Skip to main content
Log in

Permanent knee sensorimotor system changes following ACL injury and surgery

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

The cruciate ligaments are components of the knee capsuloligamentous system providing vital neurosensory and biomechanical function. Since most historical primary ACL repair attempts were unsuccessful, reconstruction has become the preferred surgery. However, an increased understanding of the efficacy of lesion-site scaffolding, innovative suturing methods and materials, and evolving use of biological healing mediators such as platelet-rich plasma and stem cells has prompted reconsideration of what was once believed to be impossible. A growing number of in vivo animal studies and prospective clinical studies are providing increasing support for this intervention. The significance of ACL repair rather than reconstruction is that it more likely preserves the native neurosensory system, entheses, and ACL footprints. Tissue preservation combined with restored biomechanical function increases the likelihood for premorbid neuromuscular control system and dynamic knee stability recovery. This recovery should increase the potential for more patients to safely return to sports at their desired intensity and frequency. This current concepts paper revisits cruciate ligament neurosensory and neurovascular anatomy from the perspective of knee capsuloligamentous system function. Peripheral and central nerve pathways and central cortical representation mapping are also discussed. Surgical restoration of a more physiologically sound knee joint may be essential to solving the osteoarthritis dilemma. Innovative rehabilitative strategies and outcome measurement methodologies using more holistic and clinically relevant measurements that closely link biomechanical and neurosensory characteristics of physiological ACL function are discussed. Greater consideration of task-specific patient physical function and psychobehavioral links should better delineate the true efficacy of all ACL surgical and non-surgical interventions.

Level of evidence IV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Claes S, Vereecke E, Maes M, Victor J, Verdonk P, Bellemans J (2013) Anatomy of the anterolateral ligament of the knee. J Anat 223(4):321–328

    Article  PubMed  PubMed Central  Google Scholar 

  2. Daggett M, Claes S, Helito CP et al (2016) The role of the anterolateral structures and the ACL in controlling laxity of the intact and ACL-deficient knee: letter to the editor. Am J Sports Med 44(4):NP14–15e

    Article  Google Scholar 

  3. Ferretti A, Monaco E, Fabbri M, Maestri B, De Carli A (2017) Prevalence and classification of injuries of anterolateral complex in acute anterior cruciate ligament tears. Arthroscopy  33:147–154 

    Article  PubMed  Google Scholar 

  4. Hewison CE, Tran MN, Kaniki N, Remtulla A, Bryant D, Getgood AM (2015) Lateral extra-articular tenodesis reduces rotational laxity when combined with anterior cruciate ligament reconstruction: a systematic review of the literature. Arthroscopy 31:2022–2034

    Article  PubMed  Google Scholar 

  5. Kennedy MI, Claes S, Fuso FA et al (2015) The anterolateral ligament: an anatomic, radiographic, and biomechanical analysis. Am J Sports Med 43:1606–1615

    Article  PubMed  Google Scholar 

  6. Roessler PP, Schüttler KF, Heyse TJ, Wirtz DC, Efe T (2016) The anterolateral ligament (ALL) and its role in rotational extra-articular stability of the knee joint: a review of anatomy and surgical concepts. Arch Orthop Trauma Surg 136:305–313

    Article  PubMed  Google Scholar 

  7. Muneta T, Koga H, Young-Jin J, Horie M, Nakamura T, Sekiya I (2013) Remnant volume of anterior cruciate correlates preoperative patients’ status and postoperative outcome. Knee Surg Sports Traumatol Arthrosc 21:906–913

    Article  PubMed  Google Scholar 

  8. Ochi M, Murao T, Sumen Y, Kobayashi K, Adachi N (1999) Isolated posterior cruciate ligament insufficiency induces morphological changes of anterior cruciate ligament collagen fibrils. Arthroscopy 15:292–296

    Article  CAS  PubMed  Google Scholar 

  9. Anoka N, Nyland J, McGinnis M, Lee D, Doral MN, Caborn DN (2012) Consideration of growth factors and bio-scaffolds for treatment of combined grade II MCL and ACL injury. Knee Surg Sports Traumatol Arthrosc 20:878–888

    Article  PubMed  Google Scholar 

  10. Johansson H, Sjolander P, Sojka P et al (1989) Reflex actions on the gamma muscle spindle systems of muscles acting at the knee joint elicited by stretch of the posterior cruciate ligament. Neuro Orthoped 8:9–21

    Google Scholar 

  11. Johansson H, Sjolander P, Sojka P (1991) A sensory role for the cruciate ligaments. Clin Orthop Relat Res 268:161–178

    Google Scholar 

  12. Kennedy JC, Alexander IJ, Hayes KC (1982) Nerve supply of the human knee and its functional importance. Am J Sports Med 10:329–335

    Article  CAS  PubMed  Google Scholar 

  13. Kennedy JC, Weinberg HW, Wilson AS (1974) The anatomy and function of the anterior cruciate ligament. As determined by clinical and morphological studies. J Bone Joint Surg Am 56:223–235

    Article  CAS  PubMed  Google Scholar 

  14. Mall NA, Chalmers PN, Moric M et al (2014) Incidence and trends of anterior cruciate ligament reconstruction in the United States. Am J Sports Med 42:2363–2370

    Article  PubMed  Google Scholar 

  15. McLean SG (2008) The ACL injury enigma: we can’t prevent what we don’t understand. J Athl Train 43:538–540

    Article  PubMed  PubMed Central  Google Scholar 

  16. Rodriguez-Merchan EC (2015) Evidence-based ACL reconstruction. Arch Bone Jt Surg 3:9–12

    PubMed  PubMed Central  Google Scholar 

  17. Feagin JA, Pierce CM, Geyer MR (2013) ACL primary repair: what we did, the results, and how it helps today to tailor treatments to the patient and the pathology. Chapter 8. In: Sanchis-Alfonso V, Monllau JC (eds) The ACL-deficient knee. Springer-Verlag, London, pp 97–104

