0.1, matches them for α = 0.5, and outperforms them for α = 0.9.

Next, the two different data contaminations schemes are considered: independent
additive outliers and the patches of additive outliers. Considering the independent
additive outliers first (see Table 2), which generally bias estimates toward zero and
lead thus to larger biases especially for values of α close to 1, AB, BB, and XD are

1 The (optimal) inverse weight matrix, which is used here, is
∑

i Z
AB′
i HZABi , where ZABi is the matrix

of instruments per individual and H is a (T − 1) × (T − 1) tridiagonal matrix with 2 in the main diagonal,
− 1 in the first two sub-diagonals, and zeros elsewhere (see Arellano and Bond 1991, p. 279).
2 The inverse weight matrix is

∑
i Z

BB′
i GZBBi , where ZBBi is the matrix of instruments per individual and

G is a partitioned matrix, G = diag(H, I), where H is as in Arellano–Bond and I is the identity matrix
[see Kiviet 2007, Eq. (38)].
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Table 1 RMSE for all estimators in model with εit ∼ N(0, 1) and ηi ∼ N(0, 1) under different sample
sizes

RMSE RRMSC T = 6 T = 12

α n 25 50 100 200 25 50 100 200

0.1 XD 0.120 0.083 0.060 0.042 0.068 0.048 0.034 0.023

AB 0.160 0.117 0.082 0.057 0.098 0.065 0.045 0.030

BB 0.143 0.105 0.074 0.054 0.101 0.069 0.048 0.032

DZ 0.255 0.188 0.125 0.094 0.164 0.118 0.081 0.059

AC-DZ 0.247 0.177 0.125 0.090 0.145 0.106 0.076 0.051

PD-DZ BIC 0.258 0.183 0.125 0.090 0.155 0.108 0.071 0.050

PD-DZ HQIC 0.251 0.179 0.124 0.089 0.152 0.100 0.069 0.050

0.5 XD 0.135 0.093 0.066 0.047 0.065 0.047 0.034 0.023

AB 0.256 0.193 0.127 0.094 0.131 0.089 0.059 0.041

BB 0.163 0.127 0.095 0.069 0.119 0.083 0.058 0.042

DZ 0.286 0.207 0.145 0.099 0.186 0.128 0.091 0.063

AC-DZ 0.226 0.167 0.115 0.080 0.120 0.086 0.061 0.044

PD-DZ BIC 0.238 0.176 0.121 0.083 0.130 0.091 0.064 0.044

PD-DZ HQIC 0.240 0.176 0.122 0.081 0.123 0.087 0.061 0.044

0.9 XD 0.139 0.097 0.070 0.050 0.061 0.042 0.030 0.021

AB 0.693 0.612 0.523 0.431 0.322 0.275 0.230 0.162

BB 0.096 0.086 0.083 0.068 0.058 0.056 0.051 0.044

DZ 0.292 0.219 0.153 0.106 0.197 0.139 0.095 0.067

AC-DZ 0.172 0.127 0.096 0.074 0.087 0.064 0.047 0.033

PD-DZ BIC 0.184 0.132 0.098 0.078 0.089 0.065 0.050 0.035

PD-DZ HQIC 0.195 0.136 0.101 0.074 0.090 0.067 0.050 0.033

strongly biased in all cases as expected. In the case of robust estimators, the negative
biases of DZ, AC-DZ, and PD-DZ are rather small, although increasing with α. As
AC-DZ outperforms DZ in this case, PD-DZ should and does exhibit performance
more similar to AC-DZ than to DZ; PD-DZ even outperforms AC-DZ for α = 0.9
or the largest sample size. This confirms the functionality of the weighting as the
inclusion of higher-order differences with s > 1 in PD-DZ could lead to large biases
due to independent additive outliers especially for α = 0.9, see Fig. 1.

On the other hand, the higher-order differences with s > 1 should provide benefits
when the data are contaminated by the patches of additive outliers, see Table 3. This
type of contamination leads again to substantially biased non-robust estimates by XD,
AB, and BB, In the case of the robust estimators, the patches of outliers tend to bias
them toward 1 and have thus largest effect for α close to 0. Hence, the biases of and
more generally differences among the robust estimators are smallest for α = 0.9.
For smaller values of α, DZ outperforms AC-DZ, in particular for α = 0.1, as the
patches of outliers have a larger impact on the higher-order differences of AC-DZ—
see Fig. 2a. Thus, the proposed PD-DZ should and does perform similarly to DZ
and actually outperforms it in most situations most cases with α ≤ 0.5, which again
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confirms that the proposed weighting scheme is able to choose moment conditions
that are less affected by the outliers. Note that the largest difference between DZ and
PD-DZ is observed for T = 12 andα = 0.5 as the higher-order differences can be used
only if the number T of time periods is sufficiently large and they have a reasonable
precision only if α is not close to zero.

