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In the last decade, the demand for statistical and computation methods for data analysis
that involve sparse matrices has grown dramatically. The main reason for this is that
the classical approaches produce solutions in a form of linear combinations of all
variables involved in the problem. However, the nowadays applications deal with huge
data sets and the interpretation of linear combinations of tens of thousands of variables
is virtually an impossible task. The natural escape is to modify the standard techniques
to produce sparse solutions which involve only few of the original variables, but still
providing competitive goodness-of-fit to the data. Another reason is the increasing
number of problems for analysis of sparse data where a portion of the data entries
are missing or grossly corrupted. Such problems require modification of the standard
approaches to produce robust solutions which, in turn, may also need to be sparse.

This special issue comprises 11 invited contributions of scientists working actively
in the area of statistical computing, data analysis, and machine learning. Our main
objective is to collect and present recent developments and different aspects of sparse
data analysis, both in terms of modeling and numerical realization.

A nice review and empirical study of the high-dimensional regression problem
is provided by Bühlmann and Mandozzi (2014). The authors examine an important
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problem concerning inference for problems with high-dimensional variable screening.
Most attention in this topic has focused on prediction, but this paper addresses the
parallel problem of identifying the key variables and performing inference. A thorough
and realistic simulation experiment is performed. Disappointingly, most of the existing
methods perform similarly, and none are highly successful. Nevertheless, this is an
important question and the paper stimulates further research.

Principal component analysis (PCA) of high-dimensional data is another funda-
mental topic in modern multivariate analysis. This special issue has three interesting
papers on this topic. The article by Trendafilov (2014) is a good expository article
on PCA and sparse PCA. The emphasis is on the interpretation of PCA. He reviews
and compares different modern sparse PCA proposals in the last ten years. Fang et
al. (2014) consider the problem of estimating the principal components of heredity
(PCH) with modern genomic data. They propose a sparse regularized PCH estima-
tor and study its numeric and theoretic performance. Hage and Kleinsteuber (2014)
propose a new robust PCA approach in which the core algorithm is an intrinsic con-
jugate gradient method on the Grassmann manifold. It allows to employ non-convex
sparsity penalties that show improved robustness compared to state-of-the-art meth-
ods in identifying the underlying principal components in the presence of sparse
noise.

The next two contributions are related to high-dimensional classification problems.
The article by Bouveyron and Brunet (2014) is an extension of earlier works of the
authors on Fisher-EM algorithms such that the new algorithm can produce sparse
loading matrices. The Fisher-EM algorithm includes a F-step (F for Fisher) between the
E and the M steps, which finds the Fisher’s linear discriminants for the current clusters.
The article incorporates existing methods for sparse singular value decomposition
(SVD) into the F-step of the algorithm to perform a selection of the discriminative
variables.

Choy and Meinshausen (2014) use a least absolute shrinkage and selection operator
(LASSO) type regularization method to construct a sparse distance metric. Such a
construct will be very welcome in different classification techniques applied to high-
dimensional problems to discard a great number of unimportant (spam) variables.
The authors show that the best sparse metric can be recovered with an exponential
deviation bound.

In some real applications the covariance matrix is only partially identifiable. G’Sell
et al. (2014) present a method based on semidefinite programming for computing the
range of possible equal-likelihood inferred values for the missing entries and affine
functions of such a covariance matrix.

Frame theory is a rather new approach in signal modeling in the context of sparse
matrices, worthwhile introducing to the statistical community. The basic construct is
that linear measurements of a signal are described as a product of a matrix and the
signal, where the rows of the matrix consist of the dual of the measurement vectors.
A frame is a collection of such measurement vectors and frame theory is about the
design of frames for a given class of signals and the reconstruction of the signal, given
the measurements. It aims, for example, at reducing dimensionality of the signal to
achieve data compression or feature extraction. In this context, the design of sparse
frames allows particularly effective numerical implementations and also opens the
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door for handling high dimensional data. The article by Krahmer et al. (2014) surveys
the sparse frame theory and carefully introduces this interesting new topic, while
presenting recent research results.

The development of efficient and reliable general algorithms in data analysis is a
challenging problem, in particular when large and high-dimensional data are consid-
ered. One promising approach is to employ the underlying geometry of the particular
problem at hand for designing optimization methods. Such Riemannian manifold
approaches often show desirable numerical properties, e.g., numerical stability and
minimal dimension of the search space, and, at the same time, having nice conver-
gence behavior in practice. These issues are discussed in the next two contributions by
Absil et al. (2014) and by Mishra et al. (2014) which are quite similar in spirit. They
provide a geometric framework for optimization on the set of fixed rank matrices.
Potential applications include low-rank matrix completion and other low-rank matrix
approximation problems.

Another type of optimization methods are considered by Chen and Ye (2014).
They study a regularized estimator of multiple predictive functions from a dictionary
of basis functions where the coefficient matrix is penalized by the trace norm and the
�1-norm simultaneously. Two efficient algorithms are proposed which are based on
the accelerated gradient method and the alternating direction method, respectively, to
find the proposed estimator.

We are very grateful to all reviewers for their help in the refereeing process of
the contributions and for sharing their time and knowledge. Unfortunately, due to the
Journal policy, we cannot list their names. We also want to thank again all authors who
have enthusiastically contributed with interesting original works to the Special Issue.
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