    Chapter  Google Scholar 

  18. Ardern CL, Taylor NF, Feller JA, Whitehead TS, Webster KE (2013) Psychological responses matter in returning to preinjury level of sport after anterior cruciate ligament reconstruction surgery. Am J Sports Med 41:1549–1558

    Article  PubMed  Google Scholar 

  19. Holm I, Oistad BE, Risberg MA, Aune AK (2010) No difference in knee function or prevalence of osteoarthritis after reconstruction of the anterior cruciate ligament with 4-strand hamstring autograft versus patellar tendon-bone autograft: a randomized study with 10-year follow-up. Am J Sports Med 38:448–454

    Article  PubMed  Google Scholar 

  20. Mai HT, Alvarez AP, Freshman RD et al (2016) The NFL Orthopaedic Surgery Outcomes Database (NO-SOD): the effect of common orthopaedic procedures on football careers. Am J Sports Med 44:2255–2262

    Article  PubMed  Google Scholar 

  21. Oiestand BE, Holm I, Aune AK et al (2010) Knee function and prevalence of knee osteoarthritis after anterior cruciate ligament reconstruction: a prospective study with 10 to 15 years of follow-up. Am J Sports Med 38:2201–2210

    Article  Google Scholar 

  22. Tjong VK, Murnaghan L, Nyhof-Young JM, Ogilvie-Harris DJ (2014) A qualitative investigation of the decision to return to sport after anterior cruciate ligament reconstruction: to play or not to play. Am J Sports Med 42:336–342

    Article  PubMed  Google Scholar 

  23. Aglietti P, Giron F, Cuomo P, Losco M, Mondanelli N (2007) Single- and double-bundle incision double-bundle ACL reconstruction. Clin Orthop Relat Res 454:108–113

    Article  PubMed  Google Scholar 

  24. Crawford C, Nyland J, Landes S, Jackson R, Chang HC, Nawab A, Caborn DN (2007) Anatomic double bundle ACL reconstruction: a literature review. Knee Surg Sports Traumatol Arthrosc 15:946–964

    Article  PubMed  Google Scholar 

  25. Jarvela T (2007) Double bundle versus single-bundle anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 15:500–507

    Article  PubMed  Google Scholar 

  26. Kondo E, Yasuda K, Azuma H, Tanabe Y, Yagi T (2008) Prospective clinical comparisons of anatomic double-bundle versus single-bundle anterior cruciate ligament reconstruction procedures in 328 consecutive patients. Am J Sports Med 36:1675–1687

    Article  PubMed  Google Scholar 

  27. Muneta T, Koga H, Mochizuki T et al (2007) A prospective randomized study of 4-strand semitendinosus tendon anterior cruciate ligament reconstruction comparing single-bundle and double-bundle techniques. Arthroscopy 23:618–628

    Article  PubMed  Google Scholar 

  28. Woo SL, Kanamori A, Zeminski J, Yagi M, Papageorgiou C, Fu FH (2002) The effectiveness of reconstruction of the anterior cruciate ligament with hamstrings and patellar tendon. A cadaveric study comparing anterior tibial and rotational loads. J Bone Joint Surg Am 84:907–914

    Article  PubMed  Google Scholar 

  29. Yagi M, Kuroda R, Nagamune K, Yoshiya S, Kurosaka R (2007) Double-bundle ACL reconstruction can improve rotational stability. Clin Orthop Relat Res 454:100–107

    Article  PubMed  Google Scholar 

  30. Koga H, Muneta T, Yagishita K et al (2015) Evaluation of a behind-remnant approach for femoral tunnel creation in remnant-preserving double-bundle anterior cruciate ligament reconstruction—comparison with standard approach. Knee 22:249–255

    Article  PubMed  Google Scholar 

  31. Kurosawa H (1997) Conservative repair for acute anterior cruciate ligament injury. In: Niwa S, Yoshino S, Kurosaka M, Shino K, Yamamoto S (eds) Reconstruction of the knee joint. Springer-Verlag, Tokyo, pp 28–35

    Chapter  Google Scholar 

  32. Colombet P, Dejour D, Panisset JC, Siebold R (2010) The French Arthroscopy Society: current concept of partial anterior cruciate ligament ruptures. Orthop Traumatol Surg Res 965:S109–S118

    Article  Google Scholar 

  33. Lee BI, Min KD, Choi HS et al (2009) Immunohistochemical study of mechanoreceptors in the tibial remnant of the ruptured anterior cruciate ligament in human knees. Knee Surg Sports Traumatol Arthrosc 17:1095–1101

    Article  PubMed  Google Scholar 

  34. Siebold R, Fu FH (2008) Assessment and augmentation of symptomatic anteriomedial and posterolateral bundle tears of the anterior cruciate ligament. Arthroscopy 24:1289–1298

    Article  PubMed  Google Scholar 

  35. Yasuda K, Kondo E, Kitamura N, Kawaguchi Y, Kai S, Tanabe Y (2012) A pilot study of antatomic double-bundle anterior cruciate ligament reconstruction with ligament remnant tissue preservation. Arthroscopy 28:343–353

    Article  PubMed  Google Scholar 

  36. Kapreli E, Athanasopoulos S (2006) The anterior cruciate ligament deficiency as a model of brain plasticity. Med Hypotheses 67:645–650