5 Concluding remarks

In this paper, we propose an extension of the median-based robust estimator for
dynamic panel data model of Dhaene and Zhu (2017) by means of multiple pair-
wise differences. The newly proposed GMM estimation procedure that uses weights
accounting both for the variance and outlier-related bias of the moment conditions is
combined with the moment selection method. As a result, the estimator performs well
in non-contaminated data as well as in data containing both independent outliers and
patches of outliers.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

A Appendix

The outlier contamination schemes Z1
ε,ζ , Z2

ε,ζ , and Z3
ε,ζ are generally described by

the contamination fraction ε and the magnitude of outliers ζ (recall that only the
point-mass distribution Gζ is considered here). Therefore, we will denote the non-
contaminated sample observations following model (1) by yit and the contaminated
sample observations by yζ,ε

it . By definition of Z1
ε,ζ , Z2

ε,ζ , and Z3
ε,ζ , the difference

wit = yζ,ε
it − yit can only equal −ζ , 0, or ζ .

In order to prove the theorems concerning the influence function of α̂, it is useful
to derive first the asymptotic bias of r̂ j as an estimator of r j . Similarly to Sect. 3.1, it
is defined as

bias
(
r̂ j ; r j , ζ, ε

) := plimn→∞ r̂ j (r j , ζ, ε) − r j , (24)

where plim denotes the probability limit operator. Let b := b(r j , ζ, ε) be a short-hand
notation for (24). Then, b solves the following equation:

Pr

(
�s yζ,ε

it

�p yζ,ε
i t−s

− r j ≤ b

)

= Pr

(
�s yζ,ε

it − r j�
p yζ,ε

i t−s

�p yζ,ε
i t−s

≤ b

)

= 1

2
. (25)

Since r j is considered only for j = (s, s, p) ∈ Jo, where both s and p are odd,
r j = −(1 − αs)/2. This mapping of α to r j = −(1 − αs)/2 has the same important
properties for s = 1 and any odd s > 1: it maps interval (− 1, 0) to (− 1,− 1/2) and
interval (0, 1) to (− 1/2, 0), it is continuous, and it is strictly increasing on (− 1, 1).
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One can thus follow the proofs in Dhaene and Zhu (2017, Theorems 3.5 and 3.8) and
apply them not only to the case of s = p = 1, but any odd s and p with only two
adjustments: (i) the variables�s yit −r j�

p yit−s and�p yit−s have to be standardized
(Dhaene and Zhu 2017, equation (A.3)) and their variances generally depend on the
values of s and p and (ii) in the case of patches of outliers, the probability that a patch
contaminates the ratio �s yit/�

p yit−s needs to be generalized.
As for (i), note that, by Eq. (2), the variables �s yit − r j�

p yit−s and �p yit−s are
uncorrelated, and by Assumption A.3, they are independent and normally distributed
around zero. Additionally, the stationarity Assumptions A.1 and A.2 imply that, after
substituting from the model equation, cov(yit, η) = α cov(yit−1, ηi ) + var(ηi ),

var(yit) = α2 var(yit−1) + var(ηi ) + 2α cov(yit−1, ηi ) + var(εit)

= α2 var(yit−1) + cov(yit, η) + α cov(yit−1, ηi ) + var(εit),

and subsequently, (1 − α2) var(yit) = (1 + α) cov(yit, η) + var(εit) and var(yit) −
cov(yit, η)/(1−α) = var(εit)/(1−α2). From this result and Aquaro and Čížek (2014,
Equation (24)), we can thus conclude that

(
�s yit − r j�

p yit−s

�p yit−s

)
∼ N

[
0,

2σ 2
ε

1 − α2

(
1 − αs − r2j (1 − α p) 0

0 1 − α p

)]
(26)

(the diagonal structure of the covariance matrix can be also seen from Equation 2.2
that implies cov(�s yit,�

p yit−s) = r j var(�p yit−s)).
Based on these observations, Aquaro and Čížek (2014, Theorem 1) derived the

asymptotic distribution of the PD-DZ estimator defined by Eq. (7), which is presented
here for the case of the triplet sets J ⊆ Jo.

Theorem 5 Suppose that Assumptions A.1–A.3 hold and that An → A > 0 in
probability as n → ∞. Let (1, 1, 1) ∈ J ⊆ Jo and d = ∂ g(α)/∂α, where α

represents the true parameter value.
Then for a fixed T and n → ∞, α̂n is consistent and asymptotically normal,

√
n(α̂n − α) → N

(
0, (d ′Ad)−1d ′AV Ad(d ′Ad)−1

)
, (27)

where d = ∂ g(α)/∂α = {−sαs−1} j=(s,s,p)∈J and V is has a typical element with
indices j = (s, s, p) ∈ J , j ′ = (s′, s′, p′) ∈ J defined by

π2
√{

1 − αs − 1
4 (1 − αs)2(1 − α p)2

} {
1 − αs′ − 1

4 (1 − αs′
)2(1 − α p′

)2
}

√[T − s − p][T − s′ − p′]

×E

⎡

⎣

⎛

⎝
T∑

t=s+p+1

sgn
(
�s yit − r j�

p yit−s
)
sgn(�p yit−s)

⎞

⎠

⎛

⎝
T∑

t=s′+p′+1

sgn(�s′
yit − r j ′�

p′
yit−s′) sgn(�p′

yit−s′)

⎞

⎠

⎤

⎦ .
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A.1 Independent additive outlier contamination Z1
ε,ζ

