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diagnosed the PLC injury, while the other examiners diag-
nosed an MCL tear. The PLC-injured knee demonstrated 
4.1 mm more lateral tibial translation and 2.2 mm more 
posterior tibial translation during varus–valgus testing 
when compared to the intact knee.
Conclusions The robotic testing device was able to pro-
vide objective numerical data that reflected differences 
between the injured knees and the uninjured knees in both 
cadavers. The examiners that performed the manual clini-
cal examination on the cadaver knees proved to be poor 
at diagnosing the injuries. Robotic testing could act as an 
adjunct to the manual clinical examination by supplying 
numbers that could improve diagnosis of knee injury.
Level of evidence Level II.

Keywords Clinical knee examination · Knee injury · 
Knee laxity · Robotic knee testing · Ligament injury · 
Medial collateral ligament · Posterolateral corner

Introduction

Traumatic injuries in the knee are commonplace and 
account for more than 1.3 million emergency room visits 
and 19.4 million doctor office visits in the USA every year 
[47]. The likelihood of a successful recovery to a pain-free 
knee is greater with an early and accurate diagnosis of the 
injury followed by the appropriate diagnosis-led treatment 
protocol. Hitherto, the manual clinical knee examination 
has been the method used by examiners to assess the laxity 
of the knee and from that examination (often plus a radio-
graph and an MRI) make a judgment as to the best course 
of treatment. The results obtained from manual clinical 
knee examination are essentially subjective and are depend-
ent upon the examiner’s training and experience [4, 30, 31]. 

Abstract 
Purpose The purpose of this study was to collect knee 
laxity data using a robotic testing device. The data col-
lected were then compared to the results obtained from 
manual clinical examination.
Methods Two human cadavers were studied. A medial 
collateral ligament (MCL) tear was simulated in the left 
knee of cadaver 1, and a posterolateral corner (PLC) injury 
was simulated in the right knee of cadaver 2. Contralateral 
knees were left intact. Five blinded examiners carried out 
manual clinical examination on the knees. Laxity grades 
and a diagnosis were recorded. Using a robotic knee device 
which can measure knee laxity in three planes of motion: 
anterior–posterior, internal–external tibia rotation, and 
varus–valgus, quantitative data were obtained to document 
tibial motion relative to the femur.
Results One of the five examiners correctly diagnosed the 
MCL injury. Robotic testing showed a 1.7° larger valgus 
angle, 3° greater tibial internal rotation, and lower endpoint 
stiffness (11.1 vs. 24.6 Nm/°) in the MCL-injured knee 
during varus–valgus testing when compared to the intact 
knee and 4.9 mm greater medial tibial translation dur-
ing rotational testing. Two of the five examiners correctly 
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Specific diagnosis of knee injuries based on manual clinical 
examination alone has been shown, in many cases, to be 
inconsistent and/or lacking in accuracy [2, 18, 20, 21, 23, 
24, 26, 32, 33, 37–39, 43, 48].

In studies reporting on the use of the manual clini-
cal knee examination, injuries to the posterior cruciate 
ligament (PCL), anterior cruciate ligament (ACL), or the 
meniscus are generally diagnosed more consistently and 
accurately as compared to those involving rotational or 
combined injuries. The ranges in diagnostic accuracy using 
the manual clinical knee examination have been reported 
as: medial meniscus tear 75–85 %; lateral meniscus tear 
58–92 %; ACL tear 83–100 %; and PCL 96–100 % [20, 21, 
26, 33, 39, 43]. However, other injuries such as medial col-
lateral ligament (MCL) tears, posterolateral corner (PLC) 
injuries, or combined injuries have much lower ranges of 
accuracy [18, 23, 24, 32, 48]. For example, the posterolat-
eral corner of the knee, which is a system of bones, mus-
cles, tendons, and ligaments, has an anatomy that can vary 
from one person to the next. This variation can present dif-
ficulties when trying to identify rotational instability and 
injury patterns [2, 8, 23, 24, 37, 38].

