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Abstract
The main factor affecting the productivity of a new product in the injection molding process is the cycle time. In general, the
productivity of a new product can be enhanced by shortening the cooling time because the cooling time occupies most of the
cycle time. The cooling time can be shortened by an injection mold with conformal cooling channels which are conformal to the
molding cavity. In this study, six injection molds with different locations of cooling channels and six injection molds with
different surface roughness of cooling channels were fabricated for low-pressure wax injection molding. It was found that the
cooling time of the molded part (y) can be directly predicted from the center distance with respect to mold cavity (x) according the
trend equation of y = 141.49 ln (x) + 733.03. The cooling time of the molded part is shorter when the center distance with respect
to mold cavity is closer smaller. The optimal distance between the wall of the conformal cooling channel and the surface of the
injection mold is 2 mm based on the productivity of a new product. In addition, the surface roughness of the cooling channel wall
is as small as possible when the flow of the coolant is completely turbulent.

Keywords Cooling time . Rapid tooling . Conformal cooling channel . Injectionmolding

1 Introduction

The cycle time is a very important parameter in the injection
molding because a longer cycle times stands for lower pro-
ductivity [1, 2]. In order to enhance the productivity of a new
product, shortening the cycle time by using the conformal
cooling channels seems to be an effective approach [3]. The
quality of the molded part can be also improved by the mold
with conformal cooling channels [4]. Conformal cooling do-
nates the cooling channels that conform to the surface of the
mold cavity. Some issues regarding the conformal cooling
channels have been investigated. Mercado-Colmenero al. pre-
sented a new conformal cooling lattice design procedure for
injection molding applications based on expert algorithms [5].
It was found that the new cooling lattices effectively improve
the efficiency of thermal exchange in the cooling phase for

plastic parts. Li et al. [6] used a topology optimization ap-
proach to design the conformal cooling system for injection
molding. It was found that the boundary element method can
improve both efficiency and uniformity of the cooling pro-
cess. Kitayama et al. [7] examined the cooling efficiency of
conformal cooling channel in plastic injection molding (PIM)
numerically and experimentally. Holker and Tekkaya [8] de-
veloped extrusion dies with conformal cooling channels for
increasing the productivity in hot aluminum extrusion. Lim
et al. [9] proposed a method for designing the cooling channel
by means of the energy balance principle and arrangement
method. Wang et al. [10] employed optimization of mold with
spherical spiral conformal cooling system and product struc-
ture to reduce service stress of the molded parts. Brooks and
Brigden proposed a concept for designing the conformal
cooling layers with self-supporting lattices [11].Vojnova [12]
introduced the benefits of molds with conformal cooling sys-
tems in the injectionmolding process. There are three different
methods for designing conformal cooling channels, i.e., spiral,
zigzag, and parallel [13]. Four parameters can be used to de-
sign conformal cooling channel, i.e., wall thickness of the
molded part, cooling channel diameter, center distance be-
tween cooling channels, and center distance with respect to
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mold cavity. In this study, the effects of cooling time of
molded parts on rapid injection molds with different layouts
and surface roughness of conformal cooling channels were
investigated using Moldex 3D simulation software [14]. In
addition, six injection molds with different center distances
with respect to mold cavity and six injection molds with dif-
ferent surface roughness of conformal cooling channels were
fabricated by rapid tooling technology (RTT) [15–20]. The
cooling time and characteristics of the injection mold was
investigated experimentally. The variations of the results be-
tween the experiment and the simulation of cooling time were
also investigated.

2 Experimental details

The master model, layout of cooling channels, and injection
molds were designed using SolidWorks software. The master
model is a semicircular piece with 10 mm in thickness and
38.5 mm in radius. The master model was fabricated using an
additive manufacturing machine (YK-210, Youkung Inc.)
through polylactic acid (PLA) plastics with layer thickness
of 0.254 mm. Figure 1 shows the schematic illustrations of
the four cooling channel design parameters. W, d, P, and L
stand for wall thickness of the molded part, cooling channel
diameter, center distance between cooling channels, and cen-
ter distance with respect to mold cavity, respectively. Figure 2
shows the process layouts for fabricating injection molds with
conformal cooling channels. The precision casting wax
(K512, Kato Inc.) was used to make conformal cooling chan-
nels. The room-temperature-vulcanizing silicone (KE-
1310ST, Shin Etsu Inc.) was used to fabricate injection molds.
The hardener and base compound were mixed in a weight
ratio of 1:10. The amount of the mixture required was calcu-
lated by multiplying the desired volume of injection molds. In
order to reduce human error, a user-friendly man–machine
interface was developed using a Visual Basic program to de-
termine the amounts of both base compound and hardener. A
vacuum machine (F-600, Feiling Inc.) was used to eliminate
air bubbles from the resulting mixture. In order to investigate
the cooling efficiency of the cooling channels with different

