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Abstract The non-parametric estimation of average causal effects in observational
studies often relies on controlling for confounding covariates through smoothing
regression methods such as kernel, splines or local polynomial regression. Such regres-
sion methods are tuned via smoothing parameters which regulates the amount of
degrees of freedom used in the fit. In this paper we propose data-driven methods
for selecting smoothing parameters when the targeted parameter is an average causal
effect. For this purpose, we propose to estimate the exact expression of the mean
squared error of the estimators. Asymptotic approximations indicate that the smooth-
ing parameters minimizing this mean squared error converges to zero faster than
the optimal smoothing parameter for the estimation of the regression functions. In
a simulation study we show that the proposed data-driven methods for selecting the
smoothing parameters yield lower empirical mean squared error than other methods
available such as, e.g., cross-validation.

Keywords Causal inference · Double smoothing · Local linear regression

1 Introduction

In observational studies where the interest lies in estimating the average causal effect
of a binary treatment z on an outcome of interest y, non-parametric estimators are
typically based on controlling for confounding covariates x with smoothing regres-
sion methods (kernel, splines, local polynomial regression, series estimators; see, e.g.,
the reviews by Imbens 2004, and Imbens and Wooldridge 2009). A useful modeling
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framework in this context was introduced by Neyman (1923) and Rubin (1974), where
in particular two potential outcomes are considered for each unit in the study, the out-
come that would be observed if the unit is treated, y(1), and the outcome that would be
observed if the unit is not treated, y(0). The causal effect at the unit level is defined as
y(1)− y(0). Population parameters are targeted by the inference, and we focus here on
average causal effects of the type E(y(1)− y(0)), where the expectation is taken over a
given population of interest. Inference on such expectations is complicated by the fact
that the two potential outcomes are not observed for all units in the sample (missing
data problem) and assumptions, e.g., on the missingness mechanism must be made in
order for the parameter of interest to be identified. In this paper, we consider situations
described in Sect. 2, where the causal effect conditional on an observed covariate x (or a
score function summarizing a set of observed covariates), E(y(1) | x)−E(y(0) | x), is
identified and can be estimated by fitting two curves, functions of x , E(y(1) | x, z = 1)

and E(y(0) | x, z = 0) non-parametrically. An estimate of the targeted average causal
effect is obtained by averaging the estimated curves over the relevant distribution for x
to target E(y(1)− y(0)) = E(E(y(1) | x))− E(E(y(0) | x)), where the missing out-
comes are imputed by predictions from the fitted curves. A tuning parameter for each
fitted curve is used to regulate the smoothness of the fit. Cheng (1994) showed that when
using kernel regression to estimate the average of a curve, say here E(E(y(1) | x)),
with missing y(1) for some units, as described above, then the optimal (in mean squared
error, MSE, sense) smoothing parameter for the estimation of the regression curve
E(y(1) | x, z = 1) is not optimal for the estimation of the average E(E(y(1) | x)).
More precisely the optimal rate of convergence towards zero of the smoothing
parameter (when the sample size increases) is different in both situations, and one
need typically to asymptotically undersmooth E(y(1) | x, z = 1) when targeting
E(E(y(1) | x)). We show in this paper that a similar result holds when using local lin-
ear regression instead of kernel regression, and when two curves (implying the choice
of two tunining parameters), are fitted and then averaged to target E(y(1) − y(0)).

As a main contribution of the paper, we propose a novel data-driven method geared
for selecting the smoothing parameters which minimizes the mean squared error of
non-parametric estimators of the average causal effect. Imbens et al. (2005) also pro-
poses a data-driven method based on the estimation of this mean squared error. The two
estimators are, however, different. While Imbens et al. (2005) estimates an asymptotic
approximation of the population MSE which involves the estimation of the propensity
score, the probability of ending up in one of the treatment groups (say z = 1) given the
covariates, our estimator targets the exact population MSE by using a double smoothing
technique previously used by Härdle et al. (1992) for estimating regression curves and
Häggström (2013) in semi-parametric additive models. Note that Frölich (2005) also
derived asymptotic approximation of MSE to obtain smoothing parameter selectors
although those were outperformed by cross-validation in finite sample simulations.
With simulations we study the finite sample properties of the different data-driven
methods. The results suggest that the cross-validation choice, which is known to be
optimal in MSE sense to estimate smooth curves (Fan 1992), can indeed be improved
by using either Imbens et al. (2005) or our proposal, with the latter often being superior.

In the next section we introduce the potential outcome framework dating back
to Neyman (1923) and Rubin (1974), which allows us to define the parameter of
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interest, the average causal effect, and commonly used identifying assumptions and
estimators. The selection of smoothing parameters is discussed in Sect. 3, where we
present asymptotic results based on the use of local linear regression. We also introduce
in this section a novel data-driven method. Section 4 presents a simulation study. The
paper is concluded in Sect. 5.

2 Model and estimation

2.1 Neyman–Rubin model for causal inference

Suppose we have n units indexed by i = 1, . . . , n. For each unit i a binary treatment
zi is assigned:

zi =
{

1 if unit i receives treatment 1,

0 if unit i receives treatment 0.

