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Abstract Model selection and variable importance assessment in high-dimensional
regression are among the most important tasks in contemporary applied statistics. In
our procedure, implemented in the package regRSM, the Random Subspace Method
(RSM) is used to construct a variable importance measure. The variables are ordered
with respect to themeasures computed in thefirst step using theRSMand then, from the
hierarchical list of models given by the ordering, the final subset of variables is chosen
using information criteria or validation set. Modifications of the original method such
as the weighted Random Subspace Method and the version with initial screening
of redundant variables are discussed. We developed parallel implementations which
enable to reduce the computation time significantly. In this paper, we give a brief
overview of the methodology, demonstrate the package’s functionality and present
a comparative study of the proposed algorithm and the competitive methods like
lasso or CAR scores. In the performance tests the computational times for parallel
implementations are compared.
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1 Introduction

1.1 Motivation

In recent years considerable attention has been devoted tomodel selection and variable
importance assessment in high-dimensional statistical learning. This is due to ubiquity
of data with a large number of variables in a wide range of research fields. Moreover,
nowadays there is a strong need to discover functional relationships in the data and
to build predictive models. In many applications the number of variables significantly
exceeds the number of observations (“small n large p problem”). However, very often
functional relationships are sparse in the sense that among thousands of available
variables only a few of them are informative and it is crucial to identify them correctly.
Examples include microarray data containing genes activities, Quantitative Trait Loci
(QTL) data, drug design data, high-resolution images, high-frequency financial data
and text data among others (see e.g. Donoho 2000 for an extensive list of references).
In such situations the standard methods like ordinary least squares cannot be applied
directly. In view of this a variety of dimension reduction techniques and regression
methods tailored to the high-dimensional framework have been developed recently.

1.2 Related work

There are two mainstream methodologies for the dimension reduction in regression:
variable extractionmethods andvariable selectionmethods. The aimof variable extrac-
tion methods is to identify functions of variables that can replace the original ones.
Examples include Principal Component Regression (see e.g. Jolliffe 1982) and Partial
Least Squares Regression (see e.g. Martens 2001; Wold 2001). In contrast, variable
selection methods identify an active set of original variables which affect the response.
A significant number of such methods used for high-dimensional data consists of two
steps: in the first step the variables are ordered using some forms of regularization
or variable importance measures (see below for examples). In the next step the final
model is chosen from the hierarchical list of models given by the ordering. Usually
in the second step cross-validation, thresholding or information criteria are used to
determine the active set.

An important and intensively studied line of research is devoted to regularization
methods like lasso, SCAD and MCP (see e.g. Tibshirani 1996; Zou and Hastie 2005;
Zhang and Zhang 2012). They perform estimation of parameters and variable selection
simultaneously. The final model depends on the regularization parameter which is
usually tuned using cross-validation (Friedman et al. 2010). Many algorithms for
computing the entire regularization path efficiently have been developed (see e.g.
Friedman et al. 2010 for references).

An alternative direction employs ordering of variables based on their appropri-
ately defined importance. Many variable importance measures have been proposed.
The R package relaimpo (RELAtive IMPOrtance of regressors in linear models)
implements different metrics for assessing relative importance of variables in the lin-
ear models (Grömping 2006). Unfortunately, some of them, e.g. pmvd (Proportional
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Marginal Variance Decomposition, Feldman 2005) and lmg (Latent Model Growth,
Lindemann et al. 1980) require a substantial computational effort and usually can-
not be applied in the high-dimensional setting. Package relaimpo does not provide
functions to select the final subset of variables based on their ordering. Another R
package caret (Classification And REgression Training) presented in Kuhn (2008)
is convenient for computing the variable importance metrics based on the popular
methods like Random Forests (Breiman 2001) or Multivariate Adaptive Regression
Splines (Friedman 1991). It also contains several functions that can be used to assess
the performance of classification models and choose the final subset of variables. We
also mention CAR scores (Correlation-Adjusted coRrelation) proposed in Zuber and
Strimmer (2011) and implemented in R package care. Zuber and Strimmer (2011)
proposed to use information criteria to select the final subset of variables.

1.3 Contribution

Recently a novel approach based on the Random Subspace Method (RSM) has been
developed in Mielniczuk and Teisseyre (2014). Originally, the RSM was proposed by
Ho (1998) for classification purposes and independently by Breiman (2001) for the
case when a considered prediction method is either a classification or a regression tree.
In our algorithm the ranking of variables is based on fitting linear models on small
randomly chosen subsets of variables. The method does not impose any conditions on
the number of candidate variables.

The aims of this paper are to present novel variants of the RSM (the weighted
Random Subspace Method and the version with initial screening of the redundant
variables), describe their implementations and discuss the results of extensive experi-
ments on real and artificial data.We also present a newway of choosing the finalmodel,
which is based on Generalized Information Criterion (GIC) and does not require an
additional validation set as originally proposed in Mielniczuk and Teisseyre (2014).
We show that this step can be performed very fast using properties of QR decompo-
sition of the design matrix.

For discussion of the theoretical properties of the original RSM we refer to Miel-
niczuk and Teisseyre (2014). The package regRSM, containing an implementation of
the discussed procedure, is available from the Comprehensive R Archive Network at
http://cran.r-project.org/web/packages/regRSM/index.html.

This paper is organized as follows. In Sect. 2 we describe briefly the methodology
and present new variants of the original algorithm and in Sect. 3 we present the
implementation and the package functionality. In Sect. 4 the efficacy experiments are
discussed and Sect. 5 contains the analysis of the experiments on artificial and real
datasets obtained using package regRSM.

2 Methodology

We consider the usual setup for linear regression. We have n observations and p
explanatory variables which serve a complete feature space and are used to predict a
response. The model can be written in matrix notation

123

http://cran.r-project.org/web/packages/regRSM/index.html
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Y = Xβ + ε,

where Y is n × 1 response vector, X is n × p design matrix whose rows describe
objects corresponding to the observations and ε is n × 1 vector of zero mean inde-
pendent errors with unknown variance σ 2. We allow that p ≥ n. Xm will denote
submatrix of X with columns corresponding to variable set m ⊂ {1, . . . , p} of cardi-
nality |m|. In the RSM for regression a random subset of variables Xm with a number
of variables |m| < min(n, p) is chosen. Then, the corresponding model is build based
on variables Xm . Selected variables are assigned weights describing their relevance
in the considered submodel. In order to cover the large portion of variables in the
dataset, the selection is repeated B times and the cumulative weights (called final
scores) are computed. The results of all iterations are combined in a list of p variables
ordered according to their final scores. The final model is constructed based on selec-
tion method applied to the nested list of models, consisting of less than p variables,
given by the ordering. We stress that since ranking of variables in the RSM is based on
fitting small linear models, the method does not impose any conditions on the number
of candidate variables p. Below, the pseudo code of the procedure is outlined.

