DOI 10.1007/s00165-014-0310-2
The Author(s) © 2014. This article is published with open access at Springerlink.com Formal Aspects

Formal Aspects of Computing (2015) 27: 475-497 Of Com putlng

@ CrossMark

Balancing expressiveness in formal approaches
to concurrency

CIiff B. Jones', Ian J. Hayes? and Robert J. Colvin?

1 School of Computing Science, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
2 School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane 4072, Australia

Abstract. One might think that specifying and reasoning about concurrent programs would be easier with more
expressive languages. This paper questions that view. Clearly too weak a notation can mean that useful properties
either cannot be expressed or their expression is unnatural. But choosing too powerful a notation also has its
drawbacks since reasoning receives little guidance. For example, few would suggest that programming languages
themselves provide tractable specifications. Both rely/guarantee methods and separation logic(s) provide useful
frameworks in which it is natural to reason about aspects of concurrency. Rather than pursue an approach of
extending the notations of either approach, this paper starts with the issues that appear to be inescapable with
concurrency and—only as a response thereto—examines ways in which these fundamental challenges can be met.
Abstraction is always a ubiquitous tool and its influence on how the key issues are tackled is examined in each case.

Keywords: Concurrency, Rely/guarantee reasoning, Separation logic

1. Introduction

Concurrency has been an issue in computing for a long time but finding tractable ways of reasoning about
it becomes ever more pressing as hardware evolves: the numbers of “cores” per chip is increasing and “weak
memory” architectures are being used. Furthermore computation increasingly involves distributed data.

Concurrency always magnifies difficulties: without using formal methods, developing sequential programs
that satisfy their specifications is difficult, in the presence of concurrency it is virtually impossible. Although this
points to deploying apposite formalisms, making them tractable is far more challenging than for purely sequential
programs. In particular, the important property of compositionality (see Sect. 2.1) is harder to achieve. The central
concern of this paper is “expressiveness” and this certainly becomes a more delicate balancing challenge with
concurrency.

1.1. Suitably expressive abstractions

Finding suitable abstractions both to specify a problem and to derive a program to meet that specification is
a fundamental challenge in computing science. Good notations are needed both to specify problems and their
solutions, and tractable methods must be found for showing that the solution satisfies the specification. Providing
the right balance of expressiveness in such notations is crucial. The better understood realm of specifying and
reasoning about sequential programs is discussed first to highlight the important issues, before addressing these
issues for concurrent programs.

Dedication: Wlad Turski 1938-2013
Correspondence and offprint requests to: C. B. Jones, E-mail: cliff. jones@newcastle.ac.uk

http://crossmark.crossref.org/dialog/?doi=10.1007/s00165-014-0310-2&domain=pdf

476 C. B. Jones et al.

Asan example where restricting the notation is seen as beneficial, consider the debate over structured program-
ming versus programming with gotos [Dij68, DDH72]. Programming with gotos allows one to build arbitrary
(spaghetti) control-flow structures, whereas structured programming constructs restrict a language to a set of
structured commands, such as while and case (or switch) statements, which can make programs easier to compre-
hend. An important aspect of structured statements is that their behaviour is defined in terms of the behaviour
of their sub-components.

There is a link from the structured programming debate to program verification. Floyd’s original method of
assigning meanings to programs [Flo67] was based on arbitrary control-flow graphs, while Hoare’s contribution
[Hoa69] adapts Floyd’s ideas to structured programs. Hoare’s inference rules take advantage of the use of struc-
tured statements: the proof of a property of a structured statement decomposes into a set of proofs about its
component sub-statements. That allows what has become known as compositional reasoning, which has become
a goal of any proof method for programs.

In Hoare’s approach a sub-component statement, no matter how complex, is abstracted to a pre and post
condition pair that it must satisfy. Hoare’s pre and post conditions facilitate the abstract specification of sequential
programs. Compared to program code they are both more restrictive, in that they only define properties of the
initial and final states of a program (and say nothing about any of its intermediate states), and more expressive,
in that program code does not normally allow expression of assumed preconditions and can use concepts that
are absent from the programming language. Furthermore, postconditions allow non-deterministic specifications,
whereas (sequential) program code is deterministic. The widespread use of Hoare logic indicates that it represents
a good balance between expressiveness and tractability.

Hoare’s abstraction of programs as pre and post conditions is sufficient to handle disjoint parallelism [Hoa72]
but cannot handle the interference inherent in shared-variable parallelism precisely because it cannot say anything
about intermediate states. A key challenge is to devise more expressive formalisms that allow compositional
reasoning about shared-variable concurrency. As with Hoare logic, the balance is in devising suitable abstractions
that can act as specifications of the components of a concurrent program. The rely-guarantee approach is one
such method [Jon81, Jon83a]. It augments Hoare’s pre and post conditions with rely and guarantee conditions
that allow the specification of assumed properties about the interference that can be relied on and a guarantee
that limits the interference the program can impose on its environment. But rely-guarantee is expressively weak
in that, for example, it is not rich enough to express progress requirements.

Hoare’s parallel rule [Hoa72] relied on partitioning the program variables into disjoint sets used by the
component processes. Concurrent separation logic relaxes Hoare’s constraint by using separating conjunctions
in both the pre and post conditions; that allows the heap to be dynamically partitioned.

Vafeiadis [Vaf07, VP07] combines both the above by using rely/guarantee to bound the interference from
concurrent processes and separation logic to handle sharing of the heap.

This paper presents a study of two key issues in shared-variable concurrency: interference and separation.
It reviews two well-known approaches and considers how they support reasoning about the aforementioned
issues. It is argued that part of the usefulness of the existing methods derives precisely from limitations to their
expressiveness. Furthermore, cautions are offered about attempts to take notations—that serve one purpose
well—and to bend them artificially in an attempt to express other concepts. New directions for both existing
approaches are indicated in the hope that understanding what is really going on in their methods will lead to new
ways of combining the underlying concepts.

It is worth taking one further example where limitations on expressiveness can be seen as positive. Data
abstraction is almost a leitmotiv of the current paper—it plays important roles in particular in Sects. 4.1 and 4.2.
Perhaps the point can be best made by an anecdote about where data abstraction was not fully used. The committee
that produced the ECMA/ANSI formal definition of PL/I [ANS76] was persuaded to adopt the basic ideas of
formal semantics but was unsure that abstractions like sets would be accepted by practitioners; consequently the
committee decided to use sequences in the state where the natural model would have used sets. Readers of the
resulting PL/I standard who wish to know if the ordering property of a particular sequence has any observable
effect are therefore forced to examine all 300+ pages of the document; the use of a set type would have been made
it immediately apparent in the few pages of state description that no use of ordering was possible. The general
point is that abstract objects can be used deliberately in specifications to limit the properties that can be expressed
(e.g. the elements of a set are not ordered) and that this can make for a clearer specification.

The industrial trends listed at the beginning of Sect. 1 point to studying shared-variable concurrency but
this should not be taken as an argument that communication-based concurrency is uninteresting. Two of the
significant approaches to shared-variable concurrency are “Rely/Guarantee thinking” (abbreviated below as

Formal approaches to concurrency 477

“R/G”) and separation logic (abbreviated as “SL”). More is said about both R/G and SL (including pointers to
source references) when the issues to which they appear to respond are presented—but the current argument is
to view their respective expressive limitations positively: their expressiveness indicates which issues they discuss
well and should not be viewed as a prompt to bend useful methods to tasks outside their natural purview.

The analysis in this paper is an early outcome of an attempt to devise balanced expressive power and provide
one or more notations in which it is natural to reason about key issues in concurrency. To address a potential
complaint, the current authors’ backgrounds lie in the R/G camp and the current paper is in no way claimed to
be a completely impartial comparison of SL and R/G approaches.