Under independent additive outlier contamination Z1
ε,ζ , Eq. (25) can be written as

Pr

(
�s yζ,ε

it − r j�
p yζ,ε

i t−s

�p yζ,ε
i t−s

≤ b

)

= Pr

(
uit j + �swit − r j�

pwi t−s

�p yit−s + �pwi t−s
≤ b

)

= Pr [ f (wit) ≤ b] = 1

2
, (28)

where residual uit j = �s yit − r j�
p yit−s , wit ∈ {0, ζ }, wit = (wit, wi t−s, wi t−s−p)

′
is a random vector, and f (wit) is a random scalar. Let �wit be the set of the eight
possible outcomes of wit , that is,

�wit :=
⎧
⎨

⎩

⎛

⎝
0
0
0

⎞

⎠ ,

⎛

⎝
0
0
ζ

⎞

⎠ , · · · ,

⎛

⎝
ζ

ζ

ζ

⎞

⎠

⎫
⎬

⎭
, (29)

where the number of elements is #�wit = 8. To simplify the notation, let us refer
to (29) as �it , and denote each of its element as ωi t j , j = 1, . . . , 8. Then it holds

Pr [ f (wit) ≤ b] = Pr

⎡

⎣( f (wit) ≤ b) ∩
⎛

⎝
8⋃

j=1

wit = ωi t j

⎞

⎠

⎤

⎦

=
8∑

j=1

Pr
[
( f (wit) ≤ b) ∩ (

wit = ωi t j
)]

=
8∑

j=1

Pr
[

f (wit) ≤ b
∣∣wit = ωi t j

]
Pr
(
wit = ωi t j

)

=
8∑

j=1

Pr
[

f (ωi t j ) ≤ b
]
Pr
(
wit = ωi t j

)
. (30)

Note that Pr
(
wit = ωi t j

) = Pr
(
wit = ωi t j ′

)
for some j and j ′ because the data con-

tamination Z1
ε,ζ is characterized by outliers occurring independently from each other.

For instance, Pr[(ζ, 0, 0)′] = Pr[(0, ζ, 0)′] = Pr[(0, 0, ζ )′] = (1 − ε)2ε. Moreover,
f [(0, 0, 0)′] = f [(ζ, ζ, ζ )′]. Therefore, Eq. (28) can be decomposed as

Pr [ f (wit) ≤ b] =
[
(1 − ε)3 + ε3

]
A + (1 − ε)2εB + (1 − ε)ε2C = 1

2
, (31)
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where A, B, and C are defined for r j , ζ , and b as follows:

A(r j , b) := Pr

(
uit j

�p yit−s
≤ b

)
,

B(r j , ζ, b) := Pr

(
uit j + ζ

�p yit−s
≤ b

)
+ Pr

(
uit j − ζ(1 + r j )

�p yit−s + ζ
≤ b

)

+ Pr

(
uit j + ζr j

�p yit−s − ζ
≤ b

)
,

C(r j , ζ, b) := Pr

(
uit j − ζr j

�p yit−s + ζ
≤ b

)
+ Pr

(
uit j + ζ(1 + r j )

�p yit−s − ζ
≤ b

)

+ Pr

(
uit j − ζ

�p yit−s
≤ b

)
.

(32)

These probabilities are all of the form

L(k, l, b) = Pr

(
uit j + k

�p yit−s − l
≤ b

)
(33)

for given k, l, and b, and they can be conveniently standardized by using (26) as
follows:

L(k, l, b) = Pr

(
X + k′

Y − l ′
≤ b′

)
, (34)

where X and Y are independent N(0, 1) variables and

k′ := k

σu
, l ′ := l

σ�p
, b′ := σ ∗b, (35)

and

σ ∗ := σ�p

σu
=
√

1 − α p

1 − αs − (1 − αs)2(1 − α p)/4
, (36)

where σu := √
var(uit j ) and σ�p := √

var(�p yit−s) can be found in (26). Finally,
note that L(k, l, b) = L(−k,−l, b), hence B = C and (28) becomes

A + ε(1 − ε) (B − 3A) = 1

2
. (37)

Proof of Theorem 1 As in Dhaene and Zhu (2017, proof of Theorem 3.2), it follows
from the definition of influence function that

IF(r̂ j ; r j , ζ ) := ∂ bias(r̂ j ; r j , ζ )

∂ε

∣∣∣
∣
ε=0

= 3A(r j , 0) − B(r j , ζ, 0)

A′
b(r j , 0)

, (38)
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where the equality follows from the implicit function theorem applied to (37) and
where

A′
b(r j , 0) := ∂ A(r j , b)

∂b

∣
∣∣∣
ε=0

. (39)

As in Dhaene and Zhu (2017, Equation (A.4)),

A(r j , b) = Pr

(
X

Y
≤ σ ∗b

)
= 1

2
+ 1

π
arctan σ ∗b, (40)

where σ ∗ is defined in (36) and X, Y ∼ N(0, 1). Hence, A(r j , 0) = 1/2 and

A′
b(r j , 0) = 1

πσ ∗ = 1

π

√
1 − α p

1 − αs − r2j (1 − α p)
(41)

(recall that r j = (1−αs)/2). Next, Dhaene and Zhu (2017, Lemma A.1) implies that,
for X, Z ∼ N(0, 1) and constants c, c′, c′′, P{(X + c)/Z ≤ 0} = 1/2 and P{(X +
c′)/(Z −c) ≤ 0}+P{(X +c′′)/(Z −c) ≤ 0} = 1+[�(c′)−�(−c′′)][�(c)−�(−c)].
Hence, the definition of B(r j , ζ, b) and the standardization (34) imply

B(r j , ζ, 0) = 3

2
+
[
�

(
ζ(1 + r j )

σu

)
− �

(
−ζr j

σu

)]
×
[
�

(
ζ

σ�p

)
− �

(
− ζ

σ�p

)]
.

