Skip to main content
Log in

Upright weight-bearing CT of the knee during flexion: changes of the patellofemoral and tibiofemoral articulations between 0° and 120°

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

To prospectively compare patellofemoral and tibiofemoral articulations in the upright weight-bearing position with different degrees of flexion using CT in order to gain a more thorough understanding of the development of diseases of the knee joint in a physiological position.

Materials and methods

CT scans of the knee in 0°, 30°, 60° flexion in the upright weight-bearing position and in 120° flexion upright without weight-bearing were obtained of 10 volunteers (mean age 33.7 ± 6.1 years; range 24–41) using a cone-beam extremity-CT. Two independent readers quantified tibiofemoral and patellofemoral rotation, tibial tuberosity–trochlear groove distance (TTTG) and patellofemoral distance. Tibiofemoral contact points were assessed in relation to the anteroposterior distance of the tibial plateau. Significant differences between degrees of flexion were sought using Wilcoxon signed-rank test (P < 0.05).

Results

With higher degrees of flexion, internal tibiofemoral rotation increased (0°/120° flexion; mean, 0.5° ± 4.5/22.4° ± 7.6); external patellofemoral rotation decreased (10.6° ± 7.6/1.6° ± 4.2); TTTG decreased (11.1 mm ±3.7/−2.4 mm ±6.4) and patellofemoral distance decreased (38.7 mm ±3.0/21.0 mm ±7.0). The CP shifted posterior, more pronounced laterally. Significant differences were found for all measurements at all degrees of flexion (P = 0.005–0.037), except between 30° and 60°. ICC was almost perfect (0.80–0.99), except for the assessment of the CP (0.20–0.96).

Conclusion

Knee joint articulations change significantly during flexion using upright weight-bearing CT. Progressive internal tibiofemoral rotation leads to a decrease in the TTTG and a posterior shift of the contact points in higher degrees of flexion. This elucidates patellar malalignment predominantly close to extension and meniscal tears commonly affecting the posterior horns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Amis AA, Firer P, Mountney J, Senavongse W, Thomas NP (2003) Anatomy and biomechanics of the medial patellofemoral ligament. Knee 10(3):215–220

    Article  CAS  PubMed  Google Scholar 

  2. Camathias C, Pagenstert G, Stutz U, Barg A, Muller-Gerbl M, Nowakowski AM (2015) The effect of knee flexion and rotation on the tibial tuberosity-trochlear groove distance. Knee Surg Sports Traumatol Arthrosc. doi:10.1007/s00167-015-3508-9

    Google Scholar 

  3. Dejour H (1972) Posttraumatic laxity of the knee. Long-standing laxity. Physiopathology of chronic laxity of the knee. Rev Chir Orthop Reparatrice Appar Mot 58(Suppl 1):61–70

    Google Scholar 

  4. Dejour H, Walch G, Nove-Josserand L, Guier C (1994) Factors of patellar instability: an anatomic radiographic study. Knee Surg Sports Traumatol Arthrosc 2(1):19–26

    Article  CAS  PubMed  Google Scholar 

  5. Delgado-Martinez AD, Rodriguez-Merchan EC, Ballesteros R, Luna JD (2000) Reproducibility of patellofemoral CT scan measurements. Int Orthop 24(1):5–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dietrich TJ, Betz M, Pfirrmann CW, Koch PP, Fucentese SF (2014) End-stage extension of the knee and its influence on tibial tuberosity-trochlear groove distance (TTTG) in asymptomatic volunteers. Knee Surg Sports Traumatol Arthrosc 22(1):214–218

    Article  PubMed  Google Scholar 

  7. Draper CE, Besier TF, Fredericson M, Santos JM, Beaupre GS, Delp SL, Gold GE (2011) Differences in patellofemoral kinematics between weight-bearing and non-weight-bearing conditions in patients with patellofemoral pain. J Orthop Res 29(3):312–317

    Article  PubMed  Google Scholar 

  8. Feng Y et al (2015) Motion of the femoral condyles in flexion and extension during a continuous lunge. J Orthop Res 33(4):591–597

    Article  PubMed  Google Scholar 

  9. Freeman MA, Pinskerova V (2005) The movement of the normal tibio-femoral joint. J Biomech 38(2):197–208

    Article  CAS  PubMed  Google Scholar 

  10. Hamai S, Moro-oka TA, Dunbar NJ, Miura H, Iwamoto Y, Banks SA (2013) In vivo healthy knee kinematics during dynamic full flexion. Biomed Res Int 2013:717546