1.2. Structure of the paper

The examples above set out a general case for regarding expressive weakness in a positive light; the remainder of
the paper specialises this argument to concurrency. Sections 2 and 3 introduce “issues” and then review notations
for reasoning about the issues. O’Hearn [O’HO7] proposes a useful dichotomy around “data races” arguing that
SL is a natural way of showing race freedom whereas R/G might be the more natural tool for “racy” programs.
This useful observation is refined in Sects. 2.2 and 4.1.

Section 4 moves towards a goal that two new projects have set themselves: to take inspiration from R/G and
SL and to look for new ways of deploying their fundamental insights—together with “abstraction”—to devise
one or more new methods. Interestingly, abstraction appears to be key to refining O’Hearn’s dichotomy (see both
Sects. 4.1 and 4.2). Section 5 broadens the discussion both by listing some other issues and referring to additional
approaches.

2. Reasoning about interference (race tolerance)

The most fundamental issue with concurrency is interference.! Data races occur when two or more processes can
refer to the same data. The easiest case to present is that of normal, named, variables to which multiple processes
read and write values. Even if assignment statements were to be executed atomically, x ¢« x + 1 || x ¢« x x 2
yields non-deterministic results. [f—as in most programming languages—there is no way to enforce the atomicity
of assignment statements, even more non-determinacy arises. Unguarded conflicts between reads and writes are
also problematic and the same issue can be reproduced with heap variables which are referred to via their numeric
addresses.

In spite of this low-level unpredictability, it is possible to write programs that satisfy sensible specifications
despite “interference”. It is pointed out in Sect. 4 that dealing with interference (in specifications and designs)
using abstract objects might be more useful than at the code level but the issue of interference is central to
concurrency and any method that can help designers reason about interference warrants some attention.

Section 2.1 summarises how R/G was originally formulated; after a motivating example in Sects. 2.2 and 2.3
sketches a more algebraic formulation of the rely/guarantee idea and revisits the example.

2.1. The original rely/guarantee S-tuples

VDM was clearly part of the backdrop for the original R/G research. Among the ideas inherited from [Jon80] were
the use of post conditions that were relations between initial and final states; using the resulting non-determinism
to postpone design decisions; a commitment to proving total correctness (implementations must terminate when
started in any state satisfying the pre condition of their specification); the use of a “posit and prove” development
style; a strong commitment to data abstraction/reification; and judging any development method against the test
of “compositionality”.

VDM [Jon90], B [Abr96] and Event-B [Abr10] can be all classified as “posit and prove” approaches. They
allow a designer to posit a design step which gives rise to “proof obligations” whose discharge justifies the design
step. (The Rodin tools [Rod08] are an example of integrating such an approach with theorem proving support.)
One of the advantages of such approaches is the inherent redundancy that increases the chances of early detection
of design errors. In contrast, one line arguments in the refinement calculus [BvW98, Mor94] work extremely well
for small examples but industrial specifications are often long and a keyword style of splitting the parts of a
specification is useful.

1 Although this might be more obvious with shared-variable concurrency, it is easy to reproduce in the communication-based approach.

478 C. B. Jones et al.

pre rely

A —_——

0'0 ... 0'10'1+1 - .. UJO-]+1 ... o'f
~——

guar

post

Fig. 1. The roles of pre, rely, guarantee and post conditions

Closely allied to posit and prove approaches is the property of compositionality. In order for development to
be conducted in an organised way, it should be possible to make, say, a design decomposition into sub-components
and move on with confidence that everything that needs to be achieved is recorded in the specifications of the
sub-components. Of course, mistaken design decisions might require backtracking because a specification is
unsatisfiable but a component that meets its specification should never be rejected because of some unstated
requirement. Compositionality is relatively easy to achieve with sequential programs but far more difficult in the
presence of concurrency.

The issue of developing concurrent programs had not been tackled in the VDM research; what was widely
thought of as a viable approach to concurrent programs was the “Owicki/Gries method”. Owicki’s [Owi75] thesis
(or the more accessible [OG76]) sets out an approach in which the proof that two threads running concurrently
satisfy some specification is tackled in two phases: in the first, each thread is separately developed to satisfy its
own pre/post condition specification; the conjunction of these separate conditions must be such that they imply
the required specification of the combined threads; but, before this result can be concluded, each thread must
be proved not to interfere with the proof of the other thread. So, in the second of the two phases, one is asked
to discharge a number of proof obligations that is the product of the number of statements in the two threads—
but this is not the most worrying aspect of the Owicki/Gries approach. Far more serious is that the approach
is fundamentally non-compositional in the sense that, if this post-facto interference freedom (actually called
by its authors the “einmischungsfrei”) property does not hold, the separate developments must be repeated.
Owicki’s contribution moved beyond the earlier work of Ashcroft and Manna [AM71] but failed the test of
being compositional in that the pre/post conditions of the two threads fail to express all of the requirements
for acceptability. de Roever [dR01] presents an encyclopedic analysis of compositional and non-compositional
development methods for concurrency.

There is, in fact, a further limitation of the Owicki/Gries approach (shared with that of Ashcroft and Manna):
there is a reliance on a fixed level of granularity. The chosen level happens to be that assignment statements (and
expression evaluation) are assumed to be atomic. It is shown in Sect. 2.2 below how decisions on granularity can
be put into the hands of the developer.

The basic idea behind rely/guarantee thinking is simple: interference must be acknowledged and provision
made for reasoning about it. Just as few programs will function properly in a completely arbitrary starting state,
almost no specification could be fulfilled by a program that experiences arbitrary interference. The familiar way
of handling the former challenge is to record a pre condition that defines the set of starting states in which the
program must terminate with a final state that is acceptable. Figure 1 shows oy as a starting state and indicates that
those of interest are restricted by the pre condition. The overall function of a terminating program is recorded
in a post condition that is (at least in VDM) a relation between the initial and final states (op/o s in Fig. 1).
The corresponding obligation that records limitations on the interference that a component may inflict on its
environment is recorded in a guarantee relation: in Fig. 1, this is shown as the component making a transition from
ojtooj+1. Justasa pre condition can be thought of as permission for the designer to make assumptions about the
starting environment of the component to be designed, a rely condition invites the assumption that a step made
by the environment will satisfy the rely relation (shown as the environment making a step from o; to 0;4; in Fig. 1).

It is important to note that both pre and rely conditions are effectively permissions to the designer of an
implementation to ignore some deployment environments (viz. those that do not satisfy the conditions), and are
not conditions to be tested in the program. Of course, a program is more robust if it satisfies weaker pre and rely
conditions but there will always be some assumptions to record.

Most people record Hoare triples with the pre and post conditions in braces wrapped around the program
constructs which are claimed to satisfy the specification—thus {p} s {g}. It is easy to extend these judgements to
incorporate rely and guarantee conditions: {p, r} s {g, ¢} has the two assumptions in the left braces and the two
commitments on the right. For sequential programming constructs, inference rules are typically given in terms

Formal approaches to concurrency 479

of Hoare-triple judgements. Using the 5-tuple judgements, rules for introduction of parallel constructs can be
given—one possible rule is:

{p. 7V g} s1{g1,q1}
I:” W] {p.rv g} ss{g, 9}
(p.risills2f{eivea.aAgp AV Ve)l

It should come as no surprise that this rule is more complicated than those for sequential constructs but it is actu-
ally easy to explain. If the overall combination of statements s; || s has to be able to achieve its post condition with
interference (r) from its environment, then each s; has to be able to tolerate that degree of interference plus any that
can come from the sibling process s;; the overall guarantee condition is the disjunction of the guarantees of the
components; the overall post condition is at least as strong as the conjunction of the post conditions of the compo-
nents but it is possible to add a conjunct that is the reflexive closure of the guarantees and the overall rely condition.

Simple rely and/or guarantee conditions might state that the values of some variables remain unchanged but,
in fact, such properties are better handled by some notation for “framing” (this topic is resumed in Sect. 3.3). The
example in Sect. 2.2 illustrates conditions that express monotonic change. Interesting examples often combine
conditions: Sect. 3.2 illustrates orderings on flags whose status, in turn, is used on the left of an implication which
constrains changes to another variable.

