DOI 10.1007/s00165-016-0364-4
The Author(s) © 2016. This article is published with open access at Springerlink.com Formal Aspects

Formal Aspects of Computing (2016) 28: 325-341 Of Computing

@ CrossMark

Correctness and concurrent complexity of the
Black-White Bakery Algorithm

Wim H. Hesselink

Johann Bernoulli Institute, University of Groningen, Groningen, The Netherlands

Abstract. Lamport’s Bakery Algorithm (Commun ACM 17:453-455, 1974) implements mutual exclusion for a
fixed number of threads with the first-come first-served property. It has the disadvantage, however, that it uses
integer communication variables that can become arbitrarily large. Taubenfeld’s Black-White Bakery Algorithm
(Proceedings of the DISC. LNCS, vol 3274, pp 5670, 2004) keeps the integers bounded, and is adaptive in the
sense that the time complexity only depends on the number of competing threads, say N. The present paper offers
an assertional proof of correctness and shows that the concurrent complexity for throughput is linear in N, and
for individual progress is quadratic in N. This is proved with a bounded version of UNITY, i.c., by assertional
means.

Keywords: Mutual exclusion, FCFS, Concurrent complexity, UNITY

1. Introduction

The advent of multiprocessors and multicore architectures has revived the interest in concurrent algorithms.
Concurrent algorithms are difficult to design, however, because they can unexpectedly misbehave due to subtle
bugs or race conditions. They are almost impossible to test. Verification is not easy either, but if one has a good
proof assistant, it can be done.

A typical concurrency problem is mutual exclusion. Over the years, many mutual exclusion algorithms have
been proposed. Recently, we performed an investigation [BDH15] of 20 of these algorithms: the algorithms
were implemented and their performance compared, under both 0 and high contention. It turned out that some
algorithms for mutual exclusion based on reading and writing of atomic variables perform almost as good as
algorithms based on stronger hardware primitives. This justifies a renewed interest in the theoretical performance
analysis of these algorithms.

One of the most elegant mutual exclusion algorithms ever proposed is Lamport’s Bakery Algorithm [Lam74].
This algorithm has the so-called first-come first-served property (FCFS). In particular, it has no starvation. A
disadvantage is that it requires unbounded integers. In 2004, Taubenfeld [Tau04] proposed the so-called Black-
White Bakery Algorithm, which shares some of the good properties of the Bakery Algorithm, in particular FCFS,
but does not need unbounded integers.

Correspondence and offprint requests to: W. H. Hesselink, E-mail: w.h.hesselink@rug.nl

http://crossmark.crossref.org/dialog/?doi=10.1007/s00165-016-0364-4&domain=pdf

326 W. H. Hesselink

There are several other mutual exclusion algorithms with FCFS. The most prominent one is the algorithm of
Lycklama and Hadzilacos [LH91], with improvements in [Aral3, Hes13b, Hes15a]. These algorithms are special
in that they use only five or four shared variables per thread, and that these variables are Boolean and need not
be atomic (such variables are called safe [Lam86b], see also [LH91, Aral3, Hes13b, Hesl5a]). The price paid is
a higher concurrent complexity.

The idea of a concurrent complexity was proposed in [Hes98], in 1998. Recently, we saw that the concurrent
complexity of an algorithm can be obtained as a side product of a progress proof in UNITY logic [CM88, Mis01].
This idea was applied for the first time in our verification [Hes15a] of the mutual exclusion algorithm of Lycklama—
Hadzilacos—Aravind.

The present paper is devoted to the verification of Taubenfeld’s Black-White Bakery Algorithm for mutual
exclusion. It first transforms the algorithm in such a way that the atomic steps can be isolated. It subsequently
verifies the safety properties of the algorithm by means of invariants. Finally, the paper proves progress and
quantifies it by estimating the concurrent complexity. This proof of progress heavily relies on the safety properties
obtained first. If N is an upper bound of the number of concurrently competing threads, the result is that the
throughput, general progress, is proportional N, whereas the individual progress is proportional to N2 (see
Sect. 1.5 for definitions of these notions of progress). For the algorithm of Lycklama—Hadzilacos—Aravind these
numbers are N times as large [Hes15a]. In other words, the Black-White Bakery Algorithm is significantly less
sensitive to congestion than the LHA algorithm.

Overview

Mutual exclusion is introduced in Sect. 1.1. Section 1.2 deals with the atomicity of the commands. In Sect. 1.3,
correctness is discussed in general terms. Concurrent complexity is introduced in Sect. 1.4. The problem setting
and the resulting estimates for progress are presented in Sect. 1.5.

The algorithm is presented and discussed in Sect. 2. In Sect. 3, the algorithm is extended with an environment
and translated to a transition system amenable to formal verification. This section further contains the proofs of
the safety properties. The progress properties and the concurrent complexity are treated in Sect. 4. Conclusions
are drawn in Sect. 5.

All results in this paper about the transition system have been verified with the proof assistant PVS [OSRSCO1].
The proof script is available at [Hes15b], but this is not the focus here.

Novelty, generality, applicability

Proving safety properties by means of invariants for a transition system has been the accepted way to do it for
20 years. In our view, it is the only reliable way, but not all workers in the field seem to agree on this. The application
of bounded UNITY to prove the progress properties of the Black-White Bakery Algorithm is new. The method
was earlier applied to the LHA algorithm in [Hes15a], but not to other algorithms.

Both methods are applicable to all concurrent algorithms for shared memory systems, and also, after minor
adaptation, to algorithms for message passing systems. The bottleneck lies in how difficult the algorithm and its
verification are. A proof assistant helps, but the human user needs to understand the algorithm completely, the
proof assistant primarily helps with exhaustive case distinctions and to keep track of proof obligations.

Finally, the paper makes Taubenfeld’s algorithm better applicable, by giving a version of the algorithm (in
Fig. 1) that is closer to application code than the code of [Tau04].

1.1. Mutual exclusion

The problem of mutual exclusion was proposed in 1965 by Dijkstra [Dij65]. It can be formulated as follows.
Consider a system of concurrent threads or processes that can communicate by shared variables. From time to
time these threads need exclusive access to some shared resource. Such exclusive access is called the critical section
CS. When a thread is in the CS, other threads that need the resource must wait. Mutual exclusion is the design
of an entry and exit protocol that protects the CS so that there is never more than one thread in the CS.

1.2. Atomicity

In a concurrent system, the atomic commands of the threads are interleaved in arbitrary ways. It is therefore
important to specify the grain of atomicity of the commands. This must be done in such a way that it can be

Correctness of the Black-White Bakery Algorithm 327

respected by the implementation. According to the principle of single critical reference [0G76, (3.1)] and [AdBOO09,
p- 273], an atomic command shall read or write at most one shared variable (not both), unless it is specifically
provided by the operating system (e.g. a CAS or a semaphore action). The principle serves to forbid (e.g.) atomic
commands of the form x := x + 1 when they are not explicitly provided by the operating system. Actions on
private variables can be added to atomic commands because they never give interference.

