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Abstract In large volume manufacturing, moving heavy
components around manufacturing facilities to machine fea-
tures on them can represent a significant proportion of the
parts final cost because the tools used for this require a
high initial investment and operating costs. This motivates
interest in robotic machining so that the “process-to-part”
concept can be employed. However, typical industrial robots
lack the positional capability of conventional equipment,
which ultimately results in dimensional errors in the fea-
tures machined. This research investigates accumulation of
error originating from non-cutting stages of robotic machin-
ing programs, using a hexapod robot. This is done using a
procedure adapted from ISO 9283—Manipulating Industrial
Robots—Performance Criteria and Related Test Methods to
determine positional accuracy and repeatability, i.e. system-
atic and random errors. This concludes that, although the
robot encounters high levels of error prior to cutting, a por-
tion of these may be offset with in-situ condition monitoring
to facilitate higher tolerance machining. Potential is there-
fore found for using robot machining for manufacturing cost
reduction in the large-scale manufacturing industries.
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1 Introduction

In large volume manufacturing, challenges are faced in fea-
ture machining due to the size and weight of components
that the features belong to. This is costly due to the cap-
ital expenditure requirements of large machine tools and
the need for heavy lifting around production facilities. An
alternative approach being investigated to decrease these
costs is robotic feature machining with low-cost industrial
hexapod robots so that the “process-to-part” concept can be
employed.

The hexapod robot format is of interest for machin-
ing applications because of stiffness benefits and non-
cumulative error stack up in independent links and joints,
which provides improved chatter resistance and accuracy
compared to serial-arm alternatives [1-6]. A limitation to
robotic machining using hexapod industrial robots is that
they are less able to achieve the higher machining tolerances
of conventional machine tools due to relative differences
in structural rigidity and tool deflection and challenges
associated with control algorithms, encoder capability and
component misalignments [7—14].

A widely researched aspect of hexapod-based robotic
machining is kinematic modelling, which aims to accurately
relate the programmed end effector positions to joint rota-
tions and actuator extensions for program execution. Robot
kinematics are discussed by Weill et al., where dimensional
errors in links and joints are noted to cause assembly mis-
alignments and therefore differences between the nominal
kinematic models, used in the controller, and the real world
[15]. However, kinematic modelling challenges are faced
for parallel robot structures, such as hexapods, as they have
a complex configuration of joints.

For example, in the work of Karimi and Nategh inter-
polation errors occurring as a result of non-linear mapping
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between the actuator and machining coordinate spaces in
hexapod robotic machine tools are modelled and the effect
of various parameters on toolpath accuracy are studied and
experimentally verified. This work finds that toolpath length
and direction influences the kinematic error levels [16]. Von
Daake et al. propose an approach for hexapod kinematic
calibration based on significantly fewer pose measurements
than is typical in other work [17]. Agheli and Nategh
also discuss hexapod kinematic calibration and find that
optimum results are achieved when models are based on
maximum observable robot error measurements, which are
at the limits of the working envelope in this case [4]. This
potentially introduces difficulties in identifying the high-
est error levels because Halaj and Kurekova conclude that
positional errors vary over the working envelope [18].

The kinematics issues reported ultimately result in posi-
tional error in robot manipulation. This is of concern
because Tunc et al. [19-21] show that dynamic stiffness, and
potentially machining error, varies over the robots working
envelope, which means that positional error between fea-
tures may be a significant error contributor depending on
the varying dynamic influences. However, there is a distinct
lack of published studies available that characterise the over-
all positional error of hexapod-format industrial robotics
that originate from the widely researched kinematic chal-
lenges. A contribution of this nature is desirable as this
is a key indicator for process selection and benchmarking
technology advancements.

This paper therefore presents the findings of experiments
conducted to quantify the positional accuracy and repeata-
bility of a Fanuc F200iB hexapod, thereby building on the
referenced literature. The study aims to better understand
the contributions of systematic and random errors to the
overall dimensional error accumulating in machined fea-
tures from non-cutting moves in machining programs. This
gives an indication of capability to machine to specific
tolerances by defining the robots inherent static errors.

An account of work done is presented beginning with
definitions of terms and the analysis procedure used in
Section 2. An overview of the equipment used, details of
the experimental setup and methodology is then given in
Sections 3 and 4. Finally, data is analysed and results are
discussed in Section 5 and findings are summarised in
Section 6.

