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Abstract Differenced estimators of variance bypass the estimation of regression
function and thus are simple to calculate. However, there exist two problems: most
differenced estimators do not achieve the asymptotic optimal rate for the mean square
error; for finite samples the estimation bias is also important and not further consid-
ered. In this paper, we estimate the variance as the intercept in a linear regression with
the lagged Gasser-type variance estimator as dependent variable. For the equidistant
design, our estimator is not only n1/2-consistent and asymptotically normal, but also
achieves the optimal bound in terms of estimation variance with less asymptotic bias.
Simulation studies show that our estimator has less mean square error than some exist-
ing differenced estimators, especially in the cases of immense oscillation of regression
function and small-sized sample.

Keywords Least squares · Nonparametric variance estimation · Optimal differenced
estimator

1 Introduction

Consider the nonparametric regression model

Yi = m(xi ) + εi (i = 1, . . . , n), (1)
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where 0 ≤ x1 < · · · < xn ≤ 1 are design points, Yi ’s are observed responses,
m(·) is an unknown smooth mean function, and εi ’s are independent and identically
distributed random errors with zero mean and variance σ 2.

For the estimation of variance σ 2, usually one fits the regression functionm first by
smoothing spline (Carter and Eagleson 1992; Carter et al. 1992) or kernel regression
(Müller and Stadtmüller 1987; Hall and Carroll 1989; Neumann 1994), and then esti-
mate variance σ 2 from residual sum of squares. However, the regression function esti-
mation depends on the amount of smoothing (Dette et al. 1998), which requires knowl-
edge about some unknown quantities such as

∫ 1
0 {m(1)(x)}2dx (Hall andMarron 1990),

∫ 1
0 {m(2)(x)}2dx (Buckley et al. 1988), and even

∫ 1
0 {m(l)(x)}2dx where l is a deriv-

ative order (Seifert et al. 1993; Eubank 1999; Wang 2011). Moreover, few methods
are proposed to estimate the amount of smoothness

∫ 1
0 {m(l)(x)}2dx . Thus in practical

applications an estimator ofσ 2 without estimating the regression function is preferable.
A class of estimators which bypass the estimation of regression function are the

differenced estimators. Rice (1984) proposed the first-order differenced estimator

σ̂ 2
R = 1

2(n − 1)

n∑

i=2

(Yi − Yi−1)
2.

Later, Gasser et al. (1986) proposed the second-order differenced estimator

σ̂ 2
GSJ = 2

3(n − 2)

n−1∑

i=2

(
1

2
Yi−1 − Yi + 1

2
Yi+1

)2

, (2)

and Hall et al. (1990) generalized to the kth-order differenced estimator by minimiz-
ing the estimation variance. Based on former estimators, more estimators of σ 2 are
proposed. With respect to the Rice-type estimator, Müller and Stadtmüller (1999) pro-
posed the lagged Rice estimator; Müller et al. (2003) proposed a covariate-matched
U-statistic; Tong and Wang (2005) further improved the lagged Rice estimator via
estimating the variance as the intercept in a linear regression model, and the asymp-
totic optimal rate is discussed in Tong et al. (2013), Dai and Tong (2014) proposed a
pairwise regression for models with jump discontinuities. As for the Gasser-type esti-
mator, Seifert et al. (1993) generalized to a higher-order version, and Du and Schick
(2009) proposed a covariate-matched U-statistic.

For the differenced estimators above, there exist the following problems. Most
estimators keep the order k to be constant and don’t achieve the asymptotic optimal
rate for the mean square error (MSE), that is MSE(σ̂ 2) = n−1var(ε2) + o(n−1),
except the estimators in Müller et al. (2003), Tong and Wang (2005), and Du and
Schick (2009). Zhou et al. (2015) indicated that Müller et al. (2003) and Du and
Schick (2009) are not applicable in practice since they require an appropriate choice
of bandwidth in advance. In Tong and Wang (2005), the bias caused by the regres-
sion function is non-ignorable for finite samples, especially in the cases of immense
oscillation of regression function m and small sample size n. However, Seifert et al.
(1993), and Du and Schick (2009) both showed their estimators based on the Gasser-
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type estimator have better bias properties than the Rice-type and Hall-type estimators.
Thus in practical applications, the method based on the Gasser-type estimator is pre-
ferred.