When one has to implement an algorithm with fine-grain concurrency on hardware with a weak memory
model, one may have to insert memory fences in the code to ensure that the intended atomicity is respected by
the hardware. In Sect. 2, we describe how this can be done for the algorithm at hand.

1.3. Correctness

The correctness requirements of concurrent algorithms are distinguished in safety (no bad things happen) and
progress (eventually something good happens). In general, the safety properties are (and must be) the first
concern. For a mutual exclusion algorithm, this primarily means that there is never more than one thread in the
critical section, and that the system cannot reach a deadlock state. There are two progress requirements: general
progress, i.e. when there are threads that need to enter the critical section, eventually, some do (this is called
deadlock freedom); and individual progress: any thread that needs to enter the critical section, eventually does
so (this is called lockout freedom). Usually, the proof of progress needs several of the properties established in
the proof of safety. The more reason to treat safety first and carefully.

1.4. Concurrent complexity

In principle, progress is unquantified, but for practical purposes it is useful to know that the progress to some
well-defined goal does not take too much time. This leads to the questions of time-complexity.

Due to the many possible interleavings, it is not easy to come up with faithful time-complexity measure for
concurrent algorithms. In [Hes98, Hes15a], we proposed a concept of concurrent complexity based on “rounds”.
This concept is closely tied to UNITY of [CM88, Mis01], in the sense that, in most cases, a progress proof with
UNITY can easily be adapted to also give an upper bound of the concurrent complexity.

In the analysis of a concurrent algorithm, a transition system is constructed that models the algorithm, but
also its environment, which contains the clients of the system. One therefore needs to distinguish two kinds of
steps: the forward steps that are executed by the threads for the sake of the algorithm, and environment steps
that model uncontrolable actions of the environment. In general, the steps of an algorithm are forward steps. See
Sect. 3.3 for a more detailed discussion. Progress can be hampered by the disabling of forward steps, e.g., when
a thread needs to wait for a semaphore. In general, disabling of environment steps improves performance. The
distinction between forward steps and environment steps corresponds to Guarantee and Rely in Rely/Guarantee
approaches.

An execution fragment is a nonempty finite sequence of states such that every pair of subsequent states is
connected by a step of the transition system. Two execution fragments can be concatenated if the last state of the
first fragment equals the first state of the second fragment. An execution fragment is called a round if, for every
thread p, it either contains at least one forward step of p, or at least one state in which the forward steps of p are
disabled. Informally speaking, in a round, every thread is scheduled at least once.

Finally, the concurrent complexity n of reaching a postcondition) from a precondition P is expressed as
the assertion “P leads to () within n rounds”, notation

P Lt{n) Q.

This is defined to mean that every execution fragment that starts in a state where P holds, and that contains a
concatenation of n rounds, contains a state where) holds. This concept of leads-to-within specializes the leads-to
concept of UNITY and temporal logic.

Example. A mutual exclusion algorithm may satisfy the property
(pin Entry) Lt(9) (pin CS).

This would mean that, when some thread p is in the entry protocol, it will enter the critical section within nine
rounds. Note that the predicates p in Entry and p in CS need not be stable.

328 W. H. Hesselink

Remark. The approach implicitly requires a weak kind of scheduling fairness. There need not be a fair scheduler.
Yet, if the next forward command of some thread is never done, we cannot expect progress of this thread, and the
absence of the command may even block progress for all other threads. Therefore, in order to prove progress, we
need some assumption that enforces so-called weak fairness. This assumption is built in by the idea of rounds.

1.5. Problem setting and progress estimates

The mutual exclusion problem is traditionally modelled as follows. The threads are in an infinite loop of the form:

Thread (p) =
loop
NCS'; Entry; CS; FEuwxit
end.

Here, NCS and CS are given program fragments that stand for the noncritical section and the critical section,
respectively. NCS need not terminate, CS is guaranteed to terminate. The problem is to implement Entry and
Exit in such a way that the number of threads in CS is guaranteed to remain < 1 (mutual exclusion). Lamport
[Lam86a] also required that Exit be waitfree in the sense that every thread can pass Exit without waiting, in a
bounded number of its own steps.

The progress requirement is that, when some thread has entered Entry, eventually some thread will enter CS.
Individual progress (lockout-freedom) is the condition that, if some thread has entered Entry, eventually it will
enter CS, go through Exit, and return to NCS.

The first-come-first-served property FCFS is defined as follows [Lam74]. It is required that the program
fragment Entry is a sequential composition of two fragments Doorway and Waiting, such that Doorway is waitfree
and that, when a thread has passed Doorway, it will enter CS before any other thread that is currently not in
Entry. See Sect. 3.4 for the formalization we have used.

The Black-White Bakery (BWB) Algorithm is adaptive, in the sense that, if the number of competing threads
is bounded by a number N, the concurrent complexity is bounded by a function of N. Two kinds of concurrent
complexity are distinguished: throughput and individual progress.

Throughput is measured by a shared history variable rc (return counter) which is incremented with 1 whenever
any thread returns to NCS. Let Al be the condition that all threads are idle, i.e., at NCS. Of course, there is no
throughput when 47 holds. A linear estimate of throughput is therefore a pair of constants A, B such that, for
all i, m,

0) m<rc Lt{A-i+B) (m+i<rc Vv Al.

In words, given a number i, if the number of rounds is large enough (4 - ¢ + B) and the threads do not become all
idle, at least 4 times a thread returns to NCS. The number A is the throughput factor. The smaller it is the better
the performance of the algorithm. The number B is a kind of initial delay. According to Theorem 3 below, for
the BWB algorithm, throughput (0) holds with a throughput factor A = O(N).

Individual progress of thread p is expressed and quantified by

(1) true Lt(n) pat NCS.

This says that, from every location, thread p returns to the noncritical section within n rounds. The number n
is (an upper bound for) the individual delay. According to Theorem 4 below, for the BWB algorithm, individual
progress (1) holds with individual delay n = O(N?).

Remark. In the Formulas (0) and (1), passage of the critical section is assumed to take only one round.

2. The Black-White Bakery Algorithm

Our version of the Black-White Bakery Algorithm [Tau04, Fig. 3] is given in Fig. 1, where thread is the set of
all threads. Entry consists of the lines 22-34; Exit consists of the lines 36-38. Shared variables are written in
typewriter font, private variables are written slanted. Below, if v is a private variable, the value of v for thread p

Correctness of the Black-White Bakery Algorithm 329

outside the code is denoted by v.p. We use line numbers starting at 22 as a matter of convenience, see Sect. 3.1.

The object partic is a so-called active set, as introduced by Afek et al. [AST99]. It has three methods: join,
leave, and getset. The method getset returns a set that contains all threads that have completed their last call of
Jjoin and have not yet started leave, and that does not contain any threads that have completed /eave and have not
yet started a next call of join. Formally, the object can be regarded as a large boolean array. We come back to this
in Sect. 3.1.

