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Abstract. Communication-centric systems are software systems built as assemblies of distributed artifacts that
interact following predefined communication protocols. Session-based concurrency is a type-based approach to
ensure the conformance of communication-centric systems to such protocols. This paper presents a model of
session-based concurrency with mechanisms for run-time adaptation. Our model allows us to specify communi-
cation-centric systems whose session behavior can be dynamically updated at run-time. We improve on previous
work by proposing an event-based approach: adaptation requests, issued by the system itself or by its context,
are assimilated to events which may trigger adaptation routines. These routines exploit type-directed checks to
enable the reconfiguration of processes with active protocols. We equip our model with a type system that ensures
communication safety and consistency properties: while safety guarantees absence of run-time communication
errors, consistency ensures that update actions do not disrupt already established session protocols. We provide
soundness results for binary and multiparty protocols.
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1. Introduction

Context and motivation.Modern software systems are increasingly built as assemblies of distributed artifacts that
interact by following predefined communication protocols. Correctness in these communication-centric systems,
therefore, depends on ensuring that such dialogues conform to their protocols.Session-based concurrency is a type-
based approach to ensure conformance to prescribed protocols: dialogues are organized into units called sessions;
interaction patterns are abstracted as session types [HVK98], against which specifications may be checked. As
these specifications are often given in the π -calculus [MPW92, HVK98], protocol conformance can be analyzed
at the level of concurrent processes.

As communication-centric systems typically operate on open and dynamic infrastructures, run-time adapta-
tion appears as an indispensable feature to ensure their flexible and uninterrupted operation. Here we understand
run-time adaptation as the dynamic reconfiguration of a system’s behavior in response to an exceptional event.
Examples of exceptional events are, e.g., a varying requirement or a local failure. These events are not necessarily
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catastrophic but are hard to predict. In this context, conformance to structured protocols and run-time adapta-
tion appear as intertwined concerns: although the specification of run-time adaptation may not be strictly tied
to protocol reconfiguration, steps of run-time adaptation have a direct influence in a system’s communicating
behavior and overall correctness.

We are interested in enhancing models of session-based concurrency with forms of run-time adaptation.
This entails extending models of session-based concurrency with constructs for representing adaptation, but also
developing appropriate analysis and verification techniques for such extended models.

As a first answer to this challenge, in previous work [DP13a, DP15] we extended a typed process framework
for binary sessions with constructs from themodel of adaptable processes [BDPZ12]. In adaptable processes there
are two key constructs, namely located processes and update processes:

• Given a process P , the located process loc
[
P

]
denotes the fact that P resides in location loc. Locations are

explicit delimiters for process behavior: they denote possibly nested computation sites. Since locations are
transparent, process P in loc

[
P

]
may interact with processes outside loc.

• An update process loc{U } specifies that the behavior currently enclosed by location loc should be modified
by the adaptation routine U—intuitively, a function from processes to processes located at loc.

At the operational level, located and update processes are complementary: processes loc
[
P

]
and loc{U }

are meant to synchronize in order to realize an adaptation step. As we will see, U is applied to P by “moving”
to its enclosing context. The exact operational semantics that justifies this adaptation step will be illustrated
shortly. Observe that since processes within locations (such as P in loc

[
P

]
) may implement one or several

session protocols, the interaction with update processes allow us to specify adaptation routines that concern
several running sessions.

We would like to guarantee that adaptation steps resulting from the synchronization of located and update
processes preserve overall system correctness. In a session-typed setting this entails ensuring that such synchro-
nizations do not jeopardize the session protocols enclosed by locations. As a simple example of a dangerous
adaptation routine, consider the update process loc{0}, which says that the new behavior at loc should be
the inactive process 0, without any considerations on the current behavior at loc. Indeed, a synchronization
between loc

[
P

]
and loc{0} would result into process loc

[
0
]
, therefore discarding running session protocols in

P . Processes depending on the sessions implemented by P would lack complementary partners, thus compro-
mising any conceivable form of protocol conformance.

To rule out adaptation steps that jeopardize established protocols, communication and adaptation actions
should be harmonized. In [DP13a, DP15] we defined the notion of consistency, according to which a located
process can be updated only if it does not contain active (established) session protocols. Adaptation actions
are enabled only for locations that do not enclose running sessions; an associated type system ensures protocol
conformance but also that session protocols are never disrupted as a result of an adaptation step. This is a simple
solution; since adaptation is enabled onlywhen sessions in a location are in a quiescent state, it is an alternative that
privileges communication over adaptation. In applications, however, it may be necessary to give communication
and adaptation a similar status, enabling adaptation steps also on locations that contain already established
sessions. The main contribution of this paper is a session-typed framework that enables this kind of adaptation
steps, thus overcoming the limitations of the framework introduced in [DP13a, DP15]. Next we elaborate on our
approach.

Our approach. To enable adaptation steps on locations that contain already established sessions, we propose
update processes loc{U } in which the adaptation routine U (i) Dynamically checks the current state of the
protocols running in loc and (ii) Determines a new process behavior for loc based on that state.

In their simplest form, our novel update processes concern located processeswhich implement only one session
channel. They are of the form:

loc
{
case x of {(β1 : P1), (β2 : P2), . . . , (βm : Pm )}} (m ≥ 1) (1)

where x is a channel variable, β1, . . . , βm are session types (cf. Sect. 2.1), and P1, . . . ,Pm are processes in which
x occurs free. Intuitively, each pair (βi : Pi ) represents an alternative for updating location loc: session type βi

denotes the protocol state under which process Pi will be used as the new implementation at loc.
Suppose a process loc

[
Q

]
in whichQ implements a session of type α along session channel κ. The interaction

between loc
[
Q

]
and the update process in (1) intuitively proceeds as follows: If there is a βj (with j ∈ {1, . . . ,m})

that “matches” with α, then the located process is updated to loc
[
Pj [κ/x ]

]
. That is, the (current) protocol state
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α guides the selection of the j -th adaptation alternative. Otherwise, if no βj validates a match, then the located
process is kept unchanged as loc

[
Q

]
and the update process is consumed.

In their general form, our novel update processes may act on located processes which enclose more than one
running session, thus adding considerable expressiveness. Such an update process is denoted:

loc
{
case x1, . . . , xn of {(β1

i ; · · · ; βn
i ) : Pi }i∈I

}
(2)

where n is the number of running sessions at location loc. Intuitively, (β1
j ; · · · ; βn

j ) : Pj denotes the j -th
alternative for updating loc: session types β1

j , . . . , β
n
j denote the protocol states under which process Pj will be

used as the new implementation at loc. That is, the update process in (2) is meant to interact with a located
process loc

[
Q

]
in which Q implements session types α1, . . . , αn ; to enable an adaptation step, each αi must

“match” with βi
j for all i ∈ {1, . . . ,n}.

The semantics for our typeful update processes exploits session monitors—processes that maintain the (cur-
rent) protocol state at a given channel—and constructs for dynamic type inspection, as put forward in [Kou12,
KYHH16].

As just described, our update processes use types to select an alternative for adaptation—that is, types say
how to adapt. However, update processes by themselves they do not specify when adaptation should be triggered.
A simple solution is to “embed” update processes within session communication prefixes. Unfortunately, such
a specification style would only allow to handle exceptional conditions which can be fully characterized in
advance.Other important exceptional conditions, in particular contextual and/or unsolicited run-time conditions,
cannot always be anticipated/predicated nor have a clear causal dependency with steps related to structured
communications.

To offer a uniform solution to the issue of when to trigger update processes, we propose an event-based
approach. Our process syntax includes adaptation signals that are similar to communication prefixes and that
can be used to issue an adaptation request for a given location. Each location is endowed with a queue that stores
its pending adaptation signals/requests. To detect a request r in the queue of loc and react accordingly, we use
the arrival predicate arrive(loc, r ), proposed in [Kou12]. The use of adaptation requests and the arrival predicate
allows us to maintain a separation between structured communications (disciplined by session types) and the
events that ultimately trigger update processes.

As an example, let updE denote an adaptation request. In our model we may specify process

if arrive(loc, updE ) then loc
{
case x1, . . . , xm of {(βi

1; · · · ; βi
m ) : Pi }i∈I

}
else Q

which expresses an adaptation policy that checks for the arrival of a request updE for location loc. If such a
request is detected in the queue of loc then the update process in (2) is triggered; otherwise, processQ is executed.
Let us write μX .P to denote a recursive process. The previous update process can be easily modified to express
a persistent adaptation policy that uses recursion to continuously check for request updE :

μX .if arrive(loc, updE ) then loc
{
case x1, . . . , xm of {(βi

1; · · · ; βi
m ) : Pi }i∈I

}
else X

Contributions.We present a process model for session-based concurrency and run-time adaptation based on five
constructs: located processes, typeful update processes, sessionmonitors, adaptation signals, and location queues.
While located processes are inherited from our previous work [DP15], the use of the other constructs for run-time
adaptation is new to this presentation. We equip this model with a session type system that ensures the following
key properties:

• Safety Well-typed programs do not exhibit communication errors (e.g., mismatched messages).
• Consistency Well-typed programs do not allow adaptation actions that disrupt already established session
protocols.

Safety is the usual guarantee expected from any session type discipline. In contrast, consistency is a guarantee
peculiar to our model: it relates the behavior of the adaptation mechanisms with the preservation of prescribed
typed interfaces. An example of inconsistent behavior is the interaction between loc

[
P

]
and loc{0} which, as

motivated above, discards the running sessions in P . We prove that well-typed programs are safe and consistent:
this ensures that specified session protocols are respected, while forbidding incautious adaptation steps that could
disrupt the session behavior of interacting partners.
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In the first part of the paper we consider a typed process model for binary sessions, as our goal is to develop
our approach to event-based adaptation in a representative and well-established setting. Nevertheless, the key
ingredients of our approach are sufficiently simple to be expressed in more general scenarios. Hence, in the second
part of the paper, as a proof of concept, we describe a generalization of our approach to the case of multiparty,
asynchronous communication. This generalization builds upon the framework developed in [CDV15], which we
briefly describe next.

The framework in [CDV15] uses global types (or choreographies) andmonitored processes as main ingredients.
A global type abstracts a sequence of communications between two or more participants. By projecting a global
type onto each participant, one obtains a series of local types. In [CDV15], such local types are used as monitors
for the processes that implement each partner: amonitor enables the visible actions of the process. The association
of a monitor and a process is called a monitored process. The whole choreography is implemented as a collection
of monitored processes, or network. By considering a network together with a global state (data/values used to
plan adaptation steps), one then obtains a system.

The approach in [CDV15] defines a separation between the global type, the monitors (local types), and
the processes. Adaptation is specified at the level of global types, which include an explicit signal (called flag)
that defines a form of anticipated adaptation between all participants of the choreography. As a result of this
coordinated signal, an adaptation function determines a new choreography for the system, relying on the global
state. Such a choreography determines new implementations for all partners, using a centralized repository of
typed processes called collection.

We extend the framework of [CDV15] with typeful update processes and event-based constructs. As a result,
we obtain an alternative framework in which adaptation is not specified at level of global types (unlike [CDV15]);
instead, we have events that handle internal and external adaptation requests:

• Internal adaptation requests are initiated by a participant that announces all other participants that the
current global protocol should be abandoned, and that a new global protocol should be adopted instead.

• External adaptation requests aremeant to dynamically update or upgrade the local implementation of a single
participant.

To express internal adaptation requests, processes may explicitly output a message whose communication
object denotes a choreography. This message can be accessed by all protocol participants (using the shared
queue) so todetermine their updatedbehavior.Networks inourmodel aredistributed collectionsof locations, each
containing amonitored process, a local collection of processes, and a queue. This queue is useful tomodel external
adaptation requests which, as described above, are targeted to a particular participant. As a result, we obtain a
setting in which internal adaptation is no longer anticipated at the level of types (therefore improving [CDV15])
and concerns all participants of the choreography,while external adaptation requests focus on a single participant.

Organization. The rest of the paper is organized as follows:

• Section 2 illustrates session-based concurrency, our approach and contributions by means of examples.
• Section 3 presents our process model of binary sessions with constructs for run-time adaptation. Then,
Sect. 4 presents our session type system, which ensures safety and consistency for processes with adaptation
mechanisms (Theorem 4.11).

• In Sect. 5 we generalize our approach to multiparty communications, defined as a variant of the framework
given in [CDV15]. We show communication safety and consistency of adaptation steps (Theorem 5.19).

• In Sect. 6 we discuss related works and in Sect. 7 we collect some concluding remarks.

The appendix collects omitted definitions and proofs. This work is an extended version of the paper [DP16].
Here we offer additional explanations and proofs of technical results. Moreover, the approach to adaptation for
multiparty sessions (Sect. 5), not presented in [DP16], is a new contribution.
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2. Our approach, by example

In this section we illustrate our approach and contributions by means of an example, the buyer-seller protocol.

2.1. Binary sessions

Background. In Sects. 3 and 4, we consider binary session types, as defined in [HVK98]:

α, β ::� ?(T ).β input value of type T , continue as β

| !(T ).β output value of type T , continue as β

| &{n1:α1, . . . ,nm :αm} branching (external choice)
| ⊕{n1:α1, . . . ,nm :αm} selection (internal choice)
| μ t .α recursive session
| t type variable
| end terminated session

where T stands for basic types (e.g., booleans, integers) and session types α. Also, n1, . . . ,nm denote labels.
To illustrate session types, consider two participants, a buyer and a seller, which interact as follows. First,

buyer sends to seller the name of an item and seller replies back with its price. Then, depending on the amount,
buyer may choose to add the item to her shopping cart or to close the transaction. In the latter case the protocol
ends. In the former case, buyer must further choose a paying method. From buyer’s perspective, this protocol
may be described by the session type

αbuy � !item. ?amnt. αpay

where item and amnt are base types and

αpay � ⊕{add I tem : ⊕{ccard : αcc , payp : αpp} , cancel : end}.
Thus, session type αbuy says that protocol αpay may only be enabled after sending a value of type item and receiving
a value of type amnt. Also, add I tem, ccard, payp, and cancel denote labels in the internal choice. Types αcc

and αpp denote the behavior of each payment method. Following the protocol abstracted by αbuy, code for buyer
may be specified as a π -calculus process. Processes P and R below give two different specifications for buyer:

P � x (book).x (a).if a < 50 then x � add I tem; x � ccard; P1 else x � cancel; 0
R � x (game).x (b).if b < 80 then x � add I tem; x � payp; R1 else x � cancel; 0

Thus, although both P andR implement αbuy, their behavior is rather different, for they purchase different items
using different payment methods (which are abstracted by processes P1 and R1).