Algorithm 1 (RSM procedure)

1. Input: observed data (Y, X), a number of subset draws B, a size of the subspace
|m| < min(p, n). Choice of weights wn(i,m) is described below.

2. Repeat the followingprocedure for k = 1, . . . , B startingwith the counterCi,0 = 0
for any variable i .
– Randomly draw a subset of variables m∗ (without replacement) from the orig-
inal variable space with the same probability for each variable.

– Fit model to data (Y, Xm∗) and compute weightw(i,m∗) ≥ 0 for each variable
i ∈ m∗. Set w(i,m∗) = 0 if i /∈ m∗.

– Update the counter Ci,k = Ci,k−1 + I {i ∈ m∗}.
3. For each variable i compute the final score W ∗

i defined as

W ∗
i = 1

Ci,B

∑

m∗:i∈m∗
w(i,m∗).

4. Sort the list of variables according to scores W ∗
i : W

∗
i1

≥ W ∗
i2

· · · ≥ W ∗
i p
.

5. Output: Ordered list of variables {i1, . . . , i p}.
The performance of the above procedure crucially depends on a choice of weights
w(i,m∗). It is intuitively clear that the weight w(i,m∗) should reflect the importance
of the variable i in the randomly chosen model m∗ and the goodness of fit of a model
m∗ should be also taken into account. In the following we will justify our choice of
weights. Let

Ti,m = β̂i,m[σ̂ 2
m(X�

m Xm)−1
i,i ]−1/2, i ∈ m

be the t-statistic corresponding to the variable i when the model m is fitted to the
data. In the above formula β̂i,m is the i th coordinate of least squares estimator β̂m

based on model m and σ̂ 2
m is noise variance estimator based on model m. It is argued
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in Mielniczuk and Teisseyre (2014) that w(i,m∗) = T 2
i,m∗ is a reasonable choice. A

simple motivation is given by the following formula (see e.g., Section 8.5.1 in Rencher
and Schaalje 2008)

T 2
i,m

n − |m| = R2
m − R2

m\{i}
1 − R2

m
,

where R2
m is a coefficient of determination for the model m. Namely, it indicates that

up to a multiplicative factor, T 2
i,m is a decrease in R2

m due to leaving out i th variable,

multiplied by ameasure of goodness-of-fit (1−R2
m)−1 ofmodelm and thus it combines

two characteristics: importance of a variable within the model m and the importance
of the model itself. It is shown in Mielniczuk and Teisseyre (2014) thatW ∗

i converges
to the relative increase of expected prediction error when variable i is omitted from
the model averaged over all models of size |m| containing it. We stress that weights
W ∗

i are not necessarily contained in the interval (0, 1). In order to compare them with
other variable importance measures, simple normalization such as division by their
maximal value, is necessary.

Observe thatAlgorithm1 is generic in nature, i.e., other choices ofweightsw(i,m∗)
are also possible. Two parameters need to be set in the RSM: the number of selections
B and the subspace size |m|. The smaller the size of a chosen subspace (i.e., a subset
of variables chosen) the larger the chance of missing informative variables or missing
dependencies between variables. On the other hand, for large |m| many spurious
variables can be included adding noisy dimensions to the subspace. Note that if the
choice of the weights w(i,m∗) is based on least squares fit then the subspace size is
limited bymin(n, p). In the following the value of parameter |m| is chosen empirically.
We concluded from numerical experiments in Mielniczuk and Teisseyre (2014) that
the reasonable choice is |m| = min(n, p)/2.

It follows from the description above that a parallel version of the algorithm is very
easy to implement. Two parallel versions are provided in the package (see Sect. 3 for
details). Figure 1 shows a block diagram of the algorithm.

In addition to the main algorithm, we consider a weighted version of the RSM
(called WRSM). In the WRSM the additional initial step is performed in which we fit
univariate linear models for each variable. Based on the univariate models we compute
the individual relevance for each of the variables. Then in the main step the variables
are drawn to the random subspaces with probabilities proportional to the relevances
determined in the initial step. Thus variables whose individual influence on response
is more significant, have larger probability of being chosen to any of the random
subspaces. WRSM implements the heuristic premise that variables more correlated
with the response variable should be chosen to the final model with larger probabil-
ity. On the other hand, variables, which are weakly correlated with the response but
useful when considered jointly with other variables, have still a chance to be drawn.
So WRSM can be seen as a milder version of Sure Independence Screening method
proposed in Fan and Lv (2008). Since in the WRSM the relevant variables are more
likely to be selected, we can limit the number of repetitions B in the main loop and
reduce the computational cost of the procedure. The pseudo code of the WRSM is
shown below.
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Fig. 1 Block diagram of the RSM procedure

Algorithm 2 (WRSM procedure)

1. Input: observed data (Y, X), number of subset draws B, size of the subspace
|m| < min(p, n). Choice of initial weights w0(i) is described below.

2. For each variable i fit the univariate regression model and compute a weight of i th
variable w0(i) ≥ 0.

3. For each variable i compute πi = w0(i)/
∑p

l=1 w0(l).
4. Perform the RSM procedure in such a way that probability of choosing the i th

variable to the random subspace is equal πi .
5. Output: Ordered list of variables {i1, . . . , i p}.
Observe that when drawing model m∗, probabilities πi are applied sequentially, that
is the probability of choosing the next variable is proportional to the probabilities
amongst variables not chosen till that moment. The natural choice of initial weights
(used in our package) is w0(i) = T 2

i,{i} (i.e., squared t-statistic based on univariate
model), however other choices (e.g., mutual information) are also possible. Figure 2
shows a block diagram of the algorithm.

The package also allows for an initial screening of variables. Namely, in the first
step, we fit univariate linear models for each variable. Based on the univariate mod-
els we compute the individual relevance for each of the variables (T 2

i,{i} can be used
again here). Then the least relevant variables are discarded and the RSM (or WRSM)
procedure is performed on the remaining ones. This approach is similar to Sure Inde-
pendence Screening (SIS) proposed in Fan and Lv (2008) and enable to reduce data
dimensionality by filtering out the most spurious variables. This version is particularly
recommended for datasets with thousands of variables.