Entry to the critical section is guarded by two queues, distinguished by the shared variable color : bit. In
line 25, an entering thread lines up in the queue of color. The threads in the queue of 1 — color have priority.
Thread p computes its priority /ev.p in this queue in line 26. It announces the queue chosen and its priority by
the assignment in line 27: the integer pair (p)encodes the queue thread p has chosen, mcol.p = pair(p) mod 2,
as well as its priority /ev.p = pair(p) div 2 in this queue.

In order to prevent interference between the writing of pair in line 27 and the reading of pair in lines 33, 34,
the doorway 22-29 of thread p is guarded by the boolean cho(p), just as in Lamport’s Bakery Algorithm.

The algorithm thus uses the shared variables:

color : bit;
pair:thread — nat ;
cho, partic : thread — bool.

The initial condition is
Y q € thread : cho(q) = partic(q) = false A pair(q) € {0, 1}.

Initially, color can be arbitrary. Thread p only writes the array elements pair(p), cho(p), partic(p).

The main communication variable is array pair. Thread p writes pair(p) in the lines 27 and 37. It reads
pair(thr.p) in the lines 26, 32, 33, and 34. In the lines 26, 33, 34, thread p processes the value of pair(thr) by
means of private functions fin, guardA, guardB, which also use its private variables mcol, lev, and thr. The ordering
used in guardA is the lexical ordering:

(:L",y)i(x/,y’) = <212 VvV (x:q;//\ysy/)_

In the lines 30-34, thread p waits for any other participating thread ¢/r, first to conclude its lines 24-28, next
to conclude its waiting section if thr has priority over p. After this waiting section, thread p can enter the critical
section CS. Subsequently, it resets color, but only when its private color mcol.p equals the public color.

The algorithm of Fig. 1 deviates at two points from Algorithm 3 of [Tau04]. The latter algorithm violates
the principle of single critical reference of Sect. 1.2. At the point of our line 25, it reads the shared variable color
and immediately writes the value read to the shared variable pair(p). For the sake of the verification, we need
to identify the atomic action in such a way that the principle of single critical reference is satisfied. We therefore
introduce a private variable mcol to hold the value read in line 25, and postpone the assignement to pair(p) to
line 27. A more innocent deviation is that the computation of the maximum over all threads in set/ is split in a
sequence of steps in line 26.

Note that the program now almost satisfies the principle of single critical reference: in every transition (i.e.,
at every line number) at most one shared variable is read or written, and not both. This is the reason to separate
the lines 31 and 32. Strictly speaking, line 34 violates the principle because it inspects pair(¢/r) and color. This
is allowed, however, because the thread is waiting for a disjunction: it can pass when either of the disjuncts holds.

If one has to execute the algorithm on hardware with a weak memory model, one may have to insert fences
after every write operation that is followed by a read operation. Therefore, Fig. 1 offers optional fences after the
lines 23 and 28.

Remark. For the sake of simplicity, or when the set of threads is small enough, one can remove the variable
partic and the lines 22 and 38. In the lines 24 and 29, partic must then be replaced by the set thread of all
threads. The result is more or less equivalent to Fig. 2 of [Tau04].

330 W. H. Hesselink

Thread(p : thread) =
set1, set2 : set[thread] ,
mcol : bit, lev : posnat, thr : thread ;
22 join(partic) ;
23 cho(p) := true ; (fence) ;
24 setl := getset(partic) — {p} ;
25 mcol := color; lev:=1;
26 for each thr € setl do lev := max(lev, fn(pair(thr))) endfor ;
27 pair(p) := 2 - lev + mcol ;
28 cho(p) := false ; (fence) ;
29 set2 := getset(partic) — {p} ;
30 for each thr € set2 do

31 await — cho(thr) ;
32 if pair(thr) mod 2 = mcol then
33 await guardA(pair(thr)) ;
else
34 await guardB(pair(thr)) V color # mcol ;
endif ;
endfor ;
35 CS ;
36 color :=1— mcol ;

37 pair(p) := mcol ;
38 leave(partic) ;
where
fa(n) =1+ (n mod 2 = mcol? n div 2: 0),
guardA(n) = (n div 2=0 V n mod 2 # mcol V (lev,p) < (n div 2, thr)) ,
guardB(n) = (n div 2=0 V n mod 2 = mcol) .

Fig. 1. Taubenfeld’s Black-White Bakery Algorithm

3. Verification of safety

In order to verify the BWB algorithm, it is modelled as a transition system with a global state that comprises the
values of all shared and private variables, including program counters. In this system, the threads perform steps
in arbitrary order. This transition system is then used to prove the relevant safety and liveness properties.

The transition system is developed in Sect. 3.1. Section 3.2 contains the proof of mutual exclusion. Absence
of deadlock states is proved in Sect. 3.3. The FCFS property is proved in Sect. 3.4. In Sect. 3.5, it is proved that
the communication variables can remain bounded.

3.1. The transition system

The program of Fig. 1 is extended and transformed into the transition system of Fig. 2. This is a formalization
step, not subject to verification by PVS. Indeed, Fig. 2 is the starting point of the PVS verification.

First, at line 21, a noncritical section NCS has been added, where thread p resides initially. This is also the
location thread p goes back to after line 38. The decision at NCS to aim at the critical section and to go to line
22 is an environment step because it is done by the client of the system.

During the design and verification of an algorithm, we occasionally have to change line numbers and numbered
invariants. To avoid introducing mistakes in the PVS proof when modifying the files with query-replace, we use
line numbers of two digits. Therefore, in Fig. 2, the transitions are numbered from 21 onward (the choice of 21 is
arbitrary). Every thread has a private variable pc that holds the current line number. Every transition of thread

Correctness of the Black-White Bakery Algorithm 331

p implicitly increments pc.p, unless this is overridden by a branch or goto instruction.

We thus use the line numbers to refer to the steps of the algorithm. We distinguish the steps at line 26 into
step 26B, the execution of the loop body (which does not change pc), and step 26E, the jump to line 27 when
setl is empty. Similarly, step 30B goes to line 31, while step 30E jumps to line 35 when sez2 is empty. Note that,
in Fig. 2, the variables set/ and set2 change in the loop bodies: they now serve to hold the threads for which the
loop body has yet to be executed.

In order to verify the FCFS property, we let thread p register, when it becomes competing, the threads that
it must give priority to in the ghost variable predec(p). When p leaves the CS, it disclaims all its priorities by
removing itself from the sets predec(q). When thread p becomes idle again, in line 38, it increments a private
ghost variable c¢nt.p. We come back to this below in the Sects. 3.4 and 4.3, respectively.

In lines 22 and 38, the operations join and leave are modelled as a flickering assignments of true and false,
respectively. Such a flickering assignment

partic(p) := (flickering) F;
is modelled as a repeated nondeterministic choice

£: (partic(p) := arbitrary; goto ¢ ;
[partic(p):= E).

Formally, fairness is used to imply that this repetition terminates. This treatment of the set partic as a safe variable
in the sense of Lamport [Lam86b] precisely captures the properties postulated in Sect. 2. See also [Hes13a, Section
1.4].