(42)

Substituting for σu := √
var(uit j ) and σ�p := √

var(�p yit−s) from (26) and r j =
−(1 − αs)/2 into (42) and for terms A(r j , 0), B(r j , ζ, 0), and A′

b(r j , 0) in (38)
completes the proof. ��

A.2 Patch additive outlier contamination Z2
ε,ζ

As in “Appendix A.1”, it is useful to derive first the asymptotic bias of r̂ j under the
outlier contamination Z2

ε,ζ as defined in (12). This is given by b := b(r j , ζ, ε, k)

solving the equation

Pr

(
�s yζ,ε

it − r j�
p yζ,ε

i t−s

�p yζ,ε
i t−s

≤ b

)

= Pr

(
uit j + �swit − r j�

pwi t−s

�p yit−s + �pwi t−s
≤ b

)

= pA A + pB B + pC C + pD D = 1

2
, (43)

where the notation is defined below.Note that the decomposition in the second equality
follows along the same lines as in “Appendix A.1”, in particular Eq. (30). In this case,
the only difference is that outliers no longer occur independently but in patches. The
number of elements of �it increases to #�it = 13 as now, if we observe multiple
outliers, we shall distinguish the event of the outliers belonging to the same patch
from the event of these outliers belonging to different patches. For instance, (0, ζ, ζ )′
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700 P. Čížek, M. Aquaro

may be that result of one patch only, (0, ζ1, ζ1)′, or of two patches, (0, ζ2, ζ1)′, where
the subscript of ζ indicates the patch. Recalling that (1 − ε̃)k = 1 − ε,

pB := Pr

⎡

⎣

⎛

⎝
ζ

0
0

⎞

⎠ ∪
⎛

⎝
0
ζ

ζ

⎞

⎠

⎤

⎦ = Pr

⎛

⎝
ζ1
0
0

⎞

⎠ + Pr

⎛

⎝
0
ζ1
ζ1

⎞

⎠ + Pr

⎛

⎝
0
ζ2
ζ1

⎞

⎠

= (1 − ε̃)k+min{p,k} ·
(
1 − (1 − ε̃)min{s,k})

+
(
1 − (1 − ε̃)max{0,s+k−max{s+p,k}}) · (1 − ε̃)k

+
(
1 − (1 − ε̃)(p+k−max{p,k})) ·

(
1 − (1 − ε̃)max{0,s+min{p,k}−max{s,k}})

· (1 − ε̃)k , (44)

pC := Pr

⎡

⎣

⎛

⎝
0
0
ζ

⎞

⎠ ∪
⎛

⎝
ζ

ζ

0

⎞

⎠

⎤

⎦ = Pr

⎛

⎝
0
0
ζ1

⎞

⎠ + Pr

⎛

⎝
ζ1
ζ1
0

⎞

⎠ + Pr

⎛

⎝
ζ2
ζ1
0

⎞

⎠

=
(
1 − (1 − ε̃)(p+k−max{p,k})) · (1 − ε̃)k+min{s,k}

+ (1 − ε̃)k ·
(
1 − (1 − ε̃)max{0,min{s+p,k}−s})

+ (1 − ε̃)k ·
(
1 − (1 − ε̃)max{0,s+min{p,k}−max{s,k}}) ·

(
1 − (1 − ε̃)min{s,k}) ,

(45)

pD := Pr

⎡

⎣

⎛

⎝
ζ

0
ζ

⎞

⎠ ∪
⎛

⎝
0
ζ

0

⎞

⎠

⎤

⎦ = Pr

⎛

⎝
ζ2
0
ζ1

⎞

⎠ + Pr

⎛

⎝
0
ζ1
0

⎞

⎠

=
(
1 − (1 − ε̃)(p+k−max{p,k})) · (1 − ε̃)k ·

(
1 − (1 − ε̃)min{s,k})

+ (1 − ε̃)2k ·
(
1 − (1 − ε̃)max{0,s+min{p,k}−max{s,k}}) ,

(46)

and pA = 1− pB − pC − pD . Next, the terms A, B, C , D are defined for r j , ζ , and b
as follows:

A(r j , b) := Pr

(
uit j

�p yit−s
≤ b

)
,

B(r j , ζ, b) := Pr

(
uit j + ζ

�p yit−s
≤ b

)
,

C(r j , ζ, b) := Pr

(
uit j + ζr j

�p yit−s − ζ
≤ b

)
,

D(r j , ζ, b) := Pr

(
uit j + ζ(1 + r j )