2 Definitions and theory

Accuracy and repeatability is analysed according to ISO
9283 [22]. Statistically, the theory is similar to what is
used in gage repeatability and reproducibility studies, which
assess variance of measurement results between operators
and workpieces. Whilst this may be adaptable to robot
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performance analysis, it is more applicable to assessing
whole measurement procedures used in production rather
than assessing the equipment [23].

Pose accuracy, A Pp, is defined as the difference between
measured and commanded coordinates, x., y. and z., and
quantifies systematic errors. These are constant and can be
calibrated against when understood. Accuracy is calculated
using Eq. 1, where x, y and 7 are the mean coordinates of
the measured poses, i.e. the barycentres. Systematic errors
can occur due to axis location and orientation errors, caus-
ing offsets between theoretical and real zeros positions of
encoders and positional deviations varying linearly over the
workspace [24].

APp = G =3+ G =yl + G — 2 (1)

Pose repeatability, R P;, is defined as the variance between
poses and accounts for random errors, which are not con-
trollable through calibration because influencing factors are
not constant. R P; is expressed as the radius of a sphere with
the barycentre as the centre point, given by Eqs. 2-5. Here,
[ is the mean radius, i.e. the distance between the barycen-
tre and measured coordinates, j. /; is this distance for the
jth measured coordinate and S is the standard deviation of
radii giving the spread about the mean value. S; predicts 3o
of measurements are within the value computed under the
same conditions.

RP =1+35 2)

[=1/n)"1 (3)
j=1
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To expand on the analysis prescribed in ISO 9283, correla-
tion analysis and significance testing is used to quantify the
strength of visually identified linear relationships. Correla-
tion coefficients, R, are computed according to the Pearson
correlation analysis method [25]. R is a value between —1
and +1, indicating the degree to which a linear relation-
ship is directly or inversely proportional. R is computed as
follows, where X and Y are the two variables under consid-
eration, X and Y are their means, n is the sample size and i
is the individual data point.

i(xi - X)(Y; = Y)

i=1

R= ©)

i(Xz- - X)? i(Y,- —7)?
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To test the statistical significance of R and therefore the
null hypothesis that there is no correlation, P values are
also computed in the MATLAB function used for correla-
tion analysis [26]. P values <0.05 indicate that R has a low
probability of being incorrect and that the correlation is sta-
tistically significant. A precursor to significance testing is
normally distributed data.

Normality is indicated graphically using histograms with
fitted ideal normal distribution curves. Normality tests are
also done when sample size is >30, as recommended by
Razali et al. [27]. The Anderson—Darling normality test
is chosen for this due to convenient implementation in
MATLAB [26] and because it achieved a consistently high
statistical power in the Razali et al. study in comparison
to alternatives. Normality tests reject the null hypothesis
that the data is normally distributed if the estimated prob-
ability, P value, of computing the test statistic, A2, for
a normal distribution is <0.05. The alternative hypothesis
that the data is not normally distributed is rejected when
the P value is >0.05. The P value is determined from
critical values [28, 29] of A2 [26]. AZ is computed as
follows, where n is sample size, i is the individual data
point index, F is the distribution function and X is the
dataset.

n

A2=—n—221

i=1

[In(F(X/) +In(1 = F(Xp41-i))]

(N

Non-normally distributed data may occur due to outliers,
process variables shifts, biases, process limits or because it
has a different distribution. If this is the case, then data is
transformed using the Box—Cox method [30]. Each individ-
ual value from the dataset, yi()‘), is transformed by raising
it to the power of A, which is found by searching for the
optimum value between —5 and 5 to achieve normality
according to A excluding 0, where the natural logarithm of
the dataset is taken.

o _ |22 520
it =3, (3)
logyi; A=0
3 Equipment and setup

The hardware used to investigate robot positional capabil-
ity was a parallel kinematic design Fanuc F200iB hexapod
with stiffness benefits over serial arm alternatives [12]. This
robot has six independent actuators for legs, which allows
a platform to be manipulated in six degrees of freedom
based on their programmed extension. Fixed to the plat-
form is a machining spindle, which is measured using a
Leica AT401 laser tracker. This instrument is calibrated to

national standards and has maximum errors of 36 um speci-
fied according to ASME B89.4.19-2006, although typically
observed errors can reach 7 um [31]. Robot measure-
ments are made by mounting the laser tracker’s spherically
mounted retro-reflector (SMR) in the spindle as the robot
tool centre point (TCP) (Fig. 1).