Rely conditions discuss interference but do not fix the granularity of operations. This point is difficult to
make clear without examples but, both in the sieve design of Sect. 2.2 and the more complicated asynchronous
communication method (ACM) implementation discussed in Sect. 4.1, it should be clear that granularity can
be fixed by the designer and is not predefined by the method. Here again, data abstraction and the use of rely
conditions on abstract objects is important.

The older references for R/G are [Jon81, Jon83a, Jon83b] but [Jon96] provides an adequate overview. The ugly
soundness proof in [Jon81] has been replaced in [CJ07, Col08]—Prensa Nieto [Pre03, Pre01] provided Isabelle-
checked soundness proofs but the programming language is somewhat restricted (parallel statements cannot be
nested) and there is a simplifying assumption on granularity. Among the numerous other theses on R/G, it is
worth mentioning Stelen’s [Ste90] because it tackles progress arguments. A different style of R/G rule in [CJ00]
uses so-called “evolution invariants”. Although now becoming slightly dated (in that many relevant theses post-
date its publication), de Roever’s [dR01] exhaustive survey offers an excellent reference point and carefully argues
the distinction between compositional and non-compositional approaches to shared-variable concurrency.

One idea that is better not regarded as an extension of R/G is the use of auxiliary (or “ghost”) variables; this
point is expanded upon in Sect. 5.

2.2. A racy example

Section 1 above mentions Peter O’Hearn’s dichotomy that uses the key distinction between race-free programs
and those which are “racy”. One example of developing a racy program is known as the “Sieve of Eratosthenes”.
The specification requires that all primes are identified up to some maximum value n; the algorithm attributed to
the worthy Greek simply eliminates all composites by starting at two and progressively eliminating the products
of each successive number (this process can terminate at |/n]); after sieving, only the primes remain. Data
abstraction is useful to make the specification and top-level design clear?: the set of possible primes is stored in a
variable s: N-set. Initialisation arranges that s contains all natural numbers from 2 up to n. With an obvious outer
loop, the post condition of the sequential process REM(i) that removes multiples of i simply requires s’ = s — ¢;
where ¢; is all of the multiples of i. It is then straightforward to see that, over the whole loop, all composites are
removed and the primes remain.

The interest here is in developing a concurrent version of this sieving process. The design decision to run
instances of REM concurrently can be described sensibly at the level of the set data representation; but if REM(i)
is to run concurrently with REM(j), its post condition cannot contain the strict equality s’ = s — ¢; because
a concurrent REM(j) might have removed numbers. Suffice it here to say that the post condition sets a lower
bound on what is removed, while the guarantee condition defines an upper bound on deletions, and both rely
and guarantee conditions end up needing a conjunct to ensure no composite values are added back into the set.

2 VDM notation [Jon90] is used but should present no difficulty. In contrast to VDM’s usage of “5 /s for old/new values in relations, here
s/s’ are used.

480 C. B. Jones et al.

In [Jon83a] this example is used to introduce juggling tricks with the parts of the specification—a more systematic
approach is described in Sect. 2.3. Furthermore, this pattern of weakening a post condition from a sequential
specification and re-capturing some of the constraints in a guarantee condition is generally useful.

There are a number of interesting facets of this first level of design for the sieve example.

1. Itis important to note that the granularity of the interference is much finer than that of the REM operations
being specified: many elements could be removed from the set s by the environment of some instance REM(i)
during its execution.

2. The specification given has not fixed the level of granularity of interaction: a (rather poor) implementation
could meet the specification by having each instance of REM lock the whole of set s for the duration of its
execution. Of course far better implementations for, say, a many-core architecture will avoid this locking but
the decision is left open by the R/G description of this first design step; further steps in the design process
need to make, record and justify the design decisions.

3. The rely and guarantee conditions are used to advantage on abstract types: they capture the natural intuition
of monotonic removal of elements before the detailed representations are discussed.

4. Notwithstanding the previous point, data reification has an essential part to play in achieving the guarantee
condition. Assuming the set is finally represented by some indexed vector, the guarantee condition can best
be achieved if the atomicity at the vector level works per indexed element; locking would be required if, for
example, the representation packed eight bits into a byte and the operations of the machine were at the byte
level. (This intimate connection between R/G and data reification was noted, in [Jon07], some time after the
initial R/G ideas were proposed.)

5. The code developed for this sieve example does exhibit real races on the final data representation (cf. the
example in Sect. 4.1). The detailed code meets the guarantee condition because it is possible to have a
“remove” primitive that is idempotent, i.e. repeated removal of the same element has the same effect as a
single removal.

Although this example nicely illustrates the use of rely and guarantee conditions in the development of a
concurrent design, it is in no way a claim that the approach can handle all such designs. The form of interference
assertions chosen has inherent expressive restrictions. This observation leaves open the questions of whether the
chosen expensiveness covers a useful class of design problems and whether useful extensions of “rely/guarantee
thinking” can be found that do not reduce the tractability of the approach.

2.3. An algebraic presentation of R/G

The current authors are engaged in two projects (“Taming Concurrency” in the UK and “Understanding con-
current programmes using rely/guarantee thinking” in Australia) that relate to the research in this paper. The
former project in particular has made an explicit aim to get underneath the specific R/G and SL notations with
a view to understanding what they each express naturally. It is hoped that this understanding can lead to new
combinations of notations that work together well. This section indicates how “getting under the (syntactic) skin”
of R/G could offer a way forward.

R/G takes the issue of interference head on and uses guarantee conditions to record the interference an
implementation can inflict on its environment; correspondingly, rely conditions record the interference that an
implementation must tolerate. The fixed format 5-tuple for presenting rely and guarantee conditions is abandoned
in [HJC14] in favour of a “refinement calculus” [BvW98, Mor94, Mor87] style of presentation which is extended
to allow rely and/or guarantee statements to be added to either specifications or code.

As in the original refinement calculus, pre conditions are treated by the command { p}, that aborts if p does not
hold but otherwise terminates immediately, and post condition specifications by the command [q], that allows
any behaviour that satisfies ¢ between its initial and final states but aborts if the environment performs any step
that modifies the state. Rely or guarantee conditions can be added to any command c as follows: (rely r e ¢) and
(guarr e c).

Using this notation, the laws relating the various command constructs express pleasing properties that were
invisible in the original R/G presentation. Enough laws are presented to revisit the sieve example.> Three laws
that express equalities over commands that involve guarantee commands are

3 The names used here differ from those for the laws in [HIC14]—the choice here is for shorter names that suffice for the current example.

Formal approaches to concurrency 481

Nested-g: (guar g; e (guar g, e ¢)) = (guarg; A g, e ¢)
Trading-g-q: (guar g e [¢* A q]) = (guarg e [g])
Distribute-g-parallel: guar g e (|lics ¢;) = |lies (guar g e ¢;)

The first of these should be self-explanatory; law Trading-g-q reflects the fact that, since a guarantee command
requires every atomic step to satisfy g, the overall execution preserves the transitive closure of that condition
g*. The third allows a guarantee to be distributed over a set of commands in parallel (indexed by the finite set
S); it is one of a collection of laws that permits distribution of guarantee commands over the different program
constructs.

The next law is a refinement rather than an equality in that the right hand side of T will suffice in any context
where the left is acceptable.

Intro-g: ¢ C (guarg e ¢)

Notice however that the guarantee constraint makes it harder (than ¢ alone) to implement the right-hand side of
the ordering.