The procedures described above give as an output the ordered list of variables
{i1, . . . , i p}. They also provide importance measures for all variables. In the second
step one would like to select the final model from the nested list of models

{∅, {i1}, {i1, i2} . . . , {i1, . . . , i p}}

given by the ordering. The list should be cut off at some level h ≤ min(n, p) in order
to avoid fitting models with more parameters than observations. Thus we select the
final set of variables from
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Fig. 2 Block diagram of the WRSM procedure

Lh := {∅, {i1}, {i1, i2} . . . , {i1, . . . , ih}}. (1)

We use two methods of final model selection. The first one is based on supplied
validation set (Y v, Xv). Namely, from familyLh we select the modelm for which the
prediction error on validation set ||Y v − Xvβ̂m || is minimal (β̂m is the least squares
estimator for model m computed on the training set). The drawback of this approach
is the need to split data into training and validation sets (it can be a serious problem
when the number of available observations is small). The second variant, which does
not require splitting the data, is based on information criteria. From Lh we select
model m which minimizes the GIC

GIC(m) := − 2l(β̂m) + |m|an, (2)

where l(β̂m) is log-likehood function at β̂m , |m| is the number of parameters inmodelm
and an is penalty. For example an = log(n) corresponds to the Bayesian Information
Criterion (BIC) and an = 2 to the Akaike Information Criterion (AIC). When the
normal distribution of errors is assumed, GIC can be written as

GIC(m) := n log(RSS(m)) + |m|an, (3)

where RSS(m) = ||Y − Xm β̂m ||2 is the residual sum of squares for the model m.
Obviously other criteria are also possible. The drawback of information criteria is that
they can fail when models having number of parameters close to n are fitted. In such
situations GIC usually selects models which are close to the saturated one. Thus when
using information criteria in the second step, the parameter h should be significantly
smaller than n. For example in the simulation experiments, in which p was much
larger than n, we set h = n/2.

It is crucial for the computational cost that in the second step of the procedure fitting
all h nested models from Lh is not necessary. It suffices to fit the largest one, which
makes the second step computationally fast. This follows from the following fact. Let
i1, . . . , ih be the ordering of variables (cut off at level h) given by the RSM procedure.
Let X{i1,...,ih} be a matrix consisting of the h columns of the design matrix X , ordered

123



950 P. Teisseyre et al.

according to i1, . . . , ih . In the following QR decomposition (see e.g., Gentle 2007, p.
182) of matrix X{i1,...,ih} is used. Let

X{i1,...,ih} = Q{i1,...,ih}R{i1,...,ih},

where Q{i1,...,ih} (n × h) is orthogonal matrix, Q�{i1,...,ih}Q{i1,...,ih} = I (I is identity
matrix) and R{i1,...,ih} (h × h) is upper triangular matrix. The following equality holds
for k ∈ {1, . . . , h − 1}

RSS({i1, . . . , ih−k}) = RSS({i1, . . . , ih}) +
k−1∑

l=0

(Q�
h−lY )2. (4)

Observe that in the second step of the procedure it suffices to fit the full model once
and than compute the values of RSS for all models from the nested list using (4). Note
that QR decomposition requires nh2 operations (see e.g. Hastie et al. 2009, p. 93).

Finally let us discuss the computational complexity of the whole RSM procedure.
The cost of the first step is Bn|m|2 as we fit B linear models with |m| parameters each.
The cost of the second step is nh2 as was discussed above. To reduce the computational
cost of the procedure the execution of the first step is parallelized (see Sect. 3 for
details).

3 Implementation

3.1 Package functionality

The main function regRSM constructs a linear regression model for possibly heavily
unbalanced data sets where pmay bemuch larger than n. It usesmethodology outlined
in the previous section, allowing to apply the RSM method (Algorithm 1), WRSM
method (Algorithm 2) and the version with initial screening. It is controlled by the
following parameters:

– y (the response vector of length n),
– x (the input matrix with n rows and p columns),
– yval (the optional response vector from validation set),
– xval (the optional input matrix from validation set),
– m (the size of the random subspace, defaulted to min(n, p)/2),
– B (the number of repetitions in the RSM procedure),
– parallel (the choice of parallelization method),
– nslaves (the number of slaves),
– store_data (to be set to TRUE when function validate.regRSM is used
subsequently),

– screening (percentage of variables to be discarded in the screening procedure),
– initial_weights (whether or not WRSM should be used),
– useGIC (indicates whether GIC should be used in the final model selection),
– thrs [the cut-off level h, see (1)],
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– penalty (the penalty in GIC).

The function returns a list containing the following elements:

– scores (RSM final scores),
– model (the final model chosen from the list given by the ordering of variables
according to the RSM scores),

– time (computational time),
– data_transfer (data transfer time),
– coefficients (coefficients in the selected linear model),
– input_data (input data x and y. These objects are stored only if
store_data=TRUE),

– control (list containing information about input parameters),
– informationCriterion (values of GIC calculated for all models from the
nested list given by the ordering),

– predError (prediction errors on validation set calculated for all models from
the nested list given by the ordering).

When screening and weighted version are used together, screening is performed first
and then the weighted version (WRSM) is used on the remaining variables. The final
model is chosen based on the validation set or the GIC (as indicated by useGIC
parameter, in conjunction with yval and xval). For this purpose the variables are
ordered with respect to the final scores. From the nested list of models, given by the
ordering, the final model is selected (the list is truncated at the level thrs). By default
the model that minimizes the GIC is chosen. If ties occur the model containing the
minimal number of variables is selected. If the validation set is supplied (yval and
xval) and useGIC=FALSE then the final model that minimizes the prediction error
on validation set is selected. Missing values are not allowed in regRSM function. If
there are some missing values in matrix X , the function signals an error and returns
indices of cases with missing values. In the case of multicollinearity, we determine
the set of linearly independent variables A (using QR decomposition) and estimate
parameters only for variables in A .

The package contains also the number of auxiliary functions:

– validate—This function selects the final model for another, user provided vali-
dation set based on the original RSMfinal scores. To use the function, the argument
store_data in the ‘regRSM’ object must be TRUE. The function uses final
scores from ‘regRSM’ object to create a ranking of variables. Then the final model
which minimizes the prediction error on specified validation set is chosen. Object
of class ‘regRSM’ is returned. The final scores in the original ‘regRSM’ object
and in the new one coincide. However the final models can be different as they are
based on different validation sets.

– plot—This function produces a plot showing the values of the GIC (or prediction
errors on validation set) against the number of variables included in the model.

– ImpPlot—This function produces a dot plot showing final scores from the RSM
procedure. Final scores describe importances of explanatory variables.

– predict—This function makes a prediction for new observations. Prediction is
based on a final model which is chosen using validation set or GIC.
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– roc—This function produces ROC-type curve for ordering and computes the
corresponding area under the curve (AUC)parameter. Let i1, . . . , i p be the ordering
of variables given by the RSM procedure. Let t be the set of relevant variables
(i.e., variables whose corresponding coefficients are nonzero), |t | its cardinality
and tc its complement. ROC-type curve for the ordering is defined as:

ROC(s) := (FPR(s), T PR(s)), s ∈ {1, . . . , p},

where

FPR(s) := |t̂(s) \ t |
|tc| ,

T PR(s) := |t̂(s) ∩ t |
|t |

and t̂(s) := {i1, . . . , is}.
This function is useful for the evaluation of the ranking produced by the RSM
procedure when the set of significant variables t is known (e.g., in the simulation
experiments on artificial datasets). When AUC is equal one it means that all signif-
icant variables, supplied by the user in argument truemodel, are placed ahead
of the spurious ones on the ranking list. A similar idea of ranking evaluation is
described in Cheng et al. (2014, Section 4).