In this paper, we propose a new variance estimator based on the Gasser-type esti-
mator. With equidistant designs, our estimator achieves the asymptotic optimal rate
for the MSE. In finite samples, our estimator effectively reduces the estimation bias
caused by the regression function, especially in the cases of immense oscillation of
regression function and small-sized sample.

The remainder of this paper is organised as follows. In Sect. 2, we propose the
lagged Gasser-type estimator, introduce the estimation methodology, and deduce the
asymptotic results for our estimator. To assess the performance of our estimator, we
conduct simulation studies and compare it with other differenced estimators in Sect. 3.
All proofs of Theorems are given in “Appendices 1–4”.

2 Main results

In this section, we define the lag-l Gasser-type estimator, and construct a new estimator
basedon these lagged estimators using least squares regression. Itwill be shown that the
new estimator ismore efficient than theGasser et al. (1986)’s estimator, and reaches the
optimal bound in terms of estimation variance. Meanwhile, the asymptotic normality
is established.

2.1 Lagged Gasser-type estimator

Assume that xi ’s are equidistantly designed, that is, xi = i/n for 1 ≤ i ≤ n. For
ease of notations, let mi = m(xi ), and γ4 = E(ε4)/σ 4. Define the lag-l Gasser-type
estimator as

sl = 2

3(n − 2l)

n−l∑

i=l+1

(
1

2
Yi−l − Yi + 1

2
Yi+l

)2

(1 ≤ l ≤ k), (3)

which is similar toMüller and Stadtmüller (1999). The difference is that their methods
focus on the Rice-type estimator while ours relies on the Gasser-type estimator to
further reduce bias.

For the lag-l Gasser-type estimator sl , we decompose it into three parts as

sl = I1l + I2l + I3l ,

where

I1l = 2

3(n − 2l)

n−l∑

i=l+1

(
1

2
mi−l − mi + 1

2
mi+l

)2

,
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I2l = 4

3(n − 2l)

n−l∑

i=l+1

(
1

2
mi−l − mi + 1

2
mi+l

) (
1

2
εi−l − εi + 1

2
εi+l

)

,

I3l = 2

3(n − 2l)

n−l∑

i=l+1

(
1

2
εi−l − εi + 1

2
εi+l

)2

.

Taking expectation of I2l and I3l , we have

E(I2l) = 0, E(I3l) = σ 2.

Note that the lag-l Gasser-type estimator has a positive bias I1l . Assume that m(·) has
a bounded second-order derivative. According to the Taylor expansion of mi±l at xi ,
we have

1

2
mi−l − mi + 1

2
mi+l = m(2)

i

2

l2

n2
+ o

(
l2

n2

)

,

and

I1l = 2

3(n − 2l)

n−l∑

i=1+l

(
m(2)

i

2

l2

n2
+ o

(
l2

n2

))2

= 2

3(n − 2l)

n−l∑

i=1+l

(
m(2)

i

2

)2
l4

n4
+ o

(
l4

n4

)

≈ J
l4

n4
,

where J = (1/6)
∫ 1
0 {m(2)(x)}2dx . For l = o(n), the expectation of sl is

E(sl) ≈ σ 2 + J
l4

n4
.

2.2 Estimation methodology

For any fixed k = o(n), we construct a linear regression model

sl = β0 + β1dl + δl (l = 1, . . . , k), (4)

where β = (β0, β1)
T = (σ 2, J )T , dl = l4/n4, and δl = o(l4/n4) + I2l + (I3l − σ 2)

with E(δl) ≈ 0 and var(δl) ≈ (γ4 + 8/9)σ 4/n (see Theorem 2). The method is
similar in spirit to the variance estimation (Müller and Stadtmüller 1999; Tong and
Wang 2005) and the derivative estimation (Wang and Lin 2015).

Since the asymptotic variances of δl ’s are all the same, we use the least squares
method to obtain the parameter estimation

β̂ = arg min
β0,β1

k∑

l=1

(sl − β0 − β1dl)
2
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= (XT X)−1XT S,

where

XT =
(

1 · · · 1
14/n4 · · · k4/n4

)

2×k
, ST = (

s1, · · · , sk
)
1×k .

That is

β̂0 = s̄ − β̂1d̄, β̂1 =
∑k

l=1 sl(dl − d̄)
∑k

l=1(dl − d̄)2
,

where s̄ = (1/k)
∑k

l=1 sl and d̄ = (1/k)
∑k

l=1 dl . We define the proposed variance
estimator as σ̂ 2 = β̂0. The following theorem gives some properties of the variance
estimator σ̂ 2.