A number of semi-automated devices such as the 
KT-1000 (MEDmetric, San Diego, CA), Genucom knee 
analysis system (FARO, Lake Mary, FL), Rolimeter (Air-
cast, Boca Raton, FL), Stryker knee laxity tester (Stryker 
Corporation, Kalamazoo, MI), and surgical navigation sys-
tems have been designed in an effort to obtain objective 
quantitative data in order to measure knee laxity (or knee 
stiffness) and to use the data (i.e. numbers) in the attempt 
to identify knee injuries [11, 17, 40, 46]. These devices 
have all provided some useful information. However, these 
devices are all semi-automated and they depend upon the 
examiner to control the direction and rate of the applied 
force. This could explain the fact that, when using semi-
automated devices for diagnosis of knee injuries in a clini-
cal setting, the relevant data obtained have not correlated 
well with patient satisfaction scores, functional scores, kin-
ematic patterns, or the development of osteoarthritis after 
ACL reconstruction [9, 12, 22, 34, 42, 45].

Robotic knee testers, on the other hand, differ from 
the above-mentioned semi-automated devices in that the 
robot, once programmed, can standardize the magnitude 
and direction of the force applied and so provide vectors 
(numbers and direction) to give a less subjective measure 
of knee laxity. The advantage of this is that the test can be 
repeated using the same exact settings for direction and the 
rate of the applied force. Previous robotic systems include: 
a mechanized pivot shift device [29], the GNRB knee lax-
ity testing device (GeNouRoB SAS, Laval, France) [25], 
the Robotic Knee Testing System (ERMI Inc., Atlanta, 
GA) ([3–7], United States Patent #’s: 7753862, 8753294, 
8840570), and a device developed by Park et al. [35].

The purpose of this study was to collect objective quan-
titative data on knee laxity using a robotic testing device 
that is unique in its ability to test the knee in three planes: 
(1) anterior–posterior translation; (2) tibial axial rotation; 
and (3) varus–valgus rotation (RKT, ERMI Inc., Atlanta, 
GA). The data obtained from the device were compared to 
the results of manual clinical examination. The hypothesis 
of the study was that robotic testing of the knee could pro-
vide quantitative data on knee laxity that would indicate the 
injuries in cadaveric specimens, while manual clinical knee 
examination would be poor at diagnosing the injuries.

Materials and methods

Two human cadaveric specimens were obtained for this 
study (see Table 1). Manual clinical knee examination and 
bilateral arthroscopic knee examinations were conducted 
on a number of cadavers in order to select specimens where 
the left and right knees on the cadaver were similar in terms 
of pre-existing conditions. The ligamentous structures were 
also judged to be intact prior to testing. If any ligamentous 
structure was damaged or if the pre-existing conditions 
were not equivalent between the left and right knee, then 
the specimen was excluded. After some care, two cadavers 
were selected that met the criteria. The pre-existing condi-
tions noted during arthroscopic examination are shown in 
Table 2. Note that the pre-existing conditions are similar 
for the left knee and the right knee of each cadaver.

Under arthroscopic guidance, an injury was simulated 
in one knee of each cadaveric specimen. An isolated grade 
III MCL tear (complete ligament cut) was simulated in the 
left knee of cadaver 1, and a grade III PLC injury (capsule, 
popliteus tendon, and arcuate ligament were cut from the 
posterior lateral collateral ligament to the PCL) was simu-
lated in the right knee of cadaver 2. The contralateral knee 
in each cadaver was left intact (i.e. with only the pre-exist-
ing conditions). However, a sham surgery was performed 
on each intact knee so that the injured knee could not be 
identified visually when the manual clinical knee examina-
tion was carried out. At the end of the experiment, com-
plete sectioning of all four knees was carried out. This was 
done to confirm that the sham injuries (on the left knee of 
cadaver 1 and the right knee of cadaver 2) had been done 

Table 1  Characteristics of the cadaveric specimens and details of the 
simulated injury for each specimen

Cadaver Sex Height (m) Weight (kg) Simulated injury

1 M 1.67 54.4 Left: grade III MCL injury

2 M 1.8 90.7 Right: grade III PCL cor-
ner injury
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correctly and that the uninjured knees (right on cadaver 1 
and left on cadaver 2) aligned with the findings obtained 
arthroscopically as indicated in Table 2.