Let us nowanalyze the situation for the seller. To ensure protocol compatibility and absence of communication
errors, the session type for seller, denoted βsel, should be dual to αbuy. Intuitively, duality decrees that every action
from buyer must be matched by a complementary action from seller, e.g., every output in αbuy is matched by an
input in βsel. Formally, this duality is denoted αbuy⊥C βsel (cf. Definition A.4). Thus, in our example, we let
βsel � ?item. !amnt. βpay, where

βpay � &{add I tem : &{ccard : βcc , payp : βpp} , cancel : end}
and βcc and βpp denote the duals of αcc and αpp, respectively. A process implementationQ for βsel is the following:

Q � y(i ).y(price(i )).y � {add I tem : y � {ccard : Q1 [] ppal : Q2} [] cancel : 0}
where price stands for an auxiliary function.

The interaction of P and Q is defined using session initialization constructs: process u(x :α).P denotes the
request of a session of type α; dually, u(x :α).P denotes the acceptance of a session of type α. In both cases, u
denotes a (shared) name used for synchronization. In our example, we may have

Sys � u(x : αbuy).P | u(y : βsel).Q −→ (νκ)(P [κ+
/x ] | Q [κ−/y]) � S0 (3)
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Thus, upon synchronization on u, a new session κ is established. Intuitively, in process S0 session κ is “split” into
two session channels (or endpoints) κ+ and κ−: we write + and− to denote their opposing polarities [GH05], which
make their complementarity manifest. The restriction (νκ) covers both channels, thus ensuring an interference-
free medium for executing the session protocols described by α and β.

Session types may exploit a subtyping relation [GH05] to express useful relationships between protocol spec-
ifications. For instance, the type below defines a new payment method for seller:

βgift � &{add I tem : &{gi f tc : βgc , ccard : βcc , payp : βpp} , cancel : end} (4)

Intuitively, βgift extends βpay with an alternative on label gi f tc. It is safe to use an implementation for βgift

wherever an implementation for βpay is required. The safe substitution principle that connects βgift and βpay is
formalized by a subtyping, denoted ≤C (cf. Definition A.4). This way, e.g., we have βpay ≤C βgift.

Our process model and approach.Weare interested in expressing and reasoning about the run-timemodification of
session-typed processes such as P andQ above. Such modifications may be desirable as a reaction to exceptional
run-time conditions (say, an error) or to implement unanticipated requirements.

Continuing our example, consider again process Sys (cf. (3) above). In our process model, detailed in Sect. 3,
we have the following reduction step:

Sys −→ (νκ)(P [κ+
/x ] | κ+�αbuy� | Q [κ−/y] | κ−�βbuy�) � S

Session establishment creates session monitors κ+�αbuy� and κ−�βbuy�, processes that maintain the protocol state
for the session at κ+ and κ−, respectively. These monitors are essential to implement run-time adaptation policies
that handle processes with running sessions. Reduction may proceed as follows:

S −→ (νκ)(κ+(a).if a < 50 then κ+ � add I tem; κ+ � ccard; P1 else κ+ � cancel; 0 | κ+�?amnt. αpay� |
κ−(price(book)).κ− � {add I tem : κ− � {ccard : Q1 [] ppal : Q2} [] cancel : 0} | κ−�!amnt. βpay�) � S ′

Observe how the session monitors evolve together with the process, capturing the evolution of the protocol state.
In this example, they are useful to record the fact that the buyer part of S ′ realizes the type ?amnt. αpay, whereas
the seller part realizes the type !amnt. βpay. Suppose that we wish to modify at run-time the part of S ′ realizing the
buyer behavior. To preserve protocol correctness, a candidate new implementation must conform, up to ≤C, to
the type ?amnt. αpay; a process realizing any other type will fail to safely interact with the part of S ′ implementing
the seller.

We now illustrate how located and update processes, distinctive of ourmodel, could be used in the buyer-seller
scenario. As a simple example, process W below

W � sys
[
buyer

[
u(x :αbuy).P

] | seller[u(y :βsel).Q
] ]

(5)

represents an explicitly distributed variant of process Sys given in (3): the two partners now reside in different
locations, namely buyer and seller; location sys encloses the whole system. Our process model allows us to
define an update process that depends on the current protocol state of the two channels at location sys:

sys

{

case x , y of

{
(αbuy ; βsel) : buyer

[
R

] | seller[Q]

(αpay ; βpay) : buyer
[
P∗] | seller[Q∗]

}

(6)

This update process defines two alternatives for adaptation:

1. If the current types for the two channels at sys are αbuy and βsel (i.e., the protocol has just been established)
then only the buyer is updated—its new behavior will be given by process R.

2. If the current types for the two channels at sys are αpay and βpay (i.e., both item and price information have
been already exchanged) then new implementations P∗ and Q∗ are installed in the respective locations.

Session types are used to guide update processes, but also to ensure that the ensuing process alternatives are
sound. The type system we develop in Sect. 4 ensures that process buyer

[
R

] | seller[Q]
(the first alternative)

has exactly two free session channels x and y , with session types αbuy and βsel, respectively. A similar check
applies to process buyer

[
P∗] | seller[Q∗] and αpay and βpay.

As a simple example of the event-based constructs, we may consider a variant of the process given in Sect. 1,
which defines a conditional (and persistent) adaptation policy:

U � μX .if arrive(sys, updE ) then Ubs else X (7)
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Above, Ubs denotes the update process in (6). Intuitively, the process in (7) persistently checks if an adaptation
message updE has arrived to the queue of location sys, which we denote sys�r̃�. (We shall write r , r0, r1, . . . to
range over adaptation messages.) Notice that such a message may be issued by processW itself or by its context,
using an adaptation signal, denoted loc(updE ). We therefore envision systems in which communication actions,
adaptation policies, and event-based constructs concurrently interact. In our example, we could have the process

W | U | sys�r0 · r̃�
which triggers the adaptation of location sys if r0 � updE ; otherwise, the communication behavior ofW would
take place.

2.2. Multyparty sessions

Background. In Sect. 5 we consider multiparty sessions following the approach in [CDV15], which relies on global
types, monitors, processes, networks, and systems.

In [CDV15], global types describe communications and explicit adaptation signals; monitors, derived from
global types, describe the protocol from the perspective of a single participant. Processes only specify com-
municating behavior; they are associated to monitors that regulate their behavior and contain information on
senders/receivers. Each protocol participant is then defined as a monitored process, a process tied with a monitor.
Networks are collections of monitored processes, together with constructs for starting new global protocols and
queues for handling asynchronous communication. A system is the composition of a network with a global state,
a collection of data that may influence adaptation.

We introduce some notational conventions. Below, p, q, . . . denote participants and � represents a set of
participants. Also, l1, l2, . . . denote labels; S1,S2, . . . denote carried types (e.g., Bool, Int); and λ1, λ2, . . . denote
adaptation flags. Global types abstract sequences of broadcast-like communications from a single participant to
a set of participants; such communications include usual labeled messages and also explicit adaptation signals
(flags).

G,G′ ::� p→ � : {li (Si ).Gi }i∈I directed communication with labeled alternatives
| p→ � : {λi }i∈I adaptation flag
| end terminated protocol

The set of monitors is defined as follows:

M ::� p?{li (Si ).Mi }i∈I | �!{li (Si ).Mi}i∈I communication
| p?{λi }i∈I | �!{λi }i∈I adaptation
| end terminated choreography

Formally, global types and monitors are related via a projection function that defines how a global type can be
decomposed into monitors. Projection also determines valid global types: a global type is said to be well-formed
if (i) its projections are defined for all participants, and if (ii) exchanges of adaptation flags involve all participants
declared in the global type. The syntax of processes is as follows:

P ::� c?l (x ).P | c!l (e).P | if e then P else Q | P + P | μX .P | X | 0
| op.P | c?l (λ, T).P | c!l (λ(F ), T).P

Each process owns a unique channel c. At run-time, channels specify a session channel and the identity of the
participant. Most constructs are standard; processes op.P , c?l (λ, T).P , and c!l (λ(F ), T).P deserve additional
explanations:

• op.P denotes an operation on the global state; as such, it influences the behavior of future adaptation actions.
• process c?l (λ, T).P receives an adaptation flag λ and has a continuation of type T.
• process c!l (λ(F ), T).P specifies an adaptation function F which, in combination with the global state, will
determine a new global type.

Given a monitor M and a process P , a monitored process is denoted M[[P ]]. Adaptation actions manifest at
the level of networks; they are realized directly over monitors but indirectly over processes: the modification of
the global type of the system results into a new set of monitors associated to processes; if a current process does
not “fit” its new monitor, then it must be replaced with a different process, obtained from a centralized collection
of pairs (P , T), denoted P , a parameter of the framework. In [CDV15], this collection is assumed to be complete:
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it contains processes for all conceivable monitors. Formally, the fit between processes and monitors is defined as
an adequacy relation, denoted ∝, which uses subtyping to relate the type of processes and monitors.

The semantics of processes is given in terms of a labeled transition system (LTS) in which actions describe
a session and the current participant. These actions are used to enforce the consistency between a process and
its associated monitor, as formally captured by the semantics of networks. This semantics describes how each
participant reacts to an adaptation request (i.e., a new global type) issued by another participant. Depending on
whether or not the current process is adequate to the new monitor then the process implementation is kept or
replaced, as described before.

The semantics of systems specifies how a single participant communicates a new global type for the whole
system. Indeed, as the selection of the new global type depends on the adaptation function F and the global
state, the new global type can only be described at the level of systems, rather than at the level of networks. This
selection is communicated to participants using the shared queue, and locally handled at the level of networks,
as just explained. Notice the new global type may determine a new set of participants, and so some of the
current participants may be excluded as a result of adaptation. The new global type may also determine a new
implementation for the participant invoking global reconfiguration; here again adequacy is used to determine
whether a process reconfiguration is required or not.

Our process model and approach. Our example in Sect. 2.1 can be extended to the multyparty scenario by adding
a third participant (postal service) to the conversation. The extended protocol is as follows: the buyer b asks for
an item to the seller s, who replies with its price. Then, b confirms its order and pays it by sending to s her credit
card number and to the postal service p her address. Finally, s finalizes the order by sending the name of the item
to p. As a global type, this protocol may be expressed as follows:

G ::� b→ s : i t(item). s→ b : price(int).
b→ s : ok(bool ). b→ s : card(int).

b→ p : ad(string).s→ p : i tname(item)

In the multiparty scenario, our located process adopt a slightly different meaning than in the binary setting.
Each location is associated to only one participant in the conversation and contains a local collection of typed
processesP that represents possible programs tobe runupon session establishment.That is, the collectionassumed
global in [CDV15] is now distributed to the local participants. The idea behind this choice is that a location may
correspond to an autonomous “computing entity” possibly running distinct programs, as in, e.g., a smartphone
where applications are installed and can be executed depending on the need. Thus the three participants above
can be implemented in the distinct locations locb, locs, and locp:

Buyer: locb
[
Pb; locb�ε�

]
Seller: locs

[
Ps; locs�ε�

]
Postal Service: locp

[
Pp; locp�ε�

]

where, for each q ∈ {b, s, p}, locq�ε� is an event queue used to signal the presence of an adaption routine; it has
the same behavior as in the binary case. The collection Pq contains an implementation of the local protocol of
each participant (obtained projecting the global protocol into each participant). We therefore have the following
processes in the respective local collections:

Pb ::� y !i t(item).y?price(x ).y !ok(true).y !card(number ).y !ad(address)
Ps ::� y?i t(x1).(if (x1 � item1) then y !price(1).y?ok(x2).y?card(x3).y !i tname(x1)

else y !price(2).y?ok(x2).y?card(x3).y !i tname(x1)
Pp ::� y?ad(x1).y?i tname(x2)

In our proof of concept we define both external and internal adaptation. An internal adaptation routine
is started by one of the participants who warns the others that a new protocol should be followed. External
adaptation requests can be of two forms: they may either upgrade a process in the local collection or update the
participant’s current implementation using a type-directed check, following the update processes introduced for
binary sessions.
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Table 1. Syntax of expressions and processes for binary communications. Annotation α denotes a session type. Standard constructs are
aligned to the left; novel constructs are aligned to the right

e ::= v | x , y, z | k � k | a � a expressions | arrive(loc, r ) arrival predicate
P ::= u(x : α).P session request | loc

[
P

]
located process| u(x : α).P session accept | loc

{
case x1, . . . , xn of {(β1

i ; · · · ; βn
i ) : Pi }i∈I

}
update process| k (e).P session output | k�α� session monitor| k (x ).P session input | loc�r̃� location queue| k � n; P session selection | loc(r ) adaptation signal| k � {ni :Pi }i∈I session branching| close (k ).P session closure| μX .P recursion| X recursion variable| P | P composition| (νκ)P channel hiding| (νu)P name hiding| if e then P1 else P2 conditional| 0 inaction

As an example in the buyer-seller-postal service scenario, we can imagine that after having chosen an item,
the buyer asks the other participants to change the protocol, as she wishes to change the payment method from
credit card to bank transfer. This adaptation routine will cause the buyer and the postal service to change their
implementations, while the postal service will remain unchanged. Moreover, a new participant (the bank k) will
be added to the conversation. The new global protocol will then be:

G′ ::� s→ b : iban(string).b→ k : iban(string).
b→ p : ad(string).s→ p : i tname(item)

and the idea is that current communications are stopped, and the current active process is substitutedwith another
one that implements the new protocol. The semantics for networks would lead to the following adapted process:

(νκ)(locb
[
y !card(number ).y !ad(address); Pb; locb�ε�

] |
locs

[
y?card(x ).y !i tname(x1); Ps; locs�ε�

] | locp
[
y?ad(x1).y?i tname(x2); Pp; locp�ε�

]
)

−→
(νκ)(locb

[
y?iban(x ).y !iban(x ).y !ad(address); Pb; locb�ε�

] | lock
[
y?iban(x ); Pk; lock�ε�

]

locs
[
y !iban(ibstr ).y !i tname(x1); Ps; locs�ε�

] | locp
[
y?ad(x1).y?i tname(x2); Pp; locp�ε�

]
)

We shall revisit this scenario in Sect. 5—see Example 5.8.

3. Event-based adaptation for binary communications

Syntax. We rely on base sets for names, ranged over by u, a, b . . .; (session) channels, ranged over by k , κp, . . .,
with polarity p ∈ {+,−}; labels, ranged over by n,n ′, . . .; and variables, ranged over by x , y, . . .. Values, ranged
over v , v ′, . . ., may include booleans (written false and true), integers, names, and channels. We use r to range
over adaptationmessages, such as updE in (7) above.We use ·̃ to denote finite sequences. Thus, e.g., x̃ is a sequence
of variables x1, . . . , xn . We use ε to denote the empty sequence.

