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Abstract Lagrange multiplier and Wald tests for the hypothesis of absence of unob-
served confounding are extended to the context of semiparametric recursive and sam-
ple selection bivariate probit models. The finite sample size properties of the tests are
examined through a Monte Carlo study using several scenarios: correct model speci-
fication, distributional and functional misspecification, with and without an exclusion
restriction. The simulation results provide some guidelines which may be important
for empirical analysis. The tests are illustrated using two datasets in which the issue
of unobserved confounding arises.

Keywords Endogeneity · Lagrange multiplier test · Non-random sample selection ·
Penalized regression spline · Wald test

1 Introduction

We are concerned with testing the hypothesis of absence of unobserved confounding
in the recursive and sample selection bivariate probit models (Heckman 1978, 1979;
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716 G. Marra et al.

Maddala 1983; de Ven and Praag 1981; Greene 2012). Recursive bivariate probit
models deal with a problem which arises in observational studies when confounders
(i.e., variables that are associated with treatment and response) are unobserved; this
issue is known in the econometric literature as endogeneity. These models control for
unobserved confounders by using a two-equation structural latent variable framework,
where one equation models a binary response as a function of a binary treatment and
some covariates whereas the other determines whether the treatment is received based
on some regressors. Recent economic and biostatistical applications of such models
include the study of the effect of private health insurance on medical care utilization
(Buchmueller et al. 2005), impact of diabetes on employment (Latif 2009), effect of
physical activity on obesity (Kawatkar and Nichol 2009), and impact of insurance on
mortality among HIV-infected individuals (Goldman et al. 2001).

Sample selection models address an issue which arises when observations are not
from a random sample of the population. Instead, individuals may have selected them-
selves (or have been selected by others) into (or out of) the sample based on a combina-
tion of observed and unobserved characteristics. If the sample of selected individuals
differs in important observed characteristics from the sample of unselected individu-
als, then selection bias can be avoided by controlling for these features. However, if
the two samples differ in important unobserved characteristics then non-random sam-
ple selection arises. Sample selection bivariate probit models control for unobserved
confounders by simultaneously estimating two regressions: a selection equation and
a response equation. The former determines whether an individual is selected into
the sample whereas the latter is used to examine the substantive question of interest.
Applications of these models include the study of prevention program for high school
dropouts (Montmarquette et al. 2001), quantification of the effect of family-related
factors on foster approval (Cuddeback et al. 2004), estimation of HIV prevalence
(Bärnighausen et al. 2011) and reject-inference to predict credit quality (Banasik and
Crook 2007).

The classic recursive and sample selection bivariate probit models used for the
applications mentioned above do not allow for flexible functional dependence of the
responses on continuous covariates. To this end, Marra and Radice (2011, 2013a)
introduced a penalized likelihood estimation framework to estimate simultaneously
the parameters of a system of two binary equations that include smooth functions of
continuous covariates. Alternative (Bayesian) approaches are available in the literature
(e.g., Chib and Greenberg 2007; Chib et al. 2009). However the lack of user-friendly
software makes them unfeasible for practitioners. The need for methods flexibly mod-
eling covariate effects arises from the observation that all parameter estimates are
inconsistent when the relationship between observed confounders and outcome is
mismodeled (Marra and Radice 2011; Chib et al. 2009).

An important aspect of these binary bivariate models is that if the hypothesis of
absence of unobserved confounding (i.e., exogeneity and random selection) can not be
rejected then joint estimation of the model equations can be avoided. This is appeal-
ing because inference in simultaneous models with smooth components may become
computationally demanding as the sample size and number of smooth terms increase.
Therefore, before employing a complex simultaneous estimation approach, testing the
hypothesis of absence of unobserved confounding is an important step that should be
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Testing the hypothesis of absence of unobserved confounding 717

undertaken at the beginning of the empirical analysis. To this end, we extend Lagrange
multiplier (L M) and, for comparison, Wald (W) tests to the context of semiparametric
bivariate probit models. L M is particularly attractive as it is based on estimating the
model equations separately. The finite sample size performance of the tests is investi-
gated through a Monte Carlo simulation study that considers the scenarios of correct
model specification, distributional and functional misspecification, with and without
an exclusion restriction (ER). The simulation results allow us to infer some guidelines
which may be crucial for applications. For instance, the good performance of L M
should be particularly attractive to practitioners wishing to test the null hypothesis
of absence of unobserved confounding while avoiding simultaneous estimation. The
tests are implemented in the R package SemiParBIVProbit (Marra and Radice
2013b).

The article is organized as follows. Section 2 provides a brief overview of the
models of interest and their estimation; this is useful to define the notation and
make some remarks that are relevant to the implementation of the tests. Section
3 discusses the construction of the L M and W type tests in the context of semi-
parametric models, whereas Sect. 4 assesses their finite sample size performance
through a Monte Carlo simulation study. Section 5 illustrates the tests using two
datasets, and Sect. 6 provides a discussion. “Appendix 1” shows that, under the
null hypothesis, the expected information matrix for the recursive bivariate pro-
bit model case is block diagonal, whereas “Appendix B” reports further simulation
results.

2 Preliminaries

2.1 The models

The semiparametric recursive and sample selection bivariate probit models introduced
by Marra and Radice (2011, 2013a) are a generalization of the parametric model
versions introduced by Heckman (1978, 1979) in that continuous covariate effects are
modeled flexibly.

The model structure consists of two equations. The first can be written as

y∗
1i = mT

1iθ1 +
K1∑

k1=1

f1k1(z1k1i ) + ε1i , i = 1, . . . n, (1)

where n is the sample size, y∗
1i is a latent continuous variable and y1i is determined

via the rule 1(y∗
1i > 0). The second can be defined as

y∗
2i = ϑy1i + mT

2iθ2 +
K2∑

k2=1

f2k2(z2k2i ) + ε2i , (2)

where, in the non-random sample selection case, ϑ is set to zero and y2i is determined
as
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y2i =
⎧
⎨

⎩

1 if
(
y∗

2i > 0 & y1i = 1
)

0 if
(
y∗

2i < 0 & y1i = 1
)

− if y1i = 0
,

whereas, in the endogeneity case, ϑ is allowed to be different from zero and y2i is
determined via the rule 1(y∗

2i > 0). Vector m1i contains P1 parametric model com-
ponents (such as the intercept, dummy and categorical variables), with corresponding
parameter vector θ1, and the f1k1 are unknown smooth functions of the K1 continu-
ous covariates z1k1i . Each smooth term may also be multiplied by some predictor(s)
(Hastie and Tibshirani 1993). Furthermore, smooth functions of two covariates such
as f11,12(z11i , z12i ) can be considered (e.g., Wood 2006). Similarly, m2i is a vec-
tor containing P2 parametric components, with coefficient vector θ2, and the other
terms have the obvious definitions. Smooth functions are subject to constraints, i.e.∑

i fvkv (zvkv i ) = 0, v = 1, 2, for all smooth components in the model. The error terms
are assumed to follow the distribution N ([0, 0], [1, ρ, ρ, 1]), where ρ is the corre-
lation coefficient and the error variances are normalized to unity (e.g., Greene 2012,
p. 686). To identify the parameters of Eq. (2) it is typically assumed that the ER on the
exogenous variables holds. That is, the covariates in the first equation should contain
at least one or more regressors (typically referred to as instruments) not included in
the second equation. These regressors have to induce variation in y1i , not to directly
affect y2i , and be independent of (ε1i , ε2i ) given covariates. However, under correct
model specification, this restriction may not be necessary in estimation (Marra and
Radice 2011; Wilde 2000).