Manual clinical examination

Without knowing that any of the knees had been injured 
in any way, five board-certified orthopaedic surgeons per-
formed manual clinical knee examination on both knees 
of each cadaver. The pelvis of each cadaver was clamped 
to the examination table. Each participating examiner per-
formed the following tests: Lachman-Trillat test, anterior 
drawer test, posterior drawer test, pivot shift test, varus and 
valgus stress tests at 0° and 30°, dial test at 30°, and antero-
medial and anterolateral laxity tests (an anterior drawer test 
with the addition of a rotational force applied either medi-
ally or laterally). Each examiner was asked to report their 
results (or “opinions”) from each of the tests, and each 
examiner was asked to identify any particular injury on 

either knee. Laxity grades were assigned that represented 
the examiner’s opinion of the level of laxity for each test. 
The laxity grades reported in the tables are based on a sys-
tem in which a grade 1 represents 0–5 mm or 0–5° of lax-
ity, a grade 2 represents 6–10 mm or 6–10° of laxity, and a 
grade 3 represents >10 mm or >10° of laxity. Half numbers 
represent instances where the examiners were undecided 
between two grades (see Tables 3, 4, explained more fully 
in “Results” section below).

Robotic knee testing

For each cadaver, both knees were tested at the same time 
using the RKT device with the knees flexed to 30°. The 
cadavers were set up in the device by a third party blinded 
to the simulated injuries; this third party was not one of the 
examiners or the surgeon who had carried out the simula-
tion of the injuries. Each femur was held fixed within the 
RKT device, and the tibia was manipulated by a footplate 
during internal–external tibial rotation testing and by an 
extendible force application arm during anterior–posterior 
(AP) and varus–valgus testing (see Fig. 1). Using the robot, 
the relative motion between the tibia and the femur was 
measured, or in other words, the laxity (or stiffness) of the 
knee. The robot also measured the force required to pro-
duce the motion between the tibia and the femur.

The RKT device performed three, single-axis laxity tests 
on each knee in the following planes: (1) anterior–poste-
rior; (2) internal–external tibial rotation; and (3) varus–val-
gus. During AP testing, the RKT device first applied an 
anteriorly directed force at a constant displacement rate of 
1 mm/s. The force was applied via pads below each calf 
that were attached to the force application arm. The applied 

Table 2  Pre-existing conditions found in the cadaveric knees during 
arthroscopic evaluation, before simulated injuries had been inflicted 
on the left knee of cadaver 1 and the right knee of cadaver 2

MFC medial femoral condyle, PF patellofemoral joint, MM medial 
meniscectomy

Cadaver Right Left

1 Grade IV changes to MFC/
PF, partial MM

Grade IV changes to MFC/
PF, partial MM

2 Grade III changes to MFC, 
grade III changes to the 
PF, posterior horn of 
medial meniscus torn

Grade III changes to MFC, 
grade IV changes to the PF, 
posterior horn of medial 
meniscus torn

Table 3  Clinical grades for laxity and diagnoses of the left knee in cadaver 1 from the five board-certified examiners (BCE) for a series of 
manual clinical knee examinations

The left knee had received an isolated grade III MCL tear (complete ligament cut). The laxity grades are based on a system in which a grade 1 
represents 0–5 mm or 0–5° of laxity, a grade 2 represents 6–10 mm or 6–10° of laxity, and a grade 3 represents >10 mm or >10° of laxity. Half 
numbers represented instances when examiners were undecided between two grades

Exam-
iner

Valgus 
test @0°

Valgus 
test @30°

Varus test 
@0°

Varus test 
@30°

Dial test 
@30°

Lachman Pivot 
shift

Posterior 
drawer

Anterior 
drawer

Antero-
lateral

Antero-
medial

Diagnosis

BCE1 0 1.5 0 1.5 0 0 0 0 0 1.5 0 Normal

BCE2 3 3 0 2 2 0 1 2 1 1 0 Torn PCL, 
LCL

BCE3 0 1.5 0 0 1 0 0 0 0 0 0 Partially 
torn 
MCL

BCE4 0 0 0 0 2.5 0 0 0 0 0 0 Postero-
medial 
instabil-
ity

BCE5 0 1 0 1 0 0 1 0 0 0 0 Normal
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force was adjusted based on each cadaver’s height and 
weight and represented 134 N in addition to the weight 
of the lower leg. This target of 134 N plus the weight of 
the leg was selected to match the force that is commonly 
applied during testing using the KT-1000 device during 
Lachman-Trillat testing (or anterior drawer testing) [11, 
28]. Once the target applied force was achieved, the device 
reversed direction and pads on the force application arm 
pushed down on the shins until the same force was applied 
in the posterior direction. This test mimics the instrumented 
posterior drawer test using the KT-1000 device. The knees 

completed three AP preconditioning cycles followed by 
three test cycles. The three test cycles generally showed 
identical results, so the data were analysed from only one 
of them. The repeatability of the RKT device has been 
established in previous clinical studies where intra-class 
correlation coefficients ranged from 0.81 to 0.97 [4–6].