– print, summary—These functions print out information about the selection
method, screening, initial weights, version (sequential or parallel), size of the
random subspace, number of simulations.

3.2 Package demonstration

In this section we illustrate the usage of regRSM package step by step using popular
real dataset Boston Housing (Lichman 2013), containing 505 observations and 14
variables, including response variable MEDV, which denotes median value of owner-
occupied homes given in 1000$’s. The goal is to predict MEDV based on some variables
describing houses. The detailed description of the dataset can be found at http://
archive.ics.uci.edu/ml/datasets/Housing. To make the task more challenging, we add
100 additional noise variables drawn from standard normal distribution, which are not
correlated with the response variable:

R> for(j in 1:100){
R> data <- cbind(data , rnorm(nrow(data )))
R> }
R> names(data )[15:114] <- paste("noise", 1:100)

Then we split date into training (400 observations) and validation (105 observations)
sets:

R> set.seed (1)
R> samp <- sample (1: nrow(data), 400)
R> train <- data[samp , ]
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R> valid <- data[-samp , ]

Now we can use RSM procedure on training data:

R> model1 <- regRSM(MEDV~., data = train)

By default the final model is chosen using GIC. To see the final scores, please type

R> model1$scores

and to get basic information about the procedure type

R> summary(model1)

Model summary:

Selection method: Generalized Information
Criterion Screening: no
Initial weights: no
Version: sequential
Subspace size: 56
Number of simulations: 1000

It is seen that the number of repetitions B is set to 1000. Use a predict method to
obtain predictions on independent validation set:

R> predict(model1 , as.matrix(valid[, -14]))

We can plot the values of GIC as a function of the number of variables by using the
plot method:

R> plot(model1)

The curve generated by the plot is given in Fig. 3a. The final model contains 12
variables:

R> model1$model

13 6 11 8 5 1 10 4 3 2 9 12

Alternatively, the final model can be chosen using validation set, which should be
provided as an additional argument in regRSM function:

R> model2 <- regRSM(x=as.matrix(train[, -14]),
y = train[, 14],
yval = valid[, 14],
xval = as.matrix(valid[, -14]))

In this case the final model contains 15 variables:

R> model2$model

13 6 11 8 5 3 10 1 4 9 2 7 12 103 62
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Fig. 3 Generalized Information Criterion (a) and prediction error on validation set (b) as functions of
number of variables

When the final scores are already computed, we can also use validate function to
select the final subset of variables without recomputing the scores, which is obviously
much faster:

R> model2 <- validate(model1 ,
yval = valid[, 14],
xval = as.matrix(valid[, -14]))

For model2, the plot method gives prediction error on validation set as a function
of the number of variables (see Fig. 3b). The weighted version of RSM (WRSM) is
called when init_weights=TRUE:

R> model3 <- regRSM(MEDV~., data = train ,
init_weights = TRUE)

Finally, we can visualize final scores corresponding to RSM (model1) and WRSM
(model3) by using ImpPlot method:

R> ImpPlot(model1)
R> ImpPlot(model3)

The resulting charts (shown for the selected variables) given in Fig. 4a, b indicate
that LSTAT variable (% lower status of the population) is recognized as the most
significant one by both variants (this variable has also the highest absolute value of the
t-statistic when standard linear regression model is fitted on data without additional
noise variables).On the other hand, the orderings of the remaining variables are slightly
different for these two variants of RSM.

3.3 Parallel implementation

The main function regRSM performs RSM using methodology outlined in the previ-
ous section. The default value parallel=NO corresponds to the sequential version.
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Fig. 4 Final scores of variables obtained using RSM (a) and WRSM (b)

This option is provided because it is very inefficient to use parallelization on a single
processor machine with one core. If hardware for a parallel execution is available,
one can choose one of the two parallel versions of the algorithm implemented in the
package:

(1) using MPI framework (based on package Rmpi), option parallel=MPI,
(2) using process forking (based on package doParallel), option

parallel=POSIX.

The execution of themost time consuming step 2 of the RSM algorithm is parallelized.
To use the parallel processing, one needs to set the parameter nslaves (with default
value 4) that indicates how many parallel tasks of partial model building are to be
executed.

In order to use parallel=MPI option, installation of MPI framework and Rmpi
package (Hao 2002) are required. A guideline for installingMPI onmultiple machines
under Ubuntu is given in the “Appendix”. Rmpi is a wrapper of MPI written in R
language. The main advantage of this wrapper is that writing R programs usingMPI is
much easier and possible even for non-programmers. The optimal value of nslaves
under MPI is the number of computing cores of all machines configured in MPI
framework. Note that after execution of the regRSM function, it is necessary to close
MPI framework by calling mpi.close.Rslaves() function. Function regRSM
does not close the MPI framework itself because of efficiency issues as creation of
slaves is usually very time consuming. For example if one would like to execute
regRSMmultiple times in a row (e.g., for different datasets or with different settings),
the command mpi.close.Rslaves() should be used after the last execution of
regRSM. In this way the process ofMPI initializationwill be executed only once. Next
parallel call will reuse existing slave processes. In order to change the number of slaves,
MPI needs to be terminated (using command mpi.close.Rslaves()), and only
then one can call function regRSM with new value of the parameter nslaves.
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The other parallelization option (parallel=POSIX) does not require any pre-
installed software except for the R package doParallel (Revolution Analytics
and Weston 2013). The limitation of this parallel mode is that the execution can be
performed on one single logical machine only. POSIX uses OpenMP like parallel
implementation. The parallel execution is handled by doParallel library. The
optimal value of nslaves is the number of processor cores in a machine. In contrast
to MPI option, there is no need to shut down the workers (slaves) because the workers
will cease to operate if the master R session is completed (or its process dies).

The internal implementations of both parallelization options differ in the way how
the parallel processes of variable selection, partial model building and variable eval-
uation are created and synchronized. The POSIX path delegates the processing of
parallelism to the operating system. The MPI path requires elaboration of the proper
sequence of messages for starting new slaves, assigning tasks to them, taking over the
results and for task reassignment.

In the case of parallel=MPI the Algorithm 1 is replaced by the Algorithm 3
below.

Algorithm 3 (MPI parallelization procedure)

1. Input (for Master): observed data (Y, X), a number of subset draws B, a size of
the subspace |m| < min(p, n).

2. Master: send observed data (Y, X) and parameter |m| to each slave.
3. Master: Compute task_number=B/nslaves.
4. Master: Send task_number to each slave as their Blocal except for the last one

which gets remaining number of tasks B-task_number*(nslaves-1) as its
Blocal .

5. Slave: Repeat the following procedure for k = 1, . . . , Blocal startingwithClocal
i,0 =

0 for any variable i .
– Randomly draw a subset of variables m∗ (without replacement) from the orig-
inal variable space with the same probability for each variable.