For the ease of verification, the array pair is split into arrays col and num with

pair(q) =2 -num(q) + col(q) A num(q) e N A col(q) € {0, 1}.

Therefore, line 27 now holds a concurrent assignment to fields of these arrays, and line 37 only resets num(p).

3.2. Proof of mutual exclusion

Mutual exclusion is the property that there are never more than one thread in the CS, i.e., if thread ¢ is in CS,
any thread (say r) in CS equals ¢:

MX: ginCS A rinCS = ¢g=r.

Implicitly, by postulating such an invariant, we mean that it should hold for all values of the free variables (here
g and 7).

Remark. Predicate MX expresses mutual exclusion in an idealized environment. One may employ a
Rely/Guarantee framework (e.g. [NLWSDI14]) to express how clients of the data structure can benefit from
this. This falls out of the scope of this paper, and it would be the same for almost all mutual exclusion algorithms.

In the invariants, we use ¢ (and r) as free variables of type thread. In the discussion, we use p for the acting
thread, because an invariant about ¢ (and) can be falsified by actions of any thread p. Of course, p, ¢, r always
range over all threads, and equalities between them are not excluded.

In order to prove that M X is indeed invariant, we need to establish quite a number of other invariants. There
are two ways of finding invariants: either bottom-up by looking at the algorithm, or top-down by weakening the
required invariant (here M X). For the present algorithm, we begin with a bottom-up approach.

As thread ¢ is the only one that writes the fields partic(q), cho(q), num(q), col(q), we clearly have the
invariants

140: qgin{23...37} = partic(g),

Iql: qin {24...28} = cho(g),

Iq2: qin {28...37} = num(q) =lev.q > 0,
1q3: gin{28...} = col(q) = mcol.q.

Similarly, the variables set/ and set2 satisfy the invariants

Ig4: qgin{27...} = setl.q =40,
Ig5: gin{35...} = set2.q = 0.

332 W. H. Hesselink

Thread(p : thread) =
21 NCS ; predec(p) :={q|¢in {30...35} } ;
22 partic(p) := (flickering) true ;
23 cho(p) := true ;
24 setl := partic — {p} ;
25 mcol := color; lev:=1;
26 while exists thr € setl do
if col(thr) = mcol A lev < num(thr)
then lev := num(thr) + 1 endif ;
remove thr from setl ;
endwhile ;
27 num(p) := lev ; col(p) := mcol ;
28 cho(p) := false ;
29 set2 := partic — {p} ;
30 while exists thr € set2 do

31 await —cho(thr) ;
32 if col(thr) = mcol then
33 await num(thr) =0 V col(thr) # mcol

V (lev,p) < (num(thr), thr) ;
remove thr from set?2 ;

else
34 await num(thr) =0 V col(thr) = mcol V color # mcol ;
remove thr from set?2 ;
endif ;
endwhile ;
35 CS ; for each g do remove p from predec(q) endfor ;
36 color := 1 — mcol ;

37 num(p) :=0 ;
38 partic(p) := (flickering) false ; cnt := cnt + 1 ; goto 21 .

Fig. 2. The transition system

After this preparation, we take a top-down approach. As announced, the competing threads ¢ with mcol.q #
color have priority over those with mcol.q = color. This may suggest the predicate

JqgOa: gin{35...37} A rin{26...37} A mcol.q = color
= mcol.r = color.

This predicate easily follows from 7q5 and the postulate

Jq0: qin{30...37} A rin{26...37} A mcol.q = color
= mcol.r = color V r € set2.q.

We turn to the proof that Jq0 is indeed an invariant. This proof was constructed using the proof assistant
PVS. It requires human creativity to invent or generalize invariants, but the proof assistant is needed to verify
obvious steps, to handle the numerous case distinctions, and to list proof obligations.

Initially both threads ¢ and r are at line 21, so that J¢0 holds. Predicate Jq0 is threatened only by the steps 29,
33, 34, and 36. This means that, for all other steps of the transition system, the precondition Jg0 implies that Jg0
also holds in the postcondition. For the steps mentioned, we need additional information about the precondition
to infer Jg0 in the postcondition. Step 29 preserves Jg0 because of I¢0. Step 33 preserves Jg0 because of the new
postulate

Jql: gat33 A thr.qin{26...37} A mcol.q = color
= mcol.(thr.q) = color.

Correctness of the Black-White Bakery Algorithm 333

Step 34 preserves Jg0 because of Ig2, I¢3, and the new postulate

Jq2: qgin{32...34} A thr.qin{26...28} A mcol.q = color
= mcol.(thr.q) = color.

Indeed, step 34 threatens Jg0 only when thread ¢ does the step and r = thr.q, while r is in 26-37 and mcol.q =
color # mcol.r. Then Iq2 implies num(r) > 0 and Ig3 implies col(r) = mcol.r, and hence col(r) # mcol.q. It
follows that the guard of step 34 is false, and the step cannot be taken.

Step 36 of thread p preserves Jq0 for ¢ and r because of Ig5 and Jq0. Indeed, step 36 of thread p threatens
Jq0 for ¢ and r only when p is at 36 and modifies color, and ¢ is in 30-37 with mcol.q # color. As p modifies
color, it has mcol.p = color. Therefore, Jq0 for p and ¢ implies that ¢ € set2.p, contradicting Ig5.

Predicate Jg! is threatened only by the steps 32 and 36. It is preserved by step 32 because of /g3 and Jg2,
and by step 36 because of I¢5 and Jg0. Similarly, predicate J¢2 is threatened only by the steps 31 and 36. It is
preserved by step 31 because of Ig/, and by step 36 because of I¢5 and Jq0.

This concludes the proof of preservation of Jg0, and hence of JgOa. Predicate Jq0a implies that if threads ¢
and r are both in 35-37, then mcolq = mcol.r. It therefore remains to consider threads near CS with the same
private colors. At this point, the algorithm is very similar to the Bakery Algorithm, see [Lam74] or e.g. [Hes13a].

We postulate the invariant

Jg3: qin{30...37} A rin{28...37} A mcol.q = mcol.r
= (num(q), ¢) < (num(r), r) V r € set2.q.

Predicate Jq3 is threatened only by the steps 27, 29, 33, and 34. It is preserved by step 27 because Iq2, I¢4,
and the new postulate

Jqg4: qin {30...37} A rin{26,27} A mcol.q = mcol.r
= num(q) <lev.r Vv reset2.q Vv q € setl.r.

Predicate Jg3 is preserved by step 29 because of Ig0. It is preserved by step 33 because of /g2 and Ig3. It is
preserved by step 34 because of the new postulate

Jg5: gat34 A thr.qin{28...37} A mcol.q = mcol.(thr.q)
= num(q) < nun(thr.q).

Predicate Jg4 is threatened only by the steps 25, 26B, 29, 33, and 34. It is preserved by step 25 because of the
new postulate

Jgb6: qin{30...37} A rat25 = reset2.q Vv qe€ setl.r.

