Skip to main content
Log in

Effects of the oxide film on the spot joining of aluminum alloy sheets: a comparative study between resistance spot welding and resistance spot clinching

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

A novel spot joining technique (i.e., resistance spot clinching) that has the features of resistance spot welding and mechanical clinching is introduced. This technique was compared with typical resistance spot welding to show the effect of the surface oxide layer on the joining quality of aluminum alloy 5052 sheets. The oxide film increases the contact resistance at each interface and makes it unstable. In both resistance spot welding and resistance spot clinching, the critical current for expulsion is lowered by oxide on the workpiece surface. However, the surface oxide layer has less effect on the stability of joining quality in resistance spot clinching. That is because in resistance spot clinching process, the melting of the workpiece is mainly caused by the Joule heat of the contact resistance between processing tape and aluminum alloy 5052 sheets (which is less affected by the surface oxide layer). Thus, the fluctuation of the contact resistance in resistance spot clinching is lower than that of resistance spot welding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. He X, Xing B, Zeng K, Gu F, Ball A (2013) Numerical and experimental investigations of self-piercing riveting. Int J Adv Manuf Technol 69(1–4):715–721. doi:10.1007/s00170-013-5072-0

    Article  Google Scholar 

  2. Eshtayeh MM, Hrairi M, Mohiuddin AKM (2015) Clinching process for joining dissimilar materials: state of the art. Int J Adv Manuf Technol 82(1–4):179–195. doi:10.1007/s00170-015-7363-0

    Google Scholar 

  3. Kulekci MK, Esme U, Buldum B (2015) Critical analysis of friction stir-based manufacturing processes. Int J Adv Manuf Technol 85(5–8):1687–1712. doi:10.1007/s00170-015-8071-5

    Google Scholar 

  4. Gould JE (2012) Joining aluminum sheet in the automotive industry—a 30 year history. Weld J 91:23–34

    Google Scholar 

  5. Pouranvari M, Marashi SPH (2013) Critical review of automotive steels spot welding: process, structure and properties. Sci Technol Weld Join 18(5):361–403. doi:10.1179/1362171813y.0000000120

    Article  Google Scholar 

  6. Zhang Y, Li Y, Luo Z, Feng Y, Zhou J (2016) Effect of joint design on the failure behaviour of three-stack-up austenitic stainless steel resistance spot welds. Sci Technol Weld Join 21(6):484–492. doi:10.1080/13621718.2015.1135573

    Article  Google Scholar 

  7. He X (2009) Recent development in finite element analysis of clinched joints. Int J Adv Manuf Technol 48(5–8):607–612. doi:10.1007/s00170-009-2306-2

    Google Scholar 

  8. He X, Liu F, Xing B, Yang H, Wang Y, Gu F, Ball A (2014) Numerical and experimental investigations of extensible die clinching. Int J Adv Manuf Technol 74(9–12):1229–1236. doi:10.1007/s00170-014-6078-y

    Article  Google Scholar 

  9. He X, Zhang Y, Xing B, Gu F, Ball A (2015) Mechanical properties of extensible die clinched joints in titanium sheet materials. Mater Des 71:26–35. doi:10.1016/j.matdes.2015.01.005

    Article  Google Scholar 

  10. Zhang Y, He X, Zeng K, Lei L, Gu F, Ball A (2017) Influence of heat treatment on mechanical properties of clinched joints in titanium alloy sheets. Int J Adv Manuf Technol. doi:10.1007/s00170-017-0019-5

    Google Scholar 

  11. Neugebauer R, Todtermuschke M, Mauermann R, Riedel F (2008) Overview on the state of development and the application potential of dieless mechanical joining processes. Archives of Civil and Mechanical Engineering 8(4):51–60. doi:10.1016/s1644-9665(12)60121-6

    Article  Google Scholar 

  12. Lambiase F, Di Ilio A, Paoletti A (2014) Joining aluminium alloys with reduced ductility by mechanical clinching. Int J Adv Manuf Technol 77(5–8):1295–1304. doi:10.1007/s00170-014-6556-2

    Google Scholar 

  13. Cai W, Wang PC, Yang W (2005) Assembly dimensional prediction for self-piercing riveted aluminum panels. Int J Mach Tools Manuf 45(6):695–704. doi:10.1016/j.ijmachtools.2004.09.023

    Article  Google Scholar 

  14. Li Y, Luo Z, Yan F, Duan R, Yao Q (2014) Effect of external magnetic field on resistance spot welds of aluminum alloy. Mater Des 56:1025–1033. doi:10.1016/j.matdes.2013.12.005

    Article  Google Scholar 

  15. Hayat F (2012) Effect of aging treatment on the microstructure and mechanical properties of the similar and dissimilar 6061-T6/7075-T651 RSW joints. Mater Sci Eng A 556:834–843. doi:10.1016/j.msea.2012.07.077

    Article  Google Scholar 

  16. Hao M, Osman KA, Boomer DR, Newton CJ (1996) Developments in characterization of resistance spot welding of aluminum. Weld J 75(1):1–4

    Google Scholar 

  17. Fukumoto S, Lum I, Biro E, Boomer DR, Zhou Y (2003) Effects of electrode degradation on electrode life in resistance spot welding of aluminum alloy 5182. Weld J 82(11):307–312

    Google Scholar 

  18. Qiu RF, Satonaka S, Iwamoto C (2013) Mechanical properties and microstructures of magnesium alloy AZ31B joint fabricated by resistance spot welding with cover plates. Sci Technol Weld Join 14(8):691–697. doi:10.1179/136217108x365313

    Article  Google Scholar 

  19. Satonaka S, Iwamoto C, Qui RF, Fujioka T (2006) Trends and new applications of spot welding for aluminium alloy sheets. Weld Int 20(11):858–864