Theorem 1 For equidistant designs, we have the following:

1. σ̂ 2 is unbiased when m is a linear or quadratic function regardless of the choice
of k;

2. σ̂ 2 can be represented as a linear combination of {sl}kl=1, i.e., σ̂
2 = (1/k)

∑k
l=1

blsl , where bl = 1 − kd̄(dl−d̄)
∑k

l=1(dl−d̄)2
≈ 25

16 − 45
16

l4

k4
for l = 1, . . . , k;

3. σ̂ 2 can be written as a quadratic form σ̂ 2 = Y T DY , where D = (1/k)
∑k

l=1 bl Dl

is an n × n matrix with tr(D) = 1, and Dl is an n × n matrix corresponding to
sl = Y T DlY with tr(Dl) = 1.

Remark 1 From the second point of Theorem 1, σ̂ 2 is a linear combination of {sl}kl=1.
The weighted average has two superiorities: it decreases asymptotic estimation vari-
ance from (γ4+8/9)σ 4 to (γ4−1)σ 4 (see Theorems 2 and 4); in addition, it eliminates
the bias terms {Jl4/n4}kl=1 since

∑k
l=1 bll

4/n4 = 0.Owing to
∑k

l=1 bl = k andbl < 0
for l > (5/9)1/4k ≈ 0.86k, D is not guaranteed to be a positive definite matrix, and
it is possible to take a negative value for σ̂ 2. However, our simulation indicates that
this rarely happens. If negative estimates do happen in practice, then we recommend
replacing them by zero as Tong and Wang (2005) suggested.

For finite samples, since sl is the average of (n − 2l) lag-l differences, it may be
better to assign weight wl = (n − 2l)/N to sl with N = ∑k

l=1(n − 2l). So we obtain
the weighted least squares variance estimation

β̂0 = s̄w − β̂1d̄w, β̂1 =
∑k

l=1 wl sl(dl − d̄w)
∑k

l=1 wl(dl − d̄w)2
,

where s̄w = ∑k
l=1 wl sl and d̄w = ∑k

l=1 wldl .
In the construction of the least squares estimator and its weighted version, we ignore

the correlation between sl ’s. It is well known that the generalized least squares estima-
tor β̂� = (XT�−1X)−1XT�−1S is the best linear unbiased estimator (BLUE), where
� is the asymptotic covariance matrix. “BLUE = OLSE” in linear regression if and
only if the errors have equal variances and equal nonnegative correlation coefficients
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by McElroy (1967). From the following Theorem 2 and Lemma 3, the generalized
least squares estimator is identical to the ordinary least squares estimator. Thus the
above three estimators are asymptotically equivalent.

2.3 Asymptotic results

Next, we establish the asymptotic normality for the lag-l Gasser-type estimator and
our estimator.

Theorem 2 Assume that m has a bounded second-order derivative. If l = o(n7/8) as
n → ∞, then the lag-l Gasser estimator satisfies

√
n

(
sl − σ 2

)
d−→ N

(

0,

(

γ4 + 8

9

)

σ 4
)

.

With normal errors, the asymptotic variances for the lagged Rice-type and Gasser-
type estimators are 3σ 4/n (Tong et al. 2013) and (3 + 8/9)σ 4/n respectively; thus
the Rice-type estimator is more efficient than the Gasser-type estimator theoretically.
However, for finite samples theGasser-type estimatorwould be better if the bias caused
by regression function is controlled in the case of immense oscillation of regression
function.

Lemma 3 Assume that m has a bounded second-order derivative. If v = o(n3/4) as
n → ∞ and v > u, then the covariance between lag-l Gasser-type estimators is

Cov(su, sv) =
{

(γ4 − 1)σ 4/n + o(1/n), v �= 2u,

(γ4 − 13
9 )σ 4/n + o(1/n), v = 2u.

Theorem 4 Assume that m has a bounded second-order derivative. For any k =
O(nr ) with 0 < r < 3/4 as n → ∞, we have

√
n

(
σ̂ 2 − σ 2

)
d−→ N

(
0, (γ4 − 1) σ 4

)
.