During internal–external tibial rotation testing, the foot-
plates of the RKT device first moved into external rotation 
and then into internal rotation. This test mimics the dial test 
of the manual clinical knee examination. The torque thresh-
old and angular velocity for rotational testing were chosen 
to be 6 Nm and 5°/s in this study. These values correspond 
to the values used by examiners during the dial test of the 
manual clinical knee examination in early pilot testing and 
match the 6 Nm used in other studies examining rotational 
laxity of the knee [1, 44]. As in AP testing, three precondi-
tioning cycles were followed by three test cycles of inter-
nal–external rotation. Again, the three test cycles generally 
showed identical results, so the data were analysed from 
only one of them.

During varus–valgus testing, forces were applied 
through pads on the force application arm that were on 
either side of each leg. The legs were first manipulated into 
varus alignment until the torque threshold was reached in 
the varus–valgus motor. The motor then reversed directions 
until the same torque threshold was met while pushing the 
legs into valgus alignment. These tests mimic the varus 
and valgus test in the manual clinical knee examination. 
For varus–valgus testing, torque was applied at a constant 
velocity of 1°/s and the torque threshold was normalized to 
the cadaver’s height and weight and represented 1 Nm per 
unit body mass index (BMI) (Nm/kg-m−2). This amount of 
applied torque at the level of the pads on the force applica-
tion arm was required to achieve 10 Nm of torque at the 
knee. These mimicked the values measured during varus 

Table 4  Clinical grades for laxity and diagnoses of the right knee in cadaver 2 from the five board-certified examiners (BCE) for a series of 
manual clinical knee examinations

The right knee had received a simulated grade III posterolateral corner injury (capsule, popliteus tendon, and arcuate ligament were cut from the 
posterior lateral collateral ligament to the PCL). The laxity grades are based on a system in which a grade 1 represents 0–5 mm or 0–5° of laxity, 
a grade 2 represents 6–10 mm or 6–10° of laxity, and a grade 3 represents >10 mm or >10° of laxity. Half numbers represented instances when 
examiners were undecided between two grades

Exam-
iner

Valgus 
test @0°

Valgus 
test @30°

Varus test 
@0°

Varus 
test 
@30°

Dial test 
@30°

Lach-
man

Pivot 
shift

Posterior 
drawer

Anterior 
drawer

Antero-
lateral

Antero-
medial

Diagnosis

BCE1 0 0 0 1.5 0 0 0 0 0 0 1.5 Torn PLC

BCE2 0 3 1 0 0 0 0 0 1 1 2 Torn 
MCL

BCE3 0 0 1.5 1.5 2.5 0 0 0 0 0 0 Torn PLC

BCE4 0 2.5 0 0 0 0 0 0 0 0 0 Torn 
MCL

BCE5 0 0 0 2 0 0 0 0 0 0 1 Torn 
MCL

Fig. 1  The robotic knee testing system (RKT) is shown with the feet 
of a cadaver strapped into footplates (A). Torque generated by the AP 
motor (B) during anterior–posterior testing was applied through the 
force application arm (C) by pads anterior to the shin and beneath the 
calf (D). Internal–external tibia rotation was achieved through torque 
generated by the rotation motor (E) which rotated the footplates. 
Torque generated by the VV motor (F) during varus–valgus testing 
was applied through the pads on the force application arm that are on 
either side of each leg (G)
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and valgus stress tests of the manual clinical knee exami-
nation in pilot testing prior to this study and matched the 
force level at the knee used by Shultz et al. [41] in a study 
reporting on the reliability of measuring varus–valgus and 
internal–external laxity. As in AP testing, three precondi-
tioning cycles were followed by three cycles of varus–val-
gus testing. Again, the three test cycles generally showed 
identical results, so the data were analysed from only one 
of them.