It is preserved by step 26B because of Ig3, by step 29 because of I¢0, and by the steps 33 and 34 because of the
new postulate

Jq7: qgin{32...34} A thr.qin{26,27} A mcol.q = mcol.(thr.q)
= num(q) < lev.(thr.q) Vv q € setl.(thr.q).

Predicate Jg5 is threatened only by the steps 27 and 32. It is preserved by step 27 because of I¢g4 and Jg7, and
by step 32 because of Ig3.

Predicate Jg6 is threatened only by the steps 24, 29, 33, 34. It is preserved by the steps 24 and 29 because of
1q0. 1t is preserved by the steps 33 and 34 because of the new postulate

Jg8: qin{32...34} A thr.qat25 = gq € setl.(thr.q).

Predicate Jg7 is threatened only by the steps 25, 26B, 31. It is preserved by step 25 because of Jg8. It is
preserved by step 26B because of I¢3. It is preserved by step 31 because of Ig!.

Predicate Jg8 is threatened only by the steps 24 and 31. It is preserved by step 24 because of /g0, and by step
31 because of Iql.

This concludes the proof of preservation of J¢3. The invariants Jq0, Ig5, and J¢3 together imply

MXX: qin{35...37) A rin{35...37}) = q=r.

This says that mutual exclusion holds in the region 35-37, and in particular in CS (line 35). Therefore M XX
implies mutual exclusion M X. This concludes the proof of mutual exclusion.

334 W. H. Hesselink

3.3. Absence of deadlock

A thread is said to be idle iff it is at line 21. A thread is said to be competing ift it is in 22-38. A step of the
transition system is called a forward step if it starts in one of the lines 22-38 and either modifies pc or modifies
the private variable set/ (in case of line 26). A thread is said to be enabled if it can do a forward step.

The step from lines 21 to 22 is not a forward step but an environment step because this step is not part of the
system that provides mutual exclusion, but it is done by a process using the system when it needs access to the
critical section.

Note that idle threads cannot do forward steps, and that the only non-forward steps of a competing thread
are flickering steps at lines 22 and 38.

It is easy to verify that thread p is enabled if and only if it satisfies the predicate

pin{22...38}

(pat31 = —cho(r))

(pat33 = num(r) =0V col(r) # mcol.p

Vv (lev.p, p) < (num(r),))

A (pat34 = nun(r) =0V col(r) = mcol.p V mcol.p # color)
where r = thr.p.

ena(p)

> >

The transition system is said to be in deadlock iff there are competing threads and no (competing) thread can
do a forward step. Absence of deadlock means that deadlock states are not reachable.
In order to prove absence of deadlock, we observe the following obvious invariants:

Kq0: gin{21...38},
Kql: cho(q) = q¢in{24...28},
Kq2: num(q) > 0 = ¢in{28...37}.

Theorem 1 Absence of deadlock. Assume that there are no enabled threads. Then all threads are idle.

Proof As there are no enabled threads, it follows from ena and KqO that all threads are at the lines 21, 31, 33, or
34. By Kql1, it follows that cho(q) is false for all threads ¢, so that all threads at line 31 are enabled. Therefore all
threads are at the lines 21, 33, 34.

For every thread p at line 34, we have that p is not enabled, so that thread r = thr.p satsfies num(r) > 0 and
col(r) # mcol.p = color; by Kq2 and Ig3, this implies that r is at line 33 and has col(r) # color.

It follows that, if there is a thread at line 34, then the set

S0={r|rat33 A col(r)## color}

is nonempty. Let ¢ € SO be the minimal element for the lexical ordering, i.e., (num(q), ¢) < (num(r), r) for all
r € S0. As thread ¢ is disabled and at line 33, the thread r = thr.q satisfies num(r) > 0 and col(r) = mcol.q.
By Kq2, 142, 143, and the previous paragraph, it follows that € S0, and hence (num(q), ¢) < (num(r), r), so that
thread ¢ is enabled (by /¢2). This proves there are no threads at line 34. Therefore all threads are at the lines 21
or 33.

Now consider the set S1 = {r | r at 33}. If this set is nonempty, let ¢ be the minimal element of this set for
the lexical order. By the arguments of the previous paragraph, again, thread ¢ is enabled. This implies that S1 is
empty. Therefore all threads are at line 21, i.e., they are idle. a

3.4. First-come first-served

The first-come first-served property (FCFS) must be distinguished from first-in first-out (FIFO). The point is
that, in almost all mutual exclusion algorithms, the moment of “first-in” cannot be communicated between the
threads. The first-come first-served property is therefore defined by Lamport [Lam86b] in the following way. It is
required that the entry part of the protocol is a sequential composition of two fragments Doorway and Waiting,
such that Doorway is waitfree and that, when a thread has passed Doorway, it will enter CS before any other
thread that is currently not in Entry.

In our case, Doorway is the frament of the lines 22-29, which is indeed waitfree, and Waiting is the loop
30-34. The ghost variable predec (set of predecessors) is introduced to verify FCFS. Any thread p that enters

Correctness of the Black-White Bakery Algorithm 335

Doorway at line 21, registers all threads in 30-35 in predec(p). Every thread that exits CS removes itself from all
sets predec(q). Now FCFS is expressed by the condition that any thread ¢ cannot exit Waiting before predec(q)
is empty, as formalized in the predicate

FCFS: gin{35...} = predec(q) = 0.
In order to prove predicate FCFS, we observe that it is logically implied by I¢5 and the new postulate
Lq0: qin {30...} = predec(q) C set2.q.

Predicate Lq0 is threatened only by the steps 29, 33, and 34. It is preserved by step 29 because of I¢0 and the
new postulate

Lql: r € predec(q) = rin{30...35}.
It is preserved by step 33 because of Iq2, Iq4, Lql, and the new postulates

Lq2: r € predec(q) A ¢in{26...} A col(r)=mecol.q
= nun(r) <lev.q VvV r € setl.q,
Lqg3: thr.q € predec(q) A qat33 = col(thr.q) = mcol.q.

Indeed, step 33 threatens Lqg0 only when ¢ does the step and r = thr.q € predec(q). Then Lql implies that r
is in 30-35, and /g2 implies num(r) > 0. L¢3 implies col(r) = mcol.q. Therefore Lg2 together with Ig4 imply
num(r) < /ev.q. It follows that the guard of step 33 of ¢ is false.

Predicate Lq0 is preserved by step 34 because of I¢2, Lql, and the new postulate

Lqg4: thr.q € predec(q) A q at 34
= col(thr.q) # mcol.q A mcol.q = color.

Predicate Lg! is inductive. It holds initially and is preserved in every step.
Predicate Lq?2 is threatened only by the steps 25 and 27. It is preserved by step 25 because of the new postulate

Lg5: r € predec(q) A gat25 = r € setl.q.

It is preserved by step 27 because of Lgl.

Predicate L¢3 is threatened only by step 27, and it is preserved because of Lgl.

Predicate Lg4 is threatened only by the steps 27, 32, 36. It is preserved by step 27 because of Lg!. It is preserved
by step 32 because of the new postulate

Lqgb6: r € predec(q) A qin{26...} = col(r) =mcol.q V color = mcol.q.