– Fit model to data (Y, Xm∗) and compute weightw(i,m∗) ≥ 0 for each variable
i ∈ m∗. Set w(i,m∗) = 0 if i /∈ m∗.

– Update the counter Clocal
i,k = Clocal

i,k−1 + I {i ∈ m∗}.
6. Slave: For each variable i compute the partial sum

Slocali =
∑

m∗:i∈m∗
w(i,m∗).

7. Slave: send vectors (Slocal1 , . . . , Slocalp ) and (Clocal
1,Blocal , . . . ,C

local
p,Blocal ) to theMaster.

8. Master: Compute final scores:

W ∗
i =

∑
slaves S

local
i∑

slaves C
local
i,Blocal

.

9. Master: Sort the list of variables according to scores W ∗
i : W

∗
i1

≥ W ∗
i2

· · · ≥ W ∗
i p
.

10. Output: Ordered list of variables {i1, . . . , i p}.
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Fig. 5 Block diagram of the parallel version of RSM procedure

In the case of parallel=POSIX the algorithm is executed in an analogous way
with the difference that the observed data (Y, X), the number of subset draws B, the
size of the subspace |m| < min(p, n) are shared (in common addressing memory
space) by the master (in POSIX language: parent) and slaves (in POSIX language:
children). Secondly, in this version there is also no explicit message communication.
The above features are two main advantages over MPI version when only one logical
machine is available. Experimental results comparing MPI and POSIX versions on
single machine are shown in the next section. Figure 5 shows a block diagram of the
parallel algorithm.

When callingregRSMwith parallel=MPI or parallel=POSIX options, the
software will check for presence of the Rmpi or doParallel packages. If they are
not installed, the regRSMwill not be executed and an error message will be displayed.

4 Efficiency

A series of experiments was performed evaluating practical efficiency of the algorithm
and its parallelization. The experiments were performed under different parallelization
settings: POSIX and MPI for two different hardware settings:

(1) one physical computer with 16 cores (4× 4 core processor Intel(R) Xeon(R) CPU
X7350 @ 2.93 GHz), 64 GB RAM, Open RTE 1.4.3 mpi, R 3.0.1, Ubuntu 12.04
LTS

(2) four physical computers with 4 cores each (4 core processor Intel(R) Core(TM)
i7-2600 CPU @ 3.40 GHz), 16 GB RAM (12 GB for VM) each, Open RTE 1.7.3
mpi, R 3.0.2, Ubuntu 12.04 LTS on Oracle VM VirtualBox
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Fig. 6 Execution time (a) and speedup (b) versus log(B) (decimal logarithm) for MPI parallel version and
hardware setup (1)

In the experiments, the number of slaves varies from 1 to 16. For each number of
slaves, computational times are averaged over 5 simulation trials.

In the first experiment, an artificial dataset containing n = 400 cases and p =
1000 explanatory variables was generated. We set |m| = min(n, p)/2 = 200. We
investigated how the computational time depends on the number of simulations B.
Figures 6 and 7 show the execution times and speedups against log(B) for hardware
setting (1). Observe that in this case the speedups for POSIXversion (Fig. 7b) are larger
than for MPI version (Fig. 6b) which makes POSIX version faster. Figure 8 shows the
execution times and speedups against log(B) for hardware setup (2). Observe thatMPI
version is faster on hardware setup (2) than on setup (1) and is faster than difference
in processor frequencies (3.40 vs 2.93 GHz).

In the second experiment we study how the computational time depends on the
data size. We set B = p = 10,000 and change n = 100, 200, . . . , 1000. We set again
|m| = min(n, p)/2. Figures 9 and 10 show the execution times and speedups versus n
for hardware setting (1) and (2), respectively. For both settings,we can see a breakdown
of performance when n > 600. This is caused by specific configurations of memory
swapping schedules in operating systems. Swapping schedule for hardware setting
(1) is more rigorous than for setting (2). Unfortunately this configuration could not
be changed. Hardware setting (2), which is based on several physical machines, was
able to recover from this downgrade of performance, even when running on a virtual
machine and not on a real physical hardware. Here we can see the main advantage
of using MPI on different physical machines instead of the single one, which is not
possible with POSIX version. In Figs. 6 and 8 we can also observe a slight decrease
of performance for hardware setting (2) and n = 1000, whereas the performance for
setting (1) is constant (except for 16 slaves). The decrease is again caused by lack of
memory for hardware setting (2) due to its more limited memory (4 × 12 GB vs 64
GB).

The observed effects of parallelization seem to be satisfactory. The speedup is not
linear with respect to the number of slaves as for MPI overheads occur due to transfer
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Fig. 7 Execution time (a) and speedup (b) versus log(B) (decimal logarithm) for POSIX parallel version
and hardware setup (1)
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Fig. 8 Execution time (a) and speedup (b) versus log(B) (decimal logarithm) for MPI parallel version and
hardware setup (2)

of the complete data set andMPI-start-ups.Moreover, there are some other taskswhich
are executed in a sequential way. MPI version on four PC with one processor is faster
tan on one server with four processors. This gives us a cheaper solution for speeding
up our algorithm.

5 Application examples

5.1 Artificial data example

In this section we study performance of the RSM and the WRSM. We focus on the
case n < p. First we present the results of experiments on artificial datasets. Let t
be the set of relevant variables (i.e., variables whose corresponding coefficients in
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Fig. 9 Execution time (a) and speedup (b) versus n for MPI parallel version and hardware setup (1)
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Fig. 10 Execution time (a) and speedup (b) versus n for MPI parallel version and hardware setup (2)

the model are nonzero), |t | its cardinality and βt be a subvector of β corresponding
to t . Table 1 shows parameters of the considered models. The majority of models
are chosen from the examples available in the literature to represent wide variety
of structures. Models (M1)–(M4) are considered in Zheng and Loh (1997), models
(M5) and (M6) in Huang et al. (2008), model (M7) in Shao and Deng (2012), and
model (M8) in Chen and Chen (2008). The last two examples are included in order to
consider models with significantly larger number of relevant variables. The rows of
X are generated independently from the standard normal p-dimensional distribution
with zero mean and the covariance matrix with (i, j)th entry equal ρ|i− j |. This type of
AR(1) dependence, used for models (M1)–(M8) in the original papers, is frequently
considered in the literature devoted to model selection in linear models. We set ρ =
0.5 which corresponds to moderate dependence between variables. The outcome is
Y = Xtβt + ε, where ε has zero-mean normal distribution with covariance matrix
σ 2 I . As in the original papers, we set σ = 1 for all models except models 5 and
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Table 1 Models summary

Model |t | t βt

1 1 {10} (0.2)

2 3 {2, 4, 5} (1, 1, 1)

3 10 {2k + 7 : k = 3, . . . , 12} (1, . . . , 1)

4 5 {k2 : k = 1, . . . , 5} (1, . . . , 1)

