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Oltmann Riemer3

Received: 10 August 2015 / Accepted: 12 February 2016 / Published online: 10 March 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract Precise measurement of mechanical forces is cru-
cial to efficient micro-manufacturing. The quality of such
measurements depends heavily on the properties of the
noise inevitably accompanying every measurement process.
In the micro-range, the signal-to-noise ratio tends to be very
low, and the noise dynamic varies for different frequencies.
In result, common denoising methods that assume white
noise perform poorly in this setting. In this paper, a novel,
easily implementable denoising method based on a local
statistic of the measured data’s spectrum is proposed. By
testing it on a representative dataset, it is shown that the
proposed method is robust and stable. Particularly, it allows
for an efficient retrieval of the force signal encountered in
micro-milling processes.
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1 Introduction

In recent years, efficient and flexible production of small
components has become indispensable to high-precision
mechatronics. This increased demand in miniaturization had
an immense impact on the manufacturing technology and
led to the development of many novel and innovative pro-
cessing techniques for high-precision micro-parts (cf., e.g.,
[39]).

Micro-milling is a prominent method for rapid and cheap
production of micro-components. Together with other mate-
rial removal processes, it has become one of the most
promising methods for the production of micro-forming
tools as well as micro-components (cf., e.g., [12, 39]).

This is especially true for the manufacturing of com-
ponents with high surface quality and with textured or
structured surfaces (cf. [3, 37]). For end products where the
desired functionality is determined by these surface prop-
erties micro-milling is a crucial micro-production method.
Accordingly, in order to satisfy the desired requirements and
properties of the final product optimal process parameters
have to be achieved and maintained within the manufactur-
ing process (cf. [8, 30, 35, 37]).

To determine optimal process parameters, efficient mod-
els and simulations are needed. The predictive power of
such models depends heavily on the modeling of the cut-
ting forces with respect to the process parameters and the
desired structures. Furthermore, in order to maintain opti-
mal parameters and thereby in order to avoid unsatisfactory
manufacturing results careful monitoring of the process is
indispensable. In this case, also, the analysis of micro-forces
plays an important role in the detection of aberrations from
the desired process parameters.
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Altogether, with the focus on surface texture and tool
wear, it is therefore essential to model and predict micro-
forces involved in micro-milling precisely. Consequently, a
thorough knowledge of these forces is necessary to guaran-
tee the high quality of the manufactured micro-components.

Usually, the force models in cutting processes are based
on the common assumption that the force is proportional to
the cross-sectional area [2, 40]. However, the experimen-
tal data indicates that this approach is not well-equipped
to fully describe effects occurring in micro-processes. Fur-
ther, conventional methods and models cannot be scaled
effectively to the micro-scale, due to the occurring size
effects [38]. Consequently, the development of new force-
models for micro-processes is of uttermost importance for
manufacturing technology.

The detailed research on turning processes and model
development for complex surface generation is presented
in [25]. In particular, there, the authors consider a dynamic
cutting force model, a regenerative vibration model, a
machining system response model, and a tool profile model.

Further, a two-degrees-of-freedom model which includes
dynamical changes caused by forces acting during the
micro-process was presented and discussed for turning pro-
cesses in [11, 27]. This model was successfully further
developed and extended to the micro-end-ball-milling pro-
cesses in [28]. In particular, the extended, more general
force model is based on the tool-workpiece-interaction.

An analytical force model for micro-end-milling includ-
ing tool run-out and tool wear effects was investigated in
a series of papers by Bao et al. see [4–6]. In addition, Li
et al. [24] proposed a model of a three dimensional cutting
force for micro-end-milling operation which includes a new
nominal uncut chip thickness algorithm. This model was
developed under the consideration of tool run-out and an
exact trochoidal trajectory of the tool tip. Similar investiga-
tion together with a finite element model for the orthogonal
cutting is presented in [1]. Finally, additional investigations
of micro-milling forces and their models were carried out in
[9, 20] and [21].

However, many questions concerning force models for
micro-cutting processes are still open. In order to develop
new, improved models as well as to qualitatively verify the
capability of already existing models to precisely predict
the micro-forces encountered in such micro-processes a reli-
able recovery of these forces from noisy measurements is
indispensable.