The laser tracker and robot coordinate systems are
aligned by applying a measured rigid transformation to the
trackers working coordinate frame. This puts laser tracker
measurements in the same coordinate system at the robot,
allowing errors between commanded and achieved robot
positions to be determined up to the error and uncertainty
of the laser tracker. To do this, the following steps are
completed:

1. Translation:

1. TCP coordinates are set as the mounted retro-
reflectors centre point.

2. The tracker’s working frame axis directions are
selected to approximately match the robot’s.

3. The robot is measured at its origin to acquire a vector
for laser tracker origin translation (Fig. 2).

2. Rotation:

1. The robot is moved to points in the XY, YZ and ZX
planes where measurements are made.

Fig.1 Fanuc F200iB Hexapod and Gamifior Spindle
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1. Robot TCP with SMR at origin

y 2. Laser tracker working frame
z ‘ X y

3. Translated frames

4

Fig. 2 Laser tracker to robot translation

2. A coordinate frame is fitted at the intersection of
planes formed by these points (Fig. 3).

3. The frame is used to fine-tune the laser tracker frame
orientation to match the robot, using Ry, Ry and R,
(Fig. 4).

4 Methodology

A methodology adapted from ISO 9283-Manipulating
Industrial Robots—Performance Criteria and Related Test
Methods [22, 32] is followed initially and then extended
to explore performance further and validate conclusions. In
the first stage, adaptations were made to the test geometry
specified as the robot is moved to 9 poses, P1 — 9, rather

@ = Robot measurement points
(with SMR as TCP)

ZX Plane 9.
o
YZ Plane ®
5
® 1
Laser tracker /\“’\ I R ” XY Plane

....... >

working frame L

Frame fitted at plane intersection
(Origin coincident with laser tracker and robot origin)

Fig. 3 Laser tracker to robot rotation measurement
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Laser tracker
working frame

Frame fitted at plane intersection
(Equal to the robot working frame)

Fig. 4 Laser tracker to robot rotation values

than 4 to assess a larger portion of the working envelope.
Poses are arranged in the largest available cuboid in the cen-
tre of the working volume, 500 x 250 x 185 mm, as shown
below, although the absolute limits extend beyond this [33]
(Fig. 5). Inline with the standard, the poses have been offset
by 10 % of the diagonal distance. However, whilst it does
give an efficient insight into performance, the geometry is
not necessarily optimised and should ideally be designed
to expose equipment specific errors. In this case, the cut-
ting tool orientation does not maintain perpendicularity with
the diagonal planes as specified in the standard as 3-axis
machining is of interest .

To conduct the experiment, the program was run for
30 cycles at 20, 100 and 200 mm/s with measurements taken
at each pose in a workshop floor environment lasting a up
to 109 min. Feed rate is considered as it is suggested to be

P6

P8
P7

P4 P1 P9

P2 PS

Fig. 5 Programmed poses
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a potential influence on error by the standard and values are
initially selected to cover those likely for use in non-cutting
moves of machining programs. Another adaptation to the
standard is that the robot is not 100 % loaded as this is not
representative of machining conditions.

To expand on the standard procedure, the effect of feed
rate, performance drift and robot configuration on error is
also investigated, which represent the user selected static
variables of a robot machining program. The maximum
feed rate of the robot is 300 mm/s in the vertical direction
and 1500 mm/s in the horizontal direction [33]. Additional
experimentation is done by measuring the robot moving to 2
poses 30 times each at 15 feed rates covering the full range.
Considering only two poses minimises the error occurring
from robot configuration and potentially enables feed rates
to be optimised in between cutting stages of machining
programs to minimise error.

Performance drift over time is studied further using a
similar procedure as the robot is moved to two poses >3000
times, over ~5.5 h. This may expose thermally induced
performance drift, which can cause significant errors due
to component expansion and contraction due to fluctuat-
ing heat sources originating from the environment, the part,
robot axes, spindle and the cutting process [34, 35]. For
example, spindle expansion could exceed 100 um from cold
start conditions [36]. Nevertheless, the investigation done
is preliminary only and should be expanded by conduct-
ing experiments to analyse the specific temperature profiles
of individual components in the robotic machine tool if an
error trend with time is observed.

To further study configuration sensitivity and errors
throughout the working volume, systematic errors are
assessed by calculating the difference between commanded
and measured poses arranged in grids with 10-mm spacing
between each in each axis, i.e. error maps. Robot con-
figuration is thought to have an impact on error because
of the kinematic modelling challenges highlighted in the
Section 1.