5 15 {1, . . . , 15} (2.5, . . . , 2.5, 1.5, . . . , 1.5, 0.5, . . . , 0.5)

6 15 {1, . . . , 5, 11, . . . , 15, 21, . . . , 25} (2.5, . . . , 2.5, 1.5, . . . , 1.5, 0.5, . . . , 0.5)

7 20 {1, . . . , 20} (1.1, 1.2, . . . , 3)

8 8 {1, . . . , 8} (0.7, 0.9, 0.4, 0.3, 1, 0.2, 0.2, 0.1)

9 50 {1, . . . , 25, 51, . . . 75} (0.5, . . . , 0.5)

10 50 {1, . . . , 25, 51, . . . 75} (1, . . . , 1)

6 for which σ = 1.5. We use the following values of parameters: the number of
observations n = 200, the number of variables p = 1000, the number of repetitions
in the RSM B = 1000, the subspace size |m| = min(n, p)/2 = 100, the cut-off level
h = min(n, p)/2 = 100. The experiments are repeated L = 500 times. In the first
step the RSM/WRSM is used to obtain the ranking list of variables, in the second step
BIC is used to select the final model as described in Sect. 2. The proposed methods are
compared with the lasso (Tibshirani 1996), CAR scores (Zuber and Strimmer 2011)
and univariate method. To make the comparison with RSM/WRSM fair, the penalty
parameter for lasso is chosen using BIC. This approach was described in Zhang et al.
(2012) and Fan and Tang (2013). We also tested cross-validation for choosing penalty
parameter in lasso. The results were slightly worse than for BIC and thus they are
not presented in the tables. For CAR scores we use BIC to select the model. In the
univariatemethod (UNI, sometimes calledmarginal regression) the prediction strength
of each variables is evaluated individually. Here, for each variable i ∈ {1, . . . , p} we
compute squared value of its t-statistic based on a simple univariate regression model.
Then the variables are ordered with respect to the squared t-statistics and the same
procedure on hierarchical list of models as in the RSM is performed.

Let t̂ denote the model selected by a given method. As the measures of performance
we use the following indices:

– true positive rate (TPR): |t̂ ∩ t |/|t |,
– false discovery rate (FDR): |t̂ \ t |/|t̂ |,
– prediction error (PE) equal to root mean squared error computed on independent
dataset having the same number of observations as the training set.

The above measures are averaged over L = 500 simulations. Observe that TPR
calculates a fraction of correctly chosen variables with respect to all significant ones
whereas FDR measures a fraction of false positives (selected spurious variables) with
respect to all chosen variables. TPR = 1 means that all significant variables are
included in the chosen model. FDR = 0 means that no spurious variables are present
in the final model.
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Table 2 Mean values of 100 × PE/min(PE) based on 500 simulation trials

Model |t| lasso RSM WRSM UNI CAR Min

1 1 130.06 112.50 111.79 110.80 111.85 UNI

(0.634) (0.523) (0.836) (0.472) (0.496)

2 3 105.43 100.34 110.61 100.26 100.31 UNI

(0.27) (0.073) (0.565) (0.068) (0.069)

3 10 115.88 100.52 108.03 102.08 101.32 RSM

(0.543) (0.101) (0.535) (0.291) (0.258)

4 5 111.72 100.36 109.63 100.52 100.40 RSM

(0.462) (0.054) (0.53) (0.089) (0.069)

5 15 109.36 114.75 102.03 118.43 117.67 WRSM

(0.513) (0.812) (0.311) (0.941) (0.895)

6 15 112.68 125.33 101.04 129.83 127.94 WRSM

(0.606) (1.14) (0.183) (1.252) (1.214)

7 20 119.14 122.21 100.75 139.89 133.59 WRSM

(0.629) (1.908) (0.228) (3.258) (2.637)

8 8 106.96 100.96 114.95 100.62 100.61 CAR

(0.362) (0.154) (0.525) (0.101) (0.099)

9 50 121.67 115.98 102.85 144.62 132.96 WRSM

(0.918) (1.112) (0.362) (1.717) (1.529)

10 50 130.09 156.73 101.64 225.23 196.56 WRSM

(1.279) (3.277) (0.397) (4.744) (4.326)

Standard deviations of means are provided in brackets

Table 2 shows values of 100×PE/min(PE) averaged over 500 simulations, where
min(PE) is the minimal value of prediction error of 5 considered methods. The last
column pertains to the method for which PE was minimal. It is seen that for 5 models
theWRSMoutperforms all other competitors with respect to PE. Table 3 shows values
of TPR; the last column pertains to the method for which the maximal TPR is attained.
Observe that in themajority ofmodels, TPR for the lasso is close to one,which indicates
that lasso selects most relevant variables. However, the differences between the lasso
and the WRSM are negligible. Table 4 shows values of FDR; the last column pertains
to the method for which the minimal FDR is obtained. Here, the WRSM outperforms
other methods in the four out of ten cases. Table 5 contains information about sizes of
chosen models: RSM usually selects much smaller models than lasso.

The clear advantage of the WRSM over other methods can be seen for models with
large number of relevant variables (e.g., 7, 9, 10). For these models, the significant
variables are usually placed on the top of the ranking list when the WRSM is used. It
is not necessarily the case for other methods. For example in the case of model 7, the
position of the last relevant variable in the ranking list (averaged over simulation trials)
is: 20 (lasso), 64.76 (RSM), 20 (WRSM), 124.88 (UNI), 99.68 (CAR). This indicates
that for the lasso and the WRSM, all relevant variables are placed ahead of spurious
ones in all simulations. On the other hand in some situations (usually for models with
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Table 3 Mean values of true positive rates (TPR) based on 500 simulation trials

Model |t | Lasso RSM WRSM UNI CAR Max. TPR

1 1 0.785 0.570 0.310 0.575 0.575 Lasso

(0.03) (0.035) (0.033) (0.035) (0.035)

2 3 1.000 1.000 1.000 1.000 1.000 All

(0) (0) (0) (0) (0)

3 10 1.000 1.000 1.000 0.998 0.998 Lasso, RSM, WRSM

(0) (0) (0) (0.001) (0.001)

4 5 1.000 1.000 1.000 1.000 1.000 All

(0) (0) (0) (0) (0)

5 15 0.993 0.811 0.986 0.786 0.791 Lasso

(0.001) (0.005) (0.002) (0.005) (0.005)

6 15 0.989 0.747 0.981 0.727 0.737 Lasso

(0.002) (0.005) (0.002) (0.005) (0.005)

7 20 1.000 0.979 1.000 0.962 0.968 Lasso, WRSM

(0) (0.002) (0) (0.003) (0.003)

8 8 0.858 0.838 0.702 0.831 0.834 Lasso

(0.006) (0.005) (0.007) (0.005) (0.005)

9 50 0.998 0.918 0.954 0.840 0.876 Lasso

(0.001) (0.003) (0.003) (0.005) (0.005)

10 50 1.000 0.951 0.992 0.881 0.910 Lasso

(0) (0.003) (0.001) (0.006) (0.005)

Standard deviations of means are provided in brackets

small number of significant variables, e.g., 2, 4, 8) the WRSM have quite large FDRs
compared to other methods. In these cases, the relevant variables are also placed on the
top of the ranking list (TPRs are close to one) but the Bayesian Information Criterion
used in the second step selects too many spurious variables to the final model. As this
behaviour occurs for small values of |t | the number of false positives is also small in
absolute terms, however.