Further, each unit i is characterised by two potential outcomes yi (1) and yi (0), where
yi (1) is the response that is observed if the unit is given treatment zi = 1 and yi (0)

the response if the unit is given treatment zi = 0. Only one treatment assignment
is possible for each unit and, therefore, only one of the two potential outcomes is
observed. Denote by yi = yi (0)(1 − zi ) + yi (1)zi the observed outcome. Finally, let
all units have a vector of d background characteristics xi = (xi1, . . . , xid)T (called
covariates). We assume in the sequel that the n units corresponds to a random sample
from the distribution law of the random variables (yi (1), yi (1), zi , xi ), and that only
(yi , zi , xi ) is actually observed. We use the same notation to denote random variables
and their realisations, letting the context make the distinction.

The parameter of interest herein is an average causal effect,

τ = E
(
yi (1) − yi (0)

)
.

If treatment assignment is not randomized, τ is identified if we have available a vector
of covariates xi = (xi1, . . . , xid)T not affected by treatment assignment and such that
the following assumptions hold,

yi (1), yi (0) ⊥⊥ zi |xi ,

often called unconfoundedness assumption, and

0 < Pr(zi = 1|xi ) < 1,

often called overlap assumption. The sign ⊥⊥ is used here to mean “is independent of”
(Dawid 1979). We have unconfoundedness if all covariates affecting both treatment
assignment and the potential outcomes are included in xi . This is a strong assump-
tion which must be based on subject-matter reasoning. A sensitivity analysis to this
assumption is often advocated (e.g., de Luna and Lundin 2014). The assumption of
overlap states that, for a unit with covariate vector xi , the probability of receivingeither
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treatment should be bounded away from 0. This assumption can be investigated empir-
ically (e.g.,Imbens and Wooldridge 2009). Under these assumptions identifiability of
τ is then a consequence of

τ = E
(
yi (1) − yi (0)

)
= E

(
E(yi (1)|xi ) − E(yi (0)|xi )

)
= E

(
E(yi (1)|zi = 1, xi ) − E(yi (0)|zi = 0, xi )

)
= E

(
E(yi |zi = 1, xi ) − E(yi |zi = 0, xi )

)
. (1)

In the sequel we focus on the case d = 1 since when d > 1, the covariate vector xi can
be replaced by a scalar, e.g., p(xi ) = Pr(zi = 1|xi ), the propensity score (Rosenbaum
and Rubin 1983, Hansen 2008). Indeed, Rosenbaum and Rubin (1983) showed that
it is sufficient to condition on the propensity score, i.e., under the above assumptions
we have yi (1), yi (0) ⊥⊥ zi |p(xi ), and 0 < Pr(zi = 1|p(xi )) < 1. In applications
the propensity score need to be modelled and fitted to the data and such situations are
considered in the simulation study of Sect. 4. Typically parametric models are used to
fit the propensity score, although these do not need to be correctly specified as shown
in Waernbaum (2010). Note also that covariate selection procedures may be used to
reduce the dimensionality of xi (Luna et al. 2011).

2.2 Estimating average causal effects

Let β0(xi ) = E(yi |zi = 0, xi ) and β1(xi ) = E(yi |zi = 1, xi ) be unknown smooth
functions, V ar(yi |xi , zi ) = σ 2

ε , i = 1, . . . , n. Note that the assumption of constant
conditional variance could be relaxed without changing in essence the results of this
paper. We consider this assumption to alleviate the notational burden. The non-constant
variance case is further discussed in the concluding section. From (1), we have that

τ = E
(
β1(xi )

) − E
(
β0(xi )

)
.

Thus, a natural way to estimate τ is to first estimate the two regression functions β1(xi )

and β0(xi ), based on the treated and the non-treated, respectively, and then take the
average over all the observed xi s of the differences between the estimated functions.
This estimator of τ is called the imputation estimator in Imbens et al. (2005). They
use series estimators for estimating the regression functions but any smoother, e.g.,
kernel, splines and local polynomial regression (Fan and Gijbels 1996, pp. 14–45),
may be used.

Denote y0 = (y0
1 , . . . , y0

n0
)T and x0 = (x0

1 , . . . , x0
n0

)T the observed response and
covariate for the n0 units with treatment zi = 0, and similarly y1 = (y1

1 , . . . , y1
n1

)T

and x1 = (x1
1 , . . . , x1

n1
)T for the n1 units with treatment zi = 1. The smoothers

cited above are linear in the sense that the corresponding estimator of β j (x) =
(β j (x1), . . . , β j (xn))T , can be written as
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β̂
h j
j (x) = S

h j
j [x]y j , j = 0, 1,

where x = (x0T , x1T )T and S
h j
j [x] the smoothing matrix regressing y j on x j , using

smoothing parameter h j . The imputation estimator of τ mentioned above is

τ̂ imp = 1

n

n∑
i=1

τ̂ imp(xi ) = 1

n

n∑
i=1

(
β̂

h1
1 (xi ) − β̂

h0
0 (xi )

)
.

In this paper we base our results on a specific linear smoother, the local linear regression
smoother, although we anticipate that most results should hold for any other linear
smoother.

Local linear regression (Cleveland 1979; Fan and Gijbels 1996), consists in fitting
a straight line at every xi , i = 1, . . . , n, using only the part of data that is deemed to
be sufficiently close to the target point xi . Consider estimating the regression function
β j (·), j = 0, 1. The fit, at xi , is

β̂
h j
j (xi ) = eT

1 (X jT
i W

h j
i X j

i )−1X jT
i W

h j
i y j = S

h j
j [xi ]y j

where e1 = (1, 0)T ,

X j
i =

⎛
⎜⎜⎝

1
(
x j

1 − xi
)

...
...