Remark 2 There are two kinds of differenced methods: the direct-difference method
and integral-based method. Most direct-difference estimators do not achieve the
asymptotic optimal variance, i.e., Gasser et al. (1986)’s estimator has the asymp-
totic variance (γ4 + 8/9)σ 4 from Theorem 2. As for the integral-based estimator, our
estimator achieves the same optimal variance (γ4 − 1)σ 4 from Theorem 4 as Tong
and Wang (2005) did, but ours has less bias (o(k4/n4)) than Tong and Wang (2005)’s
(o(k2/n2)) under the same conditions of equidistant design and bounded second-order
derivative.
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3 Simulations

3.1 Finite-sample choice of the bandwidth

In our comparisons, we evaluate the performance of the estimators of Rice (1984),
Gasser et al. (1986), Hall et al. (1990), Tong and Wang (2005), and ours, which are
notated as σ̂ 2

R , σ̂
2
GSJ, σ̂

2
HKT, σ̂

2
TW, and σ̂ 2, respectively. For Hall et al. (1990)’s estimator,

we set k = 2 in our simulations, that is

σ̂ 2
HKT = 1

n − 2

n−1∑

i=2

(0.809Yi−1 − 0.5Yi − 0.309Yi+1)
2.

As for Tong and Wang (2005)’s estimator and ours, the bandwidth is chosen as k =
n1/3, n1/2 for small and large n respectively, as Tong andWang (2005) did. The further
explanation is given recently by Wang and Lin (2015), Wang and Yu (2016).

3.2 Simulation results

The oscillation of periodic function depends on frequency and amplitude. We choose
the regression function in our simulations to be

m(x) = A sin(2π f x),

with design points xi = i/n, and the errors are independent and identically distributed
normal random variables with zero mean and variance σ 2. The regression function is
similar to those in Seifert et al. (1993), Dette et al. (1998), and Tong andWang (2005).
We consider two sample sizes n = 50, 500, corresponding to small, large sample
sizes, three standard deviations σ = 0.1, 0.5, 2, two frequencies f = 0.5, 2, and two
amplitudes A = 5, 50.

For each simulation setting, we generate observations and compute the estimators
σ̂ 2
R , σ̂ 2

GSJ, σ̂ 2
HKT, σ̂ 2

TW, σ̂ 2. We repeat this process 1000 times and compute relative
MSEs for these estimators.

Table 1 lists relativeMSEs of all estimators, nMSE/(2σ 4), since the asymptotically
optimal variance is 2σ 4/n with normal errors. In general, σ̂ 2 has smaller relative
MSE in most settings. With normal errors, the relative MSEs are 1.25, 1.5, and 1.94
corresponding to σ̂ 2

HKT, σ̂
2
R , and σ̂ 2

GSJ. However, σ̂
2
GSJ is robust in most settings because

it reducesmore bias than σ̂ 2
R and σ̂ 2

HKT. σ̂
2
TW and σ̂ 2 both achieve the asymptotic optimal

rate, but σ̂ 2 has less relative MSE than σ̂ 2
TW in all settings except that they have the

similar performance in the case within large sample and variance, low frequency, and
small amplitude occur simultaneously.

Next we explain the reason why there are some quite large values in Table 1. The
asymptotic MSE is composed of bias and variance, that is MSE = Bias2 + Var. By
Theorems 2 and 4, we known that the variance can be controlled as the sample size n
becomes large. However, the bias is fixed which is determined by the used method and
the oscillation of regression function. For example, AMSE(σ̂ 2

R) = 1.47E2 is large
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Table 1 Relative MSEs of various estimators. Note that 1.47E2 = 1.47 ∗ 102