    Article  PubMed  Google Scholar 

  37. Kapreli E, Athanasopoulos S, Gliatis J et al (2009) Anterior cruciate ligament deficiency causes brain plasticity: a functional MRI study. Am J Sports Med 37:2419–2426

    Article  PubMed  Google Scholar 

  38. Staines WR, Mcllroy WE, Brooke JD (2001) Cortical representation of whole-body movement is modulated by proprioceptive discharge in humans. Exp Brain Res 138:235–242

    Article  CAS  PubMed  Google Scholar 

  39. Nyland J, Mattocks A, Kibbe S, Kalloub A, Greene JW, Caborn DN (2016) Anterior cruciate ligament reconstruction, rehabilitation, and return to play: 2015 update. Open Access J Sports Med 7:21–32

    Article  PubMed  PubMed Central  Google Scholar 

  40. Pietrosimone B, Lepley AS, Harkey MS et al (2016) Quadriceps strength predicts self-reported function post ACL reconstruction. Med Sci Sports Exerc 48:1671–1677 

    Article  PubMed  Google Scholar 

  41. Steadman JR, Matheny LM, Briggs KK, Rodkey WG, Carreira DS (2012) Outcomes following healing response in older, active patients: a primary anterior cruciate ligament repair technique. J Knee Surg 25:255–260

    Article  PubMed  Google Scholar 

  42. Büchler L, Regli D, Evangelopoulos DS et al (2016) Functional recovery following primary ACL repair with dynamic intraligamentary stabilization. Knee 23:549–553

    Article  PubMed  Google Scholar 

  43. Kohl S, Evangelopoulos DS, Schär MO et al (2016) Dynamic intraligamentary stabilisation: initial experience with treatment of acute ACL ruptures. Bone Joint J 98-B:793–798

    Article  CAS  PubMed  Google Scholar 

  44. Smith JO, Yasen SK, Palmer HC, Lord BR, Britton EM, Wilson AJ (2016) Paediatric ACL repair reinforced with temporary internal bracing. Knee Surg Sports Traumatol Arthrosc 24:1845–1851

    Article  PubMed  Google Scholar 

  45. Koga H, Muneta T, Yagishita K, Ju YJ, Sekiya I (2012) Surgical management of grade 3 medial knee injuries combined with cruciate ligament injuries. Knee Surg Sports Traumatol Arthrosc 20:88–94

    Article  PubMed  Google Scholar 

  46. Nguyen DT, Dellbrügge S, Tak PP, Woo SL, Blankevoort L, van Dijk NC (2015) Histological characteristics of ligament healing after bio-enhanced repair of the transected goat ACL. J Exp Orthop 2:4. doi:10.1186/s40634-015-0021-5

    Article  PubMed  PubMed Central  Google Scholar 

  47. Angoules AG (2013) Anterior cruciate ligament mechanoreceptors regeneration following reconstruction using autografts. J Sports Med Doping Stud 3:e136. doi:10.4172/2161-0673.1000e136

    Google Scholar 

  48. Ochi M, Iwasa J, Uchio Y, Adachi N, Sumen Y (1999) The regeneration of sensory neurones in the reconstruction of the anterior cruciate ligament. J Bone Joint Surg Br 81:902–906

    Article  CAS  PubMed  Google Scholar 

  49. Collins NJ, Misra D, Felson DT, Crossley KM, Roos E (2011) Measures of knee function: International Knee Documentation Committee (IKDC) Subjective Knee Evaluation form, Knee Injury and Osteo-arthritis Outcome Score (KOOS), Knee Injury and Osteoarthritis Outcome Score Physical Function Short Form (KOOS-PS), Knee Outcome Survey Activities of Daily Living Scale (KOS-ADL), Lysholm Knee Scoring Scale, Oxford Knee Score (OKS), Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), Activity Rating Scale (ARS), and Tegner Activity Score (TAS). Arthritis Care Res (Hoboken) 63:S208–S228

    Article  Google Scholar 

  50. Irrgang JJ (2008) Current status of measuring clinical outcomes after anterior cruciate ligament reconstruction: are we good enough? Oper Tech Sports Med 16:119–124

    Article  Google Scholar 

  51. Vavken P, Murray MM (2011) The potential for primary repair of the ACL. Sports Med Arthrosc 19:44–49

    Article  PubMed  PubMed Central  Google Scholar 

  52. Arnoczky SP (1983) Anatomy of the anterior cruciate ligament. Clin Orthop Relat Res 172:19–25

    Google Scholar 

  53. Sasaki N, Ishibashi Y, Tsuda E et al (2012) The femoral insertion of the anterior cruciate ligament: discrepancy between macroscopic and histological observations. Arthroscopy 28:1135–1146

    Article  PubMed  Google Scholar 

  54. Siebold R, Schuhmacher P, Fernandez F et al (2015) Flat midsubstance of the anterior cruciate ligament with tibial "C"-shaped insertion site. Knee Surg Sports Traumatol Arthrosc 23:3136–3142

    Article  PubMed  Google Scholar 

  55. Śmigielski R, Zdanowicz U, Drwięga M, Ciszek B, Ciszkowska-Łysoń B, Siebold R (2015) Ribbon like appearance of the midsubstance fibres of the anterior cruciate ligament close to its femoral insertion site: a cadaveric study including 111 knees. Knee Surg Sports Traumatol Arthrosc 23:3143–3150

    Article  PubMed  Google Scholar 

  56. Tsukada H, Ishibashi Y, Tsuda E, Fukuda A, Toh S (2008) Anatomical analysis of the anterior cruciate ligament femoral and tibial footprints. J Orthop Sci 13:122–129