As mentioned above, unanticipated manufacturing errors
of various kinds may occur during micro-processes. In
order to correctly and reliably assess the state of such
processes monitoring is necessary. However, monitoring
methods for miniaturized manufacturing processes are more
complex and challenging than their counterparts in the con-
ventional manufacturing. A vast number of methods has

been proposed for the monitoring of micro-processes. The
most common among them are the measurement of micro-
forces; further, the measurement of audio signals generated
by the process; and, finally, the recording and analysis of
the process by video (cf. [19, 26, 44]). Of course, all of
these methods may be considered separately as well as in
combination of each other.

In particular, in the case of the tool monitoring, one of
the most significant problems is the tool wear. In addition to
the above mentioned methods, a monitoring and tool wear
prediction method based on accelerometer measurements
was presented by Stavropoulos et al. in [33]. Another, inno-
vative approach to process monitoring for micro-milling
operations has been studied by Kuram and Ozcelik in [23].

Finally, in order to determine the correct machining con-
ditions, chatter and/or vibrations have also to be taken
into consideration. To that end and to ensure the maxi-
mal efficiency in monitoring, a reliable measurement of
micro-forces is required.

Altogether, it can be summarized that accurate measure-
ment micro-forces in micro-milling processes are quint-
essential for achieving and maintaining optimal results
within the manufacturing process.

However, a reliable quantification of micro-forces within
measured signals is a highly challenging task. As every
other real-world measurement process, the measurement
of process forces in micro-range is inevitably accompa-
nied by noise. Therefore, the quality—and subsequently the
usefulness—-of the acquired data depends on the ability to
separate and remove the noise part from the measured data.

Forces encountered in micro-milling may have low mag-
nitude as compared to the noise of the measurement.
Therefore, a low signal-to-noise ratio may be expected
in these measurements. In particular, this tends to be the
case for high-speed micro-milling processes. Consequently
denoising methods tailored to handle micro-forces in micro-
processes are of fundamental interest to practitioners.

2 Approach

The main aim of this paper is to provide a fast and reliable
method for removing the noise parts from the force signals
measured in micro-milling processes. The presented method
has very low computational complexity, allowing for easy
implementation.

Currently, already a plethora of standard denoising meth-
ods for time-dependent signals is currently available to
practitioners. These range from classical Wiener-filtering
(i.e., Fourier filtering) methods (cf. [41]), more recent Gabor
Transform and Short Time Fourier Transform (STFT)-based
methods (cf. [7, 17] and the references therein) up to
wavelet-based methods (cf. [14, 16] and the references
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therein). Further practices include non-Fourier based, non-
linear transforms like the empirical mode decomposition
(cf. [10, 18]). Finally, we also mention the recently devel-
oped, patch-based methods [13].

These general methods have been successfully applied
to the problem of denoising force signals in micro-milling.
For example, results for denoising based on independent
component analysis (ICA), Short Time Fourier Transform,
and wavelets are presented by Zhu et al. in [44]. Another
approach based on sparse representation of signals in Short
Time Fourier Transform has been studied by Zhu et al. in
[45]. Further study and denoising of force signals by means
of independent component analysis has been discussed in
[34, 42, 43].

However, a typical, underlying assumption of these stan-
dard, general denoising methods is that the noise is white
and Gaussian. This means that the noise level is constant
for all spectral (Fourier) frequencies. This assumption may
not be necessary true for measurement of mechanical forces
in the micro-range. Exemplary spectra of the three force
components where the white noise assumption is invalid are
depicted in Fig. 1.

Denoising methods operating in the original domain of
the signal are essentially smoothing the signal. Therefore,
they are virtually low-pass filters. As such they remove
high-frequency features important for the analysis of force
models. On the other hand, denoising methods operating
in the frequency domain are usually thresholding the spec-
trum. Referring again to Fig. 1, it is observed that in order
to remove the noise completely the threshold has to be cho-
sen high. Therefore, a filter based on hard-thresholding will
not preserve the information on the higher harmonics. Con-
sequently, it can be stated that standard denoising methods
generally fail to produce high-quality results in the setting
depicted in Fig. 1.

Hence, in order to perform the separation reliably and
efficiently, the characteristic properties of the noise and of

the force signal have to be determined. To that end, typical
power spectra of the three components of the force depicted
in Fig. 1 are considered. The following, crucial points can
be derived from visual inspection of this figure:

As already mentioned above, the noise level is dynamic,
i.e., the noise-level present in the data is frequency depen-
dent, and thus, is not white. Consequently, the local noise
level varies for different frequencies. Further, it is observed
that the force parts of the signal consist of peaks or outliers
in the power spectrum which are distinctively higher than
the surrounding, local noise level. Furthermore, these peaks
follow roughly the dynamic properties of the noise, i.e., they
are high where the noise is high and are low where the noise
is low.