n A f σ σ̂ 2
R σ̂ 2

GSJ σ̂ 2
HKT σ̂ 2

TW σ̂ 2

50 5 0.5 0.1 1.47E2 1.88 8.70E2 2.61 1.46

0.5 1.72 1.98 2.67 1.51 1.50

2 1.45 1.96 1.19 1.50 1.45

2 0.1 3.70E4 2.01E1 2.16E5 7.10E2 3.14

0.5 6.11E1 2.10 3.49E2 2.95 1.70

2 1.64 1.91 2.52 1.47 1.44

50 0.5 0.1 1.46E6 4.64 8.72E6 9.40E3 1.94

0.5 2.34E3 1.95 1.39E4 1.81E1 1.56

2 1.07E1 2.00 5.62E1 1.70 1.55

2 0.1 3.70E8 1.83E5 2.17E9 7.08E6 1.68E4

0.5 5.93E5 2.94E2 3.46E6 1.13E4 2.87E1

2 2.31E3 2.96 1.35E4 4.61E1 1.52

500 5 0.5 0.1 1.75 2.00 2.29 1.48 1.06

0.5 1.51 1.95 1.27 1.06 1.07

2 1.49 1.93 1.24 1.04 1.06

2 0.1 4.05E1 1.88 2.44E2 2.62E2 1.07

0.5 1.65 2.06 1.71 1.51 1.10

2 1.50 1.95 1.26 1.06 1.07

50 0.5 0.1 1.52E3 1.93 9.44E3 4.08E3 1.10

0.5 3.85 2.03 1.61E1 7.73 1.13

2 1.53 1.92 1.37 1.10 1.09

2 0.1 3.88E5 1.88E2 2.41E6 2.59E6 2.13E2

0.5 6.21E2 2.07 3.86E3 4.14E3 1.45

2 3.94 1.91 1.65E1 1.74E1 1.05

enough for n = 50, A = 5, f = 0.5, σ = 0.1. We compute the expectation of σ̂ 2
R

such that

E(σ̂ 2
R) = E

(
1

2(n − 1)

n∑

i=2

(Yi − Yi−1)
2

)

= E

(
1

2(n − 1)

n∑

i=2

(mi −mi−1)
2+(εi −εi−1)

2 + 2(mi − mi−1)(εi − εi−1)

)

= σ 2 + 1

2(n − 1)

n∑

i=2

(mi − mi−1)
2.

Thus the bias is

Bias(σ̂ 2
R) = 1

2(n − 1)

n∑

i=2

(mi − mi−1)
2 ≈ 0.025,

123



Optimal variance estimation based on lagged second-order... 1055

Fig. 1 Histograms of the variance estimators σ̂ 2
TW and σ̂ 2 for the cases (n, A, f, σ 2) = (500, 5, 0.5, 0.01)

and (500, 50, 0.5, 0.01) in 10,000 simulations. a Histograms of estimators σ̂ 2
TW and σ̂ 2 with A = 5.

b Histograms of estimators σ̂ 2
TW and σ̂ 2 with A = 50

and now

nMSE/(2σ 4) ≈ 50 ∗ Bias2(σ̂ 2
R)/(2σ 4) ≈ 156,

which is close to 147.
To further show the importance of bias-correction, we consider the two cases

(n, A, f, σ 2) = (500, 5, 0.5, 0.01) and (500, 50, 0.5, 0.01). Figure 1 indicates that
σ̂ 2
TW and σ̂ 2 both have asymptotic normality with variance σ 2 = 0.01. However, σ̂ 2

TW
has small bias (0.0004) while σ̂ 2 almost has no bias with A = 5; as amplitude A varies
from 5 to 50, σ̂ 2

TW has larger bias (0.04) while σ̂ 2 has little bias (0.00018). So the new
estimator based on the Gasser-type estimator controls bias much better than Tong and
Wang (2005)’s estimator based on the Rice-type estimator.
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4 Discussion

In this paper, we propose a new variance estimator in nonparametric regression model.
The new estimator achieves the asymptotic optimal rate for the MSE, meanwhile it is
less-biased than most differenced estimators.

This work concentrates on the equidistant design. We can generalize the idea to
non-equidistant design. Following one reviewer’s comment, we assume that xi =
g(i/n) for i = 1, . . . , n, where the function g(·) has a positive derivative function and
c ≤ g(x) ≤ 1 for some constant 0 < c < 1. We expand xi+l − xi , xi+l − xi−1, and
xi − xi−1 on the same design point i/n such that

xi+l − xi ≈ g(1)(i/n)l/n,

xi+l − xi−l ≈ 2g(1)(i/n)l/n,

xi − xi−l ≈ g(1)(i/n)l/n.

Thus in the sense of linear approximation, we have the same result as the equidistant
design such that

s̃l = 1

n − 2l

n−l∑

i=l+1

{(xi+l − xi )Yi−l − (xi+l − xi−l)Yi + (xi − xi−l)Yi+l}2
(xi+l − xi )2 + (xi+l − xi−l)2 + (xi − xi−l)2

≈ 2

3(n − 2l)

n−l∑

i=l+1

(
1

2
Yi−l − Yi + 1

2
Yi+l

)2

.