    Article  PubMed  Google Scholar 

  57. Azangwe G, Mathias KJ, Marshall D (2000) Macro and microscopic examination of the ruptured surfaces of the anterior cruciate ligament of rabbits. J Bone Joint Surg Br 82:450–456

    Article  CAS  PubMed  Google Scholar 

  58. Benjamin M, Moriggi B, Brenner E, Emergy P, McGonagle D, Redman S (2004) The “Enthesis Organ” concept: why enthesopathies may not present as focal insertional disorders. Arthritis Rheum 50:3306–3313

    Article  CAS  PubMed  Google Scholar 

  59. Benjamin M, McGonagle D (2001) The anatomical basis for disease localization in seronegative spondyloarthropathy at entheses and related sites. J Anat 199:503–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Arnoczky SP (1985) Blood supply to the anterior cruciate ligament and supporting structures. Orthop Clin N Am 16:15–28

    CAS  Google Scholar 

  61. Toy BJ, Yeasting RA, Morse DE, McCann P (1995) Arterial supply to the human anterior cruciate ligament. J Athl Train 30:149–152

    CAS  PubMed  PubMed Central  Google Scholar 

  62. De Rooster H, De Bruin T, Van Bree H (2006) Morphologic and functional features of the canine cruciate ligaments. Vet Surg 35:769–780

    Article  PubMed  Google Scholar 

  63. Dhillon MS., Ball K, Prabhakar S (2012) Differences among mechanoreceptors in healthy and injured anterior cruciate ligaments and their clinical importance. Muscles Ligaments Tendon J 2:38–43

    Google Scholar 

  64. Franchi A, Zaccherotti G, Aglietti P (1995) Neural system of the human posterior cruciate ligament in osteoarthritis. J Arthroplasty 10:679–682

    Article  CAS  PubMed  Google Scholar 

  65. Halata Z, Haus J (1989) The ultrastructure of sensory endings in human anterior cruciate ligament. Anat Embryol 179:415–421

    Article  CAS  PubMed  Google Scholar 

  66. Hogervorst T, Brand RA (1998) Mechanoreceptors in joint function. J Bone Joint Surg Am 80:1365–1378

    Article  CAS  PubMed  Google Scholar 

  67. Katonis P, Papouisidakis A, Aligizakis, Tzanakakis G, Kontakis GM, Papagelopoulos PJ (2008) Mechanoreceptors of the posterior cruciate ligament. J Int Med Res 36:387–393

    Article  CAS  PubMed  Google Scholar 

  68. Katonis PG, Assimakopoulos AP, Agapitos MV, Exarchou EI (1991) Mechanoreceptors in the posterior cruciate ligament: histologic study on cadaver knees. Acta Orthop Scand 62:276–278

    Article  CAS  PubMed  Google Scholar 

  69. Krauspe R, Schmidt M, Schaible H-G (1992) Sensory innervations of the anterior cruciate ligament. J Bone Joint Surg Am 74:390–397

    Article  CAS  PubMed  Google Scholar 

  70. Miyatsu M, Atsuta Y, Watakabe M (1993) The physiology of mechanoreceptors in the anterior cruciate ligament. An experimental study in decerebrate-spinalised animals. J Bone Joint Surg Br 75:653–657

    CAS  PubMed  Google Scholar 

  71. Nyland J, Brosky T, Currier D, Nitz A, Caborn D (1994) Review of the afferent neural system of the knee and its contribution to motor learning. J Orthop Sports Phys Ther 19:2–11

    Article  CAS  PubMed  Google Scholar 

  72. O’Connor BL, Woodbury P (1982) The primary articular nerves to the dogs knee. J Anat 134:563–572

    PubMed  PubMed Central  Google Scholar 

  73. Petersen W, Tillmann B (1999) Structure and vascularization of the cruciate ligaments of the human knee joint. Anat Embryol 200:325–334

    Article  CAS  PubMed  Google Scholar 

  74. Schultz RA, Miller DC, Kerr CS et al (1984) Mechanoreceptors in human cruciate ligaments: a histological study. J Bone Joint Surg Am 66:1072–1076

    Article  CAS  PubMed  Google Scholar 

  75. Yahia LH, Newman NW, St-Georges M (1992) Innervation of the canine cruciate ligaments. A neurohistological study. Anat Histol Embryol 21:1–8

    Article  CAS  PubMed  Google Scholar 

  76. Freeman MAR, Wyke B (1967) The innervation of the knee joint. An anatomical and histological study in the cat. J Anat 101:505–532

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Adachi N, Ochi M, Uchio Y, Iwasa J, Ryoke K, Kuriwaka M (2002) Mechanoreceptors in the anterior cruciate ligament contribute to the joint position sense. Acta Orthop Scand 73:330–334

    Article  PubMed  Google Scholar 

  78. Godinho P, Nicoliche E, Cossich V, de Sousa EB, Velaques B, Salles JI (2014) Proprioceptive deficit in patients with complete tearing of the anterior cruciate ligament. Rev Bras Ortop 49:613–618

    Article  PubMed  PubMed Central  Google Scholar 

  79. Sjolander P, Johansson H, Djupsjobacka M (2002) Spinal and superaspinal effects of activity in ligament afferents. J Electromyogr Kinesiol 12:167–176

    Article  PubMed  Google Scholar 

  80. O’Connor BL, Seipel J (1983) Anatomical variations of the posterior articular nerve to the cat knee joint. J Anat 136:27–34