1
(
x j

n j − xi
)

⎞
⎟⎟⎠

and

W
h j
i = diag(K

(
(x j

1 − xi )/b ji
)
/b ji , . . . , K

(
(x j

n j − xi )/b ji
)
/b ji ).

K (·) is a kernel function such that
∫

K (u)du = 1 and
∫

uK (u)du = 0. An example
is the tricube kernel defined as

K (u) =
{ 70

81 (1 − |u|3)3, if |u| < 1
0, if |u| ≥ 1

}
.

The definition of b ji , i = 1, . . . , n, depends on the type of bandwidth we use. With
a constant bandwidth b j1 = · · · = b jn = h j . For a nearest neighbor type bandwidth,
assuming no ties, b ji is the Euclidian distance from xi to the (h j n j ):th nearest among

the x j
k :s for x j

k �= xi , h j ∈ [1/n j , 1] , k = 1, . . . , n j , and the smoothing parameter
h j is the proportion of observations being used to produce the local fit.
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3 Selection of smoothing parameters

3.1 Mean squared errors

Many smoothing parameter selection methods are developed with the purpose of
estimating the regression function β j (xi ), j = 0, 1, i = 1, . . . , n and attempts to select
the smoothing parameter minimizing the average conditional mean squared error:

1

n j

n j∑
i=1

E
(
y j

i − β̂
h j
j (x j

i )|x j )2

= 1

n j

n j∑
i=1

V ar
(
β̂

h j
j (x j

i )|x j ) + 1

n j

n j∑
i=1

E
(
β̂

h j
j (x j

i ) − β j (x j
i )|x j )2

= σ 2
ε

n j

n j∑
i=1

S
h j
j [x j

i ]Sh j
j [x j

i ]T + 1

n j

n j∑
i=1

(
S

h j
j [x j

i ]β j (x j ) − β j (x j
i )

)2

. (2)

One frequently used selection procedure that attempts to select the smoothing parame-
ter minimizing (2) is leave-one-out cross-validation. In this setting, cross-validation
selects the smoothing parameter h j minimizing

1

n j

n j∑
i=1

(
y j

i − β̂
h j ,−i
j

(
x j

i

))2
, (3)

where β̂
h j ,−i
j (x j

i ) is the cross-validated estimate at x j
i computed without (x j

i , y j
i ).

Asymptotically, for local linear regression, the smoothing parameter minimizing (2)
is proportional to n−1/5

j (Fan 1992), and, hence, proportional to n−1/5 since n j =
n Pr(z = j) + op(n). However, it is known that for estimating a functional of β j (xi )

such as E(β j (xi )), the smoothing parameter minimizing (2) is not optimal, in the sense
that it does not result in

√
n-consistent estimation of the functional (e.g., Cheng 1994).

Imbens et al. (2005) suggest that one should select h0 and h1 by minimizing the

conditional mean squared error of 1
n

∑n
i=1 β̂

h j
j (xi ), for j = 0, 1 respectively, i.e.,

M SE ¯̂
β j

= σ 2
ε

n2

n∑
i=1

n∑
k=1

S
h j
j [xi ]Sh j

j [xk]T

+ 1

n2

[ n∑
i=1

(
S

h j
j [xi ]β j (x j ) − β j (xi )

)]2

. (4)

We argue that, in order to estimate τ optimally, it may be more suitable to select the
combination of (h0, h1) minimizing the conditional mean squared error of τ̂ imp
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M SEτ̂ = σ 2
ε

n2

n∑
i=1

n∑
j=1

(
Sh1

1 [xi ]Sh1
1 [x j ]T + Sh0

0 [xi ]Sh0
0 [x j ]T

)

+
[

1

n

n∑
i=1

((
Sh1

1 [xi ]β1(x1) − β1(xi )
) − (

Sh0
0 [xi ]β0(x0) − β0(xi )

))]2

.

(5)

Note that

M SEτ̂ = M SE ¯̂
β1

+ M SE ¯̂
β0

− 2

(
1

n

n∑
i=1

(
Sh1

1 [xi ]β1(x1) − β1(xi )
))

×
(

1

n

n∑
i=1

(
Sh0

0 [xi ]β0(x0) − β0(xi )
))

.

Hence, criterion (5) differs from (4) when both average bias terms in the latter expres-
sion are different from zero.

3.2 Asymptotics

Asymptotic approximations can be used to describe optimal bandwidth choices as
the sample size tends to infinity. The results presented here are deduced in Appendix,
Sect. 6.2, where regularity conditions also used in Ruppert and Wand (1994) are given.
For local linear regression with constant bandwidth such that h j → 0 and nh j → ∞
as n → ∞ we have the following approximations for the conditional bias and variance

of 1
n

∑n
i=1 β̂

h j
j (xi ). For j = 0, 1,

E

(
1

n

n∑
i=1

β̂
h j
j (xi ) − 1

n

n∑
i=1

β j (xi )|x
)

= B1( j)h2
j + op

(
h2

j

)
, (6)

and

V ar

(
1

n

n∑
i=1

β̂
h j
j (xi )|x

)
= V1( j)

n
+ V2( j)

n2h j
+ V3( j)

h2
j

n

+ op
(
n−1 + n−2h−1

j + n−1h2
j

)
, (7)

with constants

B1( j) = 1

2

∫
β

(2)
j (x) f (x)dx

∫
u2 K (u)du,

V1( j) = σ 2
ε

∫
f (x)

Pr(z = j |x)
dx,
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V2( j) = σ 2
ε

∫
K (u)2du

∫
1

Pr(z = j |x)
dx,

V3( j) = −2σ 2
ε

∫
u2 K (u)du

∫
f (1)(x)2

f (x)Pr(z = j |x)
dx

− 2σ 2
ε

∫
u2 K (u)du

∫
f (1)(x)P(1)(z = j |x)

Pr(z = j |x)2 dx,

where β
(m)
j (x) the m:th derivative of the function β j (x) and f (x) is the density of x .