5 Results and analysis

Mean systematic positional error, i.e. accuracy, from the
first stage of experiments is shown in Fig. 6, plotted against
feed rate at each point. Error bars represent three standard
deviations of the measurements to show random error, i.e.
repeatability, which also encompasses laser tracker uncer-
tainty. Accuracy ranged from 16.1 to 417.9 um with rel-
atively low variation, suggesting that robot configuration
contributes to systematic error due to the kinematic issues
referenced in the introduction. This potentially indicates that
the kinematic model used for control does not accurately
represent the true robot dimensions or encoder readings.

500 [
— Pl
— P
400 t \{ — P3
— P4
— P5
300 P6
£ - —P7
3 — P8
2 200 — P

53} \%

100 |
E— e
ot 1
20 mm/s 100 mm/s 200 mm/s

Fig. 6 Positional error

Random errors are consistently within the manufacturers
specification of 100 wm [33]. Basic results are expanded on
to study error accumulation in robotic machining. These are
discussed in the context of feed rate, performance drift and
robot configuration in Sections 5.1-5.3.

5.1 Effect of feed rate

Initial experiments show systematic error to be consistent
over the feed rates tested, but that random error is more sen-
sitive. Tracker uncertainty means that the effect of feed rate
on systematic error cannot be assessed as the difference is
so low. Further insight is gained with extended studies, as
shown in Fig. 7 where the sum of overall errors for two
positions are plotted against feed rate.

Feed rate is now observed to be associated with a distinct
error level at 100 mm/s, although variance at other feed rates

320 1
300
280
260
240
220 1
200 |

Total Error, um

180
160 -
140

100 300 500 700 900
Feed Rate, mm/s

120 ‘
1500

1100 1300

Fig. 7 Feed rate effect on error
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=200

20mm/s

-400

-200

100mm/s

-400

=200

200mm/s

—400

50 100 150 200 250

Robot Reposition Number

Fig. 8 Systematic error over experiment progress

back up initial results and suggest a relationship with error
does not exist to a degree that could be exploited for error
reduction during parameter selection for non-cutting moves
in machining programs. This is highlighted by the error
bars, which represent the random errors associated with the
mean systematic errors at each feed rate.

5.2 Performance drift

No evidence of performance drift is seen over the time scale
of initial experiments using the methodology most closely
based on ISO 9283. Drift may of been observed if robot
components were fluctuating in temperature enough during
operation and experiencing thermally induced dimensional
change to a degree that would impact the position of the
tool centre point. This is shown in Fig. 8, where indi-
vidual measurements for each pose are broken down into
the magnitudes of xyz;, with the xyz. subtracted from
them and plotted against measurement number to show the
contributions to overall accuracy.

Error variation over time from extended performance
drift experiments is shown in Fig. 9, where the sum of sys-
tematic and random errors at each of the two poses tested
are plotted over time. Overall, error fluctuation within a
range of ~70 um for both points is observed, which may
partially reflect laser tracker uncertainty and make robot
performance drift of minimal concern. This would make
robot performance drift of minimal concern. Whilst laser
tracker thermal, vibration or humidity induced drift may be
a concern [37], this cannot be confirmed without running
experiments that study measurement variations over time
alongside these potential contributors, independently of the
robotics application.

@ Springer
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Fig. 9 Positional error drift

If error fluctuations do reflect robot behaviour, the rela-
tionship is non-linear with time and highlights the com-
plexity of calibration. Calibration would rely on significant
modelling effort and in-situ condition monitoring, as used
in [38, 39], to achieve an adaptive kinematic model reactive
to all dynamics of robotic machining. Challenges associated
with this are discussed in [40—44] in the context of thermal
error drift. Nevertheless, Pan et al. [45] suggests that robotic
machining error arising from structural rigidity is of higher
priority if one particular challenge was to be focused on.

5.3 Configuration sensitivity

Initial experimental results, given in Fig. 6, highlight sys-
tematic error sensitivity to robot configuration but that
random errors are independent of robot configuration. In
the remaining tables and figures, the results of the error
mapping exercise done to expand the investigation are sum-
marised. Error maps are expressed in the cartesian coordi-
nate used in programming, i.e. the robot coordinate system,
rather than in terms of individual actuators extensions and
joint rotations. This gives insight into how potentially com-
plex interactions of error sources ultimately affect suitability
for specific machining applications, which is not intuitive if
errors were mapped in relation to actuators and joint motion.
Firstly, it is observed that the majority of errors are dispersed
over a range that is unacceptable in high tolerance appli-
cations, estimating that 95 % of errors in will fall between
56.62 and 588.74 wm, as shown in Table 1.