�p yit−s − ζ
≤ b

)
,

(47)

where the symmetry L(k, l, b) = L(−k,−l, b) has been used, recall Eq. (33).
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Proof of Theorem 2 By the definition of influence function in (15),

IF(r̂ j ; r j , ζ ) = ∂b(r j , ζ, ε, k)

∂ε

∣∣∣∣
ε=0

, (48)

where b denotes the bias of r̂ j . Given that (1 − ε̃)k = 1 − ε, it holds

∂b(r j , ζ, ε, k)

∂ε
= ∂b(r j , ζ, ε, k)

∂ε̃

∂ε̃

∂ε
= ∂b(r j , ζ, ε, k)

∂ε̃

1

k(1 − ε̃)k−1 . (49)

The derivative in (49) can obtained by applying the implicit function theorem to (43),

∂b(r j , ζ, ε, k)

∂ε̃

∣∣
∣∣
ε=0

= −
∑

j∈{B,C,D} p′
j (0) j (r j , ζ, 0) + p′

A(0)A(r j , 0)

A′
b(r j , 0)

, (50)

where A′
b(r j , 0) is the same as in (39) and where p′

j , j ∈ {B, C, D}, denote the
derivatives of p j in Eqs. (44)–(46) with respect to ε̃, that is,

p′
B(0) := ∂pB(ε̃; s, p, k)

∂ε̃

∣∣∣∣
ε=0

= min{s, k} + max
{
0, s + k − max{s + p, k}

}
, (51)

p′
C (0) = (p + k − max{p, k}) + max

{
0,min{s + p, k} − s

}
, (52)

p′
D(0) = max

{
0, s + min{p, k} − max{s, k}

}
, (53)

and
p′

A(0) = − [
p′

B(0) + p′
C (0) + p′

D(0)
]
. (54)

As in “Appendix A.1”, A(r j ; 0) = 1/2. Further, it follows from Dhaene and Zhu
(2017, LemmaA.1) that, for X, Z ∼ N(0, 1) and constants c, c′, P{(X +c′)/(Z −c) ≤
0} = �(−c′)�(−c) + �(c′)�(c). Hence, the definition (47) and the standardization
(34)–(36) imply

B(r j ; ζ, 0) = 1

2
, (55)

C(r j ; ζ, 0) = �

(
−r jζ

σu

)
�

(
− ζ

σ�p

)
+ �

(
r jζ

σu

)
�

(
ζ

σ�p

)
, (56)

D(r j ; ζ, 0) = �

(
− (1 + r j )ζ

σu

)
�

(
− ζ

σ�p

)
+ �

(
(1 + r j )ζ

σu

)
�

(
ζ

σ�p

)
, (57)

where σu := √
var(uit j ) and σ�p := √

var(�p yit−s) are given in (26) and r j =
−(1 − αs)/2. Substituting (49)–(57) in (48) completes the proof. ��
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Table 4 Configurations of patch outliers and their probabilities

(|ζ |1, . . . , 0, . . . , 0)′ (1 − ε̃)k+min{p,k} · (1 − (1 − ε̃)min{s,k})
(0, . . . , 0, . . . |ζ |1)′ (1 − (1 − ε̃)(p+k−max{p,k})) · (1 − ε̃)k+min{s,k}

(0, . . . , |ζ |1, . . . , 0)′ (1 − ε̃)2k · (1 − (1 − ε̃)max{0,s+min{p,k}−max{s,k}})
(|ζ |1, . . . , |ζ |1, . . . , 0)′ (1 − ε̃)k · (1 − (1 − ε̃)max{0,min{s+p,k}−s})
(|ζ |2, . . . , |ζ |1, . . . , 0)′ (1− ε̃)k · (1− (1− ε̃)max{0,s+min{p,k}−max{s,k}}) · (1− (1− ε̃)min{s,k})
(0, . . . , |ζ |1, . . . , |ζ |1)′ (1 − (1 − ε̃)max{0,s+k−max{s+p,k}}) · (1 − ε̃)k

(0, . . . , |ζ |2, . . . , |ζ |1)′ (1 − (1 − ε̃)(p+k−max{p,k}))
· (1 − (1 − ε̃)max{0,s+min{p,k}−max{s,k}}) · (1 − ε̃)k

(|ζ |2, . . . , 0, . . . , |ζ |1)′ (1 − (1 − ε̃)(p+k−max{p,k})) · (1 − ε̃)k · (1 − (1 − ε̃)min{s,k})
(|ζ |1, . . . , |ζ |1, . . . , |ζ |1)′ (1 − (1 − ε̃)max{0,k−s−p})
(|ζ |2, . . . , |ζ |1, . . . , |ζ |1)′ (1 − (1 − ε̃)max{0,k−p}) · (1 − (1 − ε̃)min{s,k})
(|ζ |2, . . . , |ζ |2, . . . , |ζ |1)′ (1 − (1 − ε̃)k ) · (1 − (1 − ε̃)max{0,min{s+p,k}−s})
(|ζ |3, . . . , |ζ |2, . . . , |ζ |1)′ (1 − (1 − ε̃)k ) · (1 − (1 − ε̃)max{0,s+min{p,k}−max{s,k}})