Hence,

M SE ¯̂
β j

= V1( j)

n
+ V2( j)

n2h j
+ V3( j)

h2
j

n
+ B2

1 ( j)h4
j

+ op
(
n−1 + n−2h−1

j + n−1h2
j + h4

j

)
(8)

and

M SEτ̂ = V1(1) + V1(0)

n
+ V2(1)

n2h1
+ V2(0)

n2h0

+ V3(1)
h2

1

n
+ V3(0)

h2
0

n
+ B2

1 (1)h4
1

+ B2
1 (0)h4

0 − 2B1(1)B1(0)h2
1h2

0

+ op
(
n−1 + n−2h−1

1 + n−2h−1
0 + n−1h2

1

+ h2
0n−1 + h4

1 + h4
0 + h2

1h2
0

)
. (9)

Let us first consider the optimal smoothing parameter for estimating E(β j (x)) and
assume nh3

j → 0 as n → ∞, j = 0, 1. An asymptotic approximation to the bandwidth
minimizing (8) is

hopt
j = arg min

h j

V2( j)

n2h j
+ B2

1 ( j)h4
j =

(
V2( j)

4B2
1 ( j)

)1/5

n−2/5.

Hence, the optimal bandwidths are of order n−2/5, so that the optimal bandwidths
for the estimation of the average functional τ is smaller than the optimal bandwidths
for the estimation of the regression functions β j (·), the latter being of order n−1/5.
Thus, the regression functions must be undersmooth when the target of the inference
is τ . A similar result was shown in Cheng (1994) for kernel regression. Turning to
the minimization of (9), this must be done simultaneously in h0 and h1. A reasonable
assumption, however, is that these two smoothing parameters have the same rate of
convergence to zero. Under this assumption we may replace h1 by ch0, for c a constant,
in (9). Minimizing the latter for h0 yields as above an optimal bandwidth of order n−2/5.
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Another related result, deduced from (6) and (7), is that as n → ∞, if h j ∝ nr , for
−1 < r < −1/4, then (see Appendix, Sect. 6.2)

E
[√

n(
¯̂
β j − E(β j (xi ))) | x

]
= op(1), (10)

E
[√

n(τ̂ imp − τ) | x
]

= op(1), (11)

V ar
[√

n(
¯̂
β j − E(β j (xi ))) | x

]
= V1( j) + op(1), (12)

V ar
[√

n(τ̂ imp − τ) | x
]

= V1(0) + V1(1)

+op(1). (13)

The results above show that selecting the smoothing parameters minimizing (4) will
lead to

√
n-consistent estimation of τ . This is in accordance with previous results

(e.g., Speckman 1988) where it was shown that asymptotic undersmoothing of the
regression function is needed for the

√
n−consistent estimation of a functional of the

regression function.

3.3 Estimating MSEs

Imbens et al. (2005) propose the following estimator of (4), for j = 0, 1,

̂M SE
I N R¯̂
β j

= σ̂ε
2

n2

n∑
i=1

n∑
k=1

S
h j
j [xi ]Sh j

j [xk]T

+ 1

n2

[ n j∑
i=1

1

p̂(x j
i )

(
y j

i − β̂
h j
j (x j

i )

)]2

− σ̂ε
2

n2 p̂T
j

(
In j − S

h j
j [x j ]

)(
In j − S

h j
j [x j ]

)T

p̂ j , (14)

where p̂ j = (1/ p̂(x j
1 ), . . . , 1/ p̂(x j

n j ))
T and In j is the n j × n j identity matrix. It is

worth noting that one need to estimate the propensity score (Waernbaum 2010), in
addition to σ 2

ε , in order to use this selection procedure. The error variance σ 2
ε may be

estimated by

σ̂ε
2 =

[
y−

(
β̂

hε0
0 (x0)T , β̂

hε1
1 (x1)T

)T ]T [
y −

(
β̂

hε0
0 (x0)T , β̂

hε1
1 (x1)T

)T ]

n − trace(2S
hε0
0 [x0] − S

hε0
0 [x0]Shε0

0 [x0]) − trace(2S
hε1
1 [x1]−S

hε1
1 [x1]Shε1

1 [x1])
,

(15)

where y = (y0T , y1T )T and hε j , j = 0, 1, could be equal to h j or selected separately,
see, e.g., Opsomer et al. (1995) for further discussion on this issue.