The smooth functions are represented using regression splines (e.g., Eilers and
Marx 1996). The basic idea is to approximate a generic function fk(zki ) by a linear
combination of known spline basis functions, bkj (zki ), and regression parameters,

βk j , i.e.
∑Jk

j=1 βk j bk j (zki ) = Bk(zki )
Tβk , where Jk is the number of spline bases,

Bk(zki ) = {
bk1(zki ), . . . , bk Jk (zki )

}T is a vector of the basis functions evaluated at zki

andβk is the corresponding parameter vector. Note that subscriptv has been suppressed
to avoid clutter. Basis functions have to be chosen to have convenient mathematical
and numerical properties. Possible choices include B-splines, cubic regression and thin
plate regression splines (see, e.g., Marra and Radice (2010) for an overview). Based
on the result above, Eqs. (1) and (2) can be written as y∗

1i = mT
1iθ1 + BT

1iβ1 + ε1i =
η1i + ε1i , and y∗

2i = ϑy1i + mT
2iθ2 + BT

2iβ2 + ε2i = η2i + ε2i , where BT
vi ={

Bv1(zv1i )
T, . . . , BvKv (zvKv i )

T
}
,βT

v = (βT
v1, . . . ,β

T
vKv

) and η1i and η2i have the
obvious definition.

2.2 Estimation

In the sample selection model the data identify only the three possible events
(y1i = 1, y2i = 1), (y1i = 1, y2i = 0) and (y1i = 0) with probabilities p11i =
�2(η1i , η2i ; ρ), p10i = �(η1i ) − p11i and p0i = �(−η1i ), where � and �2 are the
distribution functions of a standardized univariate normal and a standardized bivariate
normal with correlation ρ, respectively. Therefore, the log-likelihood function is
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Testing the hypothesis of absence of unobserved confounding 719

�(δ) =
n∑

i=1

{y1i y2i log(p11i ) + y1i (1 − y2i ) log(p10i ) + (1 − y1i ) log(p0i )} , (3)

where δT = (δT
1 , δT

2 , ρ) and δT
v = (θT

v ,βT
v ), for v = 1, 2. In the recursive model

(y1i = 0) is replaced by (y1i = 0, y2i = 1) and (y1i = 0, y2i = 0) which have
probabilities p01i = �(η2i ) − p11i and p00i = 1 − p11i − p10i − p01i . Hence, in (3),
(1− y1i ) log(p0i ) is replaced by (1− y1i )y2i log(p01i )+ (1− y1i )(1− y2i ) log(p00i ).
To avoid overfitting, the model parameters are estimated by maximization of

�p(δ) = �(δ) − 1

2
βTSλβ, (4)

where βT = (βT
1 ,βT

2 ), Sλ = ∑2
v=1

∑Kv

kv=1 λvkv Svkv and the Svkv are positive
semi-definite known square matrices measuring the (second-order, typically) rough-

ness of the smooth terms in the model, i.e. βT
(∑2

v=1
∑Kv

kv=1 λvkv Svkv

)
β =

∑2
v=1

∑Kv

kv=1 λvkv

∫
f ′′
vkv

(zvkv )
2dzvkv . The λvkv are smoothing parameters control-

ling the trade-off between fit and smoothness. Because ρ is bounded in [−1, 1], ρ∗ =
tanh−1(ρ) = (1/2) log {(1 + ρ)/(1 − ρ)} is used in optimization.

Estimation of δ and λ = (λ1k1 , . . . , λ1K1 , λ2k2 , . . . , λ2K2) is carried out in two
steps. In particular, given a parameter vector value for λ, (4) is maximized using a
trust region algorithm (Nocedal and Wright 2006) which is based on

δ[a+1] = δ[a] + (I [a] + S̃λ)
−1(g[a] − S̃λδ

[a]), (5)

where a is the iteration index and S̃λ is defined as S̃λ = diag(011, . . . , 01P1 , λ1k1 S1k1 ,

. . . , λ1K1 S1K1 , 021, . . . , 02P2 , λ2k2 S2k2 , . . . , λ2K2 S2K2 , 0). The gradient vector g is
given by g1 = ∂�(δ)/∂δ1, g2 = ∂�(δ)/∂δ2 and g∗

3 = ∂�(δ)/∂ρ∗, while the
expected information matrix has a 3 × 3 matrix block structure with (r, h)th element

Ir,h = −E

[
∂2�(δ)/∂δr∂δT

h

]
, r, h = 1, . . . , 3, where δ3 = ρ∗. Given an estimate for

δ, multiple smoothing parameter estimation for (5) is then achieved by minimization
of

Vw
u (λ) = 1

n∗
‖√W(z − Xδ)‖2 − 1 + 2

n∗
tr(Aλ) w.r.t. λ, (6)

where zi = Xiδ + W−1
i di , Xi = diag

{
mT

1i , BT
1i , mT

2i , BT
2i , 1

}
, di = {∂�(δ)i/∂η1i ,

∂�(δ)i/∂η2i , ∂�(δ)i/∂η3i }T , η3i = ρ∗, Wi is the 3 × 3 matrix with (r, h)th element

(Wi )rh = −E

[
∂2�(δ)i

∂ηri∂ηhi

]
, r, h = 1, . . . , 3, (7)

n∗ = 3n, Aλ = X(XTWX+S∗
λ)

−1XTW, and tr(Aλ) represents the estimated degrees
of freedom (edf) of the penalized model. The square root and inverse of W are obtained
via eigen-decomposition. (To avoid clutter the superscript [a] has been suppressed
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720 G. Marra et al.

from the quantities above.) The two steps, one for δ and the other for λ, are iterated
until convergence. Full details can be found in Marra and Radice (2011, 2013a).

For semiparametric bivariate probit models, the expected information matrix is the
only option because the Wi , as defined in (7), are positive-definite over a larger region
of the parameter space as compared to those obtained without taking expectations.
This is crucial given that

√
W and W−1 (via z) are needed in (6).

3 Testing the hypothesis of absence of unobserved confounding

The hypothesis of absence of unobserved confounding can be stated in terms of ρ,
which can be interpreted as the correlation between the unobserved variables in the
two equations. If ρ = 0 then ε1i and ε2i are uncorrelated and hence there is not a
problem of unobserved confounding. On the contrary, ρ �= 0 implies that there is a
problem of unobserved confounding. This leads us to the definition of the following
hypothesis

{
H0 : ρ = 0
H1 : ρ �= 0

.

Under H0 function (4) becomes the sum of the penalized log-likelihood functions of

two semiparametric univariate probit models. This implies that δ̂
T
H0

=
(
δ̂1

T
, δ̂2

T
, 0

)
,

where δ̂1 and δ̂2 are obtained by estimating the model equations separately. There-
fore, consistent estimates for δ2 can be obtained by fitting Eq. (2) alone. Under H1
simultaneous estimation is required to obtain consistent parameter estimates.