The influence of individual axes on systematic error is
seen in colour maps, in Figs. 10 and 11, showing the out-
ermost robot positions on the cuboid volume and its central
cross sections, respectively. These indicate that systematic
error is not correlated with Y and Z motion but that there is
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Table 1 Error map summary statistics

Mean 322.68 um Total points 5589

Median 312.33 um A? 54.805
Min 14.50 um P; 0.0005
Max 816.06 um A% 40.378
Std. Dev 133.00 um P 0.0005

a linearly increasing error exceeding values gained in initial
experiments in the X axis. Errors against the overall trend
are outliers and there are gaps where no measurement has
been obtained. Other outliers occur due to mis-timed mea-
surements before or after the robots stable position, i.e. no
movement beyond a 20 wm radius for 1.2 s. These are iden-
tified by double points close to the commanded coordinate
undistinguishable as more or less correct so only the first
is used for error calculation. The data gained is still useful
because the anomalies represent only 3 % of the dataset and
occur randomly.

To quantify apparent relationships, normality testing of
the error map dataset is done to prepare for correlation
analysis. Initial Anderson-Darling tests, A?, indicate non-
normality, justifying transformation to fulfil assumptions
for this. Transformation achieves an improvement, A2,
but tests reject the null hypothesis with P values, P; and
P’, being <0.05 for both initial and transformed data,
respectively. This is also given in Table 1.

In this case, approximate normality is acceptable accord-
ing to the central limit theorem which states that, regardless

300
250

200

Y, mm
-
73
=}

100

50 300
200
0 100 X mm
Z, Iﬂm 50 0
Error, um
[ |
02 0.4 0.6 0.8

Fig. 10 Error map block

300

Fig. 11 Error map cross sections

of the shape of the population distribution, if the sample size
is large then the sampling distribution is normal [25]. This
is proved in Fig. 12 where the frequency of the means of
1000 random samples of the population of errors are plot-
ted, sized at 100 data points each. An Anderson—Darling test
validates the normality assumption for significance testing
as part of correlation analysis, computing A2 at 0.52 with a
P value of 0.19.

Correlation between axis and error is subsequently vali-
dated by computing correlation coefficients and correspond-
ing significance levels. These are shown below in Table 2
and validate that, whilst there is a relatively small impact

90
80
70
60

50

Frequency

40

30

20

10

0
280 300 320 340 360 380
Errors, um

Fig. 12 Error map sampling distribution

@ Springer



1110

Int J Adv Manuf Technol (2017) 89:1103-1111

Table 2 Axis correlation to error

Axis R Lower Upper P

limit limit
X 0.9636 0.9617 0.9655 0.0000
Y 0.1134 0.0875 0.1392 1.8e-17
z —0.0874 —0.1133 —0.0613 5.9e-11

on systematic error as the robot is moved along its Y and
Z axes, this is most prominent in the X axis. This observa-
tion supports [4], where the edge of the working envelope
is noted to be a region of high error, as the extreme +X
position corresponds to the maximum extension of each
individual robot actuator in the experiment. Results are
shown to have a low probability of incorrectly concluding
correlation with each P value approaching 0. Because the
relationship shown is linear, this problem could be solved
with a simple calibration. Nevertheless, it should be con-
sidered that this reflects error in the whole process, i.e. the
contributions from the robot, the laser tracker and the align-
ment process. Validation by running the experiment in the
reverse order, i.e. motion from —X to +X, may therefore
prove to be insightful.

6 Summary and conclusions

Robot positional experiments have been conducted to quan-
tify the systematic and random errors of non-cutting moves
in robotic machining programs. Basic and extended method-
ologies based on an adaptation of the ISO 9283 procedure
were used to assess a Fanuc F200iB robot. Overall posi-
tional errors are frequently observed to reach several hun-
dred microns. Feed rate is not found to have a significant
impact on error but performance drift studies over time
are inconclusive, with a minimal impact if any. The main
impact on positional error in the process is found to be robot
configuration.

The robot tested cannot currently machine to high toler-
ance due to the static errors encountered before cutting even
begins. However, the main conclusion is that systematic
error is more dominant than random error, which implies
that total error can be reduced. Whilst the systematic errors
can be calibrated against, a challenge faced is that all static
and dynamic process variables need to be understood and
modelled to do this, which is highly complex. This necessi-
tates the use of in situ process monitoring to counteract the
sum systematic errors rather than individual contributors.

To expand this investigation, it is recommended that
machining dynamics are accounted for by conducting
machining trials [46]. This would allow real-world perfor-
mance to be judged for specific machining applications.
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