123



1736 J. Häggström, X. de Luna

We propose below novel double smoothing estimators of (4) and (5), respectively:

̂M SE
DS¯̂
β j

= σ̂ε
2

n2

n∑
i=1

n∑
k=1

S
h j
j [xi ]Sh j

j [xk]T

+ 1

n2

[ n∑
i=1

(
S

h j
j [xi ]β̂g j

j (x j ) − β̂
g j
j (xi )

)]2

, (16)

and

̂M SE
DS
τ̂ = σ̂ε

2

n2

n∑
i=1

n∑
j=1

(
Sh1

1 [xi ]Sh1
1 [x j ]T + Sh0

0 [xi ]Sh0
0 [x j ]T

)

+
[

1

n

n∑
i=1

((
Sh1

1 [xi ]β̂g1
1 (x1) − β̂

g1
1 (xi )

) − (
Sh0

0 [xi ]β̂g0
0 (x0) − β̂

g0
0 (xi )

))]2

,

(17)

where g0, g1 are pilot smoothing parameters. Because the purpose of these pilots para-
meters is to estimate β0 and β1 respectively, we suggest using leave-one-out cross-
validation; see (3). In specific situations one may want to check whether the results
are sensitive to changes in the choice of the pilot parameters. The double smoothing
(DS) estimation concept was utilized by Härdle et al. (1992), although for the estima-
tion of the entire regression function β j (·). One could, as mentioned by Härdle et al.
(1992), specify the pilot bandwidths as g j = n−c

j , for an appropriate constant c which
would result in good asymptotic performance. This would also reduce the computa-
tional burden of the method, although a relevant choice of the arbitrary constant c is

problematic. Finally, note that a difference between ̂M SE
I N R¯̂
β j

and ̂M SE
DS¯̂
β j

is that the
former is based on an asymptotic approximation of (4) while the double smoothing
estimator targets (4) directly.

4 Simulation study

In this section, we study the finite sample properties of different methods for the
selection of constant and nearest neighbour type bandwidths, and in particular the
resulting empirical MSE when estimating the average causal effect τ .

4.1 Design of the study

Data were generated according to the model

yi = β0(xi ) + τ(xi )zi + εi , i = 1, . . . , n, (18)

with xi ∼ Uniform(0, 2π), zi |xi ∼ Bernoulli(p(xi )), εi ∼ Normal(0, σ 2
ε ), τ(xi ) =

β1(xi ) − β0(xi ), σ 2
ε ≈ V ar

(
β0(xi ) + τ(xi )zi

)
, n = 100, 200, 500, 1,000. Since zi is
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Table 1 Specification of the six designs used to generate data according to model (18)

Design β1(xi ) β0(xi )

1 4π + 5 − 2πxi + x2
i + 5 sin(2xi )

−4 cos(xi ) sin(2xi ) − 4 cos(xi ) + 5

2 4
(
xi + sin(xi ) + sin(2xi )

) + 3 2
(
xi + sin(xi ) + sin(2xi )

) + 3

3 4π − πxi + x2
i
2 πxi − x2

i
2

4 4π − πxi + x2
i
2 πxi − x2

i
2

5 4π + 5 − 2πxi + x2
i + 5 sin(2xi )

−4 cos(xi ) sin(2xi ) − 4 cos(xi ) + 5

6 10+xi (2π−xi )

× sin(2π(2π+0.05)/(xi + 0.05)) 8 + 1.5 sin(2xi − 4) + 6exp(−16(2xi − 2.5)2)

Design τ(xi ) p(xi )

1 4π − 2πxi + x2
i + 4 sin(2xi ) [e−3.5+xi ]/[1 + e−3.5+xi ]

2 2xi + 2 sin(xi ) + 2 sin(2xi ) [e−3.5+xi ]/[1 + e−3.5+xi ]
3 4π − 2πxi + x2

i [e−3.5+xi ]/[1 + e−3.5+xi ]
4 4π − 2πxi + x2

i (5 sin 2xi − 4 cos xi + 4π − 2πxi + x2
i )/11.3

5 4π − 2πxi + x2
i + 4 sin(2xi ) (5 sin 2xi − 4 cos xi + 4π − 2πxi + x2

i )/11.3

6 2 + xi (2π − xi ) sin(
2π(2π+0.05)

xi +0.05 ) (5 sin 2xi − 4 cos xi + 4π − 2πxi + x2
i )/11.3

−1.5 sin(2xi − 4) + 6exp(−16(2xi − 2.5)2)

a Bernoulli draw dependent on xi generated from a uniform distribution, n1 and n0
are stochastic. Table 1 and Fig. 1 display the six designs generated. Bandwidths h0
and h1 considered are, for the constant bandwidth setting, 40 equally spaced values
within the interval [hmin, 2π ], where hmin is the smallest bandwidth value such that at
least 10 observations are used for the local fits. For the nearest neighbour bandwidth
setting, we consider 40 equally spaced values within the intervals [0.1, 1] for n =
100, 200 and [0.02, 1] for n = 500, 1,000, and, e.g., h = 0.1 implies using 10 %
of the data for the local fits. The propensity score, p(x), in (14) is estimated by
logistic regression with correctly specified model for Design 1–3 (i.e., glm(z~x,
family=binomial) in R) and misspecified model for Design 4–6 (i.e., glm(z
~I(sin(2*x))+I(cos(x))+x+I(x^2), family=binomial) in R). The
variance estimator (15) is used in (14), (16) and (17) with hε j , j = 0, 1, selected by
leave-one-out cross-validation (3). These cross-validation bandwidths are also used
as pilot bandwidths in the DS estimators in (16) and (17) .