3.1 L M type tests

In the context of the models described in this article, L M (also known as score test) is
an appropriate and computationally convenient tool for testing H0. Its main advantage
is that it does not require parameter estimates under H1. This is appealing because
the test is based on estimating the two model equations separately, hence obviating
the need to fit the more computationally demanding semiparametric bivariate model.
This implies that simultaneous estimation will be employed only if there is a problem
of unobserved confounding.

The L M statistic for the semiparametric bivariate models is

L M =
{

g
δ̂H0

− S̃λH0
δ̂H0

}T
I−1

{
g
δ̂H0

− S̃λH0
δ̂H0

}
d−→

H0
χ2

1 , (8)

where g
δ̂H0

is the score vector evaluated at δ̂H0 , S̃λH0
is defined in Sect. 2.2 but with

smoothing parameter estimates obtained by estimating the two univariate probit equa-
tions separately, and I−1 is the inverse of the information matrix. Studying the limiting
behavior of test statistics that involve penalty terms is not an easy task (e.g., Wood
2006, Sect. 4.8). However, because ρ is not penalized, it is still possible to use the
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Testing the hypothesis of absence of unobserved confounding 721

classic result that L M has a χ2
1 limiting distribution (Monfardini and Radice 2008).

This can be seen by observing that
{
g
δ̂H0

− S̃λH0
δ̂H0

}T = {
0, 0, ∂�(δ̂H0)/∂ρ

}
which

results from evaluating the penalized score in δ̂H0 .
Different estimation methods for I may lead to different finite sample size perfor-

mances. In this paper, we consider:

• The observed information matrix −H
δ̂H0

+ S̃λH0
(this expression derives from the

penalized score in (8)). The test obtained using this matrix will be referred to as
L MH for notational convenience.

• The expected information matrix I
δ̂H0

+ S̃λH0
. This test will be referred to as L MI.

The analytical expressions of g,I and −H for the recursive and sample selection
bivariate probit models are not reported here to save space and are implemented in
function LM.bpm() of the R package SemiParBIVProbit (Marra and Radice
2013b).

For the recursive model, the expected information matrix becomes block diagonal
under H0 (see “Appendix 1”). Hence, L MI can be simplified to

L MI = −
{

∂�(δ̂H0)

∂ρ

}2

E

[
∂2�(δ̂H0)

∂ρ∂ρ

]−1

, (9)

which is computationally convenient since it does not require the inversion of the
information matrix. This result does not hold for the non-random sample selection
case given the different structure of the information matrix.

Note that, to implement the L M type tests discussed above, we evaluate the score
vector and information matrices at δ̂H0 (obtained from the univariate fits). Therefore,
the arc-tangent transform for ρ (used in the context of simultaneous equation estima-
tion) is not required.

3.2 W test

The Wald test requires fitting the semiparametric bivariate model, hence it is not as
advantageous as the L M test. However, such a test is widely used in the applied
literature and therefore we consider it for comparison.

W is based on estimating ρ and is given by

W = ρ̂2

Var
(
ρ̂
) d−→

H0
χ2

1 . (10)

Var
(
ρ̂
)

is estimated using the diagonal element of the inverse of I
δ̂

+ S̃λ cor-
responding to ρ̂. This test will be referred to as WI. In a semiparametric con-
text this is the only option available. This is because model fitting can only be
based on the expected information matrix, as explained in the final paragraph of
Sect. 2.2. For the recursive model, Var

(
ρ̂
)

can be estimated using the simplifica-

tion described in the previous section, i.e. Var
(
ρ̂
) = −1/E[∂2�(δ̂)/∂ρ∂ρ]. Once
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again, this result does not hold for the non-random sample selection case. Because, in
estimation, we make use of ρ∗ rather than ρ (see Sect. 2.2), using the delta method
Var

(
ρ̂
) = 4Var

(
ρ̂∗) exp(2ρ̂∗)/(exp

{
2ρ̂∗} + 1)2.

The expected information matrix employed for computing Var
(
ρ̂
)

corresponds to
the Bayesian covariance matrix typically used for constructing ‘confidence’ intervals
for the terms of a penalized regression spline model (e.g., Wood 2006). Such intervals
have good frequentist coverage probabilities. This is because they include both a bias
and variance component, a feature which is not shared by their frequentist counter-
part; see Marra and Wood (2012) for full details. It may be argued that since ρ is not
penalized the frequentist covariance matrix, given by I−1(I− S̃λ)I−1, is also a sensible
choice. Preliminary simulation evidence confirmed that Var

(
ρ̂
)

is estimated well by
both covariance matrices. However, the Bayesian version is computationally conve-
nient since it can be obtained as a byproduct of the estimation procedure described in
Sect. 2.2.

Another commonly used test which requires fitting the bivariate model is the like-
lihood ratio (L R) test. Here, the statistic is given by twice the difference of the model
log-likelihoods under H1 and H0, and has a χ2

1 limiting distribution for parametric
models (Monfardini and Radice 2008). In the current context, we are however faced
with a difficulty which inhibits the use of this approach for testing H0. Specifically, in
the semiparametric case the number of degrees of freedom for L R is not guaranteed
to be equal to 1, and can in fact be a positive or negative real value. For instance,
if simultaneous estimation of the two equations leads to a model with edf (defined
in Sect. 2.2) equal to 18.37 and estimating the equations separately yields a model
with edf equal to 20.23 then the number of degrees of freedom for L R is −1.86; the
amount of smoothness required for the smooth functions of a model fitted via simul-
taneous estimation is likely to be different from that required when the equations are
estimated separately. The same issue has been found when comparing generalized
additive models (e.g., (Wood 2006, Sect. 4.10). It is not clear whether L R can be
rigorously extended to this context and further research is required.

4 Simulations

To compare the finite sample size properties of the L M and W tests discussed in
the previous section, we conducted simulation studies under correct and incorrect
specification of both semiparametric bivariate probit models, with and without ER.
The size and power of each test were calculated as the proportions of rejections based
on simulation replications. All computations were performed in the R environment
(R Development Core Team 2013) using the package SemiParBIVProbit (Marra
and Radice 2013b).

The next sections provide details on the simulation and model fitting settings. The
most salient features of the simulation results are then discussed. We present the endo-
geneity and non-random sample selection cases separately, starting with the former.
Note that the study design detailed in Sects. 4.1.1 and 4.2.1 extends the simulation
study of Monfardini and Radice (2008) to recognize the specific challenges that arise
when there are nonlinear response-covariate relationships.
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Testing the hypothesis of absence of unobserved confounding 723

Table 1 Parameter value sets for the DGPs in the endogeneity and non-random sample selection cases

Parametric components Smooth components

θ10 θ11 θ20 θ21 ϑ γ1 γ2 γ3 γ4 γ5 γ6 γ7

Setting 1 0.32 1.25 0.25 1.00 0.75 0.90 3.00 0.35 0.75 2.00 0.25 1.00

Setting 2 0.01 −1.31 −0.29 −0.37 0.49 0.24 2.61 0.60 0.28 −2.62 0.43 −0.63

Setting 3 −0.55 0.17 0.10 0.93 0.03 −0.65 3.10 −0.67 −0.07 0.41 0.29 −0.18

4.1 Endogeneity

4.1.1 Design of the experiments

Our experiments were based on two different data generating processes (DGPs): DGP1
and DGP2. In DGP1, the specification of the semiparametric recursive bivariate probit
model contained main effects only, whereas in DGP2 an interaction term between the
endogenous binary variable and a continuous regressor was also considered. That is,

y∗
1i = θ10 + θ11m1i + f1(z1i ) + f3(z2i ) + ε1i

y∗
2i = θ20 + ϑy1i + θ21m1i + f2(z1i ) + ε2i

, (11)

and

y∗
1i = θ10 + θ11m1i + f1(z1i ) + f3(z2i ) + ε1i

y∗
2i = θ20 + θ21m1i + (1 − y1i ) f2(z1i ) + y1i f4(z1i ) + ε2i

, (12)

where the binary outcomes y1i and y2i were determined according to the rules
described in Sect. 2.1. The smooth functions were f1(z1i ) = γ1[z2.5

1i + exp{γ2(z1i −
γ3)

2}], f2(z1i ) = γ4{γ5 exp(z1i ) − z3
1i }, f3(z2i ) = γ6z2i and f4(z1i ) = γ7 sin(π z1i ).