Additionally, the signal exhibits a clear fundamental fre-
quency (which is connected to the rotational frequency f as
well as the rotational frequency per cutting edge fk , where
k is the number of the cutting edges). This fundamental
frequency (and the related peaks in the plots of Fig. 1) is
accompanied by higher order harmonics (and their related
peaks in the plots of Fig. 1) at integer multiples of the
fundamental frequency. In the data depicted in Fig. 1, the
fundamental frequency is n = 40, 000min−1 ≈ 666.667s−1

and therefore higher harmonics are expected at multiples of
f = 666.667 Hz (rotational frequency).

Previous literature (cf. [2, 36]) and research of the
authors (cf. [28]) indicates that preservation of the informa-
tion about the higher harmonics within the filtering process
is crucial to the modeling of the underlying forces. There-
fore, in the setting described in this paper, an efficient
filter must preserve information of higher harmonics of the
fundamental frequency.

As observed above, the essential part of the force sig-
nal consists of peaks in the spectrum. Therefore, in order to
provide efficient denoising, the related filter has to be able
to detect peaks for variable levels of noise. Further, the fil-
ter has to be fast in order to provide the denoised signal
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Fig. 1 Power spectrum (black line) of force components Fx (left
column), Fy (middle) and Fz (right column) for ball-end-milling pro-
cess with ball radius 1.0 mm, feed velocity vf = 300 mm

min (in
x-direction), rotational frequency n = 40000 rev

min , depth of cut ap =

0.050 mm and two cutting edges (k = 2). Positions of the multiples of
rotational frequency are marked as vertical gray lines. The small sub-
plots in the upper right corner show respective force components at a
magnified amplitude scale at frequencies of 3-4 kHz
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in real time, e.g., for monitoring applications. Finally, in
order to be easily implementable, the filter should have low
mathematical and computational complexity.

We close this section with a rough overview of the
proposed method. A detailed description is provided in
Section 5. Further, a visualization of the main steps is pre-
sented in Fig. 2. It is also remarked that the proposed method
operates on individual force components separately.

In a first step, the (Fourier) power spectrum is computed
by means of the Fast Fourier Transform (FFT) from the
measured force signal.

Then, this data is employed to derive a peak indicator.
The peak indicator is based on a gliding squared coefficient
of variation (SCV) of the power spectrum. It can be shown
that the value of the SCV in the absence of peaks has a
value which does not depend on the noise level (i.e., SCV
is agnostic with respect to the noise level). Further, where
peaks are present the SCV have much higher value. The
reasons for this behavior are presented in detail in Section 4.

In the next step, the Fourier spectrum is decimated
according to the value of SCV. This means that the Fourier
coefficients for all frequencies for which the SCV is smaller
than a certain value (chosen by the user) are set to zero,
i.e., the Fourier spectrum is thresholded with respect to the
SCV.

Finally, the filtered force signal is derived from the deci-
mated spectrum by Inverse Fast Fourier Transform (IFFT).

The gliding SCV is fast and easy to implement,
since it can be reduced to two gliding mean filters (cf.
Section 4). Consequently, the main computational steps of

the approach, namely FFT, SCV, decimation, and IFFT are
fast and either already available in standard software pack-
ages (FFT and IFFT) or very easy to implement (SCV,
decimation). Altogether, the proposed approach fulfills all
of the above requirements and provides a simple yet power-
ful denoising method for the measurement of process forces
in micro-regime. Results concerning the performance of the
filter are presented in Section 6.

3 Experimental setup

All cutting processes were carried out on a DMG Sauer
Ultrasonic 20 linear machine tool. The machine tool
design and a high-speed spindle (maximum rotational speed
42, 000 min−1) allow to conduct micro-milling operations.
The workpiece material for the cutting processes was hard-
ened cold working steel 1.2379 with a hardness of 60
HRC. The steel was produced through powder metallurgy
and exhibits a fine grained micro-structure without primary
carbides, making this appropriate for micro-manufacturing.