· (1 − (1 − ε̃)min{s,k})

A.3 Patch additive outlier contamination Z3
ε,ζ

This case is a generalization of the Z2
ε,ζ contamination. The proof structure is very sim-

ilar to the one in “Appendices A.1 and A.2”, although the algebra is a bit more lengthy.
As before, it is useful to derive first the bias of r̂ j under the outlier contamination Z3

ε,ζ

as defined in (13). This is given by b := b(r j , ζ, ε, k) solving the equation

Pr

(
�s yζ,ε

it − r j�
p yζ,ε

i t−s

�p yζ,ε
i t−s

≤ b

)

= Pr

(
uit j + �swit − r j�

pwi t−s

�p yit−s + �pwi t−s
≤ b

)

= pA A + pB B + pC C + pD D + pE E + pF F

+ pG G + pH H + pI I + pJ J = 1

2
, (58)

where the notation is explained below. Note that the set �it in (29) is different than
it was for previous types of contaminations as now outliers can be either negative or
positive multiple of ζ . Also recall that (1 − ε̃)k = 1 − ε.

By using the results in Table 4, we have that

pB := Pr

⎡

⎣

⎛

⎝
ζ

0
0

⎞

⎠ ∪
⎛

⎝
−ζ

0
0

⎞

⎠ ∪
⎛

⎝
0
ζ

ζ

⎞

⎠ ∪
⎛

⎝
0

−ζ

−ζ

⎞

⎠

⎤

⎦

= 1

2
Pr

⎛

⎝
ζ1
0
0

⎞

⎠ + 1

2
Pr

⎛

⎝
−ζ1
0
0

⎞

⎠ + 1

4
Pr

⎛

⎝
0
ζ2
ζ1

⎞

⎠ + 1

4
Pr

⎛

⎝
0

−ζ2
−ζ1

⎞

⎠

123



Robust estimation and moment selection in dynamic… 703

= Pr

⎛

⎝
|ζ |1
0
0

⎞

⎠ + 1

2
Pr

⎛

⎝
0

|ζ |2
|ζ |1

⎞

⎠ , (59)

pC := Pr

⎡

⎣

⎛

⎝
0
0
ζ

⎞

⎠ ∪
⎛

⎝
0
0

−ζ

⎞

⎠ ∪
⎛

⎝
ζ

ζ

0

⎞

⎠ ∪
⎛

⎝
−ζ

−ζ

0

⎞

⎠

⎤

⎦

= Pr

⎛

⎝
0
0
ζ1

⎞

⎠ + Pr

⎛

⎝
0
0

−ζ1

⎞

⎠ + Pr

⎛

⎝
ζ2
ζ1
0

⎞

⎠ + Pr

⎛

⎝
−ζ2
−ζ1
0

⎞

⎠

= Pr

⎛

⎝
0
0

|ζ |1

⎞

⎠ + 1

2
Pr

⎛

⎝
|ζ |2
|ζ |1
0

⎞

⎠ , (60)

pD := Pr

⎡

⎣

⎛

⎝
ζ

0
ζ

⎞

⎠ ∪
⎛

⎝
−ζ

0
−ζ

⎞

⎠ ∪
⎛

⎝
0
ζ

0

⎞

⎠ ∪
⎛

⎝
0

−ζ

0

⎞

⎠

⎤

⎦

= Pr

⎛

⎝
ζ2
0
ζ1

⎞

⎠ + Pr

⎛

⎝
−ζ2
0

−ζ1

⎞

⎠ + Pr

⎛

⎝
0
ζ1
0

⎞

⎠ + Pr

⎛

⎝
0

−ζ1
0

⎞

⎠

= 1

2
Pr

⎛

⎝
|ζ |2
0

|ζ |1

⎞

⎠ + Pr

⎛

⎝
0

|ζ |1
0

⎞

⎠ , (61)

pE := Pr

⎡

⎣

⎛

⎝
0

−ζ

ζ

⎞

⎠ ∪
⎛

⎝
0
ζ

−ζ

⎞

⎠

⎤

⎦

= Pr

⎛

⎝
0

−ζ1
ζ1

⎞

⎠ + Pr

⎛

⎝
0

−ζ2
ζ1

⎞

⎠ + Pr

⎛

⎝
0
ζ1

−ζ1

⎞

⎠ + Pr

⎛

⎝
0
ζ2

−ζ1

⎞

⎠

= Pr

⎛

⎝
0

|ζ |1
|ζ |1

⎞

⎠ + 1

2
Pr

⎛

⎝
0

|ζ |2
|ζ |1

⎞

⎠ , (62)

pF := Pr

⎡

⎣

⎛

⎝
−ζ

0
ζ

⎞

⎠ ∪
⎛

⎝
ζ

0
−ζ

⎞

⎠

⎤

⎦ = Pr

⎛

⎝
−ζ2
0
ζ1

⎞

⎠ + Pr

⎛

⎝
ζ2
0

−ζ1

⎞

⎠

= 1

2
Pr

⎛

⎝
|ζ |2
0

|ζ |1

⎞

⎠ , (63)