Several laws are given in [HJC14] for the introduction of parallel constructs—these laws are closest in intent to
the 5-tuple law in Sect. 2.1. The multi-way parallelism used in the sieve example has symmetric rely and guarantee
conditions* and the following simple form, in which S is a finite set, suffices (this is again a refinement):

Intro-multi-parallel: [Vi € S - q;] Cllics (guar gr o (rely gr o [q:]))

These laws are enough’ to illustrate the approach for a concurrent version of prime sieving—see Fig. 2. With C
as the set of all relevant composite numbers:

ci={ixjl2<jA(ixj)<n}
range ={i e N|2<i < |/n]}
C=Uierangeci

The overall post condition requires the removal of composites from set s (strictly, there should be a framing
constraint on the command but this topic is postponed to Sect. 3.3). The first step of the proof development is
justified by set theory but represents a useful strategy for R/G thinking: in a sequential sieving algorithm, it would
be easy to specify that the iteration for removing multiples of i had a post condition of s’ = s — ¢;; this equality is
too constraining in an environment where concurrent threads are removing elements from s; a common pattern
for spotting the post and guarantee conditions in concurrent situations is to weaken an equality so that the post
condition gives a bound on the elements that must be removed by the concurrent process (here s’ N C = {}) and
to indicate an upper bound on the elements that can be removed (here s — s’ C C) in the guarantee condition;
recording that extra conjunct s’ C s both ensures equivalence with the original s’ = s — C and records the
intuition that no composites can be added back into the set.

Starting the refinement proper, Intro-g is used to fix the design decision that the set s gets monotonically
smaller and that no action removes prime (non composite) numbers from s; Trading-g-g can be used to drop
the conjunct from the post condition because s* C s A s — s’ C C expresses a transitive relation; employ-
ing Intro-multi-parallel requires the insertion of the (matching rely and guarantee) condition on monotonic
shrinking of the set s (notice that the post condition would not be realisable were it possible for interfering
processes to re-insert values); the penultimate step uses Distribute-g-parallel; the final step moves to an equiv-
alent specification with the nested guarantees combined.

The final line of Fig. 2 is essentially the expected rely/guarantee specification for a process REM(i). The
steps of development from there to the detailed code would not be dissimilar to those in [Jon81] but there are
now formal laws for distributing rely and guarantee conditions over loop and sequence constructs (in the earlier
publication these were taken as “obvious”) and proper laws for introducing assignments (which tended to be
handled informally in R/G). Notice that the initial specification (s" = s — C) does not fix that exactly the prime
numbers are left in s; this piece of program has a precise (if pointless) behaviour if its starting state is empty. A
separate step of reasoning shows that using this operation after appropriate initialisation gives the required set
of primes up to n.

4 Using such symmetric gr is an interesting special case but more challenging parallel decompositions such as that in Sect. 4.1 use different
predicates for the rely and guarantee conditions.
3 See Appendix A.3 for a fuller set of laws.

482 C. B. Jones et al.

[s =s—C]
= by set theory
[CsAhs—s CCAsNC={}
C by Intro-g
guars’ CsAs—s' CCe[s"f CsAs—s CCASNC={}]
= by Trading-g-q
guars’ CsAs—s' CCels'NC ={}]
= by settheory as C' = | J;c ange Ci
guars’ CsAs—s C Ce[Vi€range s’ Nec, ={}]
C by Intro-multi-parallel
guars’ CsAs—s" C C o (|licrange guars’ C serelys’ Cse[s'Nc¢;={}])
= Distribute-g-parallel
|licrange (guars’ C sAs—s" C Ce(guars’ Cse (relys’ Cse[s'Nc;={}])))
= Nested-g
llicrange (guars —s" C CAs' Cse(relys’ Csels'Ne ={}])

Fig. 2. An (extended) refinement calculus development of Sieve

A further example is contained in [HJC14]. The development there tackles a problem introduced in Owicki’s
thesis [Owi75] and illustrates that R/G is not bound to the granularity of complete statements. Furthermore, this
searching example again illustrates the importance of data reification in R/G thinking: an early design decision
uses a shared variable ¢ to which both processes need to write; a way to avoid having to lock ¢ is to choose a
representation in terms of two variables which both processes can read but each of which can only be changed
by one of the processes.

The presentation in the refinement calculus style should not be taken as a step away from “posit and prove”
developments. Small examples such as that for prime sieving are seductive but, when one is faced with an industrial
post condition that is perhaps a page long, the beauty of a chain of one liners like those in Fig. 2 is no longer an
option. It should also be clear that laws which are not equalities (i.e. they use C) normally require some design
inspiration. Sieve is however a useful illustrative example and the new R/G laws do have an algebraic form hidden
by the original 5-tuple presentation. The material in [HJC14] includes an operational semantics, two dozen or
so lemmas proved directly from the semantics and over 50 laws derived from the lemmas. The appendix below
gives the flavour of the language, some lemmas, a few laws and an indication of the proof style used in the longer
report. Hopefully, the new presentation affords a clearer understanding of interference and the algebraic style
makes it easier to combine with reasoning about separation and ownership which is the topic of Sect. 3.

Dingel [Din00, Din02] has also considered a “refinement calculus” view of rely/guarantee thinking. How-
ever, unlike the approach outlined here (and detailed in [HJC14]), Dingel does not separate the four conditions
(p,r, g, q). There are also technical differences from the current presentation concerned with his use of post
conditions of single states which force the use of free variables to capture the relationship between initial and
final values.

3. Reasoning about separation (race avoidance)

As stated above, the planned research programme will also try to “get underneath” the notation of separation
logic (SL) to understand its fundamental contribution. Section 3.1 describes the issue of separation and sketches
how SL helps to reason about separation; Sect. 3.2 follows O’Hearn’s [O’HO07] discussion in which he moves from
separation to “ownership” (Sect. 4 returns to this issue). Section 3.3 addresses the issue of specifying the “frame”
of variables that can be changed by a specified component.

3.1. Concurrent separation logic

The issue of separation concerns clarifying which parts of the state are of relevance to different concurrent threads.
When considered this broadly, separation can be seen as one way of ensuring non-interference. There are two
dimensions in which a more focused analysis is needed. Firstly it is useful to look at read vs. write access and
secondly the problem takes a different complexion depending on how elements of the state are identified. For

Formal approaches to concurrency 483

the latter dimension, the term “stack variables” is used to refer to the normal identifiers declared in high-level
programming languages whereas the phrase “heap variables” is used for access to the store via integer addresses.

Tony Hoare made a first attempt to extend the “axiomatic basis” [Hoa69] to parallelism in [Hoa72]. That paper
considers programs using (normal) stack variables. Assuming separate pieces of code had been proved to satisfy
specifications given in terms of their individual pre/post conditions, the question was under what conditions
the parallel execution of the code segments would satisfy a specification formed by conjoining their pre/post
conditions.® Since Hoare was concerned with programs using normal variables, requiring that the threads did
not share variables was a simple check of the alphabets of the programs.

Notice that it is not only where two threads write to the same variable that data races can occur: statements
proved to satisfy a specification with a pre condition that fixes the value of say x cannot conclude that x still
has that value if a concurrent thread can write to x. Read/write conflicts also matter. For stack variables, the
separation of alphabets is straightforward. For example, each operation in VDM [Jon90] identifies its rd/wr state
components and this would support reasoning about separation in the case of normal variables. In fact, it could
be argued that separation is just an extreme way of achieving non-interference and that R/G handles more delicate
interference situations.

Separation logic [Rey00, Rey02] tackles the messier case of reasoning about heap variables: where the portion
of the state to be read and/or written is determined by an integer address, it is clear that checking separation is
more complex.” Concurrent separation logic [0’H07] resolves several technical challenges in order to get back to
a rule that is identical in intent to Hoare’s [Hoa72] approach. Suppose it is necessary (presumably in some larger
piece of reasoning) to draw some conclusion about the concurrent execution of two statements that refer to the

heap, where x and y are variables containing addresses and the notation [x} < 3 means the value 3 is stored in
the address contained in the variable x.