Further, assume that the function g(·) is two times continuous differentiable. We
expand xi+l − xi , xi+l − xi−1, and xi − xi−1 on the point i/n such that

xi+l − xi ≈ g(1)(i/n)l/n + g(2)(i/n)

2
(l/n)2,

xi+l − xi−l ≈ g(1)(i/n)2l/n,

xi − xi−l ≈ g(1)(i/n)l/n − g(2)(i/n)

2
(l/n)2.

Thus we have

s̃l = 1

n − 2l

n−l∑

i=l+1

{(xi+l − xi )Yi−l − (xi+l − xi−l )Yi + (xi − xi−l )Yi+l }2
(xi+l − xi )2 + (xi+l − xi−l )

2 + (xi − xi−l )
2

≈ 1

n − 2l

n−l∑

i=l+1

{g(1)(i/n)(Yi−l − 2Yi + Yi+l )(l/n) + g(2)(i/n)(Yi−l − Yi+l )(l/n)2/2}2
6[g(1)(i/n)]2(l/n)2 + [g(2)(i/n)]2(l/n)4/2

≈ 2

3(n − 2l)

n−l∑

i=l+1

(
1

2
Yi−l − Yi + 1

2
Yi+l

)2

+ 1

6(n − 2l)

n−l∑

i=l+1

g(2)(i/n)

g(1)(i/n)
(Yi−l − 2Yi + Yi+l )(Yi−l − Yi+l )(l/n).
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To eliminate the last term of the above equation, we need the conditions that g(1)(i/n)

is away from 0 and g(2)(i/n) is close to 0. Or else the last term is non-ignorable and our
proposed method is not applied directly. In particular case g(x) = x corresponding to
the equidistant design, we have that g(1)(i/n) ≡ 1 and g(2)(i/n) ≡ 0, which satisfy
the above conditions.

In addition, our proposed method concentrates on univariate x , while some differ-
encedmethods in the literature focused onmultivariate x . Hall et al. (1991) generalized
the idea in Hall et al. (1990) to the bivariate lattice design. Munk et al. (2005) further
proposed a differenced estimator for multivariate regression (the dimension number
d ≤ 4). Our method can be generalized to the bivariate lattice design as Hall et al.
(1991) did. The generalization may be more efficient in some particular cases. For
example, when the surface has the similar variation trend in the horizontal direction,
difference in the vertical direction can eliminate the trend to retain the error informa-
tion.
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Appendix 1: Proof of Theorem 1

Let m(x) = a + bx + cx2. We have

E

((
1

2
Yi−l − Yi + 1

2
Yi+l

)2
)

= 3

2
σ 2 + c2

l4

n4
,

E(sl) = σ 2 + 2c2

3

l4

n4
.

Since it is an accurate linear regression model, the coefficient estimation is unbiased.
Thus,

E(β̂1) = β1, E(β̂0) = β0.

Variance estimator σ̂ 2 is a linear combination of {sl}kl=1, that is

σ̂ 2 = s̄ − β̂1d̄

= 1/k

(
k∑

l=1

sl −
∑k

l=1 ksl(dl − d̄)d̄
∑k

l=1(dl − d̄)2

)
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= 1/k
k∑

l=1

blsl ,

where bl = 1 − kd̄(dl−d̄)
∑k

l=1(dl−d̄)2
≈ 25

16 − 45
16

l4

k4
.

According to the proof of (2) and
∑k

l=1 bl = k, (3) is straightforward.

Appendix 2: Proof of Theorem 2

For lag-l Gasser-type estimator,

sl = I1l + I2l + I3l ,

Applying Taylor expansion to I1l , we can show that I1l = (l4/n4)J + o(l4/n4) =
op(n−1/2) if n−1l8/7 → 0 as n → ∞. For I2l , we have

E(I 22l) = 16

9(n − 2l)2

n−l∑

i=l+1

n−l∑

j=l+1

(
1

2
mi−l − mi + 1

2
mi+l

) (
1

2
m j−l − m j + 1

2
m j+l

)

×E

{(
1

2
εi−l − εi + 1

2
εi+l

)(
1

2
ε j−l − ε j + 1

2
ε j+l

)}

= 16

9(n − 2l)2

⎧
⎨

⎩

n−l∑

i= j=l+1

3σ 2

2

(
1

2
mi−l − mi + 1

2
mi+l

)2

−
n−l∑

i= j+l=2l+1

σ 2
(
1

2
mi−l − mi + 1

2
mi+l

)

×
(
1

2
mi − mi+l + 1

2
mi+2l

)