    Article  Google Scholar 

  20. Trommer G (2009) Resistance spot welding using continuous tape. Weld J 88:12

    Google Scholar 

  21. Zhang Y, Luo Z, Li Y, Liu Z, Huang Z (2015) Microstructure characterization and tensile properties of Mg/Al dissimilar joints manufactured by thermo-compensated resistance spot welding with Zn interlayer. Mater Des 75:166–173. doi:10.1016/j.matdes.2015.03.030

    Article  Google Scholar 

  22. Zhang Y, Li Y, Luo Z, Yuan T, Bi J, Wang ZM, Wang ZP, Chao YJ (2016) Feasibility study of dissimilar joining of aluminum alloy 5052 to pure copper via thermo-compensated resistance spot welding. Mater Des 106:235–246. doi:10.1016/j.matdes.2016.05.117

    Article  Google Scholar 

  23. Li YB, Li DL, Lin ZQ, David SA, Feng Z, Tang W (2016) Review: magnetically assisted resistance spot welding. Sci Technol Weld Join 21(1):59–74. doi:10.1179/1362171815y.0000000059

    Article  Google Scholar 

  24. Li YB, Li YT, Shen Q, Lin ZQ (2013) Magnetically assisted resistance spot welding of dual-phase steel. Weld J 92(4):124–132

    Google Scholar 

  25. Li YB, Li DL, David SA, Lim YC, Feng Z (2016) Microstructures of magnetically assisted dual-phase steel resistance spot welds. Sci Technol Weld Join 21(7):555–563. doi:10.1080/13621718.2016.1141493

    Article  Google Scholar 

  26. Li Y, Zhang Y, Bi J, Luo Z (2015) Impact of electromagnetic stirring upon weld quality of Al/Ti dissimilar materials resistance spot welding. Mater Des 83:577–586. doi:10.1016/j.matdes.2015.06.042

    Article  Google Scholar 

  27. Penner P, Liu L, Gerlich A, Zhou Y (2013) Feasibility study of resistance spot welding of dissimilar Al/Mg combinations with Ni based interlayers. Sci Technol Weld Join 18(7):541–550. doi:10.1179/1362171813y.0000000129

    Article  Google Scholar 

  28. Sun M, Niknejad ST, Gao H, Wu L, Zhou Y (2016) Mechanical properties of dissimilar resistance spot welds of aluminum to magnesium with Sn-coated steel interlayer. Mater Des 91:331–339. doi:10.1016/j.matdes.2015.11.121

    Article  Google Scholar 

  29. Wernick S, Pinner R, Sheasby PG (1987) The surface treatment and finishing of aluminum and its alloys. Vol. 1 and 2. ASM INTERNATIONAL

  30. Garcia-Vergara SJ, Skeldon P, Thompson GE, Habazaki H (2006) A flow model of porous anodic film growth on aluminium. Electrochim Acta 52(2):681–687. doi:10.1016/j.electacta.2006.05.054

    Article  Google Scholar 

  31. Keller F, Hunter MS, Robinson DL (1953) Structural features of oxide coatings on aluminum. J Electrochem Soc 100(9):411–419

    Article  Google Scholar 

  32. Crinon E, Evans JT (1998) The effect of surface roughness, oxide film thickness and interfacial sliding on the electrical contact resistance of aluminium. Mater Sci Eng A 242(1):121–128

    Article  Google Scholar 

  33. Song Q, Zhang W, Bay N (2005) An experimental study determines the electrical contact resistance in resistance welding. Weld J 84(5):73s–76s

    Google Scholar 

  34. Rönnhult T, Rilby U, Olefjord I (1980) The surface state and weldability of aluminium alloys. Mater Sci Eng 42:329–336

    Article  Google Scholar 

  35. Newton CJ, Thornton MC, Keay BFP, Sheasby PG, Boomer DR (1997) How to weld bond aluminium with structural adhesives (no. 970018). SAE Technical Paper

  36. Li Z, Hao C, Zhang J, Zhang H (2007) Effects of sheet surface conditions on electrode life in resistance welding aluminum. Weld J 86(4):81

    Google Scholar 

  37. Miller WS, Zhuang L, Bottema J, Wittebrood A, De Smet P, Haszler A, Vieregge A (2000) Recent development in aluminium alloys for the automotive industry. Mater Sci Eng A 280(1):37–49

    Article  Google Scholar 

  38. Han L, Thornton M, Boomer D, Shergold M (2010) Effect of aluminium sheet surface conditions on feasibility and quality of resistance spot welding. J Mater Process Technol 210(8):1076–1082. doi:10.1016/j.jmatprotec.2010.02.019

    Article  Google Scholar 

  39. Luo Z, Ao SS, Chao YJ, Cui XT, Li Y, Lin Y (2015) Application of pre-heating to improve the consistency and quality in AA5052 resistance spot welding. J Mater Eng Perform 24(10):3881–3891. doi:10.1007/s11665-015-1704-x

    Article  Google Scholar 

  40. James PS, Chandler HW, Evans JT, Wen J, Browne DJ, Newton CJ (1997) The effect of mechanical loading on the contact resistance of coated aluminium. Mater Sci Eng A 230(1):194–201

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Luo.

Ethics declarations

Funding

This research is supported by the National Natural Science Foundation of China (Grant Nos. 51405334 and 51505327), the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20130032110004), and the Tianjin Research Program of Application Foundation and Advanced Technology (Grant No. 15JCZDJC39400).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Shan, H., Li, Y. et al. Effects of the oxide film on the spot joining of aluminum alloy sheets: a comparative study between resistance spot welding and resistance spot clinching. Int J Adv Manuf Technol 92, 4231–4240 (2017). https://doi.org/10.1007/s00170-017-0387-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-017-0387-x

Keywords

Navigation