Table 1 reports the syntax of expressions and processes. Processes include usual constructs for input, output,
and labeled choice. Common forms of recursion, parallel composition, conditionals, and restriction are also
included. Constructs for session establishment are annotatedwith a session type α, which is useful in derived static
analyses. A prefix for closing a session, inherited from [DP15], is convenient to better structure specifications.
Variable x is bound in processes u(x :α).P , u(x :α).P , and k (x ).P . Binding for name and channel restriction
is as usual. Also, recursion variable X is bound in process μX .P . Given a process P , its sets of free/bound
channels, names, variables, and recursion variables—noted fc(P ), fn(P ), fv(P ), fpv(P ), bc(P ), bn(P ), bv(P ), and
bpv(P ), respectively—are as expected. We always rely on usual notions of α-conversion and (capture-avoiding)
substitution, denoted [k/x ] (for channels) and [P/X ] (for processes). We write [k1, . . . , kn/x1, . . . , xn ] to stand for an
n-ary simultaneous substitution. Processes without free variables or free channels are called programs.
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Up to here, the language is essentially a synchronous π -calculus with sessions [HVK98]. As motivated in
the Introduction, building upon locations loc, l1, l2, . . ., we consider the following novel process constructs for
run-time adaptation:

• Located processes denoted loc
[
P

]
;

• Update processes denoted loc
{
case x1, . . . , xn of {(β1

i ; · · · ; βn
i ) : Qi }i∈I

}
;

• Session monitors denoted k�α�, for a session type α;

• Location queues denoted loc�r̃�; and
• Adaptation signals denoted loc(r ).

Moreover, expressions now include the arrival predicate arrive(loc, r ).
We now comment on these elements. Located processes and update processes have been already discussed.

Here we just remark that update processes are assumed to refer to at least one variable xi and to offer at least
one alternative Qi . Also, variables x1, . . . , xn are bound in loc

{
case x1, . . . , xn of {(β1

i ; · · · ; βn
i ) : Qi }i∈I

}
;

this process is often abbreviated as loc
{
case x̃ of {(β1

i ; · · · ; βn
i ) : Qi }i∈I

}
. Update processes generalize the

typecase introduced in [Kou12], which defines a case-like choice based on a single channel; in contrast, to
specify adaptation for locations with multiple open sessions, our update processes define type-directed checks
over one or more channels.

Update processes go hand-in-hand withmonitors, run-time entities which keep the current protocol state at a
given channel. We write κp�α� to denote the monitor that stores the protocol state α for channel κp . In [Kou12],
a similar construct is used to store in-transit messages in asynchronous communications. For simplicity, here we
consider synchronous communication; monitors store only the current protocol state. This choice is aligned with
our goal of identifying the elements from the eventful session framework that are essential to run-time adaptation
(cf. Remark 4.12).

Location queues, not present in [Kou12], handle adaptation requests, modeled as a possibly empty sequence
of messages r̃ . Location queues enable us to give a unified treatment to adaptation requests. Given loc�r̃�,
it is worth observing that messages r̃ are not related to communication as abstracted by session types. This
represents the fact that we handle adaptation requests and structured session exchanges as orthogonal issues.
An adaptation signal loc(r ) enqueues request r into the location queue of loc. To this end, as detailed below,
the operational semantics defines synchronizations between adaptation signals and location queues. To connect
run-time adaptation and communication, our language allows the coupling of update processes with the arrival
predicate on locations, denoted arrive(loc, r ). Inspired by the arrive predicate in [Kou12], this predicate detects
if a message r has been placed in the queue of loc.

Our process language embodies several concerns related to run-time adaptation: using adaptation signals and
location queues we may specify how an adaptation request is issued; arrival predicates enable us to specify when
adaptation will be handled; using update processes andmonitors wemay specifywhat is the goal of an adaptation
event.

Semantics. The semantics of our language is given by a reduction semantics, the smallest relation generated by
the rules in Table 2. We write P −→ P ′ for the reduction from P to P ′. Reduction relies on a standard notion of
structural congruence, denoted ≡ (see Appendix A). It also relies on evaluation and location contexts:

E ::� − | k (−).P | if − then P else Q C ,D ::� − | loc[C | P]

Given C
{−}

(resp. E[−]), we write C{
P

}
(resp. E[e]) to denote the process (resp. expression) obtained by filling

in occurrences of hole − in C with P (resp. in E with e).
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Table 2. Reduction semantics for binary processes. Above, α and β denote session types

〈r:Open〉
α⊥C β

C
{
u(x : α).P

} | D{
u(y : β).Q

} −→ (νκ)
(
C

{
P [κ

p
/x ] | κp�α�} | D{

Q [κ
p
/y ] | κp�β�})

〈r:Com〉
C

{
κ p (v ).P | κp�!(T ).α�} | D{

κ p (x ).Q | κp�?(T ).β�} −→ C
{
P | κp�α�} | D{

Q [v/x ] | κp�β�}
〈r:Sel〉

i ∈ J

C
{
κ p � {nj :Pj }j∈J |κp�&{nj :αj }j∈J �} |D{

κ p � ni ; Q | κp�⊕{nj : βj }j∈J �} −→ C{Pi | κp�αi�} | D{Q | κp�βi�}
〈r:Clo〉
C

{
close (κ p ).P | κp�end�} | D{

close (κ p ).Q | κp�end�} −→ C
{
P

} | D{
Q

}

〈r:UReq〉
C

{
loc�r̃1�} | D{

loc(r )
} −→ C

{
loc�r̃1 · r�} | D{

0
}

〈r:Arr1〉
r̃ � r1 · r̃0

C
{
E[arrive(loc, r1)]

} | D{
loc�r̃�} −→ C

{
E[true]

} | D{
loc�r̃0�}

〈r:Arr2〉
(r̃ � r2 · r̃0 ∧ r1 �� r2) ∨ r̃ � ε

C
{
E[arrive(loc, r1)]

} | D{
loc�r̃�} −→ C

{
E[false]

} | D{
loc�r̃�}

〈r:Upd1〉
matchI ({α1, . . . , αm }, {β1

i , . . . , β
m
i }i∈I ) �↑

C
{
loc

[
P

]} | D
{
loc

{
case x1, . . . , xm of {(β1

i ; · · · ; βm
i ) : Qi }i∈I }}

−→ C
{
loc

[
P

]} | D{
0
}

〈r:Upd2〉
matchI ( {α1, . . . , αm }, {β1

i , . . . , β
m
i }i∈I )� l

fc(P)�{κp
1 , . . . , κp

m } ∀ j ∈ [1, . . . ,m].(κp
j �αj � ∈ P) barbs(P ; Ql [κ

p
1 , . . . , κp

m/ x1, . . . , xm ])

C
{
loc

[
P

]} | D
{
loc

{
case x1, . . . , xm of {(β1

i ; · · · ; βm
i ) : Qi }i∈I }}

−→ C
{
loc

[
Ql [κ

p
1 , . . . , κp

m/ x1, . . . , xm ]
]} | D{

0
}

〈r:Eva〉
e −→ e

E[e] −→ E[e ′]

〈r:Par〉
P −→ P ′

P | Q −→ P ′ | Q

〈r:ResN〉
P −→ P ′

(νa)P −→ (νa)P ′

〈r:ResC〉
P −→ P ′

(νκ)P −→ (νκ)P ′
〈r:Str〉
P ≡ P ′ P ′ −→ Q ′ Q ′ ≡ Q

P −→ Q

〈r:Rec〉
recX .P −→ P [recX .P/X ]

〈r:IfTrue〉
if true then P else Q −→ P

〈r:IfFalse〉
if false then P else Q −→ Q

We comment on the reduction rules below. The first four rules formalize session behavior within hierarchies
of nested locations. Using duality for session types, denoted ⊥C (cf. Definition A.4), in Rule 〈r:Open〉 the
synchronization on a name u leads to establish a session on fresh channels κp and κp ; also, two monitors with
the declared session types are created. Duality for polarities p is as expected: + � − and− � +. By construction,
monitors are local, i.e., they are created in the same contexts in which the session is established. Rule 〈r:Com〉
represents communicationof a value:we require both complementaryprefixes and that themonitors support input
and output actions. After reduction, prefixes in processes and monitors are consumed. Similarly, Rule 〈r:Sel〉 for
labeled choice is standard, augmented with monitors. Rule 〈r:Clo〉 formalizes session termination, discarding
involved monitors. The monitors in these three rules allow us to track the evolution of active session protocols.
The following five rules in Table 2 define our event-based approach to run-time adaptation. Before commenting
on them, we require two auxiliary definitions:

Definition 3.1 (Matching) Given an index set I of alternatives, session types α1, . . . , αm , and an indexed sequence
of session types {β1

i , . . . , β
m
i }i∈I , we define

matchI ( {α1, . . . , αm }, {β1
i , . . . , β

m
i }i∈I ) �

{
l ifl ∈ I ∧ (∀j ∈ [1, . . . ,m].βj

l ≤C αj )
↑ ∀n ∈ I .(∃ j ∈ [1, . . . ,m]. βj

n �≤C αj )

Intuitively, matchI ({α1, . . . , αm }, {β1
i , . . . , β

m
i }i∈I ) � l says that the l -th alternative ensures a match (up to

subtyping) between types αj and β
j
l , for all j ∈ [1, . . . ,m]. If there is no alternative satisfying the match (i.e., for

every alternative n there is a pair αj and βj
n for which match does not hold) then the function is undefined, which

is denoted by ↑.
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Definition 3.2 (Barbs) Let P be a process. We write P ↓κp if P is structurally congruent to one of the following:

(νκ̃)(C
{
κ p(v ).P1

} | D{
R

}
) (νκ̃)(C

{
κ p(x ).P1

} | D{
R

}
)

(νκ̃)(C
{
κ p � {n1:P1 [] · · · []nm :Pm}

} | D{
R

}
) (νκ̃)(C

{
κ p � ni ; P ′} | D{

R
}
)

We write barbs(P ; Q) whenever P ↓κp if and only if Q ↓κp .

We may now return to describing the reduction rules:

• Rule 〈r:UReq〉 treats the issue of an adaptation request r as a synchronization between a location queue and
an adaptation signal. The queue and the signal may be in different contexts; this enables “remote” requests.

• Rules 〈r:Arr1〉 and 〈r:Arr2〉 resolve arrival predicates by querying the (possibly remote) queue r̃ .
• Rules 〈r:Upd1〉 and 〈r:Upd2〉 define the update of the behavior at location loc. Given an index set I over
the update process, suitability with respect to the behavior at loc is defined by the function matchI (cf.
Definition 3.1). There are two possibilities. If there is no matching alternative then the current protocol state
at loc is kept unchanged (Rule 〈r:Upd1〉). Otherwise, the predicate holds for an alternative that defines a new
protocol state which preserves the barbs of the current state (Rule 〈r:Upd2〉). By an abuse of notation, we
write P1 ∈ P to indicate that P1 occurs in P , i.e., if P � (νκ̃)C

{
P1

}
for some C and κ̃.

In addition, our semantics includes standard and/or self-explanatory treatments for reduction under evalua-
tion contexts, parallel composition, located context, and restriction.Also, it accounts for applications of structural
congruence, recursion and conditionals.

Example 3.3 Recall process W given in Sect. 2.1, Equation (5). According to our semantics:

W −→ (νκ)
(
sys

[
buyer

[
P [κp

/x ] | κp�αbuy�
] | seller[Q [κp

/y] | κp�βsel�
] ])

−→2 (νκ)
(
sys

[
buyer

[
P ′ | κp�αpay�

] | seller[Q ′ | κp�βpay�
] ])

Suppose that following an external request the seller must offer a new payment method (a gift card). Precisely,
we would like the seller to act according to the type βgift given in (4). Let αgift be the dual of βgift. We then may
define the following update process:

R1
xy � sys

{
case x , y of {(αpay ; βpay) : buyer

[
P ′ | x�αgift�

] | seller[Q ′′ | y�βgift�
]}}

Thus, R1
xy keeps the expected implementation for the buyer (P ′), but updates its associated monitor. For the

seller, both the implementation and monitor are updated; above, Q ′′ is a process that offers the three payment
methods. We may then specify the whole system as: W | μX .if arrive(sys, updE ) then R1

xy else X . The type
system introduced next ensures, among other things, that updates such as R1

xy consider both a process and its
associated monitors, ruling out the possibility of discarding the monitors that enable reduction.

4. Session types for eventful run-time adaptation

This section introduces a session type system for the process language of Sect. 3. Ourmain result (Theorem 4.11) is
thatwell-typedprograms enjoyboth safety (absence of run-time communication errors) and consistencyproperties
(update actions do not disrupt established sessions). Our development follows the lines of the typed framework
in [DP15].

Syntax. The syntax of session types (ranged over by α, β, . . .) has been presented in Sect. 2.1. We consider basic
types (ranged over by τ, σ, . . .) and write T ,S , . . . to range over τ, α. Although our process language copes with
run-time adaptation, our type syntax retains the intuitive meaning of standard session types [HVK98], which we
now briefly recall.

Type ?(τ ).α (resp. ?(β).α) abstracts the behavior of a channel which receives a value of type τ (resp. a channel
of type β) and then continues as α. Dually, type !(τ ).α (resp. !(β).α) represents the behavior of a channel which
sends a value of type τ and then continues as α. Type &{n1 : α1, . . . ,nm : αm} describes a branching behavior:
it offers m behaviors, and if the j -th alternative is selected then it behaves as describedby type αj (1 ≤ j ≤ m).
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In turn, type ⊕{n1 : α1, . . . ,nm : αm} describes the behavior of a channel which may select a single behavior
among α1, . . . , αm and then continues as αj . We use end to type a channel with no communication behavior.
Typeμ t .α describes recursive behavior; as usual, we consider recursive types under equi-recursive and contractive
assumptions.

Along the paper we have informally appealed to duality and subtyping over session types (denoted ⊥C and
≤C, resp.). Since our session type structure is completely standard, we may rely on the (coinductive) definitions
given by Gay and Hole [GH05]; see also Definition A.4.