−
n−2l∑

i= j−l=l+1

×σ 2
(
1

2
mi−l − mi + 1

2
mi+l

) (
1

2
mi−2l − mi−l + 1

2
mi

)

+
n−l∑

i= j+2l=3l+1

σ 2/4

(
1

2
mi−l − mi + 1

2
mi+l

)(
1

2
mi−3l − mi−2l + 1

2
mi−l

)

+
n−3l∑

i= j−2l=l+1

σ 2/4

(
1

2
mi−l − mi + 1

2
mi+l

)(
1

2
mi+3l − mi+2l + 1

2
mi+l

)
⎫
⎬

⎭

= O(l4/n5)

which implies that I2l = op(n−1/2) for any l = o(n).
Rewrite I3l as I3l = σ 2 + 1/(n − 2l)

∑n−l
i=l+1 ηi (l), where ηi (l) = 2/3(1/2εi−l −

εi +1/2εi+l)
2 −σ 2. For any l, {ηi (l)}n−l

i=l+1 is a strictly stationary sequence of random
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variables with mean zero and autocovariance function

γ (t) = γ (u, u + t) =

⎧
⎪⎪⎨

⎪⎪⎩

[(γ4 + 1)/2]σ 4 t = 0,
[2(γ4 + 1)/9]σ 4 t = l,
[(γ4 − 1)/36]σ 4 t = 2l,
0 otherwise.

Note that the sequence {ηi (l)}n−l
i=l+1 is 2l-dependent. Thus by the central limit theorem

in Whittle (1964),
√
n(I3l − σ 2)

d−→ N (0, ζ 2), where ζ 2 = γ (0) + 2
∑2l

t=1 γ (t) =
(γ4 + 8/9)σ 4. Using I1l = op(n−1/2), I2l = op(n−1/2) and sl = I1l + I2l + I3l , we
have

√
n(sl − σ 2)

d−→ N

(

0, (γ4 + 8

9
)σ 4

)

.

Appendix 3: Proof of Lemma 3

For 1 ≤ u < v = o(n), we have

E(susv) = 4

9(n − 2u)(n − 2v)
E[L1(u, v) + L2(u, v) + L3(u, v)

+L4(u, v) + L5(u, v)],

where

L1(u, v) =
n−u∑

i=u+1

(
1

2
εi−u − εi + 1

2
εi+u

)2 n−v∑

j=v+1

(
1

2
ε j−v − ε j + 1

2
ε j+v

)2

,

L2(u, v) =
n−u∑

i=u+1

(
1

2
mi−u − mi + 1

2
mi+u

)2 n−v∑

j=v+1

(
1

2
m j−v − m j + 1

2
m j+v

)2

,

L3(u, v) =
n−u∑

i=u+1

(
1

2
εi−u − εi + 1

2
εi+u

)2 n−v∑

j=v+1

(
1

2
m j−v − m j + 1

2
m j+v

)2

,

L4(u, v) =
n−u∑

i=u+1

(
1

2
mi−u − mi + 1

2
mi+u

)2 n−v∑

j=v+1

(
1

2
ε j−v − ε j + 1

2
ε j+v

)2

.

L5(u, v) = 2
n−u∑

i=u+1

(
1

2
mi−u − mi + 1

2
mi+u

) (
1

2
εi−u − εi + 1

2
εi+u

)

×
n−v∑

j=v+1

[(
1

2
ε j−v − ε j + 1

2
ε j+v

)2

+
(
1

2
m j−v − m j + 1

2
m j+v

)2

+ 2

(
1

2
m j−v − m j + 1

2
m j+v

)
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×
(
1

2
ε j−v − ε j + 1

2
ε j+v

)]

+ 2
n−v∑

j=v+1

(
1

2
m j−v − m j + 1

2
m j+v

)(
1

2
ε j−v − ε j + 1

2
ε j+v

)

×
n−u∑

i=u+1

[(
1

2
εi−u − εi + 1

2
εi+u

)2

+
(
1

2
mi−u − mi + 1

2
mi+u

)2
]

.

Applying the second-order Taylor expansion, we have

E[L2(u, v)] = 9J 2u4v4

4n6
+ o

(
u4v4

n6

)

,

E[L3(u, v)] = 9Jσ 2

4

v4

n2
+ o

(
v4

n2

)

,

E[L4(u, v)] = 9Jσ 2

4

u4

n2
+ o

(
u4

n2

)

,

E[L5(u, v)] = O

(
u2v2

n2

)

.