For both DGPs, we used three different parameter vector settings (see Table 1). These
values were obtained randomly from a standardized normal distribution.

We also considered a variant of DGP2, for the three settings, useful to test what
happens in the situation of distributional misspecification. Specifically, we generated
data assuming uncorrelated gamma errors with shape and scale parameters equal to
2. This was achieved using rgamma(). The sample sizes considered were 1,000 and
4,000. Each design was replicated 1,000 times.

4.1.2 Fitting details

Let the two model equations be equal to

eq1 <- y1 ˜ m1 + s(z1) + s(z2)
eq2 <- y2 ˜ y1 + m1 + s(z1)

for DGP1 and

eq1 <- y1 ˜ m1 + s(z1) + s(z2)
eq2 <- y2 ˜ y1 + m1 + s(z1, by = y1)
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724 G. Marra et al.

for DGP2. s() indicates that a smooth component is being used, and the by option
is to allow the smooth to interact with a parametric term. Variables y1, y2, m1,
z1 and z2 refer to y1i , y2i , m1i , z1i and z2i . Using rmvnorm() in the package
mvtnorm, regressors m1i , z1i and z2i were obtained from a matrix of dimensions
n × 3 whose columns, called say reg1, reg2 and reg3, were generated from a
multivariate normal distribution with zero means and covariance matrix characterized
by correlations equal to 0.5 and variances equal to 1. reg1 and reg2 were then
transformed using round() and pnorm(), respectively, to generate binary and
uniform covariates. Note that the specifications for eq1 and eq2 are consistent with
Eqs. (11) and (12).

p values for L MH and L MI were calculated using LM.bpm() from SemiPar
BIVProbit. That is,

LM.bpm(eq1, eq2, data, FI = FALSE)
LM.bpm(eq1, eq2, data, FI = TRUE)

corresponding to L MH and L MI, respectively. data is a data frame containing
the variables in the two equations generated according to the DGPs described in the
previous section. p values for WI were calculated using ρ̂ and Var

(
ρ̂
)

obtained from
the output produced by SemiParBIVProbit(). That is,

outE <- SemiParBIVProbit(eq1, eq2, data, ...)
V <- outE$Vb
rho.s <- outE$fit$argument[dim(V)[2]]
rho <- tanh(rho.s)
var.rho.s <- V[dim(V)[2], dim(V)[2]]
var.rho <- 4*var.rho.s*exp(2*rho.s)/(exp(2*rho.s)+1)ˆ2
pchisq(rhoˆ2/var.rho, 1, lower.tail = FALSE)

The smooth components of the semiparametric models were represented using penal-
ized thin plate regression splines with basis dimensions equal to 10 and penalties based
on second-order derivatives (Wood 2006, pp. 154–160).

Regarding model misspecification, for DGP2, we generated data using gamma
errors and employed the same tests. We also considered a scenario with functional
form misspecification where the model equation for y2 did not include the interaction
term.

4.1.3 Monte Carlo results

Empirical size Table 2 provides rejection frequencies produced under H0 : ρ = 0
and correct model specification using the three test statistics considered in this paper.
Results are reported for the three typical critical values. The findings for the two DGPs
share some important features, for the three settings. L MH exhibits empirical sizes
that are overall close to the nominal values. L MI and WI yield unsatisfactory size
results; the former under-rejects whereas the latter over-rejects. The good performance
of L MH is important for practitioners wishing to test the hypothesis of absence of
unobserved confounding without coping with simultaneous estimation. In the current
context, −H is a more adequate measure than I for estimating the information matrix.

123



Testing the hypothesis of absence of unobserved confounding 725

Ta
bl

e
2

Si
ze

re
su

lts
(i

n
%

)
fo

r
th

e
en

do
ge

ne
ity

ca
se

α
(%

)
n

Se
tti

ng
1

Se
tti

ng
2

Se
tti

ng
3

L
M

H
L

M
I

W
I

L
M

H
L

M
I

W
I

L
M

H
L

M
I

W
I

D
G

P1
1

1,
00

0
1.

7
0.

0
29

.6
1.

7
0.

0
16

.2
1.

5
0.

00
22

.5

5
6.

8
0.

0
42

.7
6.

9
0.

1
27

.7
6.

0
0.

00
35

.1

10
11

.4
0.

2
49

.1
11

.9
0.

7
36

.6
11

.1
0.

00
43

.6

1
4,

00
0

0.
8

0.
0

27
.4

1.
3

0.
0

11
.1

0.
9

0.
00

20
.9

5
4.

7
0.

0
40

.8
4.

5
0.

0
23

.5
5.

1
0.

00
33

.2

10
9.

4
0.

0
48

.5
9.

6
0.

6
33

.3
10

.4
0.

00
41

.2

D
G

P2
1

1,
00

0
1.

8
0.

0
29

.2
1.

3
0.

0
16

.0
1.

8
0.

00
20

.9

5
6.

1
0.

0
42

.1
6.

7
0.

1
27

.3
4.

8
0.

00
35

.2

10
10

.4
0.

0
50

.8
12

.2
0.

9
35

.1
9.

6
0.

02
42

.8

1
40

00
1.

7
0.

0
27

.6
1.

0
0.

0
11

.9
0.

8
0.

00
19

.6

5
5.

4
0.

0
41

.8
5.

2
0.

0
23

.4
5.

1
0.

00
31

.4

10
9.

4
0.

0
49

.5
9.

8
0.

5
31

.0
9.

3
0.

00
40

.7

T
he

se
w

er
e

ob
ta

in
ed

em
pl

oy
in

g
th

e
L

ag
ra

ng
e

m
ul

tip
lie

r
(L

M
)

te
st

s
ba

se
d

on
th

e
ob

se
rv

ed
(−

H
)

an
d

ex
pe

ct
ed

(I
)

in
fo

rm
at

io
n

m
at

ri
ce

s,
an

d
th

e
W

al
d

(W
)

te
st

ba
se

d
on

I.
D

G
P1

an
d

D
G

P2
re

la
te

to
m

od
el

s
(1

1)
an

d
(1

2)
.α

an
d

n
de

no
te

th
e

cr
iti

ca
lv

al
ue

an
d

sa
m

pl
e

si
ze

co
ns

id
er

ed

123



726 G. Marra et al.

Monfardini and Radice (2008) found the same for parametric recursive bivariate probit
models. This has also been confirmed in other contexts by Maldonado and Greenland
(1994) and Louis (1982). In a notable article, Efron and Hinkley (1978) argued that
the observed information should be used in preference to the expected information
on the grounds that the former is ‘closer to the data’ whereas the latter is an a priori
expectation. They showed this by using an appropriate ancillary statistic. The main
practical limitation of their theoretical argument is the reliance on an ancillary statistic,
which is often hard to specify in complex models such as the ones considered in this
article. However, there are other examples (see Cavanaugh and Shumway (1996), Cao
and Spall (2009) and references therein) where the expected information may more
accurately estimate the true information. It emerges from the literature that there is
not clear theoretical evidence about the superiority of −H on I (or vice versa) and
that further research is needed towards this direction.