[x} «— 3| [y} «—4

Little can be concluded if it is unknown whether the values in the stack variables x and y refer to the same
address. If however it is a pre-condition that the addresses are distinct, it would be desirable to be able to prove a
post condition of the combined statement that conjoins the two individual post conditions. A key SL proof rule
permits exactly this reasoning but, rather than normal conjunction, “separating conjunction” (written P * Q) is
only defined where P and Q are separate. The rule is:

{Pi}s1 {01}
ST (P2} 52 {Qa}
{P1* P2} s1 || 52 {Q1 = Q2}
Using x > 3 to mean that the element of the heap whose address is the value of x holds the value 3 and x +— -
to mean that x holds some value, the above mini-challenge can be proved by an instance of the SL rule:

(x> _xy—> _} [x] <3 [y} «—4 (x> 3xy> 4}

In both the pre and post condition, the separating conjunction is crucial. One huge benefit of separating
conjunction is that the frame rule gives a delightful way of embedding a component in a larger frame:

{P}s {0}
{P*R}s {Q * R}

As such, SL is extremely potent for reasoning about disjoint concurrency as is used in the parallel merge sort
in [O’HO7]. Again, returning to the theme of judicious choice of expressive power, the balance here appears to
offer a very compact way of describing separation. The next section explores the related topic of ownership.

SL-frame

3.2. Ownership

Although the authors writing about separation logic always use that adjective, there is a sense in which it could
more usefully be described as “ownership logic”. Whether said authors agree or not, the issue of “ownership”

6 The seeds of [Owi75] and even [AM71] can be detected here.
7 Using SL for stack variables (e.g. [PBC06]) is, in most cases, overly heavy.

484 C. B. Jones et al.

is certainly one that has to be faced in many concurrent systems. In particular, there is an interesting class of
concurrent system in which the ownership of some part of the shared state is passed between threads. SL appears
to be well equipped to express the assertions in such problems and [O’H07] uses the example of passing a value
between writer and reader processes by passing its address (O’Hearn adds the important observation that this
programming pattern is essential to achieve performance in low-level code).

Interestingly, transfer of ownership of stack variables can also be expressed with R/G conditions. For example,
a rely condition for a reader process might record that a buffer (b) does not change when the rd flag is set together
with the fact that the environment cannot set rd to false:

(rd = W'=b)A(rd = rd)

The writer process must have a corresponding guarantee condition and might rely on the fact that its environment
cannot make rd true (rd’ = rd).

Given that such ownership exchanges are needed for both stack and heap variables, it feels as though there
ought be one way of expressing the idea in either case rather than asking users to employ R/G in the former case
and SL in the latter. It would, in fact, be possible to represent the heap as one component of an overall state and
to code assertions about the heap being unchanged using the various map operators in, say, VDM. This is not
the line proposed in this paper; the interest here is in teasing out the fundamental issues and finding natural ways
of handling them.

Probing a little deeper into the issue of ownership, it is worth establishing exactly what is intended. Com-
plete ownership of a variable might be taken to mean that only the owner has write or read access. In other
situations, it might be useful to express finer distinctions. One of many extensions to SL concerns “fractional
permissions” [Boy03] and these can be used to express ownership distinctions. Fractional permissions do, how-
ever, look like a way of “coding” something deeper. It is for example interesting to compare the use of fractional
permissions in [{RPDYD* 11, 4.3] and abstract predicates (see Sect. 5.2) to tackle the sieve problem of Sect. 2.3.

Parkinson’s [Par10] has the title “The next 700 separation logics™® and is a hint of how versions of SL are
proliferating to meet new challenges. One laudable property of nearly all SL extensions is the concern shown for
algebraic properties of their operators (e.g. “magic wand”). Hopefully, the developments in Sect. 2.3 will help
bring SL and R/G researchers even closer together.

3.3. Framing

The early papers on R/G used VDM’s keyword style to define the rd/wr frames.” The move to a refinement calculus
presentation not only gives a more linear notation for assertions, it also prompts the use of a compact notation to
specify the write frame of a command. Thus x: [q] requires that the relational post condition ¢ is achieved with
changes only being made to the variable x. (The example in Fig. 2 could be written s t[s’ =s—C l.) This makes
a small step towards the compact notation of separation logic. In fact, the exclusion of identifiers from the write
frame is just a shorthand for a guarantee condition. Further notations are offered in [JP11] (owns) and [HIJC14]
(uses) that express other constraints on the visibility of identifiers.

Rather than go to the complete determination of frames from the alphabets of assertions used there, a sensible
intermediate step might be to write pre and post conditions as predicates with explicit parameter lists and have
the arguments of the former determine the read frame and the extra parameters of the latter determine the write
frame. The indirection of having named predicates would pose little overhead in large applications because it is
impractical to write specifications in a single line.

4. Abstraction as a key tool

As well as focusing on the issues around concurrency and what needs to be expressed in order to cope with
those issues, this paper (and its predecessor [Jonl2a]) presents the case that “abstraction” can be a key tool in
tackling the issues. It is pointed out in Sect. 2.2 above that data abstraction and reification play an important
role in rely/guarantee methods. This is not surprising: VDM has emphasised data abstraction in specification
and reification in design and [Jon80] was probably the first book to put equal emphasis on data reification and

8 Obviously echoing Landin’s [Lan66].
9 This point appears to be missed by some SL researchers who suggest that R/G conditions can only apply to the global state.

Formal approaches to concurrency 485

operation decomposition. The current section goes further, both showing that abstraction appears to extend the
domain of R/G (Sect. 4.1) and offering a new view on reasoning about separation (Sect. 4.2).

Echoing the leitmotiv of this paper, the use of data abstraction is a form of deliberate economy of
expressiveness—for example, using a set in a specification makes it immediately clear that no use can be made of
expressions about the order of its elements.

4.1. Abstract race avoidance

The data race that occurs in the sieve example (cf. Sect. 2.2) is real in the sense that multiple threads execute
assignments to shared variables without explicit synchronisation. In other words, only the hardware memory
synchronisation behaviour defines the granularity. That algorithms can be designed to work in such cases depends
on observing some form of idempotence—in the sieve case, no harm is done by setting a portion of storage to
a null value multiple times. A far more subtle example is treated in [Jon81]: the application is the Fisher/Galler
algorithm for recording equivalence relations (sometimes known as the “union/find” problem); a concurrent
clean-up algorithm that compresses trees was designed in the expectation that some software locking would be
required but the analysis using R/G showed that this can be avoided. The property on which this relies is more
subtle than in the prime sieve.

In contrast, this section outlines a case where what appears to be a data race at an abstract level of design
actually disappears in later design decisions giving rise to a race free implementation. The example is rather
intricate and cannot be fully described here but enough can be sketched to convey the essential point and cited
papers contain the supporting details. The application is the implementation of so-called ACMs. Logically,
these are just one place buffers with one writer and one reader but the difficulty derives from the adjective
“asynchronous”: neither the reader nor the writer can ever be delayed and, of course, the reader must never read
incoherent data that is being changed. If the asynchronous property is to be achieved, it should be obvious that
the logical idea of a single buffer cannot be reified to a single shared piece of store. A little more thought shows
that two pieces of shared store are also inadequate. An ingenious “four slot” design is due to Simpson [Sim90].
A strength of his solution is that synchronisation between reader and writer depends only on two single bits (or
control wires). ACMs are used in applications where sensors are writing into the buffer and control programs
are extracting the values when required (the independence of the two processes giving rise to the asynchronous
requirement). In such applications, the use of multiple slots must not allow the reader ever to see “stale” values.
In other words, a value being read must be at least as fresh as that from the most recent write that completed
before the read commenced. In particular, it could be disastrous if the reader were ever able to read a value older
than one that it had already seen.

There have been many attempts to offer both correctness arguments and, more usefully, understandable design
explanations of Simpson’s algorithm. Relevant publications that use R/G and/or SL include [JP0S, BA10, JP11,
BA13, WW10] and several observations can be made on these attempts. The initial specification (of which, more
anon) is given in terms of an abstract state (X“) that, as well as some pointers, contains a sequence in which is
recorded every value written. An intermediate state (') is used to explain one set of design decisions: X' retains, in
general, far fewer values which are stored in a mapping whose domain is (at this abstraction level) some unspecified
index set X and whose range is the values being passed.!? The writer and reader processes race on access to the map-
ping in the sense that both can make changes to the same map; it is precisely the role of the rely and guarantee con-
ditions to record enough information to show that a range element of the mapping is never read at the same time as
it is being written; the values of auxiliary pointers are used to express these assertions. Of course, further conjuncts
in the rely and guarantee expressions state which process can change which pointers and when they can do so.