A Kistler 9119AA2 MiniDyn piezo-electric multi-
component force transducer was used to measure process
forces. It allows for the simultaneous acquisition of three
orthogonal forces (Fx , Fy , and Fz) or three orthogonal
momentums (MA, MB, and MC). The sensitivity of the
force transducer is given by the manufacturer as less than
2 mN and the force measurement range with −2.5 kN to
2.5 kN for all measurement directions. The force trans-
ducer was mounted to an adapter plate, attached to the

Fig. 2 Flow diagram of the
main steps of the proposed
denoising method: computation
of the unfiltered Fourier
spectrum (bottom left) from the
original / measured force signal
(top left); computation of the
peak indicator / squared
coefficient of variation (SCV)
(bottom middle) from the
unfiltered Fourier spectrum;
computation of the filtered
Fourier spectrum (bottom right)
by decimation of the unfiltered
Fourier spectrum with respect to
the SCV; computation of the
filtered force signal from the
filtered Fourier spectrum
(cf. also Section 2 page 4 and
Section 5)
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Fig. 3 DMG Sauer Ultrasonic 20 linear machine tool (a) and setup for process force measurement (b)

machine table. A second adapter plate mounted to the force
transducer carried the vise for the clamping of the work
piece. The Fx force component of the force transducer was
aligned in feed direction and the Fy force component per-
pendicular to the feed direction. The normal force of the
milling operation coincides with the Fz force component of
the force transducer. The setup is displayed in Fig 3. The
measurement chain comprises a Kistler 5019 multichannel
charge amplifier as well as a computer equipped with an
I/O A/D converter card for data sampling. The sampling
rate was 30 kHz for all cutting processes. All considered
processes were slot milling processes.

3.1 Identification of the cutting processes in the data

A measurement campaign consists of a set of three repeated
cutting processes which are carried out for an identical
set of parameters. An individual cutting process consists
of the measurement of the force for two known depth of
cut levels a1p and a2p with a1p > a2p. The milling tool is
moving through the material with the depth of cut a1p and
after time t1 changes to level a2p. In sum, all three force

components Fx, Fy, Fy are being measured in six individual
cutting processes within one campaign. For example, the
force measurements in x-direction for one whole campaign
are presented in Fig. 4 (light gray line).

The cutting processes are separated in time. However,
the boundaries of these processes are not synchronized
with the force measurement aperture. Therefore, in the first
step, these boundaries have to be recovered from the data
measured within the whole campaign.

Because of the high level of noise in the measured data,
it is not possible to determine the exact boundaries of the
milling processes and a smoothing step is carried out. After
smoothing the data, individual cutting processes at the dif-
ferent depths of cut can be identified. In Fig. 4 (black
line), the result of smoothing with Daubechies wavelet filter
(of order 8) is presented. The boundaries of the individ-
ual processes—the sections divided by dark gray, vertical
lines in Fig. 4—are then clearly distinguishable. In the sub-
sequent steps, every process is considered separately. Only
one force component for one depth of cut is presented exem-
plarily in Fig. 4, as the other two were processed in the same
way.
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Fig. 4 Example of the force measurements signal in x-direction (light
gray line) for the ball end milling process with ball radius 0.5 mm,
feed velocity vf = 900 mm

min (in x-direction), rotational frequency
n = 40000 rev

min , depth of cut ap = 0.025 mm and two cutting edges
(k = 2). The filtered version of the force signal (black line) is used to

identify 6 processes within a single measurement campaign. The sig-
nal boundaries (dark gray vertical lines) are manually derived from the
filtered version of the force signal. The left subplot depicts the whole
campaign. The right subplot shows a magnification centered on the
two first processes within the campaign
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However, it is remarked that the smoothed data is only
used in order to identify the boundaries of the individual
milling processes. The processed data (black line in Fig. 4)
is too over-smoothed to be useful in further processing.
For this reason, in the subsequent steps, the original data—
restricted to the temporal boundaries of each process—is
employed again.

4 Statistical peak detection

The proposed filter for the individual milling processes
is developed in two parts. In this section, a local peak-
detection criterion is discussed. This criterion will then be
developed into a full denoising method in the next section.