    PubMed  PubMed Central  Google Scholar 

  81. Solomonow M, Krogsgaard M (2001) Sensorimotor control of knee stability. A review. Scan J Med Sci Sports 11:64–80

    Article  CAS  Google Scholar 

  82. Biedert RM, Stauffer E, Friederich NF (1992) Occurrence of free nerve endings in the soft tissue of the knee joint. A histologic investigation. Am J Sports Med 20:430–433

    Article  CAS  PubMed  Google Scholar 

  83. Hebert-Blouin M-N, Tubbs RS, Carmichael SW, Spinner RJ (2014) Hilton’s law revisited. Clin Anat 27:548–555

    Article  PubMed  Google Scholar 

  84. Biedert RM, Zwick EB (1998) Ligament-muscle reflex arc after anterior cruciate ligament reconstruction: electromyographic evaluation. Arch Orthop Trauma Surg 118:81–84

    Article  CAS  PubMed  Google Scholar 

  85. Gomez-Barrena E, Bonsfills N, Martin JG, Ballesteros-Masso R, Foruria A, Nunez-Molina A (2008) Insufficient recovery of neuromuscular activity around the knee after experimental anterior cruciate ligament reconstruction. Acta Orthop Scand 79:39–47

    Article  Google Scholar 

  86. Shanahan CJ, Hodges PW, Wrigley TV, Bennell KL, Farrell MJ (2015) Organisation of the motor cortex differs between people with and without knee osteoarthritis. Arthritis Res Ther 17:164

    Article  PubMed  PubMed Central  Google Scholar 

  87. Kerver ALA, Leliveld MS, den Hartog D, Verhofstad MHJ, Kleinrensink GJ (2013) The surgical anatomy of the infrapatellar branch of the saphenous nerve in relation to incisions for anteromedial knee surgery. J Bone Joint Surg Am 95:2119–2125

    Article  CAS  PubMed  Google Scholar 

  88. Noyes FR, Grood ES (1987) Classification of ligament injuries: why an anterolateral laxity or anteromedial laxity is not a diagnostic entity. Instr Course Lect 36:185–200

    CAS  PubMed  Google Scholar 

  89. Terry GC, Hughston JC (1985) Associated joint pathology in the anterior cruciate-deficient knee with emphasis on a classification system and injuries to the meniscocapsular ligament-musculotendinous unit complex. Orthop Clin N Am 16:29–39

    CAS  Google Scholar 

  90. Crystal R, Malone AA, Eastwood DM (2005) Motor points for neuromuscular blockade of the adductor muscle group. Clin Orthop Relat Res 437:196–200

    Article  Google Scholar 

  91. Fanelli A, Ghisi D, Melotti RM (2016) An update around the evidence base for the lower extremity ultrasound regional block technique. F1000Res. doi:10.12688/f1000research.7199.1

    Google Scholar 

  92. Glasser MF, Coalson TS, Robinson EC et al (2016) A multi-modal parcellation of human cerebral cortex. Nature. doi:10.1038/nature18933

    PubMed Central  Google Scholar 

  93. Grooms DR, Myer GD (2016) Upgraded hardware-what about the software? Brain updates for return to play following ACL reconstruction. Br J Sports Med. doi:10.1136/bjsports-2016-096658 (pii:bjsports-2016-096658, [Epub ahead of print])

    PubMed  Google Scholar 

  94. Grooms DR, Page SJ, Nichols-Larsen DS, Chaudhari AM, White SE, Onate JA (2016) Neuroplasticity associated with anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther 5:1–27

    Google Scholar 

  95. Grooms DR, Page SJ, Onate JA (2015) Brain activation for knee movement measured days before second anterior cruciate ligament injury: neuroimaging in musculoskeletal medicine. J Athl Train 50:1005–1010

    Article  PubMed  PubMed Central  Google Scholar 

  96. Kuenze CM, Hertel J, Weltman A, Diduch D, Saliba SA, Hart JM (2015) Persistent neuromuscular and corticomotor quadriceps asymmetry after anterior cruciate ligament reconstruction. J Athl Train 50:303–312

    Article  PubMed  PubMed Central  Google Scholar 

  97. Lepley AS, Gribble PA, Thomas AC, Tevald MA, Sohn DH, Pietrosimone BG (2015) Quadriceps neural alterations in anterior cruciate ligament reconstructed patients: a 6-month longitudinal investigation. Scand J Med Sci Sports 25:828–839

    Article  CAS  PubMed  Google Scholar 

  98. Petersen W, Taheri P, Forkel P, Zantop T (2014) Return to play following ACL reconstruction: a systematic review about strength deficits. Arch Orthop Trauma Surg 134:1417–1428

    Article  PubMed  Google Scholar 

  99. Swanik CB (2015) Brains and sprains: the brain’s role in noncontact anterior cruciate ligament injuries. J Athl Train 50:1100–1102

    Article  PubMed  Google Scholar 

  100. Swanik CB, Covassin T, Stearne DJ, Schatz P (2007) The relationship between neuro-cognitive function and noncontact anterior cruciate ligament injuries. Am J Sports Med 35:943–948

    Article  PubMed  Google Scholar 

  101. Ward S, Pearce AJ, Pietrosimone B, Bennell K, Clark R, Bryant AL (2015) Neuromuscular deficits after peripheral nerve injury: a neurophysiological hypothesis. Muscle Nerve 51:327–332

    Article  PubMed  Google Scholar 

  102. Seidler RD (2010) Neural correlates of motor learning, transfer of learning, and learning to learn. Exerc Sport Sci Rev 38:3–9

    Article  PubMed  PubMed Central  Google Scholar 

  103. Courtney CA, Rine RM (2006) Central somatosensory changes associated with improved dynamic balance in subjects with anterior cruciate ligament deficiency. Gait Posture 24:190–195