Torque values for all testing cycles were collected from 
the motors. Motion of the tibia relative to the femur was 
collected in 6 degrees of freedom (DOF) using an electro-
magnetic motion analysis system with sensors that were 
attached to the skin of the thigh and shin in each leg. Using 
6 degrees of freedom sensors, the system is accurate to 
within 0.48 mm and 0.30° based on root mean square error 
(0.88 mm and 0.48° 95 % confidence interval) (Ascen-
sion Technologies, a subdivision of NDI, Bakersfield, 
CA, USA). The six DOF motion recorded during each test 
included three rotations (flexion–extension rotation, inter-
nal–external tibial rotation, and varus–valgus rotation) and 
three translations (anterior–posterior translation, medial–
lateral translation, and distraction/compression). Torque–
angular deformation curves were generated from the torque 
and motion data. Endpoint stiffness was calculated for each 
test using the slope of the last 20 % of the torque–angular 
deformation curve. A single examiner performed all robotic 
testing. No IRB approval was required for cadaveric test-
ing at the Atlanta Medical Center where all testing was 
performed.

Results

Manual clinical examination results

The injured knees: the laxity grades and diagnoses reported 
by the examiners for the two injured knees (left on cadaver 
1 and right on cadaver 2) are presented in Tables 3 and 4. 
Only one out of the five examiners correctly diagnosed 
the MCL injury in the left knee of cadaver 1. As shown in 
Table 3, the other examiners diagnosed the knee either as 
normal or as having a variety of other injuries including a 
tear of the PCL, LCL, or posteromedial instability. Two out 
of the five examiners correctly diagnosed the posterolateral 
corner injury in the right knee of cadaver 2 (see Table 4). 
The three remaining examiners diagnosed the injury as an 
MCL injury.

The “normal” uninjured knees: In this research report, 
we do not give detailed explanations on the examiner’s 
results for the uninjured knees (right knee in cadaver 1 and 
left knee in cadaver 2) as we wish to focus on the injured 
knees. However, as a brief summary, four of the five 

examiners diagnosed a ligament injury in the right unin-
jured knee in cadaver 1, including the two examiners that 
said the left injured knee was normal. In cadaver 2, four of 
the five examiners said that the left uninjured knee was nor-
mal, while the remaining examiner said that the left unin-
jured knee had a possible partial ACL rupture. These incor-
rect diagnoses in both the injured knees and the uninjured 
knees in each cadaver were possibly due to the laxity from 
pre-existing conditions in the knees.

Robotic testing results

The results obtained from the robotic knee device during 
testing of cadaver 1 are shown in Table 5. During rotational 
testing, the medial translation of the tibia in the MCL-
injured left knee of cadaver 1 was 4.9 mm greater than in 
the uninjured right knee (11.5 vs. 6.6 mm). During varus–
valgus testing, the valgus angle of the MCL-injured left 
knee of cadaver 1 was 1.7° greater than in the uninjured 
right knee (9.2° vs. 7.5°). The MCL-injured knee also had 
lower endpoint stiffness when compared to the uninjured 
right knee during the valgus portion of varus–valgus test-
ing (11.1 vs. 24.6 Nm/°), indicating that the injured MCL 
had a much softer endpoint than the MCL in the uninjured 
right knee. Results from robotic testing in other degrees of 
freedom reflected minimal differences between the knees 
(generally <1 mm or 1°).

The results obtained from the robotic knee device dur-
ing testing of cadaver 2 are shown in Table 6. During rota-
tion testing, the PLC-injured right knee of cadaver 2 had 
3.9 mm less medial tibial translation than the uninjured left 
knee (2.9 vs. 6.8 mm). In the PLC-injured right knee of 
cadaver 2, the tibia showed 4.1 mm greater lateral transla-
tion (5.2 vs. 1.1 mm) when compared to the uninjured left 
knee during varus–valgus testing. The injured right knee 
also showed 2.2 mm greater posterior translation (5.4 vs. 
3.2 mm) than the uninjured left knee during varus–valgus 
testing. Again, results from robotic testing in other degrees 

Table 5  Laxity data measured from robotic knee testing comparing 
the MCL-injured left knee in cadaver 1 to the intact right knee

Data from rotation testing and varus–valgus testing are reported. 
Endpoint stiffness is measured using the slope of the last 20 % of the 
load–deformation curve

Cadaver 1 Rotation testing Varus–valgus testing

Medial tibial  
translation (mm)

Valgus 
angle 
(°)

Valgus end-
point stiffness 
(N-m/°)

Right knee (intact) 6.6 7.5 24.6

Left knee (MCL 
injury)

11.5 9.2 11.1
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of freedom reflected minimal differences between the 
knees (generally <1 mm or 1°).