The overall effect is that what look like races on the abstraction actually get removed in the final step of
development. So, in this example, R/G is being used to reason about a program whose whole purpose is to avoid
races! The argument for using R/G is that—at least for the layers of design abstraction chosen in [JP11]—races
on the abstract objects appear to support a convenient abstraction. There are several further aspects of the
development given in [JP11] that could be reviewed but the interest here is in raising the question of whether
O’Hearn’s interesting dichotomy actually places R/G correctly. Perhaps it would be more accurate to say that R/G
indeed supports reasoning about data races but that such races can be abstractions of race-free implementations.

10" One useful bonus of this layering of design decisions is that one can show at this step that at least three slots are essential. In the final step
of the explanatory design history, the set X is reified as the cross product of two Boolean values, thus indexing Simpson’s four slots.

486 C. B. Jones et al.

There are further interesting comparisons to be made between the collection of papers relating to Simpson’s
algorithm. One natural view of the 4-slot algorithm is that the ownership of the slots is passed to and fro
between the writer and reader processes. Following the train of argument from separation to ownership in
Sects. 3.1/3.2, this would make Simpson’s algorithm look to be perfect territory for SL. In fact, [BA13] does not
use separation or ownership transfer—it does use a logic that is an interesting combination of R/G and SL known
as “RGSep” [VP07, Vaf07] (more is said about this in Sect. 5); the authors also use “linearisability” (cf. Sect. 5)
in a novel way. The only publication that appears to use SL to reason about ownership exchange in Simpson’s
algorithm is [WW10] which confines itself to coherence and stops short of proving the “freshness” property.

A thesis of the current paper is that one should be clear about the issues that need to be addressed in
concurrency before apposite notations are chosen for their expression. The subsidiary thesis of this section is that
the powerful tool of abstraction can help most approaches. Before turning in Sect. 4.2 to how this might be seen
achieved with SL, a brief aside is made about a concept that appears to be useful and which does not appear to
have a mode of expression in most approaches.

An interesting concept that was used in [JP11] is the ability, in assertions, to discuss the “possible values” that
a variable can take. This actually came from spotting a flaw in an earlier version of development of Simpson’s
4-slot implementation: at some point in [JP08] there was a need to record in the post condition for a Read sub-
operation that one of the pointer variables (hold-r) acquired the value from another variable (fresh-w) that could
be changed by a Write process. This was recorded in the earlier, flawed, version of the development by stating
that either the initial or final value of fresh-w could be captured. But this is not actually general enough because
the sibling (Write) process could be executed any number of times and make many assignments to its variable
whilst the Read process was executing. This prompted the creation of a new notation in [JP11] for the set of

values that can arise and the post condition of the Read process can be correctly recorded as hold-r € fresh-w.
To give a trivial example of the use of this notation, consider writing a post condition for an operation whose
implementation sets some local variable x to the value of some global variable y that can be altered by other
processes; a trivial implementation is x <« y; but how would one specify this operation? With possible values,
the post condition is simply x € y.

An encouraging sign for the utility of the possible values notation () is that several other uses have been found
for the same concept. Furthermore, a pleasing link with research on non-deterministic expression evaluation is
formalised in [HBDJ13].

Both [JP08] and [JP11] use a “phased specification” in which the Read and Write processes are each expressed
as the sequential composition of two sub-operations. The overall system being expressed as the parallel combi-
nation of these two sequential compositions. Despite the fact that the authors claim that the use of “semicolon”
as a specification operator offers a clear intuition of the freshness requirement in ACMs, it has been shown
in [Jon12b] that the possible values notation can yield a specification without such “phased specifications”; the
possible values notation gives exactly the required expressiveness.

A critical reader might protest at this point that the leitmotiv of expressive weakness appears to have been
forgotten. In defence, it can only be pointed out that the possible values of a variable that is being read might
indeed be an extra issue to be considered.

4.2. Reasoning about separation as an abstraction

In view of the added value that abstraction gives to R/G approaches, it is worth investigating how much benefit
can be drawn by using that same powerful generic idea to tackle the issues where SL appears to be most useful.
The proposal here is more speculative than that outlined in Sects. 2.3 and 4.1 but it does indicate that the issue
of separation (even in the case of heap variables) can be tackled with little or no extra notation. This, of course,
does not argue against the use of SL but it contributes to “pulling apart” of issues from notation.

Reynolds [Rey02] considers a sequential algorithm for in-place reversal of a singly-linked list. He introduces
the problem via the program in Fig. 3. Each item in the list is represented by two consecutive memory locations

with [e] containing the data value and {e + 1] the address of the next element in the list.!! The program is assumed

to start with i pointing to the head of the list to be reversed; after execution, j should point to the head of the
reversed list; k is a temporary variable that could be avoided by using a multiple assignment statement.

T The size of the brackets for [1] has been increased so as to reduce the risk of confusion with their use in refinement calculus specifications.

Formal approaches to concurrency 487

The following program performs an in-place reversal of a list:
j := nil; while ; # nil do (k : = [i-l—l] ; [Z’-&-l] =giji=141:=k).
The notation [e] denotes the contents of the storage at address e.

Fig. 3. In-place list reversal from [Rey02]

Reynolds’ reasoning employs “separating conjunction” as in
ds, r-list(s,i) = list(r, j)

to derive a specification, where list(s, i) states that the heap contains a list structure s for which i is the address
of the head of the list. The fact that Reynolds chose to start with the implementation fits with the fact that SL is
most commonly used to analyse programs (“bottom up”).

In contrast a top-down development might start with a post condition that only has to require that some
variable, say r, is changed so that its final value contains the reverse of the initial value of s.

ros: [r' =reuv(s)]

Notice (cf. Sect. 3.3) that this specification gives the designer the permission to overwrite the variable s. The
function that reverses a sequence (rev) is obvious.'?
The specification is satisfied by the following abstract program

r < emptyseq;
while s # emptyseq do
r,s: [s # emptyseq, r' = (hds)::r A s" = tls]
od
To see that this design satisfies the specification, simply note that the loop maintains the value of rev(s) " r ;
with the final value of s and the initial value of r as the empty sequence, the result follows immediately.

At this stage of design, s and r are assumed to be distinct variables. That they are separate is a useful and
natural abstraction but, of course, fails to embody the clever part of the algorithm in Fig. 3. The step from the
simple abstract algorithm to the clever pointer reversal can now be viewed as a step of data reification. A design
decision to choose a representation in which both variables are stored in the same heap must maintain the essential
point of the abstraction of separation.

The requirement to maintain the abstraction of separation thus moves to a data reification step. A represen-
tation can be given (for example as a VDM record containing a map and two pointers) and a retrieve function
written. The requirement for separation can be added as a conjunct in the invariant of the representation—it can
either be written as a normal predicate or use a separating conjunction.

To reiterate the point here: separation is an issue with concurrency—there might be a range of notations that
support reasoning about separation—obviously, SL is one possibility.

5. Other approaches

Research on SL is extremely active and, perhaps more surprisingly because of its much earlier inception, R/G
research also appears to be accelerating. This section discusses only a small portion of this literature and, even
with the publications mentioned, it must be understood that their authors probably had different aims than those
of the current paper.

5.1. SLs meet R/IG

One pioneering attempt to look at combining the two approaches is described in [VP07, Vaf07]. In his extremely
clear thesis, Viktor Vafeiadis gives the following combined rule, in which logical disjunction of predicates is
represented by “U”

12 In order to avoid confusion with the two other uses of square brackets, use of this shape of bracket for VDM sequences is avoided: e: : s
is used in place of [¢] " s; emptyseq is used in place of VDM’s normal []; and the definition of rev is omitted since its semantics should be
obvious.