    Article  PubMed  Google Scholar 

  104. Courtney C, Rine RM, Kroll P (2005) Central somatosensory changes and altered muscle synergies in subjects with anterior cruciate ligament deficiency. Gait Posture 22:69–74

    Article  PubMed  Google Scholar 

  105. Di Stasi S, Myer GD, Hewett TE (2013) Neuromuscular training to target deficits associated with second anterior cruciate ligament injury. J Orthop Sports Phys Ther 43:777–792

    Article  PubMed  Google Scholar 

  106. Harkey MS, Luc-Harkey BA, Lepley AS et al (2016) Persistent muscle inhibition after ACL reconstruction: role of reflex excitability. Med Sci Sports Exerc 48:2370–2377

    Article  PubMed  Google Scholar 

  107. Kuenze C, Blemker SS, Hart JM (2016) Quadriceps function relates to muscle size following ACL reconstruction. J Orthop Res 34:1656–1662 

    Article  Google Scholar 

  108. Snyder-Mackler L, Binder-Macleod SA, Williams PR (1993) Fatigability of human quadriceps femoris muscle following anterior cruciate ligament reconstruction. Med Sci Sports Exerc 25:783–789

    Article  CAS  PubMed  Google Scholar 

  109. Stockmar C, Lill H, Trapp A, Josten C, Punkt K (2006) Fibre type related changes in the metabolic profile and fibre diameter of human vastus medialis muscle after anterior cruciate ligament rupture. Acta Histochem 108:335–342

    Article  CAS  PubMed  Google Scholar 

  110. Beard DJ, Kyberd PJ, O’Connor JJ, Fergusson CM, Dodd CA (1994) Reflex hamstring contraction latency in anterior cruciate ligament deficiency. J Orthop Res 12:219–228

    Article  CAS  PubMed  Google Scholar 

  111. McHugh MP, Tyler TF, Nicholas SJ, Browne MG, Gleim GW (2001) Electromyographic analysis of quadriceps fatigue after anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther 31:25–32

    Article  CAS  PubMed  Google Scholar 

  112. Tsai LE, Powers CM (2013) Increased hip and knee flexion during landing decreases tibiofemoral compressive forces in women who have undergone anterior cruciate ligament reconstruction. Am J Sports Med 41:423–429

    Article  PubMed  Google Scholar 

  113. Claes S, Verdonk P, Forsyth R, Bellemans J (2011) The “Ligamentization” process in anterior cruciate ligament reconstruction: what happens to the human graft? A systematic review of the literature. Am J Sports Med 39:2476–2483

    Article  PubMed  Google Scholar 

  114. Adachi N, Ochi M, Takazawa K et al (2016) Morphologic evaluation of remnant anterior cruciate ligament bundles after injury with three-dimensional computed tomography. Knee Surg Sports Traumatol Arthrosc 24:148–153

    Article  PubMed  Google Scholar 

  115. Muneta T, Koga H, Nakamura T, Horie M, Watanabe T, Sekiya I (2015) Behind-remnant arthroscopic observation and scoring of femoral attachment of injured anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc 24:2906–2914

    Article  PubMed  Google Scholar 

  116. Murray MM, Fleming BC (2013) The biology of anterior cruciate ligament injury and repair: Kappa Delta Ann Doner Vaughn Award Paper 2013. J Orthop Res 31:1501–1506

    Article  PubMed  PubMed Central  Google Scholar 

  117. Murray MM, Fleming BC (2013) Use of a bioactive scaffold to stimulate ACL healing also minimizes post-traumatic osteoarthritis after surgery. Am J Sports Med 41:1762–1770

    Article  PubMed  PubMed Central  Google Scholar 

  118. Murray MM, Spindler KP, Abreu E et al (2007) Collagen-platelet rich plasma hydrogel enhances primary repair of the porcine anterior cruciate ligament. J Orthop Res 25:81–91

    Article  PubMed  Google Scholar 

  119. García-Castellano JM, Díaz-Herrera P, Morcuende JA (2000) Is bone a target-tissue for the nervous system? New advances on the understanding of their interactions. Iowa Orthop J 20:49–58

    PubMed  PubMed Central  Google Scholar 

  120. Nyland J, Fisher B, Brand E, Krupp R, Caborn DN (2010) Osseous deficits after anterior cruciate ligament injury and reconstruction: a systematic literature review with suggestions to improve osseous homeostasis. Arthroscopy 26:1248–1257

    Article  PubMed  Google Scholar 

  121. Andriolo L, Di Matteo B, Kon E, Filardo G, Venieri G, Marcacci M (2015) PRP augmentation for ACL reconstruction. BioMed Res Int. doi:10.1155/2015/371746

    PubMed  PubMed Central  Google Scholar 

  122. Vavken P, Sadoghi P, Murray MM (2011) The effect of platelet concentrates on graft maturation and graft-bone interface healing in ACL reconstruction in human patients: a systematic review of controlled trials. Arthroscopy 27:1573–1583

    Article  PubMed  PubMed Central  Google Scholar 

  123. Steinert AF, Kunz M, Prager P et al (2011) Mesenchymal stem cell characteristics of human anterior cruciate ligament outgrowth cells. Tissue Eng Part A 17:1375–1388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Farraro KF, Sasaki N, Woo SL et al (2016) A magnesium ring device to restore function of a transected anterior cruciate ligament in the goat stifle joint. J Orthop Res 34:2001–2008

    Article  CAS  PubMed  Google Scholar 

  125. Mackay GM, Blyth MJ, Anthony I, Hopper GP, Ribbans WJ (2015) A review of ligament augmentation with the InternalBrace™: the surgical principle is described for the lateral ankle ligament and ACL repair in particular, and a comprehensive review of other surgical applications and techniques is presented. Surg Technol Int 26:239–255