Our typing judgments generalize usual notions with an interface I for each process. Based on the syntactic
occurrences of session establishment prefixes a(x :α), and a(x :α), the interface of a process describes the services
appearing in it. We annotate services with a qualification q,which may be ‘lin’ (linear) or ‘un’ (unrestricted).
Intuitively, a service is linear if it is offered a finite number of times, otherwise it is persistent or unrestricted.
Thus, the interface of a process gives an “upper bound” on the services that it may execute. The typing system
uses interfaces to control the behavior contained by locations after an update. We have:

Definition 4.1 (Interfaces) We define an interface as the multiset whose underlying set of elements is I �
{q u:α | q ∈ {lin, un}} (i.e., a set of assignments from names to qualified session types). We use I, I ′, . . . to
range over interfaces. We write dom(I) to denote the set {u | q u : α ∈ I} and #I (q u : α) � h to mean that u
occurs h times in I.
The union of two interfaces is essentially the union of their underlying multisets. We sometimes write I � a : αlin

and I�a : αun to stand for I�{lin a:α} and I�{un a:α}, respectively.Moreover, we write Ilin (resp. Iun) to denote
the subset of I involving only assignments qualified with lin (resp. un). We now define an ordering relation over
interfaces, relying on subtyping:

Definition 4.2 (Interface ordering) Given interfaces I and I ′, we write I � I ′ iff
1. ∀(lin a:α) such that #Ilin (lin a:α) � h with h > 0, then one of the following holds:

(a) There exist h distinct elements (lin a:βi ) ∈ I ′lin such that α ≤C βi for i ∈ [1 . . . h];
(b) There exists (un a:β) ∈ I ′un such that α ≤C β.

2. ∀(un a:α) ∈ Iun then (un a:β) ∈ I ′un and α ≤C β, for some β.

Typing environments. We now define our typing environments, following [DP15]. Recall that we write q to range
over qualifiers lin and un.

� ::� ∅ | �, k : α | �, k : �α� typing with active sessions

 ::� ∅ | 
, e : τ | 
, u : 〈αq, βq〉 first-order environment (with αq⊥C βq)
� ::� ∅ | �,X : �; I | �, loc : I higher-order environment

We consider typings� and environments 
 and�. Typing� collects assignments from channels to session types;
it describes currently active sessions. In our system, � also includes bracketed assignments, denoted κp : �α�,
which represent the type for monitors. Subtyping extends to these assignments (�α� ≤C �β� if α ≤C β) and thus
to typings. We write dom(�) to denote the set {kp | kp : α ∈ � ∨ kp : �α� ∈ �}. We write �, k : α where
k �∈ dom(�). Furthermore, we write �, k : 〈〈α〉〉 to abbreviate �, k : α, k : �α�. That is, k : 〈〈α〉〉 describes both a
session and its associated monitor.


 is a first-order environment which maps expressions to basic types and names to pairs of qualified session
types. The higher-order environment � collects assignments of typings to process variables and interfaces to
locations. While the former concerns recursive processes, the latter concerns located processes. As we explain
next, by relying on the combination of these two pieces of information the type system ensures that run-time
adaptation actions preserve the behavioral interfaces of a process.We write vdom(�) � {X | X : I ∈ �} to denote
the variables in the domain of �. Given these environments, a type judgment is of form


 ; � � P ��; I
meaning that, under environments 
 and �, process P has active sessions declared in � and interface I.
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Table 3.Well-typed processes: typing rules (part I)

Typing rules are shown in Tables 3 and 4. Below we comment on some of the rules in Table 3: the rest are standard
and/or self explanatory. Rule 〈t:Adapt〉 types update processes. Notice that the typing rule ensures that each
process Qi has exactly the same active sessions that those declared in the respective case. Also, we require that
alternatives contain both processes and monitors. With Ij � I we guarantee that the process behavior does not
“exceed” the expected behavior within the location. Rule 〈t:sub〉 takes care of subtyping both for typings � and
interfaces. Rule 〈t:CRes〉 types channel restriction; it ensures typing duality among partners of a session and
their respective queues. Rule 〈t:NRes〉 types hiding of service names, by simply removing their declarations from
the interface I of the process. In the rule, Iu contains only declarations for u, i.e., ∀ v �� u, v �∈ dom Iu . Typing
of queues is given by Rule 〈t:Que〉 that simply assigns type k : �α� to queue k�α�.
Example 4.3 Consider the process from Example 3.3:

(νκ)
(
sys

[
buyer

[
P [κp

/x ] | κp�αbuy�
] | seller[Q [κp

/y] | κp�βsel�
] ])

The type of process R located in sys is 
 ; � � R ��; I with


 :� u : 〈lin : αbuy, lin : βsel〉
� :� buyer : {lin u : αbuy}, seller : {lin u : βsel}, sys : {lin u : αbuy, lin u : βsel}
� :� κp : 〈〈αbuy〉〉, κp : 〈〈βsel〉〉
I :� ∅
Our type system enjoys the standard subject reduction property. We rely on balanced typings:

Definition 4.4 We say that typing � is balanced iff for all κp : α ∈ � (resp. κp : �α� ∈ �) then also κp : β ∈ �
(resp. κp : �β� ∈ �), with α⊥C β.

Similarly to what has been proposed in [HYC08], here we introduce a reduction over session typings:

Definition 4.5 (Reduction for typings) Reduction for typings, denoted� �−→ �′, is defined by the following rules:

1. �, κp : 〈〈!(T ).α〉〉, κp : 〈〈?(T ).β〉〉 �−→ �, κp : 〈〈α〉〉, κp : 〈〈β〉〉.
2. �, κp : 〈〈&{n1:α1, . . . ,nm :αm}〉〉, κp : 〈〈⊕{n1:β1, . . . ,nm :βm}〉〉 �−→ �, κp : 〈〈αi 〉〉, κp : 〈〈βi 〉〉, with i ∈
{1, . . . ,m}.
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Table 4.Well-typed processes: typing rules (part II)

Theorem 4.6 (Subject reduction) If 
 ; � � P ��; I with � balanced and P −→ Q then 
 ; � � Q ��′; I ′,
for some I ′ ⊆ I and balanced �′ such that either �′ ≤C � or � �−→ �′.

Proof By induction on the last rule applied in the reduction. See Appendix B for details. �
We now define and state safety and consistency properties. While safety guarantees adherence to prescribed

session types and absence of run-time errors, consistency ensures that sessions are not jeopardized by careless
run-time adaptation actions. Defining both properties requires the following notions of κ-processes and (located)
κ-redexes:

Definition 4.7 (κ-processes, κ-redexes, errors) A process P is a κ-process if it is a prefixed process with subject κp ,
i.e., P is one of the following:

κ p(x ).P ′ κ p(v ).P ′ close (κ p).P ′ κ p � {ni :Pi }i∈I κ p � n.P ′

Process P is a κ-redex if it contains the composition of exactly two κ-processes with opposing polarities, i.e.,
for some contextsC ,D , and E , and processes P1,P2, . . . ,Pm , and P ′, process P is structurally congruent to one
of the following:

(νκ̃)(C
{
κ p(v ).P1

} | D
{
κ p(x ).P2

}
)

(νκ̃)(C
{
κ p � {n1:P1 [] · · · []nm :Pm}

} | D
{
κ p � ni ; P ′})

(νκ̃)(C
{
close (κ p).P1

} | D
{
close (κ p).P2

}
)

A located κ-redex is a κ-redex in which one or both of its constituent κ-processes are contained by least one
located process. P is an error if P ≡ (νκ̃)(Q | R) where, for some κ, Q contains either exactly two κ-processes
that do not form a κ-redex or three or more κ-processes.

Example 4.8 The following processes

l2
[
l1
[
κ p(x̃ ).P1

] | κ p(v ).P2
]

l1
[
κ p(x̃ ).P1

] | l2
[
κ p(v ).P2

]
l1
[
κ p(x̃ ).P1 | κ p(v ).P2

]

are located κ-redexes, whereas process κ p(x̃ ).P1 | κ p(v ).P2 is not.
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Informally, a process P is called consistent if whenever it has a located κ-redex then update actions do not
destroy such a redex. Below, we formalize this intuition. Let us write P −→upd P ′ for any reduction inferred
using Rule 〈r:Upd2〉 (cf. Table 2). We then define:

Definition 4.9 (Safety and consistency) Let P be a process.

• We say P is safe if it never reduces into an error.
• We say P is update-consistent if and only if, for all P ′ and κ such that P −→∗ P ′ and P ′ contains a κ-redex,
if P ′ −→upd P ′′ then P ′′ contains a κ-redex.

Lemma 4.10 If 
 ; � � P ��; I with � balanced then P is not an error process.

Proof Follows from session type duality, Definition 4.4 (balanced typing), and Definition 4.7 (error). �
We now state our main result; it follows as a consequence of Theorem 4.6.

Theorem 4.11 (Typing ensures safety and consistency) If 
 ; � � P ��; I with � balanced then program P is
safe and update-consistent.

Proof Safety means that P never reduces into an error. Since � is balanced, by Lemma 4.10 we know that P is
not an error. Theorem 4.6 ensures that reduction preserves balanced typings; therefore, P never reduces to an
error.

Proving update-consistency entails showing that for all P0 and κ such that P −→∗ P0 and P0 contains a
κ-redex, if P0 −→upd P1 then P1 contains a κ-redex. That is, P0 has both the κ-redex and an update action which
preserves it. By Theorem 4.6 we know that P0 is well-typed under a balanced typing. To show consistency we
distinguish two cases. The first case is when the κ-redex is not located in P0: then, the update action cannot affect
it (i.e., the update concerns located process inP0 which do not enclose the κ-processes that constitute the κ-redex)
and the thesis follows. The second case is when the κ-redex is located in P0: therefore, κ-processes that constitute
the κ-redex could be affected by the reduction P0 −→upd P1. There are several sub-cases, depending on which
κ-processes are located. We consider the sub-case in which one κ-process (say, R1 � κ p(x ).R′) is located whereas
the other (say, R2 � κ p(v ).R′′) is not; other cases are similar. The proof follows directly from Rule 〈r:Upd2〉 (cf.
Table 2) which replacesR1 with an alternativeQl . The rule not only ensures thatR1 andQl have matching session
types (up to subtyping) but also that they have the same barbs, i.e., the same top-level actions. This ensures that
the κ-redex is preserved under the reduction −→upd, and so the thesis follows. �
Remark 4.12 (Asynchronous communication) In this section, we have focused on synchronous communication:
this allows us to give a compact semantics, relying on a standard type structure. To account for asynchrony,
we would require a run-time syntax for programs with queues for in-transit messages (values, sessions, labels).
The type system should be extended to accommodate these new run-time processes. In our case, an extension
with asynchrony would rely on the machinery defined in [Kou12]; we present such a machinery (for multiparty
sessions) in the following section.

Remark 4.13 (Incremental adaptation) Adaptation in our framework is “incremental” in that modifications
always preserve/extend active session protocols, exploiting subtyping. Our framework can be modified so that
arbitrary protocols are installed as a result of an update. One would need to ensure that the two endpoints of a
session are present in the same location: arbitrary updates are safe as long as both endpoints are simultaneously
updated with dual protocols. This alternative requires modifying definitions for matching (Definition 3.1) and
interface ordering (Definition 4.2).

5. Event-based adaptation for multiparty communications

Here we generalize our approach to the case of multiparty communications. As already explained, we present
a proof of concept that integrates type-directed constructs for update and eventful constructs for adaptation
requests into the framework put forward by Coppo et al. [CDV15].

As described in Sect. 2.2, in the framework of [CDV15] communication actions from adaptation mecha-
nisms are tied together, as adaptation flags occur within global type specifications at the same level of protocol
exchanges. Our event-based approach treats adaptation at the level of processes, defining a separation between
communication and adaptation concerns, which in our opinion is beneficial for specification and analysis.
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Integrating our event-based approach entails noveltieswith respect to the notions of global types andnetworks
in [CDV15].Monitored processes will be now embedded into distributed locations which contain local collections
and queues that govern local and external adaptation. Furthermore, at the level of processes we replace processes
c?l (λ, T).P , and c!l (λ(F ), T).P with a construct c!(G).P which enforces a locally-motivated adaptation based on
global type G. Overall, we have a two-level framework of processes and systems (instead of processes, networks,
and systems, as in [CDV15]).

5.1. Syntax of types

5.1.1. Global types

Global types specify structured interactions between two or more participants. We distinguish between commu-
nication and adaptation concerns; for this reason, unlike [CDV15], our global types do not mention synchro-
nizations related to adaptation. We write p, q, . . . and �,�′, . . . to denote participants and sets of participants,
respectively. Exchange of values take place on labels, denoted λ, λ

′
, . . . in the sequel, which are useful to express

choices. We write loc, loc′, . . . to range over locations. As in [CDV15], we assume that communicated values are
extracted from a set of sorts S . Formally, we have:

Definition 5.1 (Global types) The set of global types is defined by

G ::� p→ q : {λi (Si ).Gi }i∈I | end
As we follow [CDV15], our syntax of global types is admittedly simple: a global type p → q : {λi (Si ).Gi }i∈I

represents a labeled communication from participant p to participant q. Global type end denotes the terminated
protocol. We write part(G) to denote the set of participants declared in G.

5.1.2. Monitors

Monitors capture the local view that participants have of a global type. They are used to enable actions of the
process implementations; they also contain information on the participants and labels involved in the directed
exchanges.

Definition 5.2 (Monitors) The set of monitors is defined by:

M ::� p?{λi (Si ).Mi }i∈I | p!{λi (Si ).Mi }i∈I | end
An input monitor p?{λi (Si ).Mi }i∈I can be associated to a process which can receive, for each i ∈ I , a value

of sort Si with label λi , with a continuation that is associated to Mi (external choice). The output monitor
p!{λi (Si ).Mi }i∈I is dual: it can be associated to a process which sends a value of sort Si , distinguished by label
λi , for each i ∈ I , with a continuation that is associated toMi (internal choice).

Following the approach of multiparty session types [HYC08], the monitor of a participant is obtained via a
projection function, defined below.

Definition 5.3 (Projection of a global type) The projection of a global type G onto a monitor for a participant p,
denoted G ↓p, is defined as follows:

• (p→ q : {λi (Si ).Gi }i∈I ) ↓r �
⎧
⎨

⎩

p?{λi (Si ).Gi ↓r}i∈I if r � q

q!{λi (Si ).Gi ↓r}i∈I if r � p

G1 ↓r if r �� p and r �� q and Gi ↓r� Gj ↓r for all i , j ∈ I
• end ↓r � end

We will say that a global type is well-formed if its projections are defined for all participants. We shall work
only with well-formed global types. We assume that each well-formed G is associated with a mapping LG from
participants to locations such that p �� p′ implies LG(p) �� LG(p′), for all p, p′ ∈ part(G).
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Table 5. Typing rules for multiparty processes

5.1.3. Process types

We now describe types for the process language that will be introduced in Definition 5.6. While in multiparty
session types [HYC08], the process types correspond to local types (the projection of the global type onto every
participant), the approach in [CDV15] uses a discipline of process types which is different from local types (i.e.,
monitors). This adds flexibility, and is useful to establish an independence between local implementations (as
formalized by processes) and choreographic coordination (as formalized by global types and monitors). Clearly,
process types cannot be completely independent from monitors; a basic coherence between the two should exist.
This coherence is defined in terms of adequacy (cf. Definition 5.5), a relation that uses subtyping to determine
which process types “fit” a given monitor.