The criteria (2), (3), (4), (5), (14), (16) and (17) are computed for every bandwidth,
40 values, in the interval. For the minimizing bandwidths τ̂ imp is computed. Due
to computer time constraint, we use 200 replicates. On the other hand, we reduce
noise in the simulation results by making use of the control variate method (see, e.g.,
(Wilson 1984) with τ̂ ols , the mean of the fitted values resulting from estimating τ(x)

by ordinary least squares with correctly specified model, as control variate. If τ̂ ols is
positively correlated with τ̂ imp then τ̂ c = τ̂ imp − (τ̂ ols − τ) has the same mean as
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Fig. 1 Design 1–6 (from top to bottom) used to generate data as specified in Table 1. The first column
displays β1(xi ) (solid line), β0(xi ) (dashed) and τ(xi ) (dotted), and the second column displays p(xi )

τ̂ imp but lower variance. For instance, for n = 1,000 such correlations varied between
0.39 and 0.96 (Median=0.82, IQR=0.18). Results based on the raw replicates are
similar to the results reported here utilizing the control variate method, except for
an increase in noise. All computations are made in R (Core Team 2014). Studying
bandwidth selection by simulation is computationally demanding and this study was
made possible by the use of the High Performance Computing Center North (HPC2N)
at Umeå University.

4.2 Results

Results for n = 500 and 1,000 are displayed in Tables 2 and 3, for both constant
and nearest neighbour bandwidths, and in Figs. 2, 3, 4 and 5 (Appendix, Sect. 6.1) for
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Table 2 MSE comparison: the
table displays the method
yielding lowest MSE (in the
estimation of τ ) among Mβ , Mτ

and My , when either constant or
nearest neighbour bandwidth are
used

Stars indicate that the method
has significantly lower MSE
than the next best method, with
“*” for a 5 % level test and “**”
for a 1 % level test

Design Minimum MSE obtained by

n

100 200 500 1,000

Constant bandwidth

1 M∗∗
y M∗∗

τ M∗∗
β M∗∗

τ

2 Mβ Mβ Mβ Mβ

3 Mτ Mτ M∗∗
τ M∗∗

β

4 Mτ Mτ My M∗
y

5 Mτ M∗∗
β My M∗∗

β

6 My Mβ Mτ Mτ

Nearest neighbour bandwidth

1 M∗∗
τ M∗∗

τ M∗∗
τ M∗∗

τ

2 Mτ Mτ Mτ Mτ

3 M∗∗
τ Mτ M∗∗

τ M∗∗
τ

4 Mβ M∗
τ Mτ Mτ

5 M∗∗
β M∗∗

τ M∗∗
τ M∗∗

τ

6 Mβ Mτ Mτ Mτ

nearest neighbour bandwidths. Due to the similarity of bandwidth selection patterns,
and to save space, analogous figures with results for constant bandwidths are not
included. These figures and more detailed results (also for n = 100, 200), also left
out to save space, can be obtained from the authors. Note first that we can compute
the smoothing parameter values minimizing (2), (4) and (5), labeled My , Mβ and Mτ ,
respectively, because we know the data generating mechanisms.

We see in Figs. 2, 3, 4 and 5 that the double smoothing methods introduced, (16)
and (17), labeled DSβ and DSτ respectively, mimic quite well their target in terms
of selected smoothing parameters. This is not the case for (14), labeled INR, whose
selected smoothing parameters are not in accordance with the target Mβ . Table 2
summarizes empirical MSE results for the theoretical criteria Mβ , Mτ and My , by
indicating which criterion yielded lowest MSE for the estimation of τ . For constant
bandwidhts, the smallest MSE is most often obtained by Mβ or Mτ and the largest MSE
is most often obtained by My . However, only in 17 and 25 % of the cases, respectively,
do Mτ and Mβ result in significantly lower MSE than My . For nearest neighbour
bandwidths, we see that Mτ always results in smallest MSE for n = 200, 500, 1,000,
which is, in half of the cases, significantly smaller than the second smallest MSE
(achieved by Mβ ). Both Mτ and Mβ result in significantly smaller MSE than My in a
majority of cases (71 and 67 %, respectively). Table 3 gives information on empirical
MSE (similar to Table 2), where comparisons are made between the data-driven criteria
DSβ , DSτ , INR and CV. For both the constant and nearest neighbour bandwidth
setting, we see that double smoothing does not always yields lowest empirical MSE,
although CV is most often outperformed by the methods targeting the estimation of
functional averages (DS and INR − for design 2 when INR performed best, CV was
also outperformed by DSτ but not by DSβ ).
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Table 3 MSE comparison: the
table displays the method
yielding lowest MSE (in the
estimation of τ ) among DSβ ,
DSτ , INR and CV, when either
constant or nearest neighbour
bandwidth are used

Stars indicate that the method
has significantly lower MSE
than the next best method, with
“*” for a 5 % level test and “**”
for a 1 % level test

Design Minimum MSE obtained by

n

100 200 500 1,000

Constant bandwidth
1 DS∗∗

β INR∗∗ DS∗∗
τ DS∗∗

β

2 CV INR INR DSτ

3 INR∗∗ INR DSτ DS∗∗
τ

4 DSτ DSτ DSβ DSβ

5 DSβ DSβ DSβ DSβ

6 CV DSβ DSτ DS∗∗
τ

Nearest neighbour bandwidth

1 DSβ DSτ DSτ DSβ

2 INR INR∗ INR∗ INR∗∗
3 CV CV CV∗∗ CV∗∗
4 INR DSτ DSτ DS∗∗

τ

5 INR DSτ DSτ DS∗
τ

6 INR INR DSτ CV∗

Finally, note that the propensity scores used in the designs of this study are rather
extreme in the sense that they may yield probabilities near zero and one. We have
also run these experiments by damping these propensity scores to let them vary only
between 0.2 and 0.8. The results where similar qualitatively with double smoothing
often performing better.