Next, we decompose L1(u, v) into ten parts such as

L1(u, v) = L11 + L12 + L13 + L14 + L15 + L16 + L17 + L18 + L19 + L10,

where

L11 =
n−v∑

j=v+1

(
1

2
ε j−v − ε j + 1

2
ε j+v

)2 (
1

2
ε j−u − ε j + 1

2
ε j+u

)2

,

L12 =
n−v∑

j=v+1

(
1

2
ε j−v − ε j + 1

2
ε j+v

)2 (
1

2
ε j+v−2u − ε j+v−u + 1

2
ε j+v

)2

,

L13 =
n−v∑

j=v+1

(
1

2
ε j−v − ε j + 1

2
ε j+v

)2 (
1

2
ε j−v − ε j−v+u + 1

2
ε j−v+2u

)2

,

L14 =
n−2u−v∑

j=v+1

(
1

2
ε j−v − ε j + 1

2
ε j+v

)2 (
1

2
ε j+v − ε j+u+v + 1

2
ε j+2u+v

)2

,

L15 =
n−v∑

j=2u+v+1

(
1

2
ε j−v − ε j + 1

2
ε j+v

)2 (
1

2
ε j−u−2v − ε j−u−v + 1

2
ε j−v

)2

,
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L16 =
n−v∑

j=u+v+1

(
1

2
ε j−v − ε j + 1

2
ε j+v

)2 (
1

2
ε j−u−v − ε j−v + 1

2
ε j+u−v

)2

,

L17 =
n−u−v∑

j=v+1

(
1

2
ε j−v − ε j + 1

2
ε j+v

)2 (
1

2
ε j−u+v − ε j+v + 1

2
ε j+u+v

)2

,

L18 =
n−max{v,2u}∑

j=v+1

(
1

2
ε j−v − ε j + 1

2
ε j+v

)2 (
1

2
ε j − ε j+u + 1

2
ε j+2u

)2

,

L19 =
n−v∑

j=max{v,2u}+1

(
1

2
ε j−v − ε j + 1

2
ε j+v

)2 (
1

2
ε j−2u − ε j−u + 1

2
ε j

)2

,

L10 =
∑

(i, j)∈�

(
1

2
εi−u − εi + 1

2
εi+u

)2 (
1

2
ε j−v − ε j + 1

2
ε j+v

)2

,

and � = {(i, j)|u + 1 ≤ i ≤ n − u; v + 1 ≤ j ≤ n − v; {i − u, i, i + u} ∩ { j − v,

j, j + v} = ∅}. When v �= 2u, it is easy to verify the following

E(L11) = (16γ4+20)σ 4n

16
+ o(n), E(L10) = 9σ 4[(n−2u)(n − 2v)−9n]

4
+ o(n),

E(L12) = E(L13) = E(L14) = E(L15) = (γ4 + 35)σ 4n

16
+ o(n),

E(L16) = E(L17) = E(L18) = E(L19) = (4γ4 + 32)σ 4n

16
+ o(n).

Therefore,

E(susv) = σ 4 + (γ4 − 1) σ 4

n
+ O

(
v4

n4

)

+ o

(
1

n

)

.

When v = 2u, note that L12 = L18, L13 = L19 and E(L12) = (5γ4 + 23)σ 4n/16 +
o(n). Thus,

E(susv) = σ 4 +
(
γ4 − 13

9

)
σ 4

n
+ O

(
v4

n4

)

+ o

(
1

n

)

.

Finally, if v = o(n3/4) as n → ∞, then

Cov(su, sv) =
{

(γ4 − 1)σ 4/n + o(1/n), v �= 2u,

(γ4 − 13
9 )σ 4/n + o(1/n), v = 2u.
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Appendix 4: Proof of Theorem 4

When k = O(nr ) with 0 < r < 3/4 as n → ∞, the estimation bias is negligible,
and Theorems 1 and 3 are established simultaneously. Therefore σ̂ 2 is consistent
and asymptotically normal since it is a least squares estimator. Next we derive the
asymptotic variance

Var(σ̂ 2) = 1

k2

k∑

u=1

k∑

v=1

bubvcov(su, sv)

= γ4 − 1

n
σ 4 + o

(
1

n

)

.

So we have

√
n(σ̂ 2 − σ 2)

d−→ N (0, (γ4 − 1)σ 4).
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