Predicate Lg4 is preserved by step 36 because of 143, Ig5, Jq0, and Lql.

Predicate Lg5 is threatened only by step 24. It is preserved because of I¢0 and Lgl.

Predicate Lg6 is threatened only by the steps 27 and 36. It is preserved by step 27 because of Lg!. It is preserved
by step 36 because of g3, Iq5, Jq0, and Lql.

This concludes the proof of the invariants Lg*, and thus of FCFS.

3.5. Bounding the tickets

The Black-White Bakery Algorithm was designed as a remedy for the unbounded integers needed in the original
Bakery Algorithm [Lam74]. This is verified by the next result.

Theorem 2 Assume that the number of competing threads is always bounded by some number N. Then the tickets
num(q) are also bounded by N.

Proof In order to prove this, the transition system is parametrized with the number N, and step 21 is forbidden
whenever there are N competing threads (i.e., threads not at line 21). This implies the invariant

MqO: Hcompeting < N.

336 W. H. Hesselink

The theorem is proved by distinguishing the threads that hold the current color from those that do not. For
the first class, we define the set

TCol ={q| qin{28...37} A mcol.q = color},
and postulate the invariant
Mql: mcol.q = color = num(q) < #7TCol.

Predicate Mgl is threatened only by the steps 25, 27, 36, 37. It is preserved by step 25 because of Kg2. It is
preserved by step 27 because of the new postulate

Mq2: mcol.q = color A ¢in{26,27} = lev.q < #TCol + 1.

Note that when thread ¢ satisfies the antecedent of M¢g2 and executes step 27, it sets num(q) := /ev.q, but it also
enters the set 7'Col and hence increments #7 Col.

Predicate Mgl is preserved by step 36 because of I¢5, Jq0, Kq2. 1t is preserved by step 37 because of /g3 and
the new postulate

Mqg3: qat37 = mcol.q # color.

Predicate Mq?2 is threatened only by the steps 26B, 36, 37. It is preserved by step 26B because of /g3, Kg2,
and Mgl. It is preserved by step 36 because of Ig5 and Jq0. It is preserved by step 37 because of M¢3.

Predicate Mg3 is threatened only by step 36. It is preserved because of M XX (this was the reason for intro-
ducing MXX next to MX).

For the second class, we define the set

NCol ={q| qin {26,27} A mcol.q # color},
and postulate the invariant
Mqg4: mcol.q # color = num(q) +#NCol < N.
Predicate M4 is threatened only by the steps 27 and 36. It is preserved by step 27 because of the new postulate
Mg5: mcol.q # color A qin{26,27} = lev.q+#NCol < N + 1.

It is preserved by step 36 because of Mqg0 and Mgql.

Predicate Mgq5 is threatened only by the steps 26B and 36. It is preserved by step 26B because of I¢3, K¢2, and
Mqg4. 1t is preserved by step 36 because of Mqg0 and Mq2. Finally, the predicates Mq0, Mql, and Mg4 together
imply num(¢) < N. This proves the theorem. O

It follows that pair(g) < 2- N + 1 always holds.

4. Progress

Progress of the algorithm is expressed in operational semantics, presented in Sect. 4.1. The operational progress
assertions, however, are not proved by operational arguments but by means of “bounded UNITY” [Hesl5a],
presented in Sect. 4.2.

We proceed with an investigation of the quantitative throughput in Sect. 4.3, and of individual progress in
Sect. 4.4, both under the assumption of Sect. 3.5 that the number of competing threads is bounded by N.

4.1. Formal operational semantics

The state of the system is given by the values of all shared and private variables. Usually, we prefer to keep the
state implicit, but formally all invariants are boolean functions of the state. We let X be the set of all states. If P
is a predicate on the state, it is also regarded as the subset of X where predicate P holds. P C @ therefore means
that every state that satisfies P also satisfies @ (i.e. that P implies Q). Let start be the initial predicate, i.e., the set
of initial states.

Correctness of the Black-White Bakery Algorithm 337

For thread p, relation step(p) is defined as the set of the pairs (x, y) of states such that in state x thread p
can do a step of the algorithm that results in state y. Relation step is defined as the union of the relations step(p)
for all threads p, together with the identity relation of the state space. An execution is defined to be an infinite
sequence xs of states with xsy € start, and (xs,, xXs,+1) € step for all n € N. A predicate P is an invariant if and
only if it contains all states of all executions. We write Xy C X for the intersection of all invariants obtained. So
this is the set of the states that satisfy all invariants obtained in Sect. 3.

An execution fragment of length n > 0is a nonempty finite sequence (xsy . . . xs,,) in X such that (xs;, xs;+1) €
step forall i with 0 < ¢ < n. Two execution fragments can be concatenated when the final state of the first fragment
equals the initial state of the second fragment.

Coming back to the algorithm, recall from Sect. 3.3 that the forward steps are defined to be the steps 22-38
that modify pc or setl. Relation fwd(p) C step(p) is defined to be the set of forward steps of thread p. Thread
p is therefore enabled in state x if and only if there is a state y with (z, y) € fwd(p). Recall that enabledness is
expressed by the predicate ena(p).

An occurrence of thread p in an execution fragment (xsp...xs,) is a number ¢ with 0 < ¢ < n, and
(xs;, x8;+1) € fwd(p) or xs; ¢ ena(p). The execution fragment is called a round if it contains an occurrence
of every thread. In other words, in the fragment, every thread is scheduled, and either executed or found to be
disabled. This applies, e.g., when thread p is always at line 21.

Progress of the algorithm will be proved under the assumption that all threads do enough forward steps unless
they are disabled. More precisely, progress will be proved for any execution fragment that contains a concatenation
of sufficiently many rounds.

4.2. unNITY and bounded uUNITY

UNITY logic [CM88, Mis01]is a way to systematically prove assertions of the form P leads to () (notation P — (@),
meaning “if P holds at any time ¢ during a computation, ¢ will hold at some time ¢ > ¢”.

Example. Individual progress of the algorithm means that a thread, say p, in the entry protocol, will eventually
reach the critical section at line 35. This is expressed by: p in {22...34} — p at 35. O

UNITY logic begins with defining two relations, co and co!, between predicates:

PcoQ = V(z,y)estep:zeP = yeQ,
PceolQ=dr:PCena(r) n (V(z,y) € fwd(r):z € P = y e Q).

P co @ means that every step that starts in P ends in @. According to co!, there is a specific thread r that is
able to establish Q.
UNITY logic is based on the relations unless and ensures defined by:

Punless Q = (PA—-Q A Xog)co(P V Q),
Pensures Q = (Punless Q) A (P A—Q A Xp)co! Q).

UNITY'’s leads-to relation + is defined inductively by the three rules:

° P ensures () implies P — Q.
Relation — is transitive.
° For any family (P;);c;, if P;— Qforallie I,then(3 iel: P)— Q.