488 C. B. Jones et al.

{P, RUG,} 51 {Gy, O}
{P., RUG} s {G,, O/}

RGSer PP Ry 51 115, (G1UG,. 01 » 0]

Despite the current authors’ admiration for this valuable contribution, it must be said that the RG Sep rule
presents a rather “syntactic” combination of the two approaches in that bringing different “issues” into one rule
does not offer any insight as to their application. The “Taming Concurrency” project is aiming to combine more
fundamental insights from SL and R/G.

In the same vein, Feng’s SAGL [FFS07] argues that SL can be viewed as a specialisation of “assume guarantee”
methods for a class of programs. More recently, Feng [Fen09] has proposed “local rely-guarantee reasoning” which
does tackle broadly the same issues as are addressed in the current paper. It is not completely clear that the point
raised in Sect. 3.3 above about even classical VDM restricting the frames by rd/wr clauses is appreciated. However,
the idea of applying an operator like separating conjuction to relations (rather than just single-state predicates)
is certainly worth further study. Another interesting contribution to R/G thinking from Matt Parkinson and his
colleagues is the “Deny/Guarantee” idea in [DFPV09].

Another paper that refers to R/G and SL is [SB14]. The proposed “impredicative concurrent abstract predi-
cates” tackle sharing using both higher-order concepts and fractional permissions to achieve modular reasoning
although Wickerson’s [Wicl3] thesis makes a better case for modular reasoning. A recent contribution ([Lial4])
introduces “Rely-Guarantee-based simulation”.

5.2. Another 700 SLs

If it was tempting to regard the “next 700” in the title of [Par10] as a joke, keeping track of the many developments
around SL is becoming a full-time task and the comments here are only intended to mention those items that
might be candidates for consideration in bridging between SL and R/G. The research on “(concurrent) abstract
predicates” (CAPs) [DYDG™10] sounds as though it might be in the same groove as the case being made for
abstraction in Sect. 4 above. In fact, the relationship is certainly more subtle with CAPs being used to handle
complicated ownership questions that there is no obvious way of capturing with R/G.

The recent research on “Views” [DYBG™13] offers a generic way of establishing the soundness of logics
but the way in which the concurrency structure is created from the base semantics of atomic constructs would
not handle situations as general as in, say [CJO7]. It would however be worth pursuing the direction of general
properties for soundness since undertaking such proofs on each logic is time consuming. Another important
avenue is the research on concurrent Kleene algebras which is linked to R/G in [HMSW11]. This chimes with the
recent research by the current authors.

5.3. Ghost variables

An approach that is often adopted to extend the natural scope of a notation is to employ “ghost” or “auxiliary”
variables. General words of warning about this escape route are offered in [Jon10] and need not be repeated here.
Unfortunately it is easy to see that the use of auxiliary variables can lose the key property of compositionality:
auxiliary or ghost variables can be employed to record arbitrary amounts of information about a process—but
relying on that information means that the implementation of that process is severely constrained. Sacrificing
compositionality is far too high a price to pay for the cheap thrill of extending a notation to cover issues for
which it was not intended. Whilst not being able to prove that auxiliary variables can always be avoided, [Jon10]
sets out the case for finding sound reasons for their use.

5.4. Actions/events

Employing “Actions” [BS91] or “Events” [Abr10] can offer an extremely neat framework for modelling systems.
In [HA10], the authors seek to extend “Event-B” to mimic rely/guarantee style reasoning. It is possible to add
environment events whose post conditions record interfering actions but it is equally clear that this can only
mirror what really goes on in the rely/guarantee approach by making sure that all events (or actions) are at the

Formal approaches to concurrency 489

granularity of the interference. In R/G reasoning itself, this is certainly not the case: post conditions express the
overall effect of an “operation” (cf. event) but the granularity of the interference can be much finer.

5.5. RGITL

The combination of Moszkowski’s [Mos85] “interval temporal logic” (ITL) with R/G in Schellhorn’s
RGITL [STERT11] provides a seductive combination. On the one hand, temporal logic offers a way of argu-
ing about progress conditions and even various notions of fairness. In keeping with the concern of the current
paper with expressiveness however it might be the case that RGITL—or even raw ITL—is too expressive. The fact
that a user can write specifications in a language that can express complete programs may be dangerous because,
in the hands of the unskilled, it moves the task of proving specification satisfaction to that of program equivalence.

5.6. Linearisability

The discussion above of [BA13] touches on linearisability and another of the impressive aspects of [Vaf07] is that
it addresses this way of reasoning about interleaving. Research on linearisability was put on a firm foundation
by [HW90]; further recent interesting papers include [GY 11, BGMY 12]. The basic idea is to look at detailed
sub-steps and to find a larger atomic operation that would have the same effect.

It can be argued that the normal presentations of this idea are “bottom-up”: they look at the code and try to
find a linearised version. In keeping with the emphasis here on abstraction, it might be preferable to approach
interleaving “top-down” from a specification of acceptable behaviours. Earlier work on trying to do just this
throws light clearly on the observational power of programming languages. The idea that it is possible, in a
top-down design process, to use a “fiction of atomicity” is discussed in [Jon03, Jon07] (for the origins of the ideas
see references in these papers). The development process that links the abstraction to its realisation is known as
“atomicity refinement” [or “splitting (software) atoms safely”]. In one particular version of this process, equiva-
lences were found that justified the introduction of concurrency primitives. What was crucial to the justification
of these equivalences (see, for example, [San99]) was a careful analysis of the language in which observations can
be made. (To make the point most simply, if the observation language can observe timings, parallel processes are
likely to be seen as running faster; but there are much subtler dependencies to be taken into account as well.)

It must again be worthwhile to look at how these top-down and bottom-up views of varying the level of
atomicity of processes can benefit from each other. Furthermore, both the basic idea of separate sets of addresses
and of rely/guarantee-like assumptions about the effect of the processes look likely to be important when reasoning
about the different granularities.

The recent paper on CaRESL [TDB13] makes some similar points to the earlier work on atomicity refinement
but comes to a rather different solution which requires further study. In particular, CaReSL employs higher-order
predicates to tackle what these authors call “granularity abstraction”.

6. Conclusions

The current authors have a number of prejudices whose exposure might make these conclusions clearer. Although
the case is clear for doing something with the huge store of “legacy code” on which all users indirectly depend,
the real payoff for formal methods is in the design process. Trying to prove that a finished program has properties
such as deadlock freedom might make sense but deriving its full post condition would, in general, be impossible
even for “correct” programs and is completely futile with programs that contain errors.

Related to the preceding point, so-called “partial correctness” is inadequate: if a program is intended to
terminate, that fact must be part of its specification.

Also related to the argument for the use of formalism in the design process is the view that abstractions are
best discovered in a “top-down” view. Complexity can only be mastered with abstraction; clever tools might be
able to detect previously recorded abstractions “bottom up” from code; but, as a careful reading of [Cou0§]
shows, useful abstractions have to be discovered top-down.

The case for “posit and prove” methods is also strong in that they permit engineering intuition to be checked
by the discharge of proof obligations. The inherent redundancy of such methods leads to productive use.

Referring back to the title of the current paper, the main argument here is not to regard restrictions on
expressiveness as signs of weakness: well-judged restrictions on the expressive power of notations might focus

490 C. B. Jones et al.

on the issues that can be handled naturally and increase the tractability of reasoning with said notations. The
converse argument is that it is not necessarily an advantage to employ a notation that is more expressive: it might
just result in intractability—especially in untutored hands. A particular plea has been made to abstain from using
auxiliary variables as a cavalier way of extending the power of notations. This sin appears to be committed most
commonly when authors try to extend a notation beyond the issues that it handles naturally. Experience suggests
that “abstraction” is not only a key intellectual tool but that its judicious use can sometimes specifically avoid
the need for ghost variables (the material on “when abstraction fails” in [Jon12a, 3.2] is relevant here).