The performance of L MI and WI suggests that using I underestimates the vari-
ability of ρ̂, hence causing them to produce zero and very high rejection frequencies,
respectively. Note that the opposite rejection frequencies of the two tests is attributed

to the way −E

[
∂2�
∂ρ∂ρ

]
enters the statistics, which can be easily verified by looking at

(9) and (10).

Empirical power For DGP1 and DGP2 we evaluated the empirical power of L MH for
ρ = {0.1, 0, 2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. Power curves are presented in Figs. 1
and 2. L MH gives overall satisfactory results for all settings. Obviously the power
improves as both n and ρ increase.

Empirical size under misspecification We applied L MH to data generated according
to model (12) with gamma errors. We also considered the situation of data generated
according to model (12) with normal errors but using the test based on a misspecified
functional form (i.e., the interaction term was omitted from the model). Size results
are reported in Table 3 (see ER case). The results for setting 1 are not as good as those
obtained under no misspecification but still reasonable. However, under settings 2 and
3 the sizes are overestimated. To gain more evidence, we considered other parameter
sets; the results lead to similar conclusions (see “Appendix 2”, Table 7). Overall,
this suggests that under misspecification the performance of L MH worsens and the
good results produced for setting 1 are due to sampling variability rather than to the
robustness of the test.

We also assessed the effectiveness of L MH when the ER does not hold. Results are
reported in Table 3 (see non-ER case). Overall, the test performs poorly. Comparing
the ER and non-ER results, under misspecification, L MH performs better when the
ER holds, although it still has high rejection frequencies.

4.2 Non-random sample selection

4.2.1 Design of the experiments

Similarly to the endogeneity case, the sampling experiments were based on the two
different DGPs: DGP3 and DGP4. In DGP3 the specification of the semiparametric
sample selection bivariate probit model contained main effects only, whereas DGP4
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Fig. 1 Power curves for L MH obtained under DGP1 and the three settings described in Sect. 4.1.1. The
solid, dashed and dotted lines represent curves at the 10, 5 and 1 % significance levels, respectively

also contained an interaction term between two regressors. That is,

y∗
1i = θ10 + θ11m1i + f1(z1i ) + f3(z2i ) + ε1i

y∗
2i = θ20 + θ21m1i + f2(z1i ) + ε2i

, (13)

and

y∗
1i = θ10 + θ11m1i + f1(z1i ) + f3(z2i ) + ε1i

y∗
2i = θ20 + (1 − m1i ) f2(z1i ) + m1i f4(z1i ) + ε2i

, (14)

where the binary outcomes y1i and y2i were determined according to the rules
described in Sect. 2.1. For both DGPs, we considered the three different parame-
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Fig. 2 Power curves for L MH obtained under DGP2 and the three settings described in Sect. 4.1.1. The
solid, dashed and dotted lines represent curves at the 10, 5 and 1 % significance levels, respectively

ter settings reported in Table 1. We also considered a variant of DGP4, useful to test
what happens in the situation of distributional misspecification. As before, we gener-
ated data assuming uncorrelated gamma errors with shape and scale parameters equal
to 2. The sample sizes considered were 1,000 and 4,000. Each design was replicated
1,000 times.

4.2.2 Fitting details

We specified the two model equations

eq3 <- y1 ˜ m1 + s(z1) + s(z2)
eq4 <- y2 ˜ m1 + s(z1)
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for DGP3 and

eq3 <- y1 ˜ m1 + s(z1) + s(z2)
eq4 <- y2 ˜ m1 + s(z1, by = m1)

for DGP4. p values for L MH and L MI were calculated using

LM.bpm(eq3, eq4, data, FI = FALSE, selection = TRUE)
LM.bpm(eq3, eq4, data, FI = TRUE, selection = TRUE)

where selection was set to TRUE to use the tests for the sample selection
model case. p values for WI were calculated using the quantities ρ̂ and Var

(
ρ̂
)

obtained from the output produced bySemiParBIVProbit(eq3, eq4, data,
selection = TRUE).

In line with the endogeneity case, for DGP4, we generated data using gamma errors
and employed the same tests. We also considered a scenario with functional form
misspecification where the model equation for y2 did not include the interaction term.

4.2.3 Monte Carlo results

Because the conclusions in this section are similar to those obtained in Sect. 4.1.3, we
only report some of the results; “Appendix 2” contains the full set of results.

Regarding the empirical sizes, L MH performs well, whereas the tests based on I
perform poorly (see Table 4). The good performance of L MH is also confirmed by
the power results reported in Figs. 3 and 4 in “Appendix B”.

As for model misspecification, the same conclusions as those for the endogeneity
case are reached here; under functional and distributional misspecification the per-
formance of L MH worsens (see Table 8, ER case, “Appendix 2”). Also, the test’s
performance is poor in the absence of ER and is slightly better in the presence of ER.
The main findings of our simulation study can be summarized as follows. 1) L MH
yields close to nominal empirical sizes and strongly outperforms the tests based on the
expected information. L MI and WI are characterized by zero and very high rejection
frequencies, respectively. 2) L MH produces satisfactory power results which improve
as n and ρ increase. 3) Under misspecification, the performance of L MH worsens. 4)
When the ER does not hold, the test is not reliable. 5) The good performance of L MH
is important for practitioners wishing to test the hypothesis of absence of unobserved
confounding without coping with simultaneous estimation.

5 Real data illustrations

We illustrate the tests using two case studies in which the issues of endogeneity and
non-random sample selection arise. The first concerns a study, conducted in Botswana,
on the impact of education on women’s fertility (www.measuredhs.com) and contains
around 4,300 observations. Education is equal to 1 if the woman had at least 8 years
of education and 0 otherwise, and fertility is equal to 1 if the woman had at least one
child. The proportion of 1’s for the two variables is 28.9 and 74 %, respectively. As
suggested by many scholars, estimation of such an effect can be biased by the possible
endogeneity arising because unobserved confounders (e.g., ability and motivation)
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Fig. 3 Power curves for L MH obtained under DGP3 and the three settings described in Sect. 4.2.1.
The solid, dashed and dotted lines represent curves at the 10, 5 and 1 % significance levels, respectively

are associated with both fertility and education; full details can be found in Marra
and Radice (2011) and references therein. The second dataset considers an American
survey of public opinion polls on school integration (www.electionstudies.org) where
about 700 individuals were first asked if they had an opinion on the integration question
(0 = no, 1 = yes) and then what that opinion was (0 = no integration, 1 = yes integration).
This gave respondents an opportunity to opt out of the question answering process at
an earlier stage. 64.57 % of the individuals chose to answer the integration question.
Among these, the proportion of yes answers was 46.43 %. Because it is reasonable to
assume that the decision to answer was not random, sample selection bias can occur
when estimating the model parameters; full details can be found in Marra and Radice
(2013a) and references therein.
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Fig. 4 Power curves for L MH obtained under DGP4 and the three settings described in Sect. 4.2.1. The
solid, dashed and dotted lines represent curves at the 10, 5 and 1 % significance levels, respectively

In the fertility study, the direction of the bias due to unobserved confounding can
not be determined a priori. The reason for this ambiguity is because of different
substitution and income effects (Cygan-Rehm and Maeder 2012). As for the school
integration study, the bias is expected to be negative because some individuals choose
not to answer the integration question as they feel that their opinion may be perceived
as socially unacceptable (Berinsky 1999).