  11. Heegaard J, Leyvraz PF, Curnier A, Rakotomanana L, Huiskes R (1995) The biomechanics of the human patella during passive knee flexion. J Biomech 28(11):1265–1279

    Article  CAS  PubMed  Google Scholar 

  12. Hirschmann A, Buck FM, Fucentese SF, Pfirrmann CW (2015) Upright CT of the knee: the effect of weight-bearing on joint alignment. Eur Radiol 25(11):3398–3404

    Article  PubMed  Google Scholar 

  13. Hirschmann A, Pfirrmann CW, Klammer G, Espinosa N, Buck FM (2014) Upright cone CT of the hindfoot: comparison of the non-weight-bearing with the upright weight-bearing position. Eur Radiol 24(3):553–558

    Article  PubMed  Google Scholar 

  14. Iranpour F, Merican AM, Baena FR, Cobb JP, Amis AA (2010) Patellofemoral joint kinematics: the circular path of the patella around the trochlear axis. J Orthop Res 28(5):589–594

    PubMed  Google Scholar 

  15. Izadpanah K, Weitzel E, Vicari M, Hennig J, Weigel M, Sudkamp NP, Niemeyer P (2014) Influence of knee flexion angle and weight bearing on the Tibial Tuberosity-Trochlear Groove (TTTG) distance for evaluation of patellofemoral alignment. Knee Surg Sports Traumatol Arthrosc 22(11):2655–2661

    Article  PubMed  Google Scholar 

  16. Lin YF, Jan MH, Lin DH, Cheng CK (2008) Different effects of femoral and tibial rotation on the different measurements of patella tilting: an axial computed tomography study. J Orthop Surg Res 3:5

    Article  PubMed  PubMed Central  Google Scholar 

  17. MacIntyre NJ, Hill NA, Fellows RA, Ellis RE, Wilson DR (2006) Patellofemoral joint kinematics in individuals with and without patellofemoral pain syndrome. J Bone Joint Surg Am 88(12):2596–2605

    CAS  PubMed  Google Scholar 

  18. Miyanishi K, Nagamine R, Murayama S, Miura H, Urabe K, Matsuda S, Hirata G, Iwamoto Y (2000) Tibial tubercle malposition in patellar joint instability: a computed tomography study in full extension and at 30 degree flexion. Acta Orthop Scand 71(3):286–291

    Article  CAS  PubMed  Google Scholar 

  19. Muhle C, Brossmann J, Heller M (1999) Kinematic CT and MR imaging of the patellofemoral joint. Eur Radiol 9(3):508–518

    Article  CAS  PubMed  Google Scholar 

  20. Mueller W (1983) The knee: form, function, and ligament reconstruction. Springer, Berlin, pp 53–62

    Book  Google Scholar 

  21. Nha KW, Papannagari R, Gill TJ, Van de Velde SK, Freiberg AA, Rubash HE, Li G (2008) In vivo patellar tracking: clinical motions and patellofemoral indices. J Orthop Res 26(8):1067–1074

    Article  PubMed  PubMed Central  Google Scholar 

  22. Patel VV, Hall K, Ries M, Lindsey C, Ozhinsky E, Lu Y, Majumdar S (2003) Magnetic resonance imaging of patellofemoral kinematics with weight-bearing. J Bone Joint Surg Am 85-A(12):2419–2424

    Article  PubMed  Google Scholar 

  23. Pinskerova V, Johal P, Nakagawa S, Sosna A, Williams A, Gedroyc W, Freeman MA (2004) Does the femur roll-back with flexion? J Bone Joint Surg Br 86(6):925–931

    Article  CAS  PubMed  Google Scholar 

  24. Powers CM, Shellock FG, Pfaff M (1998) Quantification of patellar tracking using kinematic MRI. J Magn Reson Imaging 8(3):724–732

    Article  CAS  PubMed  Google Scholar 

  25. Powers CM, Ward SR, Fredericson M, Guillet M, Shellock FG (2003) Patellofemoral kinematics during weight-bearing and non-weight-bearing knee extension in persons with lateral subluxation of the patella: a preliminary study. J Orthop Sports Phys Ther 33(11):677–685