Bounded UNITY is a version of UNITY in which the leads-to relation is quantified by a natural number: P
leads to Q within n rounds, notation P Lt (n) @, is defined to mean that every execution fragment that contains
a concatenation of n rounds and has its initial state in P, contains a state in (). The basic proof rules are

If P C @, then P Lt (n) @Q for every n > 0.

P ensures () implies P Lt (1) Q.

If P Lt(k) Q and Q Lt(m) R, then P Lt (k + m) R.
For any family (P;);es, if P; Lt(n) Q forall i € I,
then(3 iel: P;)Lt{n) Q.

The first rule is called the subset rule, the second one is the ensures rule, the third one is called transitivity, and
the fourth one is called the Disjunction Rule.

338 W. H. Hesselink

There is also the Progress-Safety-Progress Rule [CM8S]:
PSP: (P Lt{n) Q) A (Aunless M) = (P A A)Lt(n) ((Q A A) Vv M).

The soundness of these proof rules has been proved mechanically [Hesl5a]. The set of proof rules is not
complete, but they are enough for the present purposes.

Some progress properties are easily expressed by means of a numerical measure. For instance, as discussed
in Sect. 1.5, the throughput of a mutual exclusion algorithm can be expressed by the growth of the sum rc, see
Formula (0). We develop a small theory to estimate the growth of such a function.

A numerical state function vf: X — Z is called a forward measure if it satisfies the following three require-
ments:

(2) (z,y)estep Az e Xy = vi(z) < vf(y),
(z,y) € fwd(p) Az € Xo = vf(z) <vf(y),
(z,y) € step Az € ena(p)N Xy = y € ena(p) vV vi(z) < vf(y).

The importance of a forward measure v/ is that it is guaranteed to grow with the number of rounds, unless all
threads are disabled, in the sense that

3) m < vf Lt(n) (m+n<vf v =3p:ena(p))).

Useful progress properties are rarely coupled directly to the number of rounds. It can happen, however, that
a useful progress property is measured by an integer valued state function svf that is proportional to a forward
measure v/, via

4) F-sof <vf<F-suof +D,

for some factor F' > 0 and some delay D > 0.
If the Formulas (3) and (4) hold, they imply that

(5) m<svf Lt(F-i+D—F) (m+i<svf v =(Ap:ena(p))).

Roughly speaking, this says that svf* grows in n rounds with at least (n — D)/F'. In the limit where the initial
delay D counts no longer, sv/* grows at least with a speed F~!.

4.3. Throughput

The throughput of the algorithm is defined as the number of times threads come back to the noncritical section.
To measure this, a private ghost variable ¢nt.p is introduced which is incremented in line 38, see Fig. 2. The
throughput during an execution fragment is the growth of the sum rc = 3 cnt.p over all threads p, see Sect.
L.5.

Before analysing the growth of rc, we note some more invariants. As announded, we assume the invariant
Mq0 of Sect. 3.5. It is easy to see that this implies

MgOa: qin{23...37} = #(partic—{¢}) < N —1.

Using this, it is easy to verify the invariants

Nq0: qgin{25...} = #setl.q < N —1,
Nql: qgin{30...} = #set2.q< N — 1.
We also need the obvious invariants

Nq2: qgin{31...34} = thr.q € set2.q,
Nq3: q & predec(q).

The steps of thread ¢ are counted approximately by the function

Ivf(q) = pc.q —21
+ (pc.q > 257 N — 1 — #setl.q)
+4.(pc.g >307 N —1—#set2.q)
—(pc.q>3574:(pc.q =3471:0)).

Correctness of the Black-White Bakery Algorithm 339

It follows from Kq0, Nq0, Nql, that Ivf is bounded by
0 <lvf(q) < A where A=5-N+09.

The function /vf{q) increases under most steps of thread ¢. More precisely, it decreases under step 38, it
remains constant under the flickering steps of lines 22 and 38, and it increases in all other steps. For the steps 24
and 29, this follows from Mg0a. For the backward jumps from the lines 33 and 34 to line 30, it follows from Ng2.
All steps of threads # ¢ leave [vf(q) constant.

The function /vf" is connected to the ghost variable ¢nt in the function

avf(q) = vf(q) + A - ent.q.
The bounds on /vf immediately imply
A-cent.g <avflq) < A-(ent.q +1).

Function avf{q) remains constant under the flickering steps of the lines 22 and 38, and it increases under all other
steps of thread ¢. This holds in particular for step 38. of thread ¢ because of the bounds for /vf. All steps of
threads # ¢ leave avf(q) constant.

The sum Savf = > , @vf (¢) now satisfies the bounds

(6) A-rc<Savyf <A-rcq+(A-1)-N.

The lefthand inequality is easy. The righthand inequality follows from Mg0 and the fact that /vf(¢q) = 0 when ¢
is not competing.

The function Savf remains constant under the flickering steps, and it increases under all other steps of all
threads. If thread p is enabled and it does a flickering step, it remains enabled. Therefore, function Savf is a
forward measure, see Formula (2). By Formula (6), function rc is proportional to Savf with factor A and delay
(A—1)- N +1. According to Theorem 1, when there are no enabled threads, all threads are idle. This means that

—(3p :ena(p) N Xy C A1,
where A1 is the condition that all threads are idle. Therefore, Formula (5) implies:
Theorem 3 Let B=(A—1)-(N —1). Then

m<rc Lt(A-i+B) (m+i<rc v Al).

In other words, the algorithm has a throughput factor A = 5. N + 9, linear in N; and throughput delay
B=(A-1)-(N-1).

4.4. Individual progress

As the algorithm satisfies FCFS, individual progress follows from general progress, just as in the case of the
algorithm of Lycklama—Hadzilacos—Aravind [Hes15a]. The key step is an application of the PSP rule.

The problem is to guarantee that a thread ¢ in the region 30-35 eventually leaves this region. If it does not, all
newly entering threads r will collect and keep ¢ in predec(r). By FCFS, such threads cannot reach the critical
section. This should contradict Theorem 3. To formalize this argument, consider the predicate WF(q, m) given
by

WF(q, m)=(qin{30...35} A rc+#NP = m), where
NP ={r|rin{22...} A q & predec(r)}.

While thread ¢ remains in 30-35, no thread r can enter NP, because when r enters {22.. .. }, it puts ¢ into predec(r).
Thread r can only leave NP by executing line 38, i.e., by incrementing rc. Conversely, when thread r increments
rc, it executes line 38 and therefore leaves the set NP because of FCFS. This proves that

WF(q, m) unless (qin {36...38)}).
Theorem 3 withi:= N, m:=m — N,andn; ;= A-N+(A—1)-(N —1) gives
(m—N <rc) Lt(n)) (m<rc v AI).

340 W. H. Hesselink

Application of the PSP rule to these two formulas gives
(7) WF(q, m) Lt{n;) (qgin{36...38}).