5.1 Fertility dataset

Following previous work on the subject (Wooldridge 2010; Marra and Radice 2011;
Sobotka et al. 2013), we specified a semiparametric recursive bivariate probit model
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Table 5 Variables in the education-fertility data set

Variable Explanation

child Number of children—binary: 1 (at least one child), 0 (otherwise)

ed Number of years of schooling—binary: 1 (at least 8 years), 0 (otherwise)

elz Household has electricity—binary: yes, no

urb Household lives in urban area—binary: yes, no

em Ever married—binary: yes, no

age Age in years

fhalf Born during the first 6 months of the year—binary: yes, no

with main terms only. The description of the variables used in the model are reported in
Table 5. Specifically, the linear predictors of the treatment (ed) and outcome (child)
equations included urb, em and el, whereas fhalf and ed entered the former
and latter predictors, respectively. These variables entered the model as parametric
components. Thin plate regression splines of age, with the same settings as those
employed for the simulation study, were employed. The two equations are

ed∗
i = θ10 + θ11eli + θ12urbi + θ13emi + θ14fhalfi + f1age(agei ) + ε1i ,

child∗
i = θ20 + ϑedi + θ21eli + θ22urbi + θ23emi + f2age(agei ) + ε2i .

As in Wooldridge (2010), the binary variable ‘born during the first 6 months of the
year’ (fhalf) was used as an instrument on the grounds that it does not have a direct
effect on fertility given covariates, influences education, and is unlikely to be associ-
ated with unobservable confounders such as ability and motivation. The nonparametric
specification for age arises from the fact that this covariate embodies productivity and
life-cycle effects that are likely to affect child non-linearly. Wooldridge (2010) con-
sidered a model for fertility that contains linear and quadratic terms in age, whereas
Marra and Radice (2011) and Sobotka et al. (2013) specified a model containing a
smooth function of age. Here, we found non-linear effects of age that are almost
identical to those reported in Marra and Radice (2011); results are available upon
request. The quantity of interest is the average treatment effect (ATE) of ed onchild,
which measures the effect of ed on the probability of having at least one child, i.e.
P(child = 1).

Because the effect of education on fertility may be biased by the possible presence
of endogeneity, as a first step of the analysis we tested the null hypothesis of absence
of unobserved confounding. Specifically, we employed L MH as, in simulation, it was
shown to have good size and power properties. The p value obtained using L MH
was 0.00, suggesting that there is an issue of endogeneity. For completeness, we also
report the results of the tests based on the expected information; the p values obtained
using L MI and WI were 0.94 and 0.00, respectively. The p value of WI suggests
that there is an issue of endogeneity, whereas that of L MI suggests that endogeneity
is not present. The conflicting conclusions can be attributed to the fact that, as shown
in our simulations, L MI and WI are not reliable as under the null they yield zero and
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high rejection frequencies, respectively. Based on the result produced by L MH, we
estimated a recursive bivariate probit model and then calculated the ATE. The estimate
in % (with 95 % confidence interval) was −3.01 (−5.90,−0.08). This is statistically
different from zero and suggests that having at least 8 years of schooling decreases the
probability of having at least one child by 3 %.

5.2 School integration dataset

For the school integration dataset, using the variables in Table 6 and in line with the
works by Berinsky (1999) and Marra and Radice (2013a), we specified a semipara-
metric sample selection probit model based on the two equations

opinion∗
i = θ11 + θ12sexi + θ13racei + θ14reg.northeasti

+ θ15reg.southi + θ16reg.westi + θ17chil

+ θ18discpol+ θ19moralcons+ θ110perslett

+ f1age(agei ) + f1educ(educi ) + ε1i ,

integration∗
i = θ21 + θ22sexi + θ23racei + θ24reg.northeasti

+ θ25reg.southi +θ26reg.westi +θ27chil+θ28discpol

+ θ29moralcons+ f2age(agei ) + f2educ(educi ) + ε2i ,

where, the equations included sex, race, reg.northeast, reg.south,
reg.west, discpol, moralcons and chil as parametric components, and
smooth functions of age and educ. These two continuous covariates are expected to
have non-linear impacts on integration as well asopinion.chilwas included
as a parametric component because it did not have enough unique covariate values to
justify the use of a smooth function. The selection equation (opinion) also included

Table 6 Variables in the school integration dataset

Variable Explanation

opinion Individual had opinion on the integration question—binary: yes, no

integration Individual supports integration—binary: yes, no

chil Number of children

age Age in years

educ Number of years of education

sex Respondent is man—binary: yes, no

race Respondent is white—binary: yes, no

reg.northeast Respondent lives in north-east region—binary: yes, no

reg.south Respondent lives in south region—binary: yes, no

reg.west Respondent lives in west region—binary: yes, no

discpol Respondent discusses politics—binary: yes, no

moralcons Moral conservatism − 1 = support, 2 = no support, 3 = neither

perslett Respondent was persuaded to participate in the survey—binary: yes, no
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perslett. This was because, according to Berinsky (1999), those individuals who
are difficult to reach are also reluctant to answer specific survey questions. The inclu-
sion of this variable in the selection equation served as ER. As in the fertility study,
we found estimated linear and non-linear effects of the continuous variables that are
almost identical to those reported in Marra and Radice (2013a).

The p value obtained using L MH was 0.00, whereas those obtained using L MI
and WI were 0.76 and 0.00. These lead to the same conclusions reached for the fer-
tility study. In summary, L MH, which is the most reliable test, supports the presence
of non-random sample selection. Therefore, we estimated the model parameters using
the sample selection bivariate probit model and calculated the mean predicted proba-
bility (and associated confidence interval) of giving a supportive response. This was
0.34 (0.22, 0.45).
In both examples (fertility and school integration) L MH suggests rejecting the null
hypothesis of absence of unobserved confounding. In such cases, estimates of the
parameters of interest (ATE and mean predicted probability) are obtained by using
bivariate probit models. If we were not to reject the null hypothesis then we would
estimate the quantities of interest by using univariate models, hence avoiding the use
of a simultaneous estimation approach.
Following a reviewer’s suggestion, for both case studies, we obtained p values using
L MH based on a parametric specification of the model equations (i.e., the continuous
covariates were assumed to have a linear impact). The values were 0.12 and 0.03 for
the fertility and school integration studies, respectively. In the first case, the conclusion
would be that there is not an issue of endogeneity, which is not consistent with the
results reported in this section as well as in the literature on this topic. In the second
case, conclusions would not be altered. In general, we recommend using a model
specification that reduces the risk of functional form misspecification which may have
a detrimental impact on the reliability of the test.