Following [Pad10], the process types defined on [CDV15] exploit intersection and union types; this ensures
an intuitive subtyping relation. Here we consider a syntax for process types that is certainly closer to the local
types of [HYC08] than the syntax in [CDV15]. This is for the sake of presentation, as we wish to keep a simple
conceptual relation with the binary session types introduced in Sect. 4. We then have:

Definition 5.4 (Process types) The syntax of process types is defined as follows:

T ::� &{λi (Si ).Ti }i∈I | ⊕ {λi (Si ).Ti }i∈I | μ t .T | t | end

We write T to denote the set of all types, and use T ,T ′, . . . to range over process types.

Thus, intuitively, process types &{λi (Si ).Ti }i∈I and ⊕{λi (Si ).Ti }i∈I are used to type labelled inputs and
outputs, respectively. Recursive types are as expected, following usual considerations for type equality.

An environment 
 is a finite mapping from expression variables to sorts and from process variables to types:


 ::� ∅ | 
, x : S | 
,X : T

where notation 
, x : S (resp. 
,X : T) means that x (resp. X ) does not occur in the domain of 
.
We now introduce typing judgments for expressions e and processes P :


 � e : S 
 � P � c : T

Expressions are typed by sorts; we assume standard typing rules. The judgments for processes which makes it
explicit that processes with at most one channel can be typed.

Typing rules for processes are given in Table 5. Due to the absence of explicit flags for adaptation, they are
a subset of the typing rules given in [CDV15]. We also consider Rule 〈M:Adapt〉 which represents the fact that
internal adaptation requests are defined independently from communication protocols abstracted by types.

The relation between process types and monitors is formalized via adequacy. Adequacy relies on a subtyping
relation, here denoted≤; it corresponds to a finite variant of the subtyping≤C (formally given in Definition A.4).
Our notion of adequacy is simple, and highlights how the difference between monitors and process types lies in
the information about participant identities:

Definition 5.5 (Adequacy) Let | · | be a mapping from monitors to types defined as follows:

| p?{λi (Si ).Mi }i∈I | � &{λi (Si ). |Mi |}i∈I
| p!{λi (Si ).Mi }i∈I | � ⊕{λi (Si ). |Mi |}i∈I

| end | � end

We then say that type T is adequate to monitorM (notation T ∝M) if T ≤|M |.
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5.2. Processes and networks

5.2.1. Syntax

Processes abstract the protocol implementations for each participant. The association of a process P with a
monitorM results into a monitored process M[[P ]], which realizes the behavior of a single participant. As hinted
at above, themain differences of our frameworkwith respect to [CDV15] appear at the level ofmonitored processes
and networks (collections of monitored processes).

The definition of processes implementingmultiparty services, given next, is rather standard.Wehave operators
for sending and receiving messages, conditionals, and recursion. On top of these operators we add a primitive for
broadcasting an internal adaptation request, denoted c!(G).P . Intuitively, this primitive is an output action that
mentions a new global type to be implemented by protocol participants.

Definition 5.6 (Processes) The syntax of processes is defined as:

P ::� c?{λi (xi ).Pi }i∈I | c! λ(e).P | μX .P | X | if e then P else Q | 0
| c!(G).P

Each process owns a unique channel, denoted y . Given a session κ and a participant p, channel y in the user
code is substituted at run-time by a session channel κ[p]. In the following we write c to denote either y (the user
channel) or κ[p] (the session channel). We assume that processes pass around expressions, defined as expected.
Every expression e reduces to a value v ; this is denoted e � v .

As an example of internal adaptation requests, suppose participants p1, . . . , pj , . . . , pn establish session κ to
communicate according to a specific protocol (say, Skype). To request a protocol change, participant pj may issue
an adaptation request to all its partners by including the process κ[pj ]!(GTalk).P in its local implementation. As
we will formalize later on, this request will arrive to the event queue of session κ, and then all participants will
proceed to adapt their local behavior to the new global type GTalk.

Our notion of networks departs significantly from that in [CDV15] by considering an explicitly distributed
setting based on (inactive) locations and event queues:

Definition 5.7 (Networks) The syntax of networks N and adaptation requests r is defined as

N ::� new(G) initialize global type
| loc

[
M[[P ]]; P ; loc�r�] active location

| loc
[
P ; loc�r�] inactive location

| κ : h message queue
| κe�h� internal adaptation: event queue
| (νκ)N restriction
| N | N parallel composition

r ::� ε empty request
| (add : 〈Q,T 〉) external adaptation: upgrade request
| (upd : case x of {(Ti ) : Qi }i∈I ) external adaptation: update request

A location represents a place where several programs can be executed.We assume a preexisting set of locations
which are “filled in” with appropriate monitored processes upon initialization of global types (see below). An
active location loc

[
M[[P ]]; P ; loc�r�] is composed of a monitored process M[[P ]], a local collection of typed

processes P (i.e., a set of pairs (Q,T ) whereQ is a process and T is its corresponding type), and a queue loc�r�
(where r stands for an external adaptation request). For simplicity, we assume that in each location only one
session can be active. An inactive location is simply a location without a monitored process. The queue of a
location connects it to an unspecified environment that can (i) add new processes to the collection (or upgrade
the an existing process), or (ii) update the behavior of a monitored process. This is similar to the update processes
for the binary framework.

As we shall see, initializing a global type G entails setting up monitored processes in appropriate locations,
establishing a session channel κ, and creating amessage queue κ : h for supporting asynchronous communication.
We write ∅ to denote the empty message queue; messages are of the form (p, q, λ(v )) thus denoting the fact that
participant p sends value v and label λ to participant q. Message concatenation is denoted with ‘·’.

The event queue κe�h� handles internal adaptation requests, associated to process c!(G).P introduced earlier.
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Table 6. LTS for multiparty processes

5.2.2. Semantics

The semantics of networks is given in terms of a reduction relation, denotedN −→ N ′.We require some auxiliary
definitions, in order to connect the behavior of monitors and processes to that of whole networks; we also require
a structural congruence to capture, among other things, asynchronous message communication as handled via
queues. As in [CDV15], we assume that all local collections P are complete, which intuitively means that such
collections contain all conceivable pairs of processes and types.

LTS for monitors and processes. Reduction for networks relies on LTSs for monitors and processes. The LTS for
monitors is rather simple; it is used to enable the actions to be performed by processes:

p?{λi (Si ).Mi }i∈I
p? λj−−→Mj (j ∈ I ) q!{λi (Si ).Mi }i∈I

q! λj−−→Mj (j ∈ I )

The LTS for processes relies on the following set of labels, with associated rules as in Table 6.

α ::� τ | κ[p]? λ(v ) | κ[p]! λ(v ) | κ[p]! λ(G)

Structural congruence. Reduction for networks relies also on a structural equivalence and on evaluation contexts.
The structural equivalence on networks, denoted ≡, defines parallel composition as a commutative, associative
operator, and which allows restriction to reduce and enlarge their scope without name clashes. Also, it decrees
that any monitored process with the end monitor corresponds to the neutral element for parallel composition
and absorbs restriction. More formally:

end[[P ]] | N ≡ N (νκ)end[[P ]] ≡ end[[P ]] (νκ)N1 | N2 ≡ (νκ)N1 | N2

(νκ)(κ : h) | N ≡ N (νκ)(νκ ′)N ≡ (νκ ′)(νκ)N

We consider also a structural equivalence for message queues which allows us to commute messages involving
different receivers or senders:

h · (p, q, λi (vi )) · (p′, q′, λj (vj )) · h ′ ≡ h · (p′, q′, λj (vj )) · (p, q, λi (vi )) · h ′ if p �� p′ or q �� q′

This congruence is extended to networks in the expected way by letting: h ≡ h ′ implies κ : h ≡ κ : h ′.
Finally, we have the following definition for evaluation contexts, denoted E :

E ::� [ ] | E | N | (νκ)E

Reduction rules for networks The rules of the reduction semantics for networks are given in Table 7; we now
describe them:

• Rule 〈N:Open〉 initializes a global type, denotedG in the rule. To that end, it considers all the inactive locations
associated to the declared participants of G, denoted �. For each p ∈ �, a process implementation is picked
up from the local collection Pp. The process type of this implementation is expected to be adequate to the
monitor G ↓p. Observe that mapping LG ensures that each participant is assigned to a different (inactive)
location. A fresh session name κ is created for protocol participants; associated message and event queues
are also created.
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Table 7. Reduction semantics for multiparty processes

• Rules 〈N:Send〉 and 〈N:Recv〉 regulate output and input actions from/to the message queue of an established
session. The action must be enabled by the label of the monitor, which also describes information on the
receiver/sender of the exchanged value. Both monitors and processes evolve as a result of the interaction with
the queue. In both rules, a reduction is enabled provided the event queue is empty.

• Rule 〈N:Tau〉 formalizes the fact that evaluation of conditional expressions and recursion unfolding within a
(monitored) process can occur without affecting its monitor.

• Rules 〈N:InMsg〉 and 〈N:InUpd〉 formalize internal adaptation. Similarly as Rule 〈N:Tau〉, issuing an internal
adaptation request is a behavior specified by the process but independent from its monitor. Rule 〈N:InMsg〉
is enabled if the event queue is empty; it adds a global type to the event queue of the session.
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Once a global type is added to the event queue, Rule 〈N:InUpd〉 can be triggered. This rule assumes that a
fixed set of participants (denoted �) is already executing a global protocol and should adapt to execute a
new protocol G′. The rule sets up local implementations for all participants in part(G′), also considering the
existing behaviors in the set of participants �. There are three possibilities:

(a) Participant p belongs to both � and part(G′) and location locp encloses a monitored process that “fits”
with the projection of G′ onto p. In this case, the monitored process is kept as it is.

(b) Participant p belongs to both � and part(G′), but the current monitored process enclosed in location
locp is not compatible with the projection of G′ onto p. In this case, a new process implementation is
selected from the local collection Pp and instantiated with an appropriate session name.

(c) Participant p belongs to part(G′) but not to �. In this case, the respective location is made active by
setting up an appropriate monitored process extracted from the collection.

Consequently, the premise of Rule 〈N:InUpd〉 uses the following auxiliary predicate, which formalizes these
three possibilities as a disjunction:

InUpd(p,�,G′,Pp, κ,Mp,M′
p,Pp,P ′

p) �
(p ∈ � ∩ part(G′) ∧ G′ ↓p�Mp �M′

p ∧ P ′
p � Pp) ∨

(p ∈ � ∩ part(G′) ∧ G′ ↓p�M′
p ��Mp ∧ (Qp,Tp) ∈ Pp ∧ Tp ∝M′

p ∧ P ′
p � Qp[κ[p]/y]) ∨

(p ∈ part(G′) \� ∧ (Qp,Tp) ∈ Pp ∧ G′ ↓p�M′
p ∧ Tp ∝M′

p ∧ P ′
p � Qp[κ[p]/y])

Notice that the left-hand side of the conclusion of Rule 〈N:InUpd〉 considers a series of active locations (for
participants in �) together with a series of inactive locations, corresponding to participants in part(G′) but
not in�, i.e., the locations thatwill become active as a result of the reduction step (cf. item (c) above). Similarly,
the right-hand side of the rule features a set of inactive locations, corresponding to participants present in �
but not in part(G′); these correspond to participants excluded as a result of adaptation. Also, observe that
both message and event queues are emptied after reduction.

• Rules 〈N:Addloc1〉, 〈N:Addloc2〉, 〈N:Updloc1〉, and 〈N:Updloc2〉 formalize external adaptation. These
rules are enabled by the addition of an adaptation request in the location queue. Such a request is meant to
come from the context of a location, and contains typed processes.

– Rule 〈N:Addloc1〉 upgrades a process pair present in the local collection of an active location; this
collection is denoted P in the rule. Rule 〈N:Addloc2〉 is similar but applies to inactive locations. Since we
assume that the collection is complete, these rules implement a form of upgrade on the local collection.

– Rules 〈N:Updloc1〉 and 〈N:Updloc2〉 formalize type-directed adaptation for monitored processes, in the
spirit of the update processes for binary sessions. The external adaptation message contains a finite series
of alternatives to the current behavior of the monitored process. The rule tries to find a compatible
update (Rule 〈N:Updloc1〉); if no suitable update is present then the external request is dismissed, and
the monitored process is kept unchanged (Rule 〈N:Updloc2〉). Notice that compatibility depends on a
match predicate, denoted match∝I ({M}, {Ti}i∈I ), defined as in Definition 3.1 but considering monitors
and process types instead of binary session types, and adequacy rather than subtyping.

• Rules 〈N:Equiv〉 and 〈N:Eval〉 define self-explanatory treatments for incorporating structural equivalence
and evaluation contexts into reduction.

Example 5.8 Consider the example of Sect. 2.2. Using Rule 〈N:Open〉 for session establishment we have:

new(G) | locb
[
Pb; locb�ε�

] | locs
[
Ps; locs�ε�

] | locp
[
Pp; locp�ε�

]

−→
(νκ)(locb

[
Mb[[Pb]]; Pb; locb�ε�

] | locs
[
Ms[[Ps]]; Ps; locs�ε�

] | locp
[
Mp[[Pp]]; Pp; locp�ε�

] | κ:∅ | κe�ε�)
with

Mb :� s!i t(item).s?price(int).s!ok(bool ).s!card(int).p!ad(string)
Ms :� b?i t(item).b!price(int).b?ok(bool ).b?card(int).p!i tname(item)
Mp :� b?ad(string).s?i tname(item)
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Table 8. Projection of generalized types onto participants

Remark 5.9 (Adaptation functions)We have proposed using processes communicating global types (here denoted
c! λ(G).P ), rather than adaptation flags, to specify internal adaptation, i.e., adaptation requests issued by the
system itself. This is a simple way of formalizing this important class of adaptation routines. As an alternative,
a less direct mechanism would consist in communicating a value on which a future adaptation should depend
on, rather than the expected new choreography. Such a value could be used as a parameter for the adaptation
functions used in [CDV15]. This would add flexibility to the specification of internal adaptation requests.

Having introducednetworks and their semantics,wenowproceed to investigate type-based analysis techniques
for them.