    Article  PubMed  Google Scholar 

  26. Qi W, Hosseini A, Tsai TY, Li JS, Rubash HE, Li G (2013) In vivo kinematics of the knee during weight bearing high flexion. J Biomech 46(9):1576–1582

    Article  PubMed  PubMed Central  Google Scholar 

  27. Rosner B (2011) The intraclass correlation coefficient. In: Rosner B (ed) Fundamentals of biostatistics, 7th edn. Brooks/Cole, Cengage Learning, Boston, pp 568–571

    Google Scholar 

  28. Schoettle PB, Zanetti M, Seifert B, Pfirrmann CW, Fucentese SF, Romero J (2006) The tibial tuberosity-trochlear groove distance; a comparative study between CT and MRI scanning. Knee 13(1):26–31

    Article  PubMed  Google Scholar 

  29. Seitlinger G, Scheurecker G, Hogler R, Labey L, Innocenti B, Hofmann S (2014) The position of the tibia tubercle in 0 degrees −90 degrees flexion: comparing patients with patella dislocation to healthy volunteers. Knee Surg Sports Traumatol Arthrosc 22(10):2396–2400

    Article  PubMed  Google Scholar 

  30. Souza RB, Draper CE, Fredericson M, Powers CM (2010) Femur rotation and patellofemoral joint kinematics: a weight-bearing magnetic resonance imaging analysis. J Orthop Sports Phys Ther 40(5):277–285

    Article  PubMed  Google Scholar 

  31. Tanaka MJ, Elias JJ, Williams AA, Carrino JA, Cosgarea AJ (2015) Correlation between changes in tibial tuberosity-trochlear groove distance and patellar position during active knee extension on dynamic kinematic computed tomographic imaging. Arthroscopy. doi:10.1016/j.arthro.2015.03.015

    Google Scholar 

  32. Tecklenburg K, Feller JA, Whitehead TS, Webster KE, Elzarka A (2010) Outcome of surgery for recurrent patellar dislocation based on the distance of the tibial tuberosity to the trochlear groove. J Bone Joint Surg Br 92(10):1376–1380

    Article  CAS  PubMed  Google Scholar 

  33. Teng HL, Chen YJ, Powers CM (2014) Predictors of patellar alignment during weight bearing: an examination of patellar height and trochlear geometry. Knee 21(1):142–146

    Article  PubMed  Google Scholar 

  34. Tennant S, Williams A, Vedi V, Kinmont C, Gedroyc W, Hunt DM (2001) Patello-femoral tracking in the weight-bearing knee: a study of asymptomatic volunteers utilising dynamic magnetic resonance imaging: a preliminary report. Knee Surg Sports Traumatol Arthrosc 9(3):155–162

    Article  CAS  PubMed  Google Scholar 

  35. Tuominen EK, Kankare J, Koskinen SK, Mattila KT (2013) Weight-bearing CT imaging of the lower extremity. AJR Am J Roentgenol 200(1):146–148

    Article  PubMed  Google Scholar 

  36. Vandenneucker H, Labey L, Victor J, Vander Sloten J, Desloovere K, Bellemans J (2014) Patellofemoral arthroplasty influences tibiofemoral kinematics: the effect of patellar thickness. Knee Surg Sports Traumatol Arthrosc 22:2560–2568

    Article  PubMed  Google Scholar 

  37. Ward SR, Terk MR, Powers CM (2007) Patella alta: association with patellofemoral alignment and changes in contact area during weight-bearing. J Bone Joint Surg Am 89(8):1749–1755

    PubMed  Google Scholar 

  38. Wunschel M, Leichtle U, Obloh C, Wulker N, Muller O (2011) The effect of different quadriceps loading patterns on tibiofemoral joint kinematics and patellofemoral contact pressure during simulated partial weight-bearing knee flexion. Knee Surg Sports Traumatol Arthrosc 19(7):1099–1106

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Hirschmann.

Ethics declarations

Conflict of interest

No potential conflicts of interest to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hirschmann, A., Buck, F.M., Herschel, R. et al. Upright weight-bearing CT of the knee during flexion: changes of the patellofemoral and tibiofemoral articulations between 0° and 120°. Knee Surg Sports Traumatol Arthrosc 25, 853–862 (2017). https://doi.org/10.1007/s00167-015-3853-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-015-3853-8

Keywords

Navigation