Discussion

The key finding in this study was that the results obtained 
using the robotic testing device showed that the device was 
able to provide objective numerical data that reflected dif-
ferences between the knees in both cadavers suggesting 
which knee was injured and the type of injury. As expected 
and as noted in the previous literature, the examiners that 
performed the manual clinical examination on the cadaver 
knees proved to be poor at diagnosing the simulated injuries.

The poor results from the examiners that carried out the 
manual clinical examination were not unexpected in light 
of the lack of patient feedback and the inconsistency asso-
ciated with the manual clinical knee examination that has 
been described in the literature. Yoon et al. [48] reported 
that the correct diagnosis of knee injuries was made in only 
52 % of knees, incomplete diagnosis in 35 % of knees, and 
incorrect diagnosis in 13 % of knees. Oberlander et al. [32] 
reported similar findings with correct diagnosis being made 
in 56 % of cases, incomplete diagnosis in 31 %, and incor-
rect diagnosis in 13 %. The likelihood of an incorrect or 
incomplete diagnosis increased when two or more struc-
tures were injured, with correct diagnosis in only 30 % of 
these cases versus 70 % correct diagnosis when a single 
structure was injured [32]. The percentages of correct diag-
noses in the current study are lower than those found in the 
Yoon and Oberlander studies; this could be due, in part, to 
the blinded nature of carrying out clinical examination on 
cadavers. In testing cadaveric knees, the examiner does not 
have patient input. The feel of laxity in cadaver knees could 
also be different than that seen in living patients.

The MCL injury in the left knee of cadaver 1 was cor-
rectly identified using the manual clinical knee examina-
tion by only one of the five examiners. The results from the 
robotic knee tests carried out on cadaver 1 showed that the 

difference in valgus laxity between the injured left knee and 
the intact right knee after the simulated MCL injury was a 
little over 1° (9.2° vs. 7.9°). This small side-to-side differ-
ence in valgus laxity would be very difficult to detect dur-
ing a manual examination and was possibly one reason why 
the examiners found it difficult to diagnose the MCL injury 
correctly. The side-to-side differences in internal tibial rota-
tion, medial tibial translation, and endpoint stiffness seen 
in the robotic testing results indicate an MCL injury even 
without a large difference in the valgus angles between the 
two knees. The endpoint stiffness of the injured knee was 
13.5 Nm/° lower than of the intact knee. This concept of 
a soft versus hard endpoint in MCL injuries has also been 
described in numerous studies [13, 19, 27]. Robotic knee 
testing can yield an objective quantitative measure of the 
softness or hardness of the endpoint of a ligament. This 
objective quantitative measure of endpoint stiffness may 
provide a more consistent gauge of ligament integrity than 
the “endpoint feel” which is described in the manual clini-
cal knee examination. The greater medial tibial translation 
in the injured knee in cadaver 1 is a characteristic of MCL 
injury; this has been reported by Frank et al. [14] in a study 
that measured kinematics in sheep knees after transection 
of the ACL and MCL.

The poor results in diagnosing the PLC injury using 
manual examination could be due to the fact that a change 
in the valgus angle of the knee can be attributed to causes 
other than an injury to the medial structures. PLC injuries 
can mask as MCL injuries due to similar global findings 
during the manual clinical knee examination (i.e. the feel-
ing of increased valgus laxity). When performing the clini-
cal valgus stress test, the lateral tibial plateau pivots about 
the lateral femoral condyle [10]. If the PLC is injured, the 
tibia can translate laterally and posteriorly on the femur; 
this gives the false impression of increased valgus rotation 
and MCL injury. The greater lateral translation and poste-
rior translation of the PLC-injured left knee of cadaver 1 
compared to the right knee (4.1 mm lateral and 2.2 mm 
posterior) were brought out in the robotic testing results. 
These findings match those found in previous studies where 
the posterolateral structures were cut in cadaver knees in 
order to measure the impact each structure had on the kin-
ematics of the knee [15, 16, 36]. Unlike in the left knee of 
cadaver 1 which showed increased medial tibial translation 
compared to the normal knee, the right knee with the PLC 
injury in cadaver 2 showed greater lateral tibial translation. 
This larger lateral translation in the right knee of cadaver 
2 suggests a lateral injury rather than a medial injury and 
can help differentiate between two conditions that can both 
give the impression of increased valgus laxity. Greater pos-
terior translation in the injured knee compared to the intact 
knee can help differentiate a PLC injury from an isolated 
lateral collateral ligament injury.