A pure white noise signal, e.g., a vector of length K

defined via
→
u = [u(1), . . . , u(K)], can be interpreted as K

samples of a normally distributed random variable with zero

mean and variance σ 2. Then, the vector
→
u is complex and—

since the FFT is (up to a factor) unitary—the vectors
→
v 1 :=

→
u (real part of the vector

→
u ) and

→
v 2 := →

u (imaginary part

of the vector
→
u ) are sample vectors of two, normally dis-

tributed, stochastically independent random variables with
zero mean and variance σ 2 · K

2 . Thus, they can also be con-

sidered pure-noise signals. Consequently, the vector
→
w =

[w(1), . . . , w(K)] with
→
w

(k) :=
√

(
→
v

(k)

1 )2 + (
→
v

(k)

2 )2 may
be interpreted as a sample vector of a Rayleigh-distributed
random variable with the scale parameter σ · √

K/2. The
expected value of that random variable is given via

√
π/2·σ

and the variance by 4−π
2 σ 2, (cf. [15] p. 173). Hence, the so

called squared coefficient of variation (SCV) of that random
variable, which is the ratio of the variance to the square of
the expected value, is independent of the scale parameter of
the Rayleigh distribution and has the value 4

π
− 1 ≈ 0.27.

An estimator for SCV is given by:

SCV
→
w :=

→
w
→
w

2

, (1)

where

→
w := 1

N

N∑
n=1

→
w

(n)
(2)

and

→
w := 1

N − 1

N∑
n=1

(
→
w

(n) − →
w)2 . (3)

are the standard unbiased estimators for the expected value
(mean) and for the variance.

Of course, this estimator is by itself not expected to
be unbiased. However, due to numerical experiments and

the analogue computations for a normal distributed ran-
dom variable (cf. [32] p. 58.) the error is expected to be
negligible.

In other words, for pure-noise signals
→
u respetively

→
v 1,

→
v 2 the value of

→
w is expected to be about 0.27. For

signals
→
v 1,

→
v 2 with peaks of high magnitude, it is clear

that the numeral in
→
w is much higher than the denomi-

nator, and therefore, the value of
→
w is much higher than

0.27. This gives way to the following statistical peak indica-
tor/detector:

– Let a complex vector
→
v and a user-provided filtering

level c be given.
– First, the real and imaginary parts

→
v 1 and

→
v 2 are

extracted, then the related vector
→
w and finally the

quantity
→
w is computed.

– If the denominator in the definition of
→
w is zero (i.e.,

→
w

is constant) or the
→
w is smaller than c × 0.27 then

→
v is

considered pure-noise, otherwise a peak is detected.

It should be noted that the assumptions on the distribution
properties of

→
v 1 and

→
v 2 were only used to derive the peak

detector. In order for the filter to be sensible, the only impor-
tant property is that

→
w is a sample of a Rayleigh-distributed

random variable. As can be seen in Fig. 5, this assumption
is fulfilled for high-frequency part of the data (higher than
5 kHz). This frequency was chosen since there the noise
level is approximately stationary. Obviously, the spectrum
is indeed Rayleigh-distributed there. Therefore, it can be
stated that the data (locally) fulfills the assumptions of the
filter.

It should be stressed that the detector described above
is scale invariant, i.e., the scale parameter of the Rayleigh-
distribution, respectively, the noise level is not parameters
within the detector and therefore have neither to be esti-
mated nor to be known. Further, the filter may be applied
to all signals which are (locally) stationary in the power
spectrum.
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Fig. 5 Comparison of the probability distribution derived from the
amplitude data of the FFT for the force component Fx of the first pro-
cess in campaign depicted Fig. 4 in the range from 7.5 to 9.5 kHz (gray
circles) and a fitted Rayleigh-distribution (black line)
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Finally, it should also be emphasized that the point-
wise absolute-value of the Fourier transform is used as
the definition of spectral power of a signal. Another com-
mon definition for the spectral power is the square of
the absolute-value. Of course in that case the SCV can
be employed to construct a scale invariant peak detector,
too. However, in our experiments, the definition used here
achieved better performance.

5 Description of the filter

As was mentioned before, it is assumed that all three force
components Fx, Fy, Fy are measured and thus also have to
be filtered. The data for every of the six individual experi-
mental parts of the data (cf. Section 3.1) is denoised sepa-
rately. The three force components for the measured, noisy

data of a single process are denoted by
→
F x,

→
F y,

→
F z — an

index identifying the process is dropped in order to simplify
the notation. As the filter treats every component separately
the action of the filter is presented only for the force com-

ponent
→
F x — the remaining two force components

→
F y

and
→
F z are treated in the same way. Finally, the entries

of
→
F x are denoted by f

(m)
x , i.e.,

→
F x = [f (1)

x , . . . f
(M)
x ].