5 Conclusion

In this paper we have proposed double smoothing methods for selecting smoothing
parameters that target the estimation of functional averages where the latter are average
causal effects of interest. In our numerical experiments cross-validation is often out-
performed by double smoothing as we expected since the latter criterion is optimized
for the estimation of functions underlying the average causal effect, and not the aver-
age itself. The methods proposed and studied here have large applicability, and are,
for instance, straightforward to adapt to non-parametric estimators based on instru-
ments as those introduced in Frölich (2007). Finally, note that similar results as the
one obtained should hold under a non-constant variance assumption (Andrews 1991;
Ruppert and Wand 1994). In such cases the estimation of σ 2

ε need to be replaced by
estimators of V ar(yi |xi , zi = 0) and V ar(yi |xi , zi = 1), e.g. using linear smoothers
when regressing y2

i on xi for the units with zi = 0 and zi = 1 respectively.
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6 Appendix

6.1 Figures with results

See Figs. 2, 3, 4 and 5.

6.2 Asymptotics

In order to derive the results of Sect. 3.2 we focus on local linear regression with
constant bandwidth. We use further the following assumptions.
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Fig. 2 Design 1–3 columnwise, sample size n = 500. Selected bandwidths and resulting τ̂ when using
(4), labeled Mβ , (5), labeled Mτ , (2), labeled My , (14), labeled INR, (16), labeled DSβ , (17), labeled DSτ ,
and (3), labeled CV. Average h values are given on top of the figures in the two first rows, while in the last
row resulting empirical MSEs of the estimates of τ are displayed on top of the boxplots
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Design 4 Design 5 Design 6
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Fig. 3 Design 4–6 columnwise, sample size n = 500. Selected bandwidths and resulting τ̂ when using
(4), labeled Mβ , (5), labeled Mτ , (2), labeled My , (14), labeled INR, (16), labeled DSβ , (17), labeled DSτ ,
and (3), labeled CV. Average h values are given on top of the figures in the two first rows, while in the last
row resulting empirical MSEs of the estimates of τ are displayed on top of the boxplots

(A1) The kernel K is a compactly supported, bounded kernel such that
∫

u2 K (u)du �=
0. In addition, all odd-order moments of K vanish, that is

∫
ul K (u)du = 0 for

all nonnegative odd integers l.
(A2) The covariate x has density f . The point x̃ is in the interior of supp( f ) = {x ∈

R : f (x) > 0}. At x̃ , f is continuously differentiable and all second-order
derivatives of β j , j = 0, 1, are continuous.

(A3) For j = 0, 1, h j → 0 and nh j → ∞ as n → ∞ .

We have

M SE ¯̂
β j

= 1

n2

n∑
i=1

V ar(β̂
h j
j (xi )|x) + 1

n2

n∑
i=1
i �=l

n∑
l=1

Cov(β̂
h j
j (xi ), β̂

h j
j (xl)|x)

+
[

1

n

n∑
i=1

E(β̂
h j
j (xi ) − β j (xi )|x)

]2

.
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Design 1 Design 2 Design 3
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Fig. 4 Design 1–3 columnwise, sample size n = 1,000. Selected bandwidths and resulting τ̂ when using
(4), labeled Mβ , (5), labeled Mτ , (2), labeled My , (14), labeled INR, (16), labeled DSβ , (17), labeled DSτ ,
and (3), labeled CV. Average h values are given on top of the figures in the two first rows, while in the last
row resulting empirical MSEs of the estimates of τ are displayed on top of the boxplots

Under (A1)–(A2) for x̃ = xi , (Ruppert and Wand (1994), Thm 2.1) states that

V ar(β̂
h j
j (xi )|x) = σ 2

ε

n j h j
f j (xi )

−1
∫

K (u)2du{1 + op(1)} (19)

and

E(β̂
h j
j (xi ) −β j (xi )|x) = h2

j
2 β

(2)
j (xi )

∫
u2 K (u)du{1 + op(1)}, (20)

where f j (xi ) = f (xi |zi = j) = f (xi ) Pr(zi = j |xi )
Pr(zi = j) . It follows from (19) and the fact that

n j = (−1) j+1 ∑n
i=1 zi + n(1 − j) that

1

n2

n∑
i=1

V ar(β̂
h j
j (xi )|x) = σ 2

ε

n2h j

∫
K (u)2du

∫
1

Pr(zi = j |x)
dx + op(n

−2h−1
j ).

(21)
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Design 4 Design 5 Design 6
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Fig. 5 Design 4–6 columnwise, sample size n = 1,000. Selected bandwidths and resulting τ̂ when using
(4), labeled Mβ , (5), labeled Mτ , (2), labeled My , (14), labeled INR, (16), labeled DSβ , (17), labeled DSτ ,
and (3), labeled CV. Average h values are given on top of the figures in the two first rows, while in the last
row resulting empirical MSEs of the estimates of τ are displayed on top of the boxplots

Using (20) we have

1

n

n∑
i=1

E(β̂
h j
j (xi ) − β j (xi )|x) = h2

j

2

∫
β

(2)
j (x) f (x)dx

∫
u2 K (u)du + op(h

2
j ).