6 Discussion

We extended L M and W type tests for the hypothesis of absence of unobserved
confounding to the context of semiparametric recursive and sample selection bivariate
probit models. The finite sample size performance of the tests was examined via a
Monte Carlo study under several scenarios: correct model specification, distributional
and functional misspecification, with and without an ER. The results allowed us to
derive some guidelines which may be important for empirical applications. First, under
correct model specification, L M based on −H (the observed information) performs
well, whereas the statistics based on I (the expected information) are characterized
by zero and very high rejection frequencies, suggesting these tests should not to be
used for empirical analysis. Second, L M performs satisfactorily only when the ER
holds. Third, the availability of a valid instrument can alleviate but not eliminate the
detrimental effect that model misspecification has on the empirical performance of the
test.

The good performance of L MH should be particularly attractive to practition-
ers wishing to test the null hypothesis of absence of unobserved confounding while
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avoiding simultaneous estimation. This implies that simultaneous estimation will be
employed only if unobserved confounding is detected.

The L M statistic presented here can in principle be generalized to any other model
which controls for endogeneity or non-random sample selection. Examples are cop-
ula or count data endogenous and non-random sample selection models (Bratti and
Miranda 2011; Winkelmann 2011; Zimmer and Trivedi 2006; Smith 2003). More
generally, this test could be extended to any other context where there is a system
of equations and testing their independence is important (Kiefer 1982; Yee and Wild
1996).
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Appendix

Appendix A

For the recursive bivariate probit model case, matrix I becomes block diagonal under
H0 : ρ = 0. This is because I12,I13 and I23, reported in Marra and Radice (2011),
are equal to 0 under the null. In what follows, we ignore the role of the penalty because
it is block diagonal and hence does not affect the aforementioned quantities. Consider,
for instance, I13. Under the null

I13 =
N∑

i=1

φ2
1iφ2i

[
�2i

{
1

�1i�2i
+ 1

(1 − �1i )�2i

}

− (1 − �2i )

{
1

�1i (1 − �2i )
+ 1

(1 − �1i )(1 − �2i )

}]
X1i

=
N∑

i=1

φ2
1iφ2i

[
1

�1i
+ 1

1 − �1i
− 1

�1i
− 1

1 − �1i

]
X1i = 0,

where, using a shorthand notation, �1i�2i ,�1i (1 − �2i ), (1 − �1i )�2i and (1 −
�1i )(1 − �2i ) are the quantities for p11i , p10i , p01i and p00i obtained under H0, and
�1i ,�2i , φ1i and φ2i denote the probability and density functions of a standardized
normal evaluated at their corresponding linear predictors η1i and η2i .

Appendix B

123



738 G. Marra et al.

Ta
bl

e
7

Fu
rt

he
r

si
ze

re
su

lts
(i

n
%

)
fo

r
L

M
H

in
th

e
en

do
ge

ne
ity

ca
se

un
de

r
th

e
sc

en
ar

io
s

of
m

is
sp

ec
ifi

ed
er

ro
r

di
st

ri
bu

tio
n

an
d

fu
nc

tio
na

lf
or

m

α
(%

)
n

E
rr

or
di

st
ri

bu
tio

n
Fu

nc
tio

na
lf

or
m

Se
tti

ng
4

Se
tti

ng
5

Se
tti

ng
6

Se
tti

ng
4

Se
tti

ng
5

Se
tti

ng
6

E
R

1
1,

00
0

2.
3

1.
8

2.
3

2.
1

2.
9

2.
2

5
8.

2
7.

9
8.

8
8.

6
8.

6
7.

3

10
14

.2
13

.2
13

.6
12

.1
14

.9
12

.5

1
4,

00
0

2.
5

2.
3

2.
2

2.
5

2.
5

2.
7

5
8.

2
8.

7
8.

1
8.

3
8.

5
8.

1

10
13

.3
12

.1
13

.6
12

.8
14

.3
14

.8

D
at

a
w

er
e

ge
ne

ra
te

d
us

in
g

m
od

el
(1

2)
of

D
G

P2
.E

R
re

fe
rs

to
th

e
ca

se
s

in
w

hi
ch

z 2
i

(z
2

)
is

in
cl

ud
ed

in
th

e
fir

st
eq

ua
tio

n
(e
q
1

).
Pa

ra
m

et
er

ve
ct

or
va

lu
es

fo
r

th
e

th
re

e
se

tti
ng

s
w

er
e

ob
ta

in
ed

ra
nd

om
ly

fr
om

a
st

an
da

rd
iz

ed
no

rm
al

di
st

ri
bu

tio
n

123



Testing the hypothesis of absence of unobserved confounding 739

Ta
bl

e
8

Si
ze

re
su

lts
(i

n
%

)
fo

r
L

M
H

in
th

e
no

n-
ra

nd
om

sa
m

pl
e

se
le

ct
io

n
ca

se
un

de
r

th
e

sc
en

ar
io

s
of

no
m

is
sp

ec
ifi

ca
tio

n
an

d
m

is
sp

ec
ifi

ed
er

ro
r

di
st

ri
bu

tio
n

an
d

fu
nc

tio
na

l
fo

rm

α
(%

)
n

N
o

m
is

sp
ec

ifi
ca

tio
n

E
rr

or
di

st
ri

bu
tio

n
Fu

nc
tio

na
lf

or
m

Se
tti

ng
1

Se
tti

ng
2

Se
tti

ng
3

Se
tti

ng
1

Se
tti

ng
2

Se
tti

ng
3

Se
tti

ng
1

Se
tti

ng
2

Se
tti

ng
3

E
R

1
1,

00
0

1.
6

1.
4

1.
6

2.
6

2.
0

2.
0

1.
5

2.
9

2.
4

5
6.

0
6.

8
5.

8
8.

5
7.

8
8.

8
8.

9
7.

9
8.

1

10
9.

4
12

.1
10

.6
15

.2
12

.7
15

.1
10

.0
13

.3
12

.9

1
4,

00
0

1.
5

1.
1

0.
9

2.
5

2.
1

2.
3

1.
7

2.
1

2.
6

5
5.

7
5.

2
4.

7
6.

4
9.

9
7.

9
6.

3
10

.0
8.

8

10
10

.4
9.

8
9.

3
12

.1
13

.1
14

.3
9.

8
15

.1
13

.3

N
on

-E
R

1
1,

00
0

50
.1

8.
1

14
.1

22
.4

21
.9

8.
5

4.
0

10
.1

4.
9

5
61

.1
14

.1
19

.9
30

.1
30

.8
14

.6
9.

1
26

.5
10

.1

10
64

.9
20

.2
24

.5
36

.2
39

.5
20

.1
20

.1
44

.8
20

.2

1
4,

00
0

53
.7

9.
9

13
.1

46
.1

17
.1

10
.0

3.
7

39
.1

4.
8

5
66

.0
16

.6
18

.2
58

.9
25

.1
20

. 0
8.