Table 6  Laxity data measured from robotic knee testing comparing 
the PLC-injured right knee in cadaver 2 to the intact left knee

Data from rotation testing and varus–valgus testing are reported

Cadaver 2 Rotation testing Varus–valgus testing

Medial tibial transla-
tion (mm)

Lateral 
tibial 
transla-
tion 
(mm)

Posterior 
tibial 
translation 
(mm)

Right knee (PLC 
injury)

2.9 5.2 5.4

Left knee (intact) 6.8 1.1 3.2
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This study was not without limitations. We only stud-
ied two cadavers (four knees). We examined numerous 
cadaver knees (alas, mainly old) to find knees that matched 
our selection criteria before finally selecting the two in 
our study. As with any cadaver study, the patient history 
was unknown and questions as to the condition of the knee 
could not be asked; thus, the manual examination was 
done blind. The cadaver specimens did have some previ-
ous knee issues including degeneration and meniscal dam-
age (see Table 2). Ideally, to make our experiment cleaner, 
we would have preferred cadaveric specimens with no pre-
vious knee issues and minimal wear prior to the elicited 
injury. However, the vagaries of post-mortem collection 
did not allow this. In any case, existing knee issues have 
to be dealt with when performing a manual knee examina-
tion on patients in a normal clinical setting. The manual 
examination was also performed in cadaveric specimens 
rather than in living patients. Patient feedback, in terms 
of pain, subtle physical movements, or other complaints, 
can increase the accuracy of the manual examination. This 
feedback is not available in a cadaver study. However, 
in some situations, this information can be misleading. 
This study was able to show that quantitative knee lax-
ity data could be obtained using robotic testing and that 
the data suggested the injuries in these two specimens. In 
the future, in vivo studies of patients with diagnosed knee 
injuries will be needed to validate a methodology for cor-
relating quantitative knee laxity data to specific injury 
types.

The manual clinical examination is generally carried out 
at the first point of contact between patient and clinician. 
The manual clinical examination will never be set aside, 
since it can provide useful clinical information, especially 
with regard to the patient-reported history of the knee. 
However, useful clinical information can also be obtained 
from robotic knee testing. Robotic knee testing provides 
objective quantitative data that can aid the clinician in mak-
ing a correct diagnosis. The manual clinical examination 
may also play an important role in providing insight into 
the interpretation of robotic testing results. The robotic data 
that are most relevant as determined by patient history and 
manual clinical examination (i.e. valgus extent and valgus 
endpoint stiffness for a suspected MCL tear) could be iden-
tified prior to the processing of the data. Data such as rota-
tional laxity and endpoint stiffness can be used to differen-
tiate between injuries such as an MCL tear and a PLC tear. 
In addition, robotic testing can provide additional informa-
tion that clinicians can use to either confirm findings from 
the manual clinical examination or choose the appropriate 
tests from the manual clinical knee examination to perform 
again. In other words, the robot could act as an adjunct to 
the manual clinical examination by supplying numbers.

Conclusions

The robotic testing device was able to provide objec-
tive numerical data that reflected differences between the 
injured knees and the uninjured knees in both cadavers. The 
examiners that performed the manual clinical examination 
on the cadaver knees proved to be poor at diagnosing the 
injuries. The diagnosis of knee injuries may be improved 
by the use of robotic testing as a supplement to the manual 
clinical examination.

Open Access This article is distributed under the terms of the 
Creative Commons Attribution 4.0 International License (http://crea-
tivecommons.org/licenses/by/4.0/), which permits unrestricted use, 
distribution, and reproduction in any medium, provided you give 
appropriate credit to the original author(s) and the source, provide a 
link to the Creative Commons license, and indicate if changes were 
made.
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