There is also an important difference between the RSM and the WRSM. Consider
spurious variables which are strongly correlated with the relevant ones (e.g., variable
1, 3, 6 in model 2). In the case of the RSM, such variables are usually placed right
behind relevant ones in the ranking list. The top 10 variables for the RSM and model
2 (determined for one example simulation) are:

4, 5, 2, 3, 6, 1, 778, 767, 423, 519

(the significant variables are in bold). On the other hand, for the WRSM, spurious
variables correlated with relevant ones (thus correlated also with the response) are usu-
ally drawn together with relevant variables. Therefore they are assigned smallweights
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Table 4 Mean values of false discovery rates (FDR) based on 500 simulation trials

Model |t | Lasso RSM WRSM UNI CAR Min. FDR

1 1 0.996 0.935 0.946 0.925 0.930 UNI

(0) (0.005) (0.009) (0.006) (0.005)

2 3 0.223 0.035 0.643 0.059 0.050 RSM

(0.015) (0.006) (0.014) (0.007) (0.007)

3 10 0.374 0.316 0.348 0.396 0.365 RSM

(0.009) (0.008) (0.014) (0.007) (0.008)

4 5 0.344 0.060 0.506 0.135 0.091 RSM

(0.014) (0.009) (0.014) (0.012) (0.011)

5 15 0.202 0.164 0.213 0.181 0.167 RSM

(0.008) (0.012) (0.011) (0.014) (0.013)

6 15 0.247 0.240 0.150 0.246 0.252 WRSM

(0.008) (0.015) (0.011) (0.015) (0.014)

7 20 0.203 0.273 0.026 0.342 0.315 WRSM

(0.007) (0.015) (0.006) (0.016) (0.016)

8 8 0.154 0.065 0.605 0.047 0.053 UNI

(0.011) (0.008) (0.012) (0.006) (0.007)

9 50 0.639 0.222 0.188 0.257 0.243 WRSM

(0.01) (0.007) (0.007) (0.008) (0.008)

10 50 0.463 0.308 0.193 0.333 0.319 WRSM

(0.01) (0.008) (0.008) (0.008) (0.01)

Standard deviations of means are provided in brackets

w(i,m∗) and consequently have smaller final scores. The top 10 variables for the
WRSM and model 2 (determined for one example simulation) are:

2, 4, 5, 423, 442, 514, 601, 441, 263, 745

(the significant variables are in bold).
We also analyse the effect of the subspace size in our method. We run the experi-

ments with different subspace sizes |m| ∈ {1, 5, 25, 50, 75, . . . ,min(n, p) − 1}. Let
PE(|m|), T RP(|m|), FDR(|m|) and LEN (|m|) be respectively: the prediction error,
the true positive rate, the false discovery rate and the length of the chosen model, for a
given subspace size |m|. Let |mdef | = min(n, p)/2 = 100 be the default subspace size
used in all experiments and also recommended in Mielniczuk and Teisseyre (2014).
Table 6 shows the ratio of the performance measure for |mdef | to the performance
measure corresponding to the optimal subspace size. Value 1 means that the perfor-
mance measure is optimal for |mdef |. Observe that we obtain the smallest prediction
errors for |mdef | in the case of 6 models. This additionally confirms the validity of
our choice.
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Table 5 Mean values of model sizes based on 500 simulation trials

Model |t | Lasso RSM WRSM UNI CAR Min. size

1 1 221.295 11.540 11.705 9.415 10.375 UNI

(0.457) (0.361) (0.989) (0.293) (0.297)

2 3 4.205 3.215 11.025 3.285 3.255 RSM

(0.11) (0.031) (0.429) (0.032) (0.032)

3 10 16.600 15.135 16.900 17.255 16.190 RSM

(0.258) (0.196) (0.389) (0.22) (0.207)

4 5 8.335 5.420 12.585 6.065 5.685 RSM

(0.208) (0.077) (0.402) (0.122) (0.098)

5 15 19.035 15.540 19.870 15.430 15.190 CAR

(0.207) (0.362) (0.348) (0.418) (0.39)

6 15 20.300 16.145 18.225 16.030 16.400 UNI

(0.228) (0.48) (0.308) (0.473) (0.459)

7 20 25.590 30.290 20.660 33.470 31.935 WRSM

(0.257) (0.907) (0.195) (1.012) (1.019)

8 8 8.405 7.330 16.840 7.105 7.190 WRSM

(0.164) (0.116) (0.541) (0.083) (0.091)

9 50 155.550 60.315 59.480 58.655 59.605 UNI

(2.869) (0.73) (0.632) (1.013) (0.932)

10 50 101.120 70.975 62.825 68.955 69.665 WRSM

(1.944) (0.991) (0.73) (1.143) (1.218)

Standard deviations of means are provided in brackets

Table 6 Ratio of the performancemeasure for the default subspace size |mdef | to the performancemeasure
corresponding to the optimal subspace size

Model

1 2 3 4 5 6 7 8 9 10

PE(|mdef |)
min|m| PE(|m|) 1.13 1.00 1.00 1.00 1.00 1.00 1.03 1.00 1.02 1.12

T PR(|mdef |)
max|m| T PR(|m|) 0.92 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.99 0.99

FDR(|mdef |)
min|m| FDR(|m|) 1.03 1.33 1.19 2.09 1.26 1.27 1.15 1.00 1.04 1.02

LEN (|mdef |)
min|m| LEN (|m|) 1.28 1.01 1.08 1.04 1.08 1.12 1.10 1.00 1.03 1.04

5.2 Real data example

The algorithms are also compared on real high-dimensional dataset described in
Hannum et al. (2013). The dataset is available at http://www.ipipan.eu/~teisseyrep/
SOFTWARE. In the dataset, there are 657 observations representing individuals, aged
19–101 and473,034variables representingmethylation states ofCpGmarkers.Methy-
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lation was recorded as a fraction between zero and one, representing the frequency of
methylation of a given CpG marker across the population of blood cells taken from a
single individual. To estimate the prediction error (PE) we use 3-fold cross-validation.
To reduce the dimensionality we select 15% of variables that are most correlated
with the response for each cross-validation split. We build models using the remaining
70,955 variables. As a baseline we use naive method for which the prediction is a
sample mean of the response calculated on the training set. For the RSM, the WRSM,
CAR and univariate method (UNI), the final model is chosen using BIC or the vali-
dation set. In the latter case, the validation set is separated from the training part in
such a way that 50% of observations are used to build a model and the remaining
50% for validation. In the case of the lasso, the final model is selected using cross-
validation. For the RSM and the WRSM we use the following values of parameters:
number of repetitions B = 2000, subspace size |m| = min(n, p)/2, cut-off level
h = min(n, p)/2.