surface roughness, the diameter of cooling channel was fixed
at 8 mm and the six different surface roughnesses are changed.
Figure 3 shows the schematic illustrations of the six different
surface roughnesses of conformal cooling channels with layer
height of 0.3 mm, 0.25 mm, 0.2 mm, 0.15 mm, 0.1 mm, and
0.05 mm. The maximum surface roughness (Rmax)for six
different surface roughness of conformal cooling channels
are about 140 μm, 127 μm, 115 μm, 78 μm, 70 μm, and
58 μm, respectively. In order to investigate the cooling effi-
ciency of the different layouts of conformal cooling channels,
the diameter of cooling channel was fixed at 8 mm and the six
different center distances with respect to mold cavity are
changed. According to the general design guideline of confor-
mal cooling channel [13, 21, 22], the shortest center distances
with respect to mold cavity is 6 mm because the distance
between the wall of the conformal cooling channel and the
surface of the injection mold is at least 2 mm. Figure 4 shows
the schematic illustrations of the different layouts of confor-
mal cooling channels with different center distances with re-
spect to mold cavity of 6 mm, 8 mm, 10 mm, 12 mm, 14 mm,
and 16 mm.

The Moldex3D simulation software (R14 SP3OR,
CoreTech System Inc.) was used to investigate the cooling
time of molded parts, mold temperature difference, part tem-
perature difference, and total displacement for different layout
of conformal cooling channels. Table 1 summarizes the main
characteristics of the injection mold materials. The process
parameters for the simulation are presented in Table 2. The
process parameters for the simulation include part thickness of
10 mm, filling time of 3.629 s, injection pressure of 0.06MPa,
waxmelting temperature of 82 °C, mold temperature of 28 °C,
coolant temperature of 25 °C, and an ejection temperature of
30 °C. Figure 5 shows the filling results for the molded part.

The wax was used as molding materials. The injection
molding was carried out using a low-pressure wax injection
molding machine (0660, W&W Inc.). To investigate the
cooling time of the molded part after wax injection molding,
an injection mold cooling system was developed. This system
consists of the following items: flow control valves, hoses,
temperature controlling unit, three k-type thermocouples
(C071009-079, Cheng Tay Inc.), and data acquisition system

Fig. 1 Schematic illustration of
the four cooling channel design
parameters
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(MRD-8002L, IDEA System Inc.). Figure 6 shows the exper-
imental setup for investigating the cooling efficiency of fabri-
cated injection molds. The water was used as the coolant in an
injection mold cooling system. One water reservoir with a
thermo-electric cooler (TEC12706AJ, Caijia Inc.) and a tem-
perature controller (JCM-33A, Shinko Inc.) was used to main-
tain coolant temperature. The inlet coolant temperature was
kept at room temperature. Three thermocouples were placed
in the injection molds for online measuring temperatures of
the molded part, inlet coolant temperature, and outlet coolant
temperature. Temperature histories were recorded by a data
acquisition system. The thermocouples were placed at the lo-
cation of final solidification of the molded part in the cavity.
The ejection temperature of the molded parts was determined

at 30 °C after a series of test runs. The cooling time after
injection molding was measured and analyzed.

3 Results and discussion

In general, there are three common cooling channels layouts,
i.e., series, parallel, and conformal. In this study, conformal
cooling channels were employed in this study. Figure 7 shows
the six injection molds with different center distances with
respect to mold cavity of 6 mm, 8 mm, 10 mm, 12 mm,
14 mm, and 16 mm. Figure 8 shows the simulation results
of the cooling time for the center distances with respect to
mold cavity of 6 mm, 8 mm, 10 mm, 12 mm, 14 mm, and

Fig. 3 Schematic illustrations of
the six different surface
roughnesses of conformal cooling
channels with layer height of a
0.3 mm, b 0.25 mm, c 0.2 mm, d
0.15 mm, e 0.1 mm, and f
0.05 mm
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Table 2 Process parameters for simulation