pG := Pr

⎡

⎣

⎛

⎝
ζ

−ζ

0

⎞

⎠ ∪
⎛

⎝
−ζ

ζ

0

⎞

⎠

⎤

⎦
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704 P. Čížek, M. Aquaro

= Pr

⎛

⎝
ζ1

−ζ1
0

⎞

⎠ + Pr

⎛

⎝
ζ2

−ζ1
0

⎞

⎠ + Pr

⎛

⎝
−ζ1
ζ1
0

⎞

⎠ + Pr

⎛

⎝
−ζ2
ζ1
0

⎞

⎠

= Pr

⎛

⎝
|ζ |1
|ζ |1
0

⎞

⎠ + 1

2
Pr

⎛

⎝
|ζ |2
|ζ |1
0

⎞

⎠ , (64)

pH := Pr

⎡

⎣

⎛

⎝
−ζ

−ζ

ζ

⎞

⎠ ∪
⎛

⎝
ζ

ζ

−ζ

⎞

⎠

⎤

⎦

= Pr

⎛

⎝
−ζ2
−ζ1
ζ1

⎞

⎠ + Pr

⎛

⎝
−ζ3
−ζ2
ζ1

⎞

⎠ + Pr

⎛

⎝
ζ2
ζ1

−ζ1

⎞

⎠ + Pr

⎛

⎝
ζ3
ζ2

−ζ1

⎞

⎠

= 1

2
Pr

⎛

⎝
|ζ |2
|ζ |1
|ζ |1

⎞

⎠ + 1

4
Pr

⎛

⎝
|ζ |3
|ζ |2
|ζ |1

⎞

⎠ , (65)

pI := Pr

⎡

⎣

⎛

⎝
ζ

−ζ

ζ

⎞

⎠ ∪
⎛

⎝
−ζ

ζ

−ζ

⎞

⎠

⎤

⎦

= Pr

⎛

⎝
ζ1

−ζ1
ζ1

⎞

⎠ + Pr

⎛

⎝
ζ2

−ζ1
ζ1

⎞

⎠ + Pr

⎛

⎝
ζ2

−ζ2
ζ1

⎞

⎠ + Pr

⎛

⎝
ζ3

−ζ2
ζ1

⎞

⎠

+Pr

⎛

⎝
−ζ1
ζ1

−ζ1

⎞

⎠ + Pr

⎛

⎝
−ζ2
ζ1

−ζ1

⎞

⎠ + Pr

⎛

⎝
−ζ2
ζ2

−ζ1

⎞

⎠ + Pr

⎛

⎝
−ζ3
ζ2

−ζ1

⎞

⎠

= Pr

⎛

⎝
|ζ |1
|ζ |1
|ζ |1

⎞

⎠ + 1

2
Pr

⎛

⎝
|ζ |2
|ζ |1
|ζ |1

⎞

⎠ + 1

2
Pr

⎛

⎝
|ζ |2
|ζ |2
|ζ |1

⎞

⎠ + 1

4
Pr

⎛

⎝
|ζ |3
|ζ |2
|ζ |1

⎞

⎠ , (66)

pJ := Pr

⎡

⎣

⎛

⎝
ζ

−ζ

−ζ

⎞

⎠ ∪
⎛

⎝
−ζ

ζ

ζ

⎞

⎠

⎤

⎦

= Pr

⎛

⎝
ζ2

−ζ2
−ζ1

⎞

⎠ + Pr

⎛

⎝
ζ3

−ζ2
−ζ1

⎞

⎠ + Pr

⎛

⎝
−ζ2
ζ2
ζ1

⎞

⎠ + Pr

⎛

⎝
−ζ3
ζ2
ζ1

⎞

⎠

= 1

2
Pr

⎛

⎝
|ζ |2
|ζ |2
|ζ |1

⎞

⎠ + 1

4
Pr

⎛

⎝
|ζ |3
|ζ |2
|ζ |1

⎞

⎠ , (67)

and
pA = 1 −

∑

j∈I\{A}
p j , (68)
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where I := {A, B, C, D, E, F, G, H, I, J }. Moreover,

A(r j , b) := Pr

(
uit j

�p yit−s
≤ b

)
,

B(r j , ζ, b) := Pr

(
uit j + ζ

�p yit−s
≤ b

)
,

C(r j , ζ, b) := Pr

(
uit j + ζr j

�p yit−s − ζ
≤ b

)
,

D(r j , ζ, b) := Pr

(
uit j + ζ(1 + r j )

�p yit−s − ζ
≤ b

)
,

E(r j , ζ, b) := Pr

(
uit j + ζ(1 + 2r j )

�p yit−s − 2ζ
≤ b

)
,

F(r j , ζ, b) := Pr

(
uit j + ζ(r j − 1)

�p yit−s − ζ
≤ b

)
,

G(r j , ζ, b) := Pr

(
uit j + ζ(2 + r j )

�p yit−s − ζ
≤ b

)
,

H(r j , ζ, b) := Pr

(
uit j + 2ζr j

�p yit−s − 2ζ
≤ b

)
,

I (r j , ζ, b) := Pr

(
uit j + 2ζ(1 + r j )

�p yit−s − 2ζ
≤ b

)
,

J (r j , ζ, b) := Pr

(
uit j + 2ζ

�p yit−s
≤ b

)
,

(69)

where the symmetry L(k, l, b) = L(−k,−l, b) has been used, recall Eq. (33).