8
69

.0
10

.8

10
71

.5
24

.0
22

.1
67

.1
29

.9
24

.1
19

.6
75

.3
21

.1

D
at

a
w

er
e

ge
ne

ra
te

d
us

in
g

m
od

el
(1

5)
of

D
G

P4
.N

on
-E

R
re

fe
rs

to
th

e
ca

se
in

w
hi

ch
z 2

i
(z
2

)
is

no
ti

nc
lu

de
d

in
th

e
fir

st
eq

ua
tio

n
(e
q
3

)

123



740 G. Marra et al.

References

Banasik J, Crook J (2007) Reject inference, augmentation, and sample selection. Eur J Oper Res 183:
1582–1594

Bärnighausen T, Bor J, Wandira-Kazibwe S, Canning D (2011) Correcting HIV prevalence estimates for
survey nonparticipation using heckman-type selection models. Epidemiology 22:27–35

Berinsky A (1999) The two faces of public opinion. Am J Polit Sci 43:1209–1230
Bratti M, Miranda A (2011) Endogenous treatment effects for count data models with endogenous partici-

pation or sample selection. Health Econ 20:90–1109
Buchmueller TC, Grumbach K, Kronick R, Kahn JG (2005) Book review: the effect of health insurance on

medical care utilization and implications for insurance expansion: a review of the literature. Med Care
Res Rev 62:3–30

Cao X, Spall JC (2009) Preliminary results on relative performance of expected and observed fisher infor-
mation. In: Proceedings of the 48th IEEE conference on decision and control, CDC 2009, combined
withe the 28th Chinese control conference, Dec 16–18 2009. IEEE, Shanghai, China, pp 1538–1543

Cavanaugh JE, Shumway RH (1996) On computing the expected fisher information matrix for state-space
model parameters. Stat Prob Lett 26:347–355

Chib S, Greenberg E (2007) Semiparametric modeling and estimation of instrumental variable models.
J Comput Graph Stat 16:86–114

Chib S, Greenberg E, Jeliazkov I (2009) Estimation of semiparametric models in the presence of endogeneity
and sample selection. J Comput Graph Stat 18:321–348

Cuddeback G, Wilson E, Orme J, Combs-Orme T (2004) Detecting and statistically correcting sample
selection bias. J Soc Serv Res 30:19–33

Cygan-Rehm K, Maeder M (2012) The effect of education on fertility: evidence from a compulsory school-
ing reform. Working Papers 121, Bavarian Graduate Program in Economics (BGPE). http://ideas.repec.
org/p/bav/wpaper/121_cyganrehmmaeder.html

de Ven WV, Praag BV (1981) The demand for deductibles in private health insurance: a probit model with
sample selection. J Econom 17:229–252

Efron B, Hinkley DV (1978) Assessing the accuracy of the maximum likelihood estimator: observed versus
expected fisher information. Biometrika 65:457–487

Eilers PHC, Marx BD (1996) Flexible smoothing with B-splines and penalties. Stat Sci 11(2):89–121
Goldman D, Bhattacharya J, McCaffrey D, Duan N, Leibowitz A, Joyce G, Morton S (2001) Effect of

insurance on mortality in an HIV-positive population in care. J Am Stat Assoc 96:883–894
Greene WH (2012) Econometric analysis. Prentice Hall, New York
Hastie T, Tibshirani R (1993) Varying-coefficient models. J Roy Stat Soc Ser B 55:757–796
Heckman J (1978) Dummy endogenous variables in a simultaneous equation system. Econometrica 46:

931–959
Heckman J (1979) Sample selection bias as a specification error. Econometrica 47:153–161
Kawatkar AA, Nichol MB (2009) Estimation of causal effects of physical activity on obesity by a recursive

bivariate probit model. Value Health 12:A131–A132
Kiefer NM (1982) Testing for dependence in multivariate probit models. Biometrika 69:161–166
Latif E (2009) The impact of diabetes on employment in Canada. Health Econ 18:577–589
Louis TA (1982) Finding the observed information matrix when using the em algorithm. J Roy Stat Soc

Ser B 44:226–233
Maddala GS (1983) Limited dependent and qualitative variables in econometrics. Cambridge University

Press, Cambridge
Maldonado G, Greenland S (1994) A comparison of the performance of model-based confidence intervals

when the correct model form is unknown: coverage of asymptotic means. Epidemiology 5:171–182
Marra G, Radice R (2010) Penalised regression splines: theory and application to medical research. Stat

Methods Med Res 19:107–125
Marra G, Radice R (2011) Estimation of a semiparametric recursive bivariate probit model in the presence

of endogeneity. Canad J Stat 39:259–279
Marra G, Wood S (2012) Coverage properties of confidence intervals for generalized additive model com-

ponents. Scand J Stat 39:53–74
Marra G, Radice R (2013a) A penalized likelihood estimation approach to semiparametric sample selection

binary response modeling. Electron J Stat 7:1432–1455

123

http://ideas.repec.org/p/bav/wpaper/121_cyganrehmmaeder.html
http://ideas.repec.org/p/bav/wpaper/121_cyganrehmmaeder.html


Testing the hypothesis of absence of unobserved confounding 741

Marra G, Radice R (2013b) SemiParBIVProbit: semiparametric bivariate probit modelling. R package
version 3.2-6

Monfardini C, Radice R (2008) Testing exogeneity in the bivariate probit model: a Monte Carlo study. Oxf
Bull Econ Stat 70:271–282

Montmarquette C, Mahseredjiana S, Houle R (2001) The determinants of university dropouts: a bivariate
probability model with sample selection. Econ Educ Rev 20:475–484

Nocedal J, Wright SJ (2006) Numerical optimization. Springer, New York
R Development Core Team (2013) R: a Language and environment for statistical computing. R foundation

for statistical computing. Vienna, Austria. ISBN 3-900051-07-0
Smith MD (2003) Modelling sample selection using archimedean copulas. Econom J 6:99–123
Sobotka F, Radice R, Marra G, Kneib T (2013) Estimating the relationship of women’s education and

fertility in botswana using an instrumental variable approach to semiparametric expectile regression.
J Roy Stat Soc Ser C 62:1–21

Wilde J (2000) Identification of multiple equation probit models with endogenous dummy regressors. Econ
Lett 69:309–312

Winkelmann R (2011) Copula bivariate probit models: with an application to medical expenditures. Health
Econ 21:1444–1455

Wood SN (2006) Generalized additive models: an introduction with R. Chapman and Hall, London
Wooldridge JM (2010) Econometric analysis of cross section and panel data. MIT Press, Cambridge
Yee TW, Wild CJ (1996) Vector generalized additive models. J Roy Stat Soc Ser B 58:481–493
Zimmer DM, Trivedi PK (2006) Using trivariate copulas to model sample selection and treatment effects:

application to family health care demand. Journal of Business and Economic Statistics 24:63–76

123


	Testing the hypothesis of absence of unobserved confounding in semiparametric bivariate probit models
	Abstract
	1 Introduction 
	2 Preliminaries
	2.1 The models 
	2.2 Estimation

	3 Testing the hypothesis of absence of unobserved confounding
	3.1 LM type tests
	3.2 mathcal W test 

	4 Simulations 
	4.1 Endogeneity
	4.1.1 Design of the experiments 
	4.1.2 Fitting details 
	4.1.3 Monte Carlo results

	4.2 Non-random sample selection
	4.2.1 Design of the experiments 
	4.2.2 Fitting details 
	4.2.3 Monte Carlo results


	5 Real data illustrations
	5.1 Fertility dataset
	5.2 School integration dataset

	6 Discussion
	Acknowledgments
	Appendix
	Appendix
	Appendix A
	Appendix A
	Appendix B
	Appendix B

	References