5.3. Safety and consistency

This section generalizes the results of Sect. 4 to the multiparty asynchronous case. In order to lighten the syntax,
the types for networks do not include any information on interfaces and only describe an active session. Indeed,
as interfaces provide information about the services the location may execute and as each location contains a
complete collection of processes P then the interface type will be the same for each location. We have already
described how to type a process, we now show how to type its monitor and relative queues and how to combine
them into networks.

As communication is asynchronous the information on the type of a session participant p (κ[p]) can be split
between the process implementing the session and the associated session queue. We thus have generalized types,
which can be either a message type, a monitor type or the combination of the two. More precisely:

Definition 5.10 Session types, generalized types, message and queues types are defined by:

Session types � ::� ∅ | �, κ[p] : χ

Generalized types χ ::� M | Q | m
Queue types Q ::� 〈m,M〉
Message types m ::� ε | q ! λ(S ) | m; m

The typing judgments for networks are of shape


 �� N � �

where� lists the free session names inN . As for the binary case, type safety relies on a notion of balanced typing:
communications are performed in the right order and with the proper type. The definition of duality �� is the
same as for the binary case (see Definition A.2).

Definition 5.11 A session typing � is balanced for the session κ (denoted bal(�, κ)) if κ[p] : χ ∈ � and κ[q] :
χ ′ ∈ � with p �� q imply χ ↓q�� χ ′ ↓p where the projection of generalized types onto participants is given in
Table 8.

It is easy to see that session types obtained from the projection of global types are balanced.
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Table 9. Typing rules for networks and queues

Proposition 5.12 Let G be a global type and p �� q, then (G ↓p) ↓q �� (G ↓q) ↓p.

We are now ready to complete the typing system with typing rules for networks and queues, given in Table 9.
We briefly comment on the rules. A session initiator is typed with the empty session typing (Rule 〈M:New〉). If
M � end then the monitored processM[[P ]] is typed with the empty session type (Rule 〈M:End〉); otherwise, if the
type ofP is adequatewith respect to themonitor then the type of themonitoredprocess is κ[p] : M (Rule 〈M:MP〉).
The event queue κe is typed with the completed session type (Rule 〈M:CQueue〉). Rules 〈M:Qinit〉 and 〈QSend〉
type the session message queue. In particular, Rule 〈M:Qsend〉 makes use of the operator # that dispatches
message types to proper session channels:

m#m ′ ::�m; m ′
�#�′ ::� {κ[p] : χ#χ ′ | κ[p] : χ ∈ � ∧ κ[p] : χ ′ ∈ �′} ∪ {κ[p] : χ | κ[p] : χ ∈ � ∪�′ ∧ κ[p] : χ �∈ � ∩�′}

Rule 〈M:Par〉 combines networks; it relies on an operator �, which combines the typing information coming from
queues and monitored processes:

m � M ::� 〈m,M〉
M � m ::� 〈m,M〉
� � �′ ::� {κ[p] : χ � χ ′ | κ[p] : χ ∈ � ∧ κ[p] : χ ′ ∈ �′} ∪ {κ[p] : χ | κ[p] : χ ∈ � ∪�′ ∧ κ[p] : χ �∈ � ∩�′}
In order to take into account the structural congruence on queues (Rule 〈M:Equiv〉) we build an equivalence

relation (≈) on types that is induced by the following equivalence rule on message types:

m; q! λ(S ); q′! λ(S ′); m ′ ≈ m; q′! λ(S ′); q! λ(S ); m ′

with q �� q′, and is extended to generalized types by letting if m ≈ m ′ then 〈m,M〉 ≈ 〈m ′,M〉.
As expected, the type of a restricted network depends on the consistency of the session κ (Rule 〈M:Res〉).

Finally, Rules 〈M:Loc1〉 and 〈M:Loc2〉 are used to type locations: as in the binary case, locations do not add any
information to the session type.

Example 5.13 Consider Example 5.8, and the process

R � locb
[
Mb[[Pb]]; Pb; locb�ε�

] | locs
[
Ms[[Ps]]; Ps; locs�ε�

] | locp
[
Mp[[Pp]]; Pp; locp�ε�

] | κ : ∅ | κe�ε�
obtained after the session establishment. According to the typing rules, we obtain the following typing judgment

∅ �{κ} R � κ[b] : 〈∅,Mb〉, κ[s] : 〈∅,Ms〉, κ[p] : 〈∅,Ms〉.
Wenow state the subject reduction theorem,which guarantees that communications are performedby (located)

monitored process in a safe manner, following the protocols prescribed by global types. Similarly as for the case
of binary sessions, we introduce a reduction over session types.
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Definition 5.14 (Reduction for typings) Reduction for typings, denoted � �−→ �′, is defined by the following
rules:

1. �, κ[p] : 〈h , q! λ(S ).M〉 �−→ �, κ[p] : 〈q! λ(S ); h , M〉
2. �, κ[p] : 〈q! λ(S ); h , M〉, κ[q] : 〈h ′ , p? λ(S ).M′〉 �−→ �, κ[p] : 〈h , M〉, κ[q] : 〈h ′ , M′〉
Theorem 5.15 (Subject reduction) If 
 �� N � � with � balanced and N −→ N ′ then 
 �� N ′ � �′, for some
balanced �′ such that either � � �′ or � �−→ �′.
Proof By induction on the last rule applied in the reduction. See Appendix B for details. �

Notice thatwe can also prove a formof progress: i.e., in the absence of internal adaptation events (only external
adaptation), every input monitored process will eventually receive a message and conversely every message in
a queue will eventually be received by an input monitored process.1 The proof follows the one presented in
[CDV15, CDYP16], which crucially depends on the assumption that a process owns only one session channel.

Wenowextend safety and consistency properties to themultiparty case. Similarly as beforewe define κ-redexes,
and error processes. Major changes are due to the fact that here we consider asynchronous communication.

Definition 5.16 (κ-redexes, errors) A network N contains a κ-redex if it is of one of the following forms:

(a) E
[
locp

[
Min [[κ[p]?{λi (xi ).Pi }i∈I ]]; Pp; locp�r�

] | locq
[
Mo [[κ[q]! λ(v ).P ]]; Pq; locq�r ′�

]]

(b) E
[
loc

[
Min [[κ[p]?{λi (xi ).Pi }i∈I ]]; P ; loc�r�] | κ : (q, p, λ(v )) · h]

whereMin � p?{λi (Si ).Mi }i∈I , Mo � p! λ(S ).M′ and there exists j ∈ I such that λj � λ and Sj � S .
A network N ≡ (νκ̃)(N ′) is an error if N ′ does not contain a κ-redex.

The introduction of internal updates breaks the update-consistency property as stated in Sect. 4. This is
expected, as internal updates are meant to globally change the communication protocol agreed upon session
establishment. Nonetheless, as external updates behave exactly as in the binary case, the property is preserved
for them. Below we write N −→upd N ′ for any reduction inferred using Rule 〈N:Updloc1〉 (cf. Table 7). We may
then define:

Definition 5.17 (Safety and consistency) Let N be a network.

• We say N is safe if it never reduces into an error.
• We say N is external update-consistent if and only if, for all N0 and κ such that N −→∗ N0 and N0 contains a

κ-redex, if N0 −→upd N1 then N1 contains the same κ-redex.

As before our main result follows as a consequence of Theorem 5.15.

Lemma 5.18 If 
 �� N � � with � balanced then network N contains no error.

Proof Follows directly from Definition 5.11. �
Theorem 5.19 (Typing ensures safety and consistency) If 
 �� N � � with � balanced then network N is safe
and external update consistent.

Proof Safety means that N never reduces into an error. Since � is balanced by Lemma 5.18 we know that N is
not an error. Theorem 5.15 ensures that reduction preserves balanced typings; therefore, N never reduces to an
error.

Proving update-consistency entails showing that for all κ such that N0 contains a κ-redex, and N −→∗ N0, if
N0 −→upd N1 then N1 contains the same κ-redex. By Definition 5.16 N0, there are two cases. We consider only
the case (a), i.e., the redex is of the form

E [locp
[
Min [[κ[p]?{λi (xi ).Pi }i∈I ]]; Pp; locp�r�

] | locq
[
Mo [[κ[q]! λ(v ).P ]]; Pq; locq�r ′�

]
]

as case (b) is similar. If Rule 〈N:Updloc1〉 is applied either locp or locq are updated. Without loss of generality
suppose that locp is updated. Now function match guarantees that the type of the updated process P located in
locp is kept unchanged. As P only implements the behavior of participant p, by inversion on typing we know
that the κ-process needs to be present also in the updated process. Thus we can conclude that the κ-redex is still
present. �

1 The restriction to external adaptation is expected, as internal updates are meant to modify the protocol for current participants, and so
sent messages could be left undelivered.



556 C. Di Giusto, J. A. Pérez

6. Related work

Many previous works have investigated formal approaches to dynamic/run-time adaptation in different settings;
below we describe some of these efforts.

An early work devoted to software process evolution is [JC93], which describes the EPOS approach to evolu-
tion and customization. Correctness criteria for adaptive workflows are surveyed in [RRD04]. In the setting of
workflows, modifications may occur at the level of schemas or at the level of individual workflow instances. It is
natural to represent workflows as (Petri) nets with special characteristics; as such, the focus of the comparison
in [RRD04] is on approaches based on Petri nets with different semantics. Two correctness criteria compared are
graph equivalence (focused on changes in schemas) and trace equivalence (focused on changes in instances). The
work [MGR04] describes a workflow management system that supports rule-based adaptation; it provides auto-
mated support for predictive and reactive adaptation strategies. The modeling approach and checked properties
in these works are considerably different from those in our work.

The paper [Fox11] develops a model for dynamically adaptive services using COWS (the Calculus for Orches-
tration of Web Services). In particular, a model for adaptation managers is proposed; it exploits the constructs
that COWS provides for timed behaviors, and the associated model checker CMC. The proposed model enables
structural and functional modifications: while the former concerns the system configuration graph, the latter
involves component replacement. Services are assessed in terms of responsiveness, availability, and reliability.
This work does not appeal to static verification based on behavioral types. Also, properties related to protocol
conformance, such as safety or consistency, are not explicitly considered in [Fox11]. To the best of our knowledge
our work develops the first application of constructs for type-directed checks and event-based communication
for specifying and analyzing run-time adaptation for session-based concurrent systems. In fact, although such
constructs have been proposed in previous works, their application for run-time adaptation seems to be a new
contribution of our work. As such, our work develops an unexplored perspective for existing elements in session-
based languages with the aim of enhancing models and reasoning techniques for communication-centric systems
which may be updated at run-time.

The combination of static typing and type-directed tests for dynamic reconfiguration is not new. For instance,
thework [SC06] studies this combination in the very different setting of object-oriented component programming.
As already discussed, we build upon constructs proposed in [HKP+10, KYH11, KYHH16, Kou12] for defining
type-directed checks and expressing eventful sessions. The earliest works on eventful sessions, covering theory and
implementation issues, are [HKP+10, KYH11]. Kouzapas’s Ph.D. thesis [Kou12] provides a unified presentation
of the eventful session framework, with case studies including event selectors (a building block in event-driven
systems) and transformations between multithreaded and event-driven programs. At the level of types, the work
in [Kou12] introduces session set types to support the typecase construct.In contrast, we use dynamic type
inspection only for run-time adaptation; in [Kou12] typecase is part of the process syntax. This choice enables
us to retain a standard session type syntax.

Previous works [DP15, AR12, BCH+13, CDV15, CDP14, DGL+14] have addressed forms of run-time adap-
tation for models of communicating systems based on binary and multiparty session types. As we elaborate next,
none of them features the distinctive constructs of our framework: adaptation routines based on type-directed
checks on session protocols and eventful constructs that handle and trigger such routines.

We have already mentioned how the present development was motivated as an enhancement to our pre-
vious work [DP15], in which update processes do not consider type-directed checks and adaptation of located
processeswith running sessions is disallowed by typing.While [DP15] addresses binary session types, all of [AR12,
BCH+13, CDV15, CDP14, DGL+14] concern models based on multiparty sessions and/or choreographies. The
work [AR12] studies dynamic update for message passing programs; a form of consistency for updates over
threads is ensured using multiparty session types, following an asynchronous communication discipline. The
paper [BCH+13] develops a model of choreographies with interleaved sessions and adaptation as well as an
associated endpoint language; however, typing is not addressed. The key ideas of the self-adaptable multiparty
sessions in [CDV15] have been summarized in Sect. 2. Our proposal for event-based adaptation for multiparty
protocols, described in Sect. 5, departs from the approach in [CDV15] and extends it to cover forms of unan-
ticipated adaptation, including internal and external adaptation requests. Another work derived from [CDV15]
is [CDP14] in which adaptation of multiparty protocols is coupled with mechanisms for enforcing secure infor-
mation flow and access control. As such, it is both technically and conceptually different from the framework that
we have developed in Sect. 5. Finally, the paper [DGL+14] describes a framework for programming distributed
adaptive applications. The framework relies on a language for choreographies in which adaptation is specified
following a rule-based approach.
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The work [BCD+13] develops amonitored variant of the π -calculus and equips it with a combination of static
and dynamic verification techniques based on multiparty session types. The goal is to ensure that a collection of
decentralized and possibly monitored local processes properly implement a protocol given as a global type. As
in our work, in [BCD+13] we find located processes which represent principals; a network is a set of principals
with a global queue—a global transport. The semantics of global specifications induces assertion environments
which in turn are essential to define the behavior of monitored networks: a network may performed actions
allowed by its monitor. Key properties include transparency and safety: while transparency says that a monitored
process/network behaves as an unmonitored (but well-behaved) process/network, safety says that a protocol (local
and global) is respected.

7. Concluding remarks

In this paper, we have introduced a novel approach to run-time adaptation of communicating processes whose
structured protocols adhere to a session type discipline. Our study has addressed the case of protocols abstracted
as binary sessions; as a proof of concept, we have also explored the case of adaptation in multiparty sessions with
asynchronous communication.

Our approach is based on two kinds of constructs: (i) an update process construct based on type-directed
checks and (ii) on constructs for eventful sessions, namely queues equipped with an arrival predicate. This
combination of constructs allows us to specify dynamic modifications on the behavior of session-typed processes,
therefore providing a basis for reasoning about expressive models of communication-centric systems with run-
time adaptation. We may specify what should be the content of an adaptation routine, but also when it should be
triggered. The constructs on which our approach relies are not new to this paper, but have been introduced and
throughly studied by Kouzapas et al. in a series of works [HKP+10, KYH11, KYHH16, Kou12]. Such works
investigate foundational and practical issues for eventful binary sessions; in our view, this adds significant value
to our proposal, as the key syntactic elements on which it stands have been already validated (in theory and in
practice) by previous independent studies.