Parameters Value

Diameter of cooling channel (mm) 8
Filling time (s) 3.629
Injection pressure (MPa) 0.06
Volume flow rate (cm3/s) 33
Wax melting temperature (°C) 82
Mold temperature (°C) 28
Coolant temperature (°C) 25
Ejection temperature (°C) 30

Table 1 Main characteristics of the injection mold materials

Properties Value

Density (g/cm) 1.95

Heat capacity (cal/g °C) 1.97

Thermal conductivity(W/m K) 10.82

Elastic modulus (GPa) 2.54

Poisson ratio 0.17

Coefficient of linear thermal expansion (1/k) 30 × 10−6

Fig. 4 Schematic illustrations of
the different layouts of conformal
cooling channels with different
center distances with respect to
mold cavity of a 6 mm, b 8 mm, c
10 mm, d 12 mm, e 14 mm, and f
16 mm
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16 mm. Figure 9 shows the cooling time as a function of the
center distances with respect to mold cavity. R2 value stands

for the coefficient of determination. In general, the larger the
R2 value (maximum is 1), the better the accuracy of the trend

Fig. 6 Experimental setup for investigating the cooling efficiency of fabricated injection molds

Fig. 5 Filling results for the molded part
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equation. As can be seen, a trend equation with an R2 value of
0.9997 can be obtained. Therefore, the cooling time of the
molded part (y) can be estimated directly from the center dis-
tance with respect to mold cavity (x) according the trend equa-
tion of y = 141.49 ln (x) + 733.03. As can be seen, the cooling
time of the molded part for the center distance with respect to
mold cavity of 6 mm is smallest. In order to understand the
cooling time of the molded part when the center distances with
respect to mold cavity is less than 6 mm, five extra cases were
further investigated. It was found that the cooling time of the
molded part for the center distances with respect to mold cav-
ity of 5.8 mm, 5.6 mm, 5.4 mm, 5.2 mm, and 5 mm are 950,
946, 942, 939, and 936 s, respectively. This result shows that
the cooling time of the molded part will indeed be shortened,
but the mold is prone to cracking under high injection pres-
sure. Based on the results described above, the optimal center
distances with respect to mold cavity is 6 mm. Thus, the op-
timal distance between the wall of the conformal cooling
channel and the surface of the injection mold is 2 mm.

Figure 10 shows the comparison of simulation results with
experimental results of the cooling time. After low-pressure
wax injection molding, the initial temperature of the starting
cooling for the experiment is lower than that obtained by the
simulation because the silicone rubber mold was not
preheated. Thus, the measured temperature of the wax enter-
ing the cavity is lower than that obtained by the simulation.
The cooling time of the molded part obtained by the simula-
tion is about 987 s when the center distance with respect to
mold cavity is 6 mm. The relative error is about 9.28% com-
pared to that obtained from the experiment of 1088 s. The
variations are related to two possible reasons. One is that the
ambient temperature in the simulation software was fixed, but
it is changing during the experiment. The other is that the
positioning accuracies of cooling channels in the injection
mold are inferior to the computer-aided design data that is
used for simulation [23, 24]. The cooling time of the molded
part obtained by the simulation is about 1026 s when the
center distance with respect to mold cavity is 8 mm. The
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relative error is about 22.86% compared to that obtained from
the experiment of 1330 s. The cooling time of the molded part
obtained by the simulation is about 1059 s when the center
distance with respect to mold cavity is 10 mm. The relative
error is about 23.98% compared to that obtained from the
experiment of 1393 s. The cooling time of the molded part
obtained by the simulation is about 1086 s when the center
distance with respect to mold cavity is 12 mm. The relative
error is about 23.9% compared to that obtained by the exper-
iment of 1427 s. The cooling time of the molded part obtained
by the simulation is about 1106 s when the center distance
with respect to mold cavity is 14 mm. The relative error is
about 24.86% compared to that obtained from the experiment
of 1472 s. The cooling time of the molded part obtained by the
simulation is about 1125 s when the center distance with re-
spect to mold cavity is 16 mm. The relative error is about

16.79% compared to that obtained from the experiment of
1352 s.