For the tested dataset, the sample size M was about
30, 000.

If the measurements are generated at equidistant times-

tamps then in the first step of the filter the FFT of
→
F x

is computed; otherwise, a Fast Fourier Transform for non-
equidistant nodes (NFFT) may be employed, cf. [22, 29].

The Fourier transformed version of
→
F x is denoted by

→
Gx ,

and the point-wise absolute-value of
→
Gx is denoted as

→
P x ,

i.e., in equidistant case
→
P x = abs(

→
F x) = [p(1)

x , . . . , p
(M)
x ].

Further, a fresh vector
→
Hx is generated by

→
Hx = →

Gx ,
which will in the end store the filtered version of the Fourier
transformed data.

Subsequently, an additional filtering parameter N , which
is the half-width of the filter, is chosen. In general, N should
be much smaller than the length of the data M; typical val-
ues for N are 3, . . . , 21. Then, for every m between 1 and
the length of the data M , the statistical peak detector of
the last section with parameter c > 1 is used on the sub-

set [p(m−N)
x , . . . , p

(m+N)
x ] of the data →

P x . Further, the data
is extended symmetrically at the boundaries. For example,
for N = 2 and m = 1 the extended subset is given by
[p(3)

x , p
(2)
x , p

(1)
x , p

(2)
x , p

(3)
x ].

If the detector indicates the presence of a peak at the fre-
quency of the index m then the corresponding entries h

(m)
x

and h
(M−m+2)
x remain unchanged, otherwise these entries

are set to zero. After all entries of
→
Hx have been processed,

the filtered version of the force component is obtained by
applying the inverse of the FFT (or the inverse of the NFFT

in the non-equidistant case) on the dataset
→
Hx .

Several remarks are in order:

– The parameter N controls the width of typically
detected peaks, while the parameter c described in the
last section controls the height of typically detected
peaks. Together, these two parameters control the qual-
ity of the denoising.

– The proposed filter is a gliding filter of width K =
2N + 1. In particular, every peak is usually surrounded
by a window of width 2N + 1 where the noise is not
filtered. In the given dataset, this window was helpful
for the modeling of the micro-forces. However, if such
behavior is not desired, additional morphological oper-
ations [31] may be applied to narrow or even delete that
surrounding window.

– Since it is known that
→
F x is real-valued, the left half

of the FFT is complex conjugate of the right half (if
the vector is considered to be a row vector). As such,
both halves contain the same information. Therefore,

subsequently, the vector
→
Gx could also be cropped to

the left half, i.e., it is sufficient to only consider entries
with index 1 ≤ m ≤ L, where L := �M/2� and �·�
denotes the rounding towards infinity (also known as
ceil-function).

6 Results

In this section, the performance of the filter in the spec-
tral domain and in the time domain based on real data is
described. Since in the tested dataset, the timestamps were
equidistant, FFT was used. The algorithms were imple-
mented in MATLAB and have been tested for several
parameter settings.

6.1 Performance in the spectral domain

In Fig. 6 (top row), the spectrum of a milling process’ signal
is depicted which mainly exhibits peaks at the first and sec-
ond multiple of the rotational frequency n = 40, 000/min
(≈ 666.67 Hz). These peaks are recognizable by visual
inspection. The width N of the filter was chosen to be 6 in
all three force components while the peak detection param-
eter c was chosen 10 for the Fx force component, 7 for the
Fy force component, and 15 for the Fz force component
of the force signal. In the bottom row of the figure, it can
be seen that the filter successfully recognized and retained
these peaks. At this point, it is once again stressed that the
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Fig. 6 Power spectrum of force components Fx (left column), Fy

(middle) and Fz (right column) from Fig. 4 (ball end milling pro-
cess with ball radius 0.5 mm, feed velocity vf = 900 mm

min (in
x-direction), rotational frequency n = 40000 rev

min , depth of cut ap =

0.025 mm and two cutting edges, k = 2). Top row: Unfiltered spectra
(gray line) and filtered spectra (black line). Bottom row: Positions of
the multiples of rotational frequency (vertical gray lines) and filtered
spectra (black line)

filter is agnostic with respect to the information on the rota-
tional frequency, i.e., that information was not fed to the
filter.