In fact, the lefthand side of the PSP rule simplifies because WF(q, m) C (m — N < rc) by Mq0. In the righthand
side of the PSP rule, we have

(m<rc v AI) A WF(q,m)) = @

because, if ¢ is in 30-35, then ¢ is not idle and ¢ € NP by N¢3.
By the Disjunction Rule, Formula (4.4) for all m gives

(¢in {30...35}) Lt(n;) (¢in{36...38}).
It is more or less a matter of counting steps, to obtain the leads-to assertions

(¢in{36...38}) Lt(3) (¢at2l),
(¢in{22...29)) Lt(N +7) (gin{30...35)).

Asn;+3+(N+7) =10-N?+13. N + 2, the combination of the last three leads-to assertions by means of
transitivity and disjunction gives the result on individual progress:

Theorem 4 true Lt (10- N>+ 13- N +2) (¢ at 21).
So, the individual delay is bounded by 10 - N + 13 - N + 2 and is therefore of order O(N?).

5. In conclusion

All assertions in this paper about the transition system of Sect. 3 have been proved with the proof assistant
PVS [OSRSCO01]. The starting point is a formal description in PVS of Fig. 2 in relational semantics. PVS helps
primarily with exhaustive case distinctions and the administration of the proof obligations. How this can be done
and our experiences with this proof assistant are described in [Hes13a]. The proof script for the present paper is
available on [Hes15b].

The safety properties of the algorithm, mutual exclusion, absence of deadlock, FCFS, boundedness of the
tickets, are all proved by means of invariants, as is usual. It is much work, but with experience and a powerful
proof assistant it can be done.

The treatment of progress is more innovative. The numerical quantification in the Theorems 3 and 4 does not
require much more effort than a standard UNITY proof for the corresponding progress assertions. The UNITY
proof seems to be easier than a temporal logic proof such as given in [Hes13a], primarily because the UNITY
concepts ensures and leads-to are more intuitive than sets of executions can ever be.

The result is that the Black-White Bakery Algorithm has a throughput factor linear in N, and individual delay
quadraticin N. This can also be proved for the ordinary Bakery Algorithm. It can be compared with the result of
[Hes15a] for the algorithm of Lycklama—Hadzilacos—Aravind: there the throughput factor is quadratic in N and
the individual delay is cubic in N. On the other hand, we conjecture that the tournament algorithm Peterson-Buhr
of [BDH15, Section 18.6] has a throughput factor logarithmic in N and individual delay linear in N.

If one wants to implement the Black-White Bakery Algorithm for a fixed and modest number of threads, the
active set partic can be removed from the algorithm of Fig. 1. This means removal of the lines 22 and 38, and
replacing getset(partic) by thread in the lines 24 and 29.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and repro-
duction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were made.

References

[AdBO09] Apt KR, de Boer FS, Olderog E-R (2009) Verification of sequential and concurrent programs. Springer, New York
[Aral3] Aravind A (2013) Simple, space-efficient, and fairness improved FCFS mutual exclusion algorithms. J Parallel Distrib Comput
73:1029-1038

http://creativecommons.org/licenses/by/4.0/

Correctness of the Black-White Bakery Algorithm 341

[AST99]
[BDH15]

[CM388]
[Dij65]
[Hes98]
[Hes13a]
[Hes13b]
[Hes15a]

[Hes15b]

[Lam74]
[Lam86a]

[Lam86b]
[LH91]

[Mis01]
[INLWSD14]

[0G76]
[OSRSCO1]

[Tau04]

Afek Y, Stupp G, Touitou D (1999) Long-lived adaptive collect with applications. In: Proceedings 40th IEEE symp. on
foundations of computer science, pp 262-272

Buhr PA, Dice D, Hesselink WH (2015) High-performance N -thread software solutions for mutual exclusion. Concurr Comput
Pract Exp 27:651-701. doi:10.1002/cpe.3263

Chandy KM, Misra J (1988) Parallel program design. A foundation. Addison—Wesley, Menlo Park

Dijkstra EW (1965) Solution of a problem in concurrent programming control. Commun ACM 8:569

Hesselink WH (1988) Progress under bounded fairness. Distrib Comput 12:197-207

Hesselink WH (2013) Mechanical verification of Lamport’s Bakery Algorithm. Sci Comput Program 78:1622-1638
Hesselink WH (2013) Verifying a simplification of mutual exclusion by Lycklama—Hadzilacos. Acta Inf 50:297-329
Hesselink WH (2015) Mutual exclusion by four shared bits with not more than quadratic complexity. Sci Comput Program
102:57-75. d0i:10.1016/j.scic0.2015.01.001

Hesselink WH (2015) PVS proof scripts for four Bakery Algorithms. http://wimhesselink.nl/mechver/bakery/index.html.
Accessed 17 March 2016

Lamport L (1974) A new solution of Dijkstra’s concurrent programming problem. Commun ACM 17:453-455

Lamport L (1986) The mutual exclusion problem—part I: a theory of interprocess communication, part II: statement and
solutions.] ACM 33:313-348

Lamport L (1986) On interprocess communication. Parts I and II. Distrib Comput 1:77-101

Lycklama EA, Hadzilacos V. (1991) A first-come-first-served mutual-exclusion algorithm with small communication variables.
ACM Trans Program Lang Syst 13:558-576

Misra J (2001) A discipline of multiprogramming: programming theory for distributed applications. Springer, New York
Nanevski A, Ley-Wild R, Sergey I, Delbianco GA (2014) Communicating state transition systems for fine-grained concurrent
resources. In: Shao Z (ed) ESOP 2014. LNCS, vol 8410, pp 290-310

Owicki S, Gries D (1976) An axiomatic proof technique for parallel programs. Acta Inf 6:319-340

Owre S, Shankar N, Rushby JM, Stringer-Calvert DWJ (2001) PVS version 2.4, system guide, prover guide, PVS language
reference. http://pvs.csl.sri.com. Accessed 17 March 2016

Taubenfeld G (2004) The Black-White Bakery Algorithm and related bounded-space, adaptive, local-spinning and FIFO
algorithms. In: Proceedings of the DISC. LNCS, vol 3274, pp 56-70

Received 25 September 2015
Accepted in revised form 31 January 2016 by Xinyu Feng
Published online 29 March 2016

http://dx.doi.org/10.1002/cpe.3263
http://dx.doi.org/10.1016/j.scico.2015.01.001
http://wimhesselink.nl/mechver/bakery/index.html
http://pvs.csl.sri.com

	Correctness and concurrent complexity of the Black-White Bakery Algorithm
	Abstract
	1 Introduction
	1.1 Mutual exclusion
	1.2 Atomicity
	1.3 Correctness
	1.4 Concurrent complexity
	1.5 Problem setting and progress estimates

	2 The Black-White Bakery Algorithm
	3 Verification of safety
	3.1 The transition system
	3.2 Proof of mutual exclusion
	3.3 Absence of deadlock
	3.4 First-come first-served
	3.5 Bounding the tickets

	4 Progress
	4.1 Formal operational semantics
	4.2 UNITY and bounded UNITY
	4.3 Throughput
	4.4 Individual progress

	5 In conclusion
	References