The case of binary sessions represents a well-studied and representative setting, in which the distinguishing
aspects of our approach can be cleanly introduced.We identified the strictly necessary eventful process constructs
that enhance and refine the mechanisms for run-time adaptation given in [DP13a, DP15]. Adaptation requests
are handled via event detectors and queues associated to locations. Our approach enables us to specify rich
forms of updates on locations with running sessions; this is a concrete improvement with respect to [DP15], in
which updates are only allowed when locations do not enclose running sessions. To rule out update steps that
jeopardize running session protocols, we also introduced a type system that ensures communication safety and
update consistency for session programs.

Concerning our proof of concept for multiparty sessions, we described how our approach can be integrated
on top of the framework for self-adaptable multiparty, asynchronous sessions by Coppo et al. [CDV15]. In
this more general setting we may specify internal and external adaptation requests; we rely on a process model
which organizes communication and adaptation components in terms of on distributed locations. We notice that
expressing both internal and external exceptional events is useful in practice; for instance, both kinds of events
coexist in BPMN 2.0 (see, e.g., [DRMR13, Chap. 4]).

Directions for future work include validating our approach in concrete case studies and different settings.
We intend to revisit the model of supervision trees (a mechanism for fault-tolerance in Erlang) that we gave
in [DP13b]. Also, it would be interesting to explore if our approach based on events can be harmonized with
the model of security-driven adaptation that have been recently developed in [CDP14], in which read and write
violations to security policies determine adaptation events. Finally, it would be worth accommodating existing
static techniques for progress (deadlock-freedom) into our typing disciplines for run-time adaptation. We see
consistency and progress as orthogonal guarantees; we do not find major obstacles preventing an extension of
our typing systems with the existing techniques such as those developed in, e.g., [VV13, PVV14].
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Appendix A: Supplementary definitions

A.1. Structural congruence

Definition A.1 (Structural congruence) Structural congruence is the smallest congruence relation on processes
that is generated by the following laws:

P |Q≡Q |P (P |Q) |R≡P | (Q |R)
P |0≡P P≡Q if P≡αQ
(νs)0≡0 (νs)(νs′)P≡ (νs′)(νs)P

(νs)P |Q≡ (νs)(P |Q) (if s �∈ fc(Q) ∪ fn(Q)) (νs)loc[P ]≡loc[(νs)P ]

with s, s′, . . . ranges over both names and session channels. The extension of ≡ to contexts is as expected.

A.2. Coinductive subtyping and duality

For all types, define unfold(T ) by recursion on the structure of T :

unfold(μ t .T ) � unfold(T [μ t .T/t])

and unfold(T ) � T otherwise.
The following two definitions (duality relations and type simulation) are used by Definition A.4. Given an

index set I � {1, . . . ,m}, we use &{ni : Ti }i∈I and ⊕{ni : Ti }i∈I to abbreviate &{n1 : T1, . . . ,nm : Tm} and
⊕{n1 : T1, . . . ,nm : Tm}, respectively.
Definition A.2 (Duality relation) A relation R ⊆ T × T is a duality relation if (T ,S ) ∈ R implies the following
conditions:

1. If unfold(T ) � τ then unfold(S ) � σ and τ ≤C σ and σ ≤C τ .
2. If unfold(T ) � end then unfold(S ) � end.
3. If unfold(T ) �?(T2).T1 then unfold(S ) �!(S2).S1 and (T1,S1) ∈ R and T2 ≤C S2 and S2 ≤C T2.
4. If unfold(T ) � !(T2).T1 then unfold(S ) � ?(S2).S1 and (T1,S1) ∈ R and T2 ≤C S2 and S2 ≤C T2.
5. If unfold(T ) �?(τ1, . . . , τn ).T1 then unfold(S ) �?(σ1, . . . , σn ).S1 then for all i ∈ [1 . . . n], we have that

(T1,S1) ∈ R and τi ≤C σi and σi ≤C τi .
6. If unfold(T ) �!(τ1, . . . , τn ).T1 then unfold(S ) �?(σ1, . . . , σn ).S1 then for all i ∈ [1 . . .n], we have that

(T1,S1) ∈ R and τi ≤C σi and σi ≤C τi .
7. If unfold(T ) � &{n1 : T1 . . .nm : Tm} then unfold(S ) � ⊕{n1 : S1 . . .nm : Sm} and for all i ∈ [1 . . .m], we

have that (Ti ,Si ) ∈ R.
8. If unfold(T ) � ⊕{n1 : T1 . . .nm : Tm} then unfold(S ) � &{n1 : S1 . . .nm : Sm} and for all i ∈ [1 . . .m], we

have that (Ti ,Si ) ∈ R.

Definition A.3 (Type simulation) A relation R ⊆ T × T is a type simulation if (T ,S ) ∈ R implies the following
conditions:

1. If unfold(T ) � τ then unfold(S ) � σ and τ ≤B σ .
2. If unfold(T ) � end then unfold(S ) � end.
3. If unfold(T ) �?(T2).T1 then unfold(S ) �?(S2).S1 and (T1,S1) ∈ R and (T2,S2) ∈ R.
4. If unfold(T ) � !(T2).T1 then unfold(S ) � !(S2).S1 and (T1,S1) ∈ R and (S2,T2) ∈ R.

http://creativecommons.org/licenses/by/4.0/
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5. If unfold(T ) �?(τ1, . . . , τn ).T1 then unfold(S ) �?(σ1, . . . , σn ).S1 then for all i ∈ [1 . . .n], we have that
(τi , σi ) ∈ R and (T1,S1) ∈ R.

6. If unfold(T ) �!(τ1, . . . , τn ).T1 then unfold(S ) �!(σ1, . . . , σn ).S1 then for all i ∈ [1 . . . n], we have that
(σi , τi ) ∈ R and (T1,S1) ∈ R.

7. If unfold(T ) � ⊕{ni : Ti }i∈I then unfold(S ) � ⊕{nj : Sj }j∈J and I ⊆ J for all i ∈ I , we have that
(Ti ,Si ) ∈ R.

8. If unfold(T ) � &{ni : Ti }i∈I then unfold(S ) � &{nj : Sk }j∈J and J ⊆ I for all j ∈ J , we have that
(Tj ,Sj ) ∈ R.

Based on the above definitions, we can now define:

Definition A.4 (Coinductive duality and subtyping) Let T ,S be types.

• The coinductive duality relation, denoted ⊥C , is defined by T ⊥C S if and only if there exists a duality relation
R such that (T ,S ) ∈ R.

• The coinductive subtyping relation, denoted≤C, is defined byT ≤C S if and only if there exists a type simulation
S such that (T ,S ) ∈ S. The extension of ≤C to typings, written � ≤C �′, arises as expected.

Appendix B: Omitted proofs

B.1. Binary case

The following auxiliary result concerns substitutions for channels, expressions, and process variables. Observe
how the case of process variables has been relaxed so as to allow substitution with a process with “smaller”
interface (in the sense of �, cf. Definition 4.2). This extra flexibility is in line with the typing rule for located
processes (cf. Rule 〈t:Loc〉, Table 3), and will be useful later on in proofs.

Lemma B.1 (Substitution Lemma)

1. If 
 ; � � P ��, x : α; I then 
 ; � � P [κp
/x ] ��, κp : α; I.

2. If 
, x : τ ; � � P ��; I and 
 � e � τ then 
 ; � � P [e/x ] ��; I.
Proof Easily shown by induction on the structure of P . �
As reduction may occur inside contexts, in proofs it is useful to have typed contexts. These are contexts in

which the hole has associated typing information—concretely, the typing for processes which may fill in the hole.
Defining context requires a simple extension of judgments, in the following way:

H; 
 ; � � C ��; I
Intuitively, H contains the description of the type associated to the hole in C . Typing rules are extended in the
expected way. Because contexts have a single hole,H is either empty of has exactly one element.WhenH is empty,
we write 
 ; � � P ��; I instead of · ; 
 ; � � P ��; I. Two additional typing rules are required:

〈t:Hole〉 •
; ���; I ; 
 ; � � • ��; I 〈t:Fill〉 •
; ���; I ; 
 ; � � C ��1; I1 
 ; � � P ��; I

 ; � � C {P} ��1; I1

Axiom 〈t:Hole〉 allows us to introduce typed holes into contexts. In Rule 〈t:Fill〉, P is a process (it does not
have any holes), and C is a context with a hole of type 
; � � �; I. The substitution of occurrences of • in C
with P , noted C {P}, is sound as long as the typings of P coincide with those declared inH for C . We introduce
some convenient notation for typed holes.

Notation B.2 Let us use S,S ′, . . . to range over judgments attached to typed holes. This way, •S denotes the valid
typed hole associated to S � 
; � � �; I.
Lemma B.3 Let P and C be a process and a typed context such that


 ; � � C {P} ��; I
is a derivable judgment. There exist �1, I1 such that (i) 
 ; � � P ��1; I1 is a well-typed process, and (ii) �1 ⊆ �
and I1 � I.
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Lemma B.4 Let C be a context. Suppose •S ; 
 ; � � C � �C ∪ �S ; IC � IS with S � 
; � � �S ; IS is
well-typed. Let S ′ � 
; � � �S ′ ; IS ′ . Then

•S ′ ; 
 ; � � C ��C ∪�S ′ ; IC � IS ′
is a derivable judgment.

Theorem B.5 (Subject congruence) If 
 ; � � P ��; I and P ≡ Q then 
 ; � � Q ��; I.
Proof By induction on the derivation of P ≡ Q , with a case analysis on the last applied rule. �
Theorem B.6 (Subject reduction—Theorem 4.6) If 
 ; � � P � �; I with � balanced and P −→ Q then

 ; � � Q ��′; I ′, for some I ′ ⊆ I and balanced �′ such that either �′ ≤C � or � �−→ �′.

Proof By induction on the last rule applied in the reduction. We assume that e ↓ c is a type preserving operation,
for every e. We examine only a few interesting cases, namely those for session establishment, runtime update, and
intra-session communication; remaining cases are similar or simpler.

1. Case 〈r:Open〉 From Table 2 we have:

C {u(x : α).P1} | D{u(y : β).P2} −→ (νκ)
(
C {P1[κ

+
/x ] | κ+�α�} | D{P2[κ

−
/y] | κ−�β�})

with α⊥C β. By assumption 
 ; � � C {u(x : α).P1} | D{u(y : β).P2} � �; I with balanced �. Then, by
inversion on typing, using Rules 〈t:Accept〉, 〈t:Request〉, and 〈t:Par〉 we infer there exist �′, I ′ such that

(8) (9)

 ; � � C {u(x : α).P1} | D{u(y : β).P2} ��; I

where, letting � � �′
1 ∪�′

2, subtree (8) is as follows:

•S1 ; 
 ; � � C ��′
1; I ′1 � u : αlin

α ≤C α′ α′ ⊥C β ′ 
 � u � 〈α′lin, β ′lin〉 
 ; � � P1 ��1, x : α; I1

 ; � � u(x : α).P1 ��1; I1 � u : αlin


 ; � � C{u(x : α).P1} ��′
1; I ′1 � u : αlin

(8)

with

S1 � 
; � � �1; I1 � u : αlin

Then, subtree (9) is as follows:

•S2 ; 
 ; � � D ��′
2; I ′2 � u : βlin

β ≤C β ′ α′ ⊥C β ′ 
 � u � 〈αlin, βlin〉 
 ; � � P2 ��2, y : β; I2

 ; � � u(y : β).P2 ��2; I2 � u : βlin


 ; � � D{u(y : β).P2} ��′
2; I ′2 � u : βlin (9)

with

S2 � 
; � � �2; I2 � u : βlin

By Lemma B.3 we have that �1 ⊆ �′
1 and �2 ⊆ �′

2. We also infer I1 � I ′1, I2 � I ′2, and I ′ � I. Now, using
Lemma B.1(1) on judgments for P1 and P2, we obtain:

(a) 
 ; � � P1[κ
+
/x ] ��1, κ

+ : α; I1.
(b) 
 ; � � P2[κ

−
/y] ��2, κ

− : β; I2.
We may now reconstruct the derivation given in (8) using Lemma B.4 and Rule 〈t:Par〉:

(11)


 ; � � P1[κ
+
/x ] ��1, κ

+ : α; I1 
 ; � � κ+�α� � κ+ : �α�; ∅

 ; � � P1[κ

+
/x ] | κ+�α� ��1, κ

+ : α, κ+ : �α�; I1

 ; � � C {P1[κ

+
/x ] | κ+�α�} ��′

1, κ
+ : α, κ+ : �α�; I ′1 (10)

with

•S3 ; 
 ; � � C ��′
1, κ

+ : α, κ+ : �α� ; I ′1 (11)
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and

S3 � 
; � � �1, κ
+ : α, κ+ : �α�; I1.

For D , we proceed analogously from (9) and infer:

•S4 ; 
 ; � � D ��′
2, κ

− : β, κ− : �β�; I ′2 
 ; � � P2[κ
−
/y] | κ−�β� ��2, κ

− : β, κ− : �β�; I2

 ; � � D{P2[κ

−
/y] | κ−�β�} ��′

2, κ
− : β, κ− : �β�; I ′2 (12)

with

S4 � 
; � � �2, κ
− : β, κ− : �β�; I2.

We may finally derive the type for the result of the reduction: using Rules 〈t:Par〉 and 〈t:CRes〉 we obtain:
(10) (12)


 ; � � C {P1[κ
+
/x ] | κ+�α�} | D{P2[κ

−
/y] | κ−�β�}� �, κ+ : α, κ− : β,

κ+ : �α�, κ− : �β�;
I ′1 � I ′2


 ; � � (νκ)C {P1[κ
+
/x ] | κ+�α�} | D{P2[κ

−
/y] | κ−�β�} ��; I ′1 � I ′2

Notice that � is unchanged. This concludes this case.