    PubMed  Google Scholar 

  126. Kiapour AM, Murray MM (2014) Basic science of anterior cruciate ligament repair. Bone Joint Res 3:20–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Lubowitz JH, MacKay G, Gilmer B (2014) Knee medial collateral ligament with posteromedial corner anatomic repair with internal bracing. Arthrosc Tech 3:e505–e508

    Article  PubMed  PubMed Central  Google Scholar 

  128. Achtnich A, Herbst E, Forkel P et al (2016) Acute proximal anterior cruciate ligament tears: outcomes after arthroscopic suture anchor repair versus anatomic single-bundle reconstruction. Arthroscopy 32:2562–2569

    Article  PubMed  Google Scholar 

  129. DiFelice GS, Villegas C, Taylor S (2015) Anterior cruciate ligament preservation: early results of a novel arthroscopic technique for suture anchor primary anterior cruciate ligament repair. Arthroscopy 31:2162–2171

    Article  PubMed  Google Scholar 

  130. Evangelopoulos DS, Kohl S, Schwienbacher S, Gantenbein B, Exadaktylos A, Ahmad SS (2015) Collagen application reduces complication rates of mid-substance ACL tears treated with dynamic intraligamentary stabilization. Knee Surg Sports Traumatol Arthrosc (Epub ahead of print)

  131. Beaulieu ML, Carey GE, Schlecht SH, Wojtys EM, Ashton-Miller JA (2015) Quantitative comparison of the microscopic anatomy of the human ACL femoral and tibial entheses. J Orthop Res 33:1811–1817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Dai C, Guo L, Yang L, Wu Y, Gou J, Li B (2015) Regional fibrocartilage variations in human anterior cruciate ligament tibial insertion: a histological three-dimensional reconstruction. Connect Tissue Res 56:18–24

    Article  PubMed  CAS  Google Scholar 

  133. Thambyah A, Lei Z, Broom N (2014) Microanatomy of the medial collateral ligament enthesis in the bovine knee. Anat Rec (Hoboken) 297:2254–2261

    Article  Google Scholar 

  134. Zhao L, Thambyah A, Broom ND (2014) A multi-scale structural study of the porcine anterior cruciate ligament tibial enthesis. J Anat 224:624–633

    Article  PubMed  PubMed Central  Google Scholar 

  135. Gobbi A, Bathan L, Boldrini L (2009) Primary repair combined with bone marrow stimulation in acute anterior cruciate ligament lesions. Results in a group of athletes. Am J Sports Med 37:571–578

    Article  PubMed  Google Scholar 

  136. Gribbin TC, Slater LV, Herb CC et al (2016) Differences in hip-knee joint coupling during gait after anterior cruciate ligament reconstruction. Clin Biomech (Bristol, Avon) 32:64–71

    Article  Google Scholar 

  137. Kiefer AW, Ford KR, Paterno MV et al (2013) TE. Inter-segmental postural coordination measures differentiate athletes with ACL reconstruction from uninjured athletes. Gait Posture 37:149–153

    Article  PubMed  Google Scholar 

  138. Pollard CD, Stearns KM, Hayes AT, Heiderscheit BC (2015) Altered lower extremity movement variability in female soccer players during side-step cutting after anterior cruciate ligament reconstruction. Am J Sports Med 43:460–465

    Article  PubMed  Google Scholar 

  139. Lebon F, Guillot A, Collet C (2012) Increased muscle activation following motor imagery during the rehabilitation of the anterior cruciate ligament. Appl Psychophysiol Biofeedback 37:45–51

    Article  PubMed  Google Scholar 

  140. Fisher BE, Southam AC, Kuo YL, Lee YY, Powers CM (2016) Evidence of altered corticomotor excitability following targeted activation of gluteus maximus training in healthy individuals. Neuroreport 27:415–421

    Article  PubMed  Google Scholar 

  141. Baumeister J, Reinecke K, Schubert M, Weiss M (2011) Altered electrocortical brain activity after ACL reconstruction during force control. J Orthop Res 29:1383–1389

    Article  PubMed  Google Scholar 

  142. Courtney CA, Rine R, Jenk DT, Collier PD, Waters A (2013) Enhanced proprioceptive acuity at the knee in the competitive athlete. J Orthop Sports Phys Ther 43:422–426

    Article  PubMed  Google Scholar 

  143. Raunest J, Sager M, Burgener E (1996) Proprioceptive mechanisms in the cruciate ligaments: an electromyographic study on reflex activity in the thigh muscles. J Trauma 41:488–493

    Article  CAS  PubMed  Google Scholar 

  144. Reich TE, Lindstedt SL, LaStayo PC, Pierotti DJ (2000) Is the spring quality of muscle plastic? Am J Physiol Regul Integr Comp Physiol 278:R1661–R1666

    CAS  PubMed  Google Scholar 

  145. Valeriani M, Restuccia D, Di Lazzaro V, Franceschi F, Fabbriciani C, Tonali P (1996) Central nervous system modifications in patients with lesion of the anterior cruciate ligament of the knee. Brain 119:1751–1762

    Article  PubMed  Google Scholar 

  146. Valeriani M, Restuccia D, Di Lazzaro V, Franceschi F, Fabbriciani C, Tonali P (1999) Clinical and neurophysiological abnormalities before and after reconstruction of the anterior cruciate ligament of the knee. Acta Neurol Scand 99:303–307