Table 7 shows the prediction errors and the sizes of selected models averaged over 3
cross-validation splits. The value in bold pertains to the minimal value in each column.
Observe that for all methods there is a significant improvement over the naive method.
Note that for the lasso we obtain larger prediction errors and much larger models than
for other considered models. When the final model is chosen using BIC, we get the

Table 7 Results for 3-fold
cross-validation

Method PE (BIC) |t̂ | (BIC) PE (VAL) |t̂ | (VAL)
RSM 6.45 10 6.85 44.33

WRSM 6.59 28.33 6.92 22.33

CAR 6.55 10.66 6.79 21.33

UNI 6.69 14.66 7.08 27.33

Lasso 7.69 189.33 7.69 189.33

Naive 14.75 1 14.75 1
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Fig. 11 Prediction errors with respect to the number of variables included in the model (a). Prediction
errors with respect to the subspace size |m| for RSM (b)
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smallest error for the RSM (see the first column). When the selection is based on
validation set, CAR method is a winner (see the third column).

Figure 11a shows prediction errors (averaged over 3 folds) with respect to the
number of variables included in the model. Observe that when the number of variables
included in the final model is sufficiently large, the prediction errors for theWRSMare
smaller than for competitive models. Figure 11b shows prediction errors with respect
to the subspace size |m| for RSM. The vertical line corresponds to the default subspace
size.

Table 8 shows rankings of top 50 variables obtained using considered methods.
As in the original paper (Hannum et al. 2013), lasso was used to assess the rele-
vance of the variables, we compare rankings obtained by RSM, WRSM, CAR and
UNI with the one based on lasso. RL in Table 8 denotes a position of the given vari-
able in the ranking based on lasso (empty space means that the given variable is not
ranked in top 50 variables by lasso). Note that the rankings, corresponding to consid-
ered methods, are not fully concordant, which may be valuable in biological research
as some new relevant variables can be potentially discovered. It is seen that 6 vari-
ables, recognized as the most significant ones by lasso are also ranked on the top
6 positions by RSM and WRSM. It is interesting that cg08097417 is the second
most important variable according to RSM/WRSM (and the most important variable
according to CAR), whereas it is placed on 6th position by lasso. Finally, observe that
cg14361627 (4th position according to lasso and RSM) is not recognized as very
relevant variable by UNI, which may suggest that this variable is relatively weakly
correlated with the response but becomes useful when considered jointly with other
variables.

6 Summary

In this paper we presented a novel variants of RSM as well as an implementation
in R package regRSM. The method does not impose any conditions on the num-
ber of candidate variables. The underlying algorithms are discussed. The first step
in our procedure is based on fitting linear models on small randomly chosen subsets
of variables and thus it allows for parallelization. Two versions of parallel imple-
mentation are presented. Moreover other improvements of the original method are
introduced, including an initial screening of variables and their weighting in the sam-
pling process. The article presents the empirical evaluation of our implementation
including: its efficiency in identifying the significant variables, its prediction power
and acceleration of the processing due to parallel implementations. The method and
its weighted variant compare well with other methods tailored to the high-dimensional
setup (like lasso or CAR scores) and is amenable to parallelization under various hard-
ware settings (single and multiple physical machines) and parallel softwares (MPI,
POSIX).
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Appendix

Installing MPI for multiple machines

In the following we give some guidelines how to install and configure MPI framework
on multiple machines. MPI configuration on multiple machines is straightforward.
Each machine must be connected to the main machine (master). While using Rmpi
package we must remember that it works a little bit different than typical C MPI
application. Usually master process transfers through MPI the whole application and
replicates it on available slots (slaves). Rmpi uses existing R installation, so on each
machine all required packages must be installed. Only R source code and data are
transferred. We present the required steps under Ubuntu operating system (we use
Ubuntu 12.04 LTS version). To install Open MPI on Ubuntu type:

sudo apt -get install libopenmpi -dev openmpi -bin

On Ubuntu with installed Open MPI and R one may just run R and type:

R> install.packages("Rmpi")

Consider a case whenwe have several (2 ormore) machines with Ubuntu 12.04 LTS
operating system, R 3.0, Rmpi and regRSM installed and all machines are connected
to the same network. Moreover let’s assume we have one network card which is
mapped to eth0. With command ifconfig we can check what IP addresses our
machines have. For simplicity, to avoid changing the configuration, we assign a static
address to each machine. In our network we have 4 PCs with 4 core processor each.
We give them the following names and IP addresses:

node09: 10.200.1.159
node08: 10.200.1.158
node07: 10.200.1.157
node06: 10.200.1.156

We create text file with IP and number of slots in each line. Slot is an instance of
our application working in a slave mode. For example if we have a line 127.0.0.1
slots=4 then on our machine (localhost) MPI should run up to 4 slave processes.
If we request more slaves than slots then there will be oversubscription of the node
and the performance can drop. We can limit the number of slots to 4 by changing the
line to 127.0.0.1 slots=4 max_slots=4. In this case request on more than
4 processes on this node will result in an error. While setting hard limits one should
remember that the total number of processes created by Rmpi package is equal to the
number of slaves plus one (master process). For example if we want each computer
to run 4 parallel tasks then we assign 4 slots to each machine. Example of our hostfile
myhosts:
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10.200.1.159 slots = 4
10.200.1.157 slots = 4
10.200.1.158 slots = 4
10.200.1.156 slots = 4

We run MPI application by executing:

mpiexec -n <no_of_program_copies > -hosts
<file_with_hosts > <program_name >

Parameter -n can be misleading when working with Rmpi package. We want to
start one R instance on which we run our experiment. Thus this value should be set
to 1. To give Rmpi our hostfile just run command: mpiexec -n 1 -hostfile
myhosts R --no-save which means we run one Rscript process with given
hostfile for MPI configuration. In R terminal we type:

R> library("Rmpi")

library("Rmpi")

R> mpi.spawn.Rslaves ()

mpi.spawn.Rslaves ()
16 slaves are spawned successfully. 0 failed.

master (rank 0 , comm 1) of size 17 is running
on: node09
slave1 (rank 1 , comm 1) of size 17 is running
on: node09
slave2 (rank 2 , comm 1) of size 17 is running
on: node09
slave3 (rank 3 , comm 1) of size 17 is running
on: node09
... ... ...
slave15 (rank 15, comm 1) of size 17 is running
on: node06
slave16 (rank 16, comm 1) of size 17 is running
on: node09

The above lines indicate that all MPI processes have been launched successfully.
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