The warpage is one of the undesired defects in the injection
molded part [25]. The quality of the molded part such as
warpage, shrinkage [26], or sink marks [27] can be affected
by the part temperature difference in the injection molding
process. Figure 11 shows the part temperature difference as
a function of the center distances with respect to mold cavity.
Figure 12 shows the numerical simulation results of part tem-
perature difference in the center distances with respect to mold
cavity of 6 mm, 8 mm, 10 mm, 12 mm, 14 mm, and 16 mm.
As can be seen, the part temperature differences in the center
distances with respect to mold cavity of 6 mm, 8 mm, 10 mm,
12 mm, 14 mm, and 16 mm are approximately 2.493 °C,
2.366 °C, 2.245 °C, 2.132 °C, 2.009 °C, and 1.922 °C, respec-
tively. It was found that there was no significant difference in
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part temperature difference for different center distances with
respect to mold cavity because the maximum rage of part
temperature difference is only approximately 0.571 °C. In this
study, the temperature sensing point was located in the center
of the molded part. For the center distances with respect to
mold cavity is 6 mm, the heat on the surface of the molded
product was quickly taken away when the part was cooled to
the de-molding temperature. Therefore, the part temperature
difference is the largest. On the contrary, the part temperature
difference is the smallest when the center distances with re-
spect to mold cavity is 16 mm.

The fiber orientation and distribution state in the molded
parts can be affected significantly by the mold temperature
[28]. In addition, the cooling effectiveness of the conformal
cooling channels embedded in the mold can be evaluated by
the mold temperature difference in the cooling stage after in-
jection molding process. Figure 13 shows the mold tempera-
ture difference as a function of the center distances with re-
spect to mold cavity. Figure 14 shows the numerical simula-
tion results of mold temperature difference in the center dis-
tances with respect to mold cavity of 6 mm, 8 mm, 10 mm,
12 mm, 14 mm, and 16 mm. As can be seen, the mold

temperature differences in the center distances with respect
to mold cavity of 6 mm, 8 mm, 10 mm, 12 mm, 14 mm, and
16 mm are approximately 2.139 °C, 1.984 °C, 1.817 °C,
1.673 °C, 1.529 °C, and 1.419 °C, respectively. It was found
that there was no significant difference in mold temperature
difference in different center distances with respect to mold

Fig. 12 Numerical simulation results of part temperature difference in the center distances with respect to mold cavity of 6 mm, 8 mm, 10 mm, 12 mm,
14 mm, and 16 mm
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cavity due to the thermal conductivity of silicone rubber mold.
The maximum rage of part temperature difference is only
approximately 0.72 °C. For the center distances with respect
to mold cavity is 6 mm, the heat on the surface of the mold
was quickly taken away when the part was cooled to the de-
molding temperature. Therefore, the mold temperature differ-
ence is the largest. On the contrary, the mold temperature
difference is the smallest when the center distances with re-
spect to mold cavity is 16 mm.

The quality of the molded part is better if the total displace-
ments of the molded are lower. Figure 15 shows the total
displacements as a function of the center distances with re-
spect to mold cavity. Figure 16 shows the numerical simula-
tion results of total displacements for the center distances with
respect to mold cavity of 6 mm, 8 mm, 10 mm, 12 mm,
14 mm, and 16 mm. As can be seen, the total displacements
for the center distances with respect to mold cavity of 6 mm,
8 mm, 10 mm, 12 mm, 14 mm, and 16 mm are approximately
0.624 mm, 0.626 mm, 0.627 mm, 0.628 mm, 0629 mm, and
0.630 mm, respectively. It was found that there was no signif-
icant difference in total displacements for different center dis-
tances with respect to mold cavity because the maximum

range of total displacement is only approximately 0.006 mm.
The process parameters for low-pressure wax injection mold-
ing are filling time of 3.6 s, injection pressure of 0.06 MPa,
wax melting temperature of 82 °C, and mold temperature of
28 °C. Figure 17 shows the molded parts fabricated by
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injection molds having the center distances with respect to
mold cavity of 6 mm, 8 mm, 10 mm, 12 mm, 14 mm, and
16 mm. As described above, this study found that there is no
significant difference in product temperature difference, mold
temperature difference, and total product deformation when
the center distances with respect to mold cavity is different,

but there is a significant difference in the cooling time of the
molded product.