    Article  CAS  PubMed  Google Scholar 

  147. Fremerey R, Freitag N, Wippermann B, Stalp M, Fu FH (2006) Sensorimotor potential of the intact and injured anterior and posterior cruciate ligaments—a neurophysiological study in an animal model. Z Orthop Ihre Grenzgeb 144:158–163

    Article  CAS  PubMed  Google Scholar 

  148. Dyhre-Poulsen P, Krogsgaard MR (2000) Muscular reflexes elicited by electrical stimulation of the anterior cruciate ligament in humans. J Appl Physiol 89:2191–2195

    CAS  PubMed  Google Scholar 

  149. Krogsgaard MR, Fischer-Rasmussen T, Dyhre-Poulsen P (2011) Absence of sensory function in the reconstructed anterior cruciate ligament. J Electromyogr Kinesiol 21:82–86

    Article  PubMed  Google Scholar 

  150. Tsuda E, Ishibashi Y, Okamura Y, Toh S (2003) Restoration of anterior cruciate ligament-hamstring reflex arc after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 11:63–67

    Article  PubMed  Google Scholar 

  151. Tsuda E, Okamura Y, Otsuka H, Komatsu T, Tokuya S (2001) Direct evidence of the anterior cruciate ligament-hamstring reflex arc in humans. Am J Sports Med 29:83–87

    CAS  PubMed  Google Scholar 

  152. Bonsfills N, Gomez-Barrena E, Raygoza JJ, Nunez A (2008) Loss of neuromuscular control related to motion in the acutely ACL-injured knee: an experimental study. Eur J Appl Physiol 104:567–577

    Article  CAS  PubMed  Google Scholar 

  153. Friemert B, Faist M, Spengler C, Gerngross H, Claes L, Melnyk M (2005) Intraoperative direct mechanical stimulation of the anterior cruciate ligament elicits short- and medium-latency hamstring reflexes. J Neurophysiol 94:3996–4001

    Article  CAS  PubMed  Google Scholar 

  154. Iwasa J, Ochi M, Uchio Y, Adachi N, Kawasaki K (2006) Decrease in anterior knee laxity by electrical stimulation of normal and reconstructed anterior cruciate ligaments. J Bone Joint Surg Br 88:477–483

    Article  CAS  PubMed  Google Scholar 

  155. Ristanis S, Tsepis E, Giotis D, Stergiou N, Cerulli G, Georgoulis AD (2009) Electro-mechanical delay of the knee flexor muscles is impaired after harvesting hamstring tendons for anterior cruciate ligament reconstruction. Am J Sports Med 37:2179–2186

    Article  PubMed  Google Scholar 

  156. Krogsgaard MR, Dyhre-Poulsen P, Fischer-Rasmussen T (2002) Cruciate ligament reflexes. J Electromyogr Kinesiol 12:177–182

    Article  PubMed  Google Scholar 

  157. Chmielewski TL, Hurd WJ, Rudolph KS, Axe MJ, Snyder-Mackler L (2005) Perturbation training improves knee kinematics and reduces muscle co-contraction after complete unilateral anterior cruciate ligament rupture. Phys Ther 85:740–749

    PubMed  Google Scholar 

  158. Pietrosimone BG, Lepley AS, Ericksen HM, Clements A, Sohn DH, Gribble PA (2015) Neural excitability alterations after anterior cruciate ligament reconstruction. J Athl Train 50:665–674

    Article  PubMed  PubMed Central  Google Scholar 

  159. Ward SH, Pearce A, Bennell KL, Peitrosimone B, Bryant AL (2016) Quadriceps cortical adaptations in individuals with an anterior cruciate ligament injury. Knee 23:582–587

    Article  PubMed  Google Scholar 

  160. Hurd WJ, Axe MJ, Snyder-Mackler L (2008) Influence of age, gender, and injury mechanism on the development of dynamic knee stability after acute ACL rupture. J Orthop Sports Phys Ther 38:36–41

    Article  PubMed  Google Scholar 

  161. Bali K, Dhillon MS, Vasistha RK, Kakkar N, Chana R, Prabhakar S (2012) Efficacy of immuno histological methods in detecting functionally viable mechanoreceptors in the remnant stumps of injured anterior cruciate ligaments and its clinical importance. Knee Surg Sports Traumatol Arthrosc 20:75–80

    Article  PubMed  Google Scholar 

  162. Angelozzi M, Madama M, Corsica C et al (2012) Rate of force development as an adjunctive outcome measure for return-to-sport decisions after anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther 42:772–780

    Article  PubMed  Google Scholar 

  163. Louw Q, Gillion N, van Niekerk SM, Morris L, Baumeister J (2015) The effect of vision on knee biomechanics during functional activities—a systematic review. J Sci Med Sport 18:469–474

    Article  PubMed  Google Scholar 

  164. Pamukoff DN, Pietrosimone B, Lewek MD et al (2016) Whole-body and local muscle vibration immediately improve quadriceps function in individuals with anterior cruciate ligament reconstruction. Arch Phys Med Rehabil 97:1121–1129

    Article  PubMed  Google Scholar 

  165. Leventer L, Dicks M, Duarte R, Davids K, Araujo D (2015) Emergence of contact injuries in invasion team sports: an ecological dynamics rationale. Sports Med 45:153–159

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Nyland.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

This study received no funding to complete.

Ethical approval

This study did not require ethics approval at its institution.

Informed consent

As there was no individual participants in this study informed consent was not required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nyland, J., Gamble, C., Franklin, T. et al. Permanent knee sensorimotor system changes following ACL injury and surgery. Knee Surg Sports Traumatol Arthrosc 25, 1461–1474 (2017). https://doi.org/10.1007/s00167-017-4432-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-017-4432-y

Keywords

Navigation