(22)

Now,

1

n2

n∑
i=1
i �=l

n∑
l=1

Cov(β̂
h j
j (xi ), β̂

h j
j (xl)|x)

= 1

n2

n∑
i=1
i �=l

n∑
l=1

σ 2
ε eT

1 (n−1
j X jT

i W
h j
i X j

i )−1n−2
j

×X jT
i W

h j
i W

h j
l X j

l (n−1
j X jT

l W
h j
l X j

l )−1e1. (23)
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According to (Ruppert and Wand (1994), eq. (2.11))

(n−1
j X jT

i W
h j
i X j

i )−1

=
⎛
⎜⎝ f j (xi )

−1 + op(1) − f (1)
j (xi )

f j (xi )
2 + op(1)

− f (1)
j (xi )

f j (xi )
2 + op(1) {∫ u2 K (u)du f j (xi )h2

j }−1 + op(h
−2
j )

⎞
⎟⎠ .

Noting that

{n−2
j X jT

i W
h j
i W

h j
l X j

l }11

= 1

n2
j h

2
j

n j∑
k=1

K

(
xk − xi

h j

)
K

(
xk − xl

h j

)
,

{n−2
j X jT

i W
h j
i W

h j
l X j

l }12

= 1

n2
j h

2
j

n j∑
k=1

K

(
xk − xi

h j

)
K

(
xk − xl

h j

)
(xk − xl),

{n−2
j X jT

i W
h j
i W

h j
l X j

l }21

= 1

n2
j h

2
j

n j∑
k=1

K

(
xk − xi

h j

)
K

(
xk − xl

h j

)
(xk − xi ),

and

{n−2
j X jT

i W
h j
i W

h j
l X j

l }22

= 1

n2
j h

2
j

n j∑
k=1

K

(
xk − xi

h j

)
K

(
xk − xl

h j

)
(xk − xi )(xk − xl).

Starting with (23) we arrive at the following result after some calculus (details can be
obtained from the authors)

1

n2

n∑
i=1
i �=l

n∑
l=1

Cov(β̂
h j
j (xi ), β̂

h j
j (xl)|x)

= σ 2
ε

n

[ ∫
f (xk)

Pr(zk = j |xk)
dxk

]
+ op(n

−1)

−2σ 2
ε h2

j

n

∫
u2 K (u)du

∫ (
f (1)(x)2

f (x) Pr(z = j |x)

+ f (1)(x)P(1)(z = j |x)

Pr(z = j |x)2

)
dx + op(n

−1h2
j ). (24)
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It follows from (21) and (24) that

V ar

(
1

n

n∑
i=1

β̂
h j
j (xi )

∣∣∣x
)

= σ 2
ε

n2h j

∫
K (u)2du

∫
1

Pr(z = j |x)
dx

+ σ 2
ε

n

[ ∫
f (x)

Pr(z = j |x)
dx

]

− 2σ 2
ε h2

j

n

∫
u2 K (u)du

∫ (
f (1)(x)2

f (x) Pr(z = j |x)

+ f (1)(x)P(1)(z = j |x)

Pr(z = j |x)2

)
dx + op(n

−2h−1
j + n−1 + n−1h2

j ). (25)

Hence, from (25) and (22),

M SE

(
1

n

n∑
i=1

β̂
h j
j (xi )

∣∣∣x
)

= σ 2
ε

n2h j

∫
K (u)2du

∫
1

Pr(z = j |x)
dx + σ 2

ε

n

[ ∫
f (x)

Pr(z = j |x)
dx

]

− 2σ 2
ε h2

j

n

∫
u2 K (u)du

×
∫ (

f (1)(x)2

f (x) Pr(z = j |x)
+ f (1)(x)P(1)(z = j |x)

Pr(z = j |x)2

)
dx

+ h4
j

4

[ ∫
β

(2)
j (x) f (x)dx

]2[ ∫
u2 K (u)du

]2

+ op(n
−2h−1

j + n−1 + n−1h2
j + h4

j ).

Finally, (11)–(13) follows from (6) and (7). By the weak law of large numbers we can
write

1

n

n∑
i=1

β j (xi ) − E(β j (xi )) = op(1).

Combined with (6) we thus have

E

(
1

n

n∑
i=1

β̂
h j
j (xi )

∣∣∣x
)

− E(β j (xi )) = B1( j)h2
j + op(h

2
j ).
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For h j ∝ nr we have thus

√
n E

(
1

n

n∑
i=1

β̂
h j
j (xi )

∣∣∣x
)

− √
nE(β j (xi ))

= n1/2 B1(1)n2r + op(n
1/2n2r )

= O(n1/2+2r ) + op(n
1/2n2r ).

Furthermore from (7) and for h j ∝ nr we can write

nV ar

(
1

n

n∑
i=1

β̂
h j
j (xi )

∣∣∣x
)

= V1( j) + 1

n1+r
V2( j) + n2r V3( j) + op(1 + n−1−r + n2)

= V1( j) + O(n−1−r ) + O(n2r ) + op(1 + n−1−r + n2).
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