The effects of mold surface roughness on cavity filling of
polymer melt in microinjection molding have been investigat-
ed [29]. The mold surface roughness indeed affects the cavity
filling of polymer melt in microinjection molding. Figure 18

Fig. 17 Molded parts fabricated
by injection molds having the
center distances with respect to
mold cavity of a 6 mm, b 8 mm, c
10 mm, d 12 mm, e 14 mm, and f
16 mm
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shows the six different surface roughnesses of the conformal
cooling channels with Rmax of 140 μm, 127 μm, 115 μm,
78 μm, 70 μm, and 58 μm. Figure 19 shows the six injection
molds with different surface roughness of the conformal
cooling channels with Rmax of 140 μm, 127 μm, 115 μm,

78 μm, 70 μm, and 58 μm. Figure 20 shows the cooling time
of the six injection molds with different surface roughness of
the conformal cooling channels with Rmax of 140 μm,
127 μm, 115 μm, 78 μm, 70 μm, and 58 μm. In general,
the coolant flow rate is an important issue on the cooling

Fig. 18 Six different surface
roughnesses of the conformal
cooling channels with Rmax of a
140 μm, b 127 μm, c 115 μm, d
78 μm, e 70 μm, and f 58 μm

Fig. 19 Six injection molds with
different surface roughness of the
conformal cooling channels with
Rmax of a 140 μm, b 127 μm, c
115 μm, d 78 μm, e 70 μm, and f
58 μm
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efficiency for injection mold with conformal cooling chan-
nels. In this study, the flow of the coolant is turbulent flow
with Reynolds number of 4863, which provides three to five
times as much heat transfer as laminar flow [30, 31]. It was
surprising to see that the cooling time of the molded part for
conformal cooling channels with Rmax of 140 μm, 127 μm,
115 μm, 78 μm, 70 μm, and 58 μm is about 1384 s, 1363 s,
1295 s, 1290 s, 1142 s, and 1088 s, respectively. This result
shows that he cooling time of the molded part increases with
increasing the surface roughness of cooling channels. The
main reason was the flow of the coolant will be affected when
the surface roughness of the cooling channel wall was in-
creased, reducing the cooling efficiency. In addition, the
cooling channel wall is relatively easy to accumulate a water
scale when the surface roughness of the cooling channel wall
was increased. It was found that the surface roughness of the
cooling channel wall is as small as possible when the flow of
the coolant is completely turbulent. Figure 21 shows the
molded parts fabricated by injection molds with six different
surface roughnesses of the conformal cooling channels with
Rmax of140 μm, 127 μm, 115 μm, 78 μm, 70 μm, and
58 μm. According to the above findings, the findings of this

study are very practical and provide the greatest application
potential in precision mold or die industry, especially in the
mold or die design stage. However, the thermal conductivity
of the silicone rubber molds is lower to conventional mold
steels such as maraging steel [32].The cooling performance
can further be improved when the mold materials were
changed to aluminum (Al)-filled epoxy resins [33–35]. This
study is currently being investigated and will be presented in a
later work. In addition, the mechanical properties of an injec-
tion mold can further be improved by adding the reinforced
fillers, such as aluminum oxide [36], zirconia ceramics [37],
silicon nitride [38], or molybdenum disulfide [39] particles in
the Al-filled epoxy resins. These issues are currently being
investigated, and the results will be presented in a later study.

4 Conclusions

The main factor affecting the productivity of a new product in
the company is the cycle time. The cycle time can be reduced
by shortening the cooling time because the cooling time takes
most of the cycle time. The cooling time can be shortened by
the molds with conformal cooling channels. In this study, six
injection molds with different center distances with respect to
mold cavity and six injection molds with different surface
roughness of conformal cooling channels have been fabricated
and evaluated. Based on the results discussed in this study, the
following conclusions can be drawn:

1. The remarkable findings of this study can be used for the
cooling channel design in precision mold or die industry.

2. A trend equation for predicting the cooling time of the
molded part has been developed. The cooling time of
the molded part (y) can be predicted from the center dis-
tance with respect to mold cavity (x) based on the trend
equation of y = 141.49 ln (x) + 733.03.

3. The optimal distance between the wall of the confor-
mal cooling channel and the surface of the injection
mold is 2 mm.

Fig. 21 Molded parts fabricated
by injection molds with six
different surface roughness of the
conformal cooling channels with
Rmax of a 140 μm, b 127 μm, c
115 μm, d 78 μm, e 70 μm, and f
58 μm
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4. The surface roughness of the cooling channel wall is as
small as possible when the flow of the coolant is
completely turbulent because the cooling time of the
molded part was found to increase with an increase in
the surface roughness of cooling channels.
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