In Fig. 7, the performance of the filter is shown for sig-
nals which exhibit peaks at more than only two multiples of

the rotational frequency. In this case, the width N was cho-
sen to be 12 and the peak detection parameter c was chosen
to be 5 in all three force components. As before, the top
row of the figure shows that the filter is at least as good as
choosing the peaks by visual inspection. Furthermore, the
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Fig. 7 Power spectrum of force components Fx (left column), Fy

(middle) and Fz (right column). The process parameters are identical
to Fig. 1, i.e. a ball end milling process with ball radius 1.0 mm,
feed velocity vf = 300 mm

min (in x-direction), rotational frequency

n = 40000 rev
min , depth of cut ap = 0.050 mm and two cutting edges

(k = 2). Top row: Unfiltered spectra (gray line) and filtered spec-
tra (black line). Bottom row: Positions of the multiples of rotational
frequency (vertical gray lines) and filtered spectra (black line)
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bottom row shows that also in this case the filter recovers
the correct peaks at the multiples of the rotational fre-
quency. It is worth pointing out that characteristic peaks
at about 250 Hz are recognizable in all three force com-
ponents as well. Although the mechanical interpretation of
this frequency is currently still an open question. It is clear
that these peaks have different characteristics than the sur-
rounding noise and, therefore, are correctly recognized as
’not-noise’ part of the signal.

Notice that in both cases (Figs. 6 and 7), the filter is at
least as good as traditional filters. This is especially evi-
dent for the force component in x-direction (left row) and
z-direction (right row).

The considered processes were slot milling processes
with feed velocity in x-direction. As such, the Fy com-
ponent of the cutting force is expected to have much less
pronounced peaks then the other two components. This is
clearly visible in the middle column of Figs. 6 and 7. In
order to remove the noise caused by the machine table (best
visible at frequencies 2.5–3 kHz) a filter based on spectral
thresholding would also remove all peaks belonging to the
signal, as these peaks have significantly smaller magnitude
than the surrounding noise. However, the presented filter is
clearly able to recover the correct peaks for the signal.

The filter was designed to be scale invariant and there-
fore to automatically adapt to the level of noise present in
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Fig. 8 Force measurement signals in x-direction (top), z-direction
(bottom) for the ball end milling process with ball radius 0.5 mm,
feed velocity vf = 900 mm

min (in x-direction), rotational frequency
n = 40000 rev

min and depth of cut ap = 0.025 mm. The unfiltered sig-
nal (gray line) and filtered signal (black line) are shown. The spectrum
of the filtered signal can be found in Fig. 6

the spectrum. This fact is depicted in the subplots in the
upper right corner of plots of Fig. 7. Firstly, these sub-graphs
show that information about the force component is present
even at higher multiples of the rotational frequency (in the
depicted case at the sixth and seventh multiple). Secondly,
it shows that the magnitude of this information is smaller
than the magnitude at low multiples (e.g., the first and sec-
ond multiple). Finally, this shows that the filter works in the
way it was designed and successfully retains the force infor-
mation while removing the noise from the signal, even if the
noise level varies within the signal spectrum.

Summarizing, this shows that the presented filter is often
as good and in critical cases superior to the established
spectral thresholding methods.

6.2 Performance in the time domain and comparison
with force model

In order to fully evaluate the performance of the filter, the
results in the time domain are considered also. In Figs. 8
and 9, the measured and filtered Fx (top) and Fz (bot-
tom) force components for the same process as in Fig. 6
is depicted. The force component in y-direction is omitted,
as the process is a slot milling process in the x-direction.
Consequently that force component is of less interest as
it is expected to be much less variable than the other two
components (a view which is confirmed by the much lower
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Fig. 9 Filtered force measurement signals (gray lines) in x-direction
(top), z-direction (bottom). The optimized model components Fx and
Fz (black lines). The same process as in Fig. 8 is depicted. The
boundaries of single rotations are depicted as gray vertical lines
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magnitudes of the relevant spectral information, as shown in
Fig. 6).

It is remarked that the unfiltered signal (gray line in
Fig. 8) is relatively smooth. Therefore, smoothing-based fil-
ters are expected to perform poorly for that signal. However,
this also means that a smoothness-based evaluation of the
performance of the filter not is not the right choice. There-
fore, instead, the filtered force measurement is compared
with an well-established force model.