2. Case 〈r:Upd2〉 From Table 2 we have:

C
{
loc

[
P

]} | D
{
loc

{
case x1, . . . , xm of {(βi

1; · · · ; βi
m ) : Qi }i∈I

}}
−→ C

{
loc

[
V

]} | D{
0
}

with V � Ql [κ
p
1 , . . . , κ

p
m/ x1, . . . , xm ]. By assumption we have


 ; � � C
{
loc

[
P

]} | D
{
loc

{
case x1, . . . , xm of {(βi

1; · · · ; βi
m ) : Qi }i∈I

}}
��; I

with � balanced. Then, by inversion on typing, using
Rules 〈t:Fill〉, 〈t:Par〉, 〈t:Adapt〉, and 〈t:Loc〉 we infer:

(13) (14)


 ; � � C
{
loc

[
P

]} | D
{
loc

{
case x1, . . . , xm of {(βi

1; · · · ; βi
m ) : Qi }i∈I

}}
��; I

Let � � �′
1 ∪�′

2 and I � I ′1 � I ′2, subtree (13) is as follows:

•S1 ; 
 ; � � C ��′
1; I ′1

I1 � I∗1 � � loc � I∗1 
 ; � � P1 ��1; I1

 ; � � loc

[
P

] ��1; I1

 ; � � C

{
loc

[
P

]} ��′
1; I ′1 (13)

with S1 � 
; � � �1; I1, and I1 � I ′1 (by Lemma B.3). Subtree (14) is as follows:

•S2 ; 
 ; � � D ��′
2; I ′2

� � loc � I ∀ j ∈ J , Ij � I 
 ; � � Qi � 〈x1:βj
1 〉; · · · ; 〈xm :βj

m 〉; Ij

 ; � � loc

{
case x1, . . . , xm of {(βi

1; · · · ; βi
m ) : Qi}i∈I

} � ∅; ∅

 ; � � D

{
loc

{
case x1, . . . , xm of {(βi

1; · · · ; βi
m ) : Qi }i∈I

}}
��′

2; I ′2 (14)

with S2 � 
; � � ∅; ∅. We now reconstruct the derivation after the reduction, using Rules 〈t:Par〉, 〈t:Fill〉,
and Lemma B.4. By derivation (14) we know that


 ; � � Ql � 〈x1:β l
1〉; · · · ; 〈xm :β l

m 〉; Il
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thus applying Lemma B.1(1) we have:

(16)

•S4 ; 
 ; � � D ��′
2; I ′2 
 ; � � 0 � ∅; ∅


 ; � � D{0} ��′
2; I ′2


 ; � � C {V } | D{0} ��′′
1 ∪�′

2; I ′′3 � I ′2 (15)

•S5 ; 
 ; � � C ��′′
1; I ′l 
 ; � � V � 〈x1:β l

1〉; · · · ; 〈xm :β l
m 〉; Il


 ; � � C {V } ��′′
1; I ′l (16)

with S5 � 
; � � 〈x1:β l
1〉; · · · ; 〈xm :β l

m 〉; Il . By Lemma B.3 we know Il � I ′l . Moreover by Lemma B.4,
and by application of Rule 〈r:Upd2〉 we have �′′

1 ≤C �′
1. Thus �′′

1 ∪�′
2 ≤C �. This concludes the analysis for

this case.
3. Case 〈r:Com〉 From Table 2 we have:

C
{
κ p(v ).P1 | κp�!(τ ).α�} | D{

κ p(x ).P2 | κp�?(τ ).β�} −→ C
{
P1 | κp�α�} | D{

P2[v/x ] | κp�β�}

By assumption, we have 
 ; � � C
{
κ p(v ).P1 | κp�!(τ ).α�} | D{

κ p(x ).P2 | κp�?(τ ).β�} � �; I, with �

balanced and (α⊥C β). By inversion on typing, using Rules 〈t:Fill〉, 〈t:Par〉, 〈t:In〉, and 〈t:Out〉, we infer:
(17) (19)


 ; � � C {κ p(v ).P1 | κp�!(τ ).α�} | D{κ p(x ).P2 | κp�?(τ ).β�} ��′; I ′1 � I ′2
where:

� � �′
1 ∪�′

2, κ
p :!(τ ).α, κp : �!(τ ).α�, κp :?(τ ).β, κp : �?(τ ).β�

I � I ′1 � I ′2
We have that subtree (17) is as follows:

(18)

 ; � � κp�!(τ ).α� � κp : �!(τ ).α�; ∅


 ; � � P1 ��1, κ
p : α; I1 
 � v : τ


 ; � � κp(v ).P1 ��1, κ
p :!(τ ).α; I1


 ; � � κp(v ).P1 | κp�!(τ ).α� ��1, κ
p :!(τ ).α, κp : �!(τ ).α�; I1


 ; � � C {κp(v ).P1 | κp�!(τ ).α�} ��′
1, κ

p :!(τ ).α, κp : �!(τ ).α�; I ′1 (17)

with

•S1 ; 
 ; � � C ��′
1, κ

p :!(τ ).α, κp : �!(τ ).α�I ′1; (18)

and S1 � 
; � � �1, κ
p :!(τ ).α, κp : �!(τ ).α�; I1. Similarly, for subtree (19) we obtain (we show only the last

step of the derivation):

(20) 
 ; � � κp(x ).P2 | κp�?(τ ).β� ��2, κ
p :?(τ ).β, κp : �?(τ ).β�; I2


 ; � � D{κp(x ).P2 | κp�?(τ ).β�} ��′
2, κ

p :?(τ ).β, κp : �?(τ ).β�; I ′2 (19)

with

•S2 ; 
 ; � � D ��′
2, κ

p :?(τ ).β, κp : �?(τ ).β�; I ′2 (20)

and

S2 � 
; � � �2, κ
p :?(τ ).β, κp : �?(τ ).β�; I2

where Lemma B.3 ensures �1 ⊆ �′
1, �2 ⊆ �′

2.
Now, by Lemma B.1(2) we know 
 ; � � P2[v/x ] � �2, κ

p : β; I2. Moreover by Lemma B.4(3) and Rules
〈t:Par〉 and 〈t:Fill〉 we obtain the following type derivations:

•S3 ; 
 ; � � C ��′
1, κ

p : α, κp : �α�; I ′1 
 ; � � P1 | κp�α� ��1, κ
p : α, κp : �α�; I1


 ; � � C {P1 | κp�α�} ��′
1, κ

p : α, κp : �α�; I ′1 (21)

•S4 ; 
 ; � � D ��′
2, κ

p : β, κp : �β�; I ′2 
 ; � � P2[v/x ] | κp�β� ��2, κ
p : β, κp : �β�; I2


 ; � � D{P2[v/x ] | κp�β�} ��′
2, κ

p : β, κp : �β�; I ′2 (22)
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(21) (22)


 ; � � C {P1} | D{P2[v/x ]} ��′
1 ∪�′

2, κ
p : α, κp : β, κp : �α�, κp : �β�; I ′1 � I ′2

with

S3 � 
; � � �1, κ
p : α, κp : �α�; I1

S4 � 
; � � �2, κ
p : β, κp : �β�; I2

S5 � 
; � � �′
1 ∪�′

2, κ
p : α, κp : β, κp : �α�, κp : �β�; I ′1 � I ′2

Since by inductive hypothesis �′
1 and �′

2 are balanced, we infer that �′
1 ∪�′

2, κ
p : α, κp : β is balanced as well

and � �−→ �′
1 ∪�′

2, κ
p : α, κp : β [cf. Definition 4.5(1)]. This concludes the proof for this case.

�B.2. Multiparty case

As in the binary case, the proof for multiparty sessions relies on an Inversion Lemma:

Lemma B.7 (Inversion Lemma for networks) Let P and N be a process and a network, respectively. We have:

1. If 
 �� new(G) � � then � � � � ∅.
2. If 
 �� end[[P ]] � � then � � � � ∅.
3. If 
 �� M[[P ]] � � and M �� end then � � ∅, � � κ[p] : M, 
 � P � κ[p] : T and T ∝M.
4. If 
 �� κe�h�� � then � � � � ∅.
5. If 
 �� κ : ∅� � then � � {κ} and � � ∅.
6. If 
 �� κ : (p, q, λ(v )) · h � � then � � {κ}, � ≈ �′#{κ[p] : q! λ(S )}, 
 �{κ} κ : h � �′ and 
 � v : S .
7. If 
 �� N1 | N2 � � then � � �1 ∪�2, � ≈ �1 � �2, 
 ��1 N1 � �1 and 
 ��2 N2 � �2.
8. If 
 �� (νκ)N � � then � � �′ \ {κ}, � ≈ �′ \ {κ}, and 
 ��′ N � �′ and bal(�′, κ).
9. If 
 �� loc

[
P ; loc�r�] � � then � � � � ∅, and ∀(P ,TP ) ∈ P , 
 � P � TP .

10. If 
 �� loc
[
M[[P ]]; P ; loc�r�] � � then

� � ∅, � � κ[p] : M, ∀(P ,TP ) ∈ P , 
 � P � TP and 
 �∅ M[[P ]] � κ[p] : M.

Proof Follows by the typing system definition (cf. Table 9). �
We also need to prove the Substitution Lemma that allow us to type processes with variable substitutions.

Lemma B.8 (Substitution Lemma) Let P be a process.

1. If 
 � P � T then 
 � P [κ[q]/y] � T .
2. If 
, x : S � P � T and 
 � v � S then 
, x : S � P [v/x ] � T .

Proof Easily shown by induction on the structure of P . �
Finally, the following lemma takes care of typability as preserved by Rule 〈M:Equiv〉:

Lemma B.9 (Subject congruence) If 
 �� N � � and N ≡ N ′ then 
 �� N ′ � �.

Proof By induction on the derivation of N ≡ N ′, with a case analysis on the last applied rule. �
We can finally state our main theorem:

Theorem B.10 (Subject reduction—Theorem 5.15) If 
 �� N � � with � balanced and N −→ N ′ then 
 ��

N ′ � �′, for some balanced �′ such that either � � �′ or � �−→ �′.

Proof By case analysis and induction on the reduction rules for networks (cf. Table 7). The cases can be divided
into three families:

1. Session establishment: Rule 〈N:Open〉;
2. Intra-session communication: Rules 〈N:Send〉, 〈N:Recv〉, 〈N:Tau〉, and 〈N:Inmsg〉;
3. Adaptation: Rules 〈N:InUpd〉, 〈N:Addloc1〉, 〈N:Addloc2〉, 〈N:Updloc1〉 and 〈N:Updloc2〉.
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We give the proof for each one of these families:

1. In this case N ≡ new(G) | Loc | N with Loc � ∏
p∈G locp

[
Pp; locp�ε�

]
by hypothesis and by the Inversion

Lemma we know that 
 �∅ new(G) | Loc � ∅ and 
 �� N � �. After applying Rule 〈N:Open〉 we have

N ′ ≡ (νκ)

(
∏

p∈�

locp
[
Mp[[Pp[κ[p]/y]]]; Pp; locp�ε�

] | κ : ∅ | κe�ε�
)

| N .

By hypothesis we know that 
 �� N � �. By Rules 〈M:Qinit〉 and 〈M:CQueue〉 we have 
 �κ κ : ∅� ∅ and

 �∅ κe�ε� � ∅. Now for each p ∈ � by applying the Inversion Lemma (Lemma B.7) and the substitution
Lemma (Lemma B.8) we have:

∀(P ,TP ) ∈ Pp 
 � P � TP

 �∅ P [κ[p]/y] � κ[p] : TP Mp �� end TP ∝Mp


 �∅ Mp[[P [κ[p]/y]]] � κ[p] : Mp


 �∅ locp
[
Mp[[Pp[κ[p]/y]]]; Pp; locp�ε�

] � κ[p] : Mp

Finally, we apply Rules 〈M:Par〉 and 〈M:Res〉, noticing that by Proposition 5.12 the type of
∏

p∈�

locp
[
Mp[[Pp[κ[p]/y]]]; Pp; locp�ε�

]

is balanced for κ; we then have that 
 �∅ (νκ)(
∏

p∈� locp
[
Mp[[Pp[κ[p]/y]]]; Pp; locp�ε�

] | κ : ∅ | κe�ε�) � ∅.
Thus we conclude 
 �� N ′ � � and � is unchanged thus balanced by hypothesis.

2. We consider only the case of Rule 〈N:Send〉; the other cases are similar or simpler.
We have that N ≡ E [loc

[
M[[P ]]; P ; loc�ε�] | κ : (p, q, λ(v )) · h | κe�ε�]. By Rules 〈M:QSend〉 and 〈M:Par〉

we have that


 �κ loc
[
M[[P ]]; P ; loc�ε�] | κ : (p, q, λ(v )) · h | κe�ε�� �1

with�1 � {κ[q] : M}� (�2#{κ[p] : q! λ(S )}). By hypothesis we have that there exists�0 such that� � �0 ��1
and � balanced.
By applying Lemmas B.7 and B.8 and Rule 〈<:Par〉 we have:


 �κ loc
[
M[[P ′]]; P ; loc�ε�] | κ : h | κe�ε�� �′

1

with�′
1 � {κ[q] : M′}��2, it is easy to see that�′ � �0 ��′

1 is still balanced and that� �−→ �′ [cf. Definition
5.14(1)].

3. We give details of the proof for Rules 〈N:InUpd〉 and 〈N:Updloc1〉 the other cases are similar or simpler.
– The case of Rule 〈N:InUpd〉 is similar to the one of Rule 〈N:Open〉 above. Let

N ≡ (νκ)

(
∏

p∈�

locp
[
Mp[[Pp]]; Pp; locp�ε�

] | κ : h | κe�G′�
)

|
∏

q∈�′\�
locq

[
Pq; locq�ε�

]

where �′ � part(G′). We have 
 �∅ N � ∅ and after the application of Rule 〈N:InUpd〉 we also have

N ′ ≡ (νκ)

⎛

⎝
∏

p∈�′
locp

[
M′

p[[P
′
p]]; Pp; locp�ε�

] | κ : ε | κe�ε�
⎞

⎠ |
∏

q∈�\�′
locq

[
Pq; locq�ε�

]

By Rules 〈M:Loc1〉 and 〈M:Par〉 we know that


 �ε

∏

q∈�\�′
locq

[
Pq; locq�ε�

] � ∅.

By Proposition 5.12 and as queue κ has been emptied, the type � of
∏

p∈�′ locp
[
M′

p[[P
′
p]]; Pp; locp�ε�

]
is

balanced; therefore, by applying typing rules 〈M:Par〉 and 〈M:Res〉 we can conclude 
 �∅ N ′ � ∅.
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– For Rule 〈N:Updloc1〉, let
N ≡ E [locp

[
(M[[P ]]; P ; locp�(upd : case x of {(Ti ) : Qi }i∈I )�

]
]

and 
 �� N � � with � balanced. After the application of Rule 〈N:Updloc1〉 we have
N ′ ≡ locp

[
M[[R]]; P ; locp�ε�

]
.

Now notice that the substitution of process P with R has no influence on the type of the system N ′ as the
reduction rule guarantees that the type is left unchanged (cf. premisematch∝I ({M}, {TR}). Thus 
 �� N ′��,
which concludes the proof. �
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