Proof of Theorem 3 Denote

p′
j (0) := ∂p j (ε̃; s, p, k)

∂ε̃

∣∣∣∣
ε̃=0

, j ∈ I := {A, B, C, D, E, F, G, H, I, J },

where p j (·), j ∈ I, are defined in (59)–(68). Given that (1 − ε̃)k = 1 − ε, it holds

IF(r̂ j ; r j , ζ ) = ∂ bias(r̂ j ; r j , ζ )

∂ε
= ∂b(r j , ζ, ε, k)

∂ε
= ∂b(r j , ζ, ε, k)

∂ε̃

∂ε̃

∂ε

= ∂b(r j , ζ, ε, k)

∂ε̃

1

k(1 − ε̃)k−1 . (70)

Differentiating (58) with respect to ε and evaluating it at ε = 0 yields

∂b(r j , ζ, ε, k)

∂ε

∣∣∣
∣
ε=0

= −
∑

j∈I\{A} p′
j (0) j (r j , ζ, 0) − A(r j , 0)

∑
j∈I\{A} p′

j (0)

A′
b(r j , 0)

,

(71)
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where A′
b(r j , 0) is defined in (39) and where (see results in Table 4)

p′
B(0) = min{s, k}, (72)

p′
C (0) = p + k − max{p, k}, (73)

p′
D(0) = max

{
0, s + min{p, k} − max{s, k}

}
, (74)

p′
E (0) = max

{
0, s + k − max{s + p, k}

}
, (75)

p′
F (0) = 0, (76)

p′
G(0) = max

{
0,min{s + p, k} − s

}
, (77)

p′
H (0) = 0, (78)

p′
I (0) = max{0, k − s − p}, (79)

p′
J (0) = 0. (80)

As in “Appendix A.1”, A(r j ; 0) = 1/2. Further, it follows from Dhaene and Zhu
(2017, LemmaA.1) that, for X, Z ∼ N(0, 1) and constants c, c′, P{(X +c′)/(Z −c) ≤
0} = �(−c′)�(−c) + �(c′)�(c). Hence, the definition (69) and the standardization
(34)–(36) imply

B(r j ; ζ, 0) = 1

2
, (81)

C(r j ; ζ, 0) = �

(
−r jζ

σu

)
�

(
− ζ

σ�p

)
+ �

(
r jζ

σu

)
�

(
ζ

σ�p

)
, (82)

D(r j ; ζ, 0) = �

(
− (1 + r j )ζ

σu

)
�

(
− ζ

σ�p

)
+ �

(
(1 + r j )ζ

σu

)
�

(
ζ

σ�p

)
,

(83)

E(r j ; ζ, 0) = �

(
− (1 + 2r j )ζ

σu

)
�

(
− 2ζ

σ�p

)
+ �

(
(1 + 2r j )ζ

σu

)
�

(
2ζ

σ�p

)
,

(84)

G(r j ; ζ, 0) = �

(
− (2 + r j )ζ

σu

)
�

(
− ζ

σ�p

)
+ �

(
(2 + r j )ζ

σu

)
�

(
ζ

σ�p

)
, (85)

I (r j ; ζ, 0) = �

(
−2(1 + r j )ζ

σu

)
�

(
− 2ζ

σ�p

)
+ �

(
2(1 + r j )ζ

σu

)
�

(
2ζ

σ�p

)
,

(86)

where σu := √
var(uit j ) and σ�p := √

var(�p yit−s) are given in (26) and r j =
−(1 − αs)/2. Substituting (71)–(86) in (70) completes the proof. ��

A.4 General results

Proof of Theorem 4 Given a non-stochastic weighting matrix A0, the proof follows
directly from Eq. (8). The estimator α̂0 is defined by the solution of the sample analogs
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of Eq. (5), which are deterministic functions of r̂ j . Thus the influence function of α̂0

is fully determined by the influence functions of each r̂ j being an element of g(α):

IF(α̂0;α, ζ ) = −(d ′A0d)−1d ′A0ψ, (87)

where ψ := (
IF(r̂ j ; r j , ζ )

)
j∈Jo

is a #Jo × 1 vector whose elements IF(r̂ j ; r j , ζ ),

j ∈ Jo, are derived for each considered data contamination Z1
ε,ζ , Z2

ε,ζ , and Z3
ε,ζ in

Theorem 1, 2, and 3, respectively.
If the weight matrix An = A(α̂0

n, ε), then it follows by the same argument as above
(d is still deterministic) and the matrix differentiation rules that

IF(α̂;α, ζ )=−(d ′Ad)−1(d ′Aψ+d ′ Ȧg(α))−(d ′Ad)−1(d ′ Ȧd)(d ′Ad)−1d ′Ag(α),

(88)
where Ȧ = IF(An; A, ζ ). Since this influence function is bounded, the result follows
from the asymptotic validity of the moment conditions g(α) = 0. ��
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