For conventional cutting processes, a number of cutting
force models have been described in the literature. In the
case of milling processes, the acting forces are separated
into three components, radial force, tangential force, and
axial force and are denoted by Fr, Ft , and Fa , respectively.
A common approach relies on fact that the force compo-
nents are proportional to the cross section area of cut Ac

and can be computed using the specific cutting force com-
ponents Krc, Ktc, and Kac. This results in the forces Fr =
KrcAc, Ft = KtcAc, Fa = KacAc. By applying the coordi-
nate transformation operator, the force components Fx , Fy ,
and Fz in the Cartesian tool coordinate system are obtained.
This cutting force model was first introduced by Weck and
Teipel [40]. Altintas extend this model by adding a second
term which additionally takes into account friction, cf. [2, p.
35–47]. The model of Altintas is applied in the remainder of
this section.

Accordingly, the model for the (instantaneous) cross
section area Ac(t), the (instantaneous) chip thickness h(t)

and the instantaneous angle of immersion φ(t) are given by

Ac(t) = aph(t) (4)

h(t) = vf

n
60 · k

· sinφ(t) (5)

φ(t) = 2π · n
60 · t + φ0 (6)

where the depth of cut ap, the feed velocity vf , rotational
frequency n, and the number of cutting edges k are not
time varying within a single milling process. However, they
may have different values for different milling processes.
The quantity t is the time measured in seconds, and φ0 is
the initial angle of immersion. All other quantities have the
dimensions given in Figs. 6 and 7.

The model of Altintas then gives the following formulas
for radial-, tangential-, and axial-force components:

Ft(t) = KtcAc(t) + Kteap (7)

Fr(t) = KrcAc(t) + Kreap (8)

Fa(t) = KacAc(t) + Kaeap (9)

A visualization of the forces in the x, y-plane is presented
in Fig. 10.

Fig. 10 Coordinate system in milling operations: x, y-plane (cf.
Subsection 6.2 for a description of the involved symbols)

Finally, the forces in the Cartesian tool coordinate system
are given via

Fx(t) = −Ft(t) · cosφ(t) − Fr(t) · sinφ(t) + cx (10)

Fy(t) = +Ft(t) · sinφ(t) − Fr(t) · cosφ(t) + cy (11)

Fz(t) = +Fa(t) + cz (12)

where the offset parameters cx , cy , and cz are additionally
introduced to counter the offset caused by the measurement
aperture.

It should be noted that there are ten unknown parame-
ters φ0, Ktc, Krc, Kac, Kte, Kre, Kae, cx , cy , cz. These are
recovered from the filtered data by least square optimiza-
tion. The results of the optimization are depicted in Fig. 9
for the Fx and Fz force component. The component Fy is
once again omitted for the reasons mentioned above, i.e.,
the nature of the milling process at hand.

A very good fit between the filtered force component
(gray line, top of Fig. 9) and the optimized model (black
line, top of Fig. 9) is achieved for the Fx force component.
This validates the effectiveness of the filter in that case.

The difference between the filtered signal (gray line, bot-
tom of Fig. 9) and the optimized model (black line, bottom
of Fig. 9) for the Fz direction can be accounted for by the
fact that the macro-scale milling models (like the Altintas
model) do only describe the chip thickness h in terms of
the feed and feed per tooth (which translates to the param-
eters vf and k in the above definition of h(t)). Therefore,
the rotational frequency is dominant in such models in the
axial force component Fa and therefore also in the Fz force
component.

Summarizing, the presented filtering is as good as the
model-based constraints allow it to be. However, the devel-
opment of force models for milling processes in the micro-
scale is currently an ongoing research effort and the com-
parison of the filter to these models is an interesting future
research endeavor.
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7 Conclusions

A new approach for signal denoising based on a statistical
peak detection methods is presented. It can be applied to a
wide range of noise models. Moreover, no assumptions from
the milling process are needed to model the signal. The only
necessary assumption is that the signal parts exhibit a peak-
like behavior in the Fourier spectrum. The filter is controlled
by two parameters which have to be chosen in advance by
the user. The filtering method has succeeded to determine
the fundamental frequency as well as its harmonics from the
input signal.

The successful application of the presented filter com-
bined with further cutting experiments and theoretical
research will allow the development of novel cutting force
modeling techniques which account for the higher multiples
of the rotational frequency within the signal.
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