Much remains to be done to arrive at notations that express naturally the key issues in concurrency but it is a
corollary of the plea to find “natural” notations that researchers should be explicit about the issues that are being
tackled. One issue not discussed in this paper is that of “progress” arguments. Other than [St@90], little work has
been done on such reasoning in the R/G framework; [Mid93] allows the use of temporal logic but reservations
about being too general are covered in Sect. 5.5; an interesting limitation of the form of temporal assertion needed
is given in [GCPV09]. Another limitation of R/G is identified in Wickerson’s [Wicl3] thesis: he makes the point
that compositionality does not ensure that a method (specifically R/G) can handle modular development (where
a component can be used in various contexts).

Moving forward, the authors’ goal will not be to make arbitrary extensions to existing R/G notation but
rather to understand an issue and then look for apposite notations—almost certainly guided by “abstraction”.

There remains work to be done on the new presentation of R/G but there is far more to be done to take the
initial steps in Sect. 4.2 to a full analysis of the issues of separation and ownership. Given the role of abstraction in
these tentative steps on SL and the proven part that abstraction plays in R/G, a more general theory of abstraction
needs investigation. Short-term objectives include the analysis of more examples (particularly those from SL), a
more careful analysis of data abstraction/reification and—ultimately—the provision of machine support for the
ideas in [HJC14].

Acknowledgments

The invitation for the first author to speak at SEFM gave rise to [Jon12a]; little of that paper remains here but the
trip to Thessaloniki and the hospitality received do remain warm memories. A subsequent invitation to ICECCS
was also made enjoyable by thoughtful and generous hosts; scientifically, it provided the opportunity to try out
the ideas on expressiveness presented here. It is a pleasure to thank our research collaborators: Matt Parkinson
and Richard Bornat (particularly Sect. 2.2); Hongseok Yang and Alexey Gotsman (particularly Sect. 5.6); all
attendees at the productive series of concurrency meetings held in London, Cambridge, Newcastle, Dublin, Oxford
and York. Our colleagues Leo Freitas and Diego Machado Dias both provided detailed comments on an earlier
draft of the current paper; the anonymous referees used by the journal raised many questions that have hopefully
resulted in a more readable paper. Matt Parkinson’s August 2013 visit to give a seminar in Newcastle (based
on [DYBG*13]) was timely and prompted clarification of a number of remarks about SL—as well as providing
other stimulating discussions. The authors of this paper gratefully acknowledge the funding for their research
from the EPSRC Platform Grant “TrAmS-2”, the EPSRC responsive mode grant on “Taming Concurrency” and
the ARC grant DP130102901 on “Understanding concurrent programmes using rely/guarantee thinking”.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which
permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source
are credited.

A. Precis of a refinement calculus for rely/guarantee reasoning

This section contains a summary of the refinement framework developed in the associated technical report
[HIC14]. A subset of the wide-spectrum language that contains specification constructs and code is presented
first, then a set of fundamental lemmas giving the basic properties of the language and finally a subset of the
higher-level refinement laws that may be applied directly in derivations such as the Sieve in Fig. 2. The technical
report [HIC14] defines an operational semantics in which the primitives of the language are defined and with
respect to which the lemmas are proved sound. It also presents a much richer set of refinement laws and their
proofs; this appendix provides only some illustrative proofs, with a focus on those used in Fig. 2.

Formal approaches to concurrency 491

Basic commands. Let p be a predicate, ¢ be a relation, C' a set of commands, b a boolean
expression, X a set of variables, z a variable, and v a value.

=pa) [[d [} I T]C | afe | aie | alea | [

Fig. 4. Syntax of basic command

A.1. Specification language

The basic commands are given in Fig. 4; they include an atomic specification (p, q), which may take a single step
that satisfies ¢ provided p holds, and otherwise may abort, that is, engage in any behaviour. The atomic step may be
preceded or succeeded by interference from the envionment. A specification command [q] represents any command
which, when considered from the initial state to the final state, satisfies the relation g provided interference from
the environment consists only of stuttering steps (i.e. steps that do not change the state). The process of refinement
is essentially about reducing the nondeterminism inherent in [q} to a particular implementation. A precondition
{p} does nothing if the current state satisfies p, but aborts otherwise. A nondeterministic choice [] C may behave as
any of the individual commands in the set C. The more familiar binary choice is a special case where C contains
exactly two elements. A strict conjunction ¢ M ¢; behaves in a manner that is consistent with both commands,
with the caveat that if either aborts then the conjunction aborts; each atomic step made by the conjunction must
be an atomic step that both can make, unless one can abort in which case the conjunction aborts. This operator
simplifies the theory and underlies many of the important definitions and proofs. Sequential composition is the
usual sequencing of execution. Binary parallel composition c; || ¢; is also the usual concept of interleaving of
actions. The multi-way parallel composition ||;cs ¢; used in the body of the paper is its generalisation to multiple
processes executing in parallel, and is defined using binary parallel composition inductively over the finite index
set S. Finally, a test [[b]], where b is a boolean expression, non-atomically evaluates b and may progress if b
evaluates to true. Tests are used in the definition of conditional and while commands, below.

From these basic commands, the set of specification and code constructs as given in Fig. 5 is derived. A
command may be iterated a finite number of times (c for zero or more) and either a finite or infinite number
of times (c®). Iterations of commands are defined via greatest (v) and least («) fixed points with respect to the
refinement ordering [VWO04]. The familiar if-statement if b then ¢, else ¢; is a choice between non-atomically
evaluating the test b to true and executing ¢y and non-atomically evaluating b to false (—b to true) and executing
c1. A loop while b do ¢ is defined as a (potentially infinite) iteration of evaluating b to true and executing the body
of the loop, ¢, followed by an evaluation of b to false.

An assignment x :=e is a choice over all possible values v to which e may be evaluated, followed by atomically
setting x to v.

The guarantee command (guar g e ¢) is defined so that each atomic step of ¢ must satisfy g or stutter (i.e. satisfy
the identity relation id), using program conjunction to restrict the behaviours of ¢ to only those that satisfy the
constraint. For brevity, the definition of the rely command (rely 7 e ¢) is omitted here but is given in [HJC14]; the
following property however demonstrates the interaction of a rely with a specification command.

[P, q] T (relyr e [p, q]) || (r v id)*

It states that (relyr o [p, q}) is an implementation of the specification command [p, q] when it executes in
parallel with interference satsifying r.

A.2. Lemmas

This section includes a subset of the basic properties of the language as lemmas, which in [HJIC14] are proved
sound with respect to an operational semantics. These lemmas provide the foundation for algebraic proofs of
higher-level refinement laws.

Some of the lemmas use a parameterised version of refinement =,, where ¢ C, d states that d refines ¢ when
considering only interference satsifying r. The notation p; = p, means that the implication holds for all states.

492 C. B. Jones et al.

Derived commands. Let p be a predicate, ¢, g and r be relations, ¢, ¢y and ¢; be commands, b a boolean
expression, e an expression, x a variable, and Val the set of values. For a set of variables X, the relation
id(X) is the identity relation on X . For a variable z, Z is the set of all variables other than z.

(g) == (true,) ()

[, ¢l == {p}[d])

Co|_|01 ::|—|{Co,01} (3)

¢ ==vzeskipfc;z “4)

¢ ==pxeskipfc;x ()

if b then ¢ else ¢; == ([[b]]; co) M ([[0]] ; 1) (6)
while b do ¢ == ([[b]] ; ¢) ; [[)]] (7
x::e::|_|{v€ Val o [[e = v]]; {2’ = v Aid(T))} (3)

guarg e ¢ == (g Vid)“ mc 9

The notation {v € V e f} stands for the set of values of the expression f for v in the set V. The notation
{v € V e f}is often written {f | v € V'} but it is preferable not to use the latter because it is ambiguous
as to whether v is bound within the set comprehension or a free variable being tested for membership of V.

Fig. 5. Derived commands

Lemma 1 (Precondition) For any predicates p, po and py, relation r and commands ¢ and d,

{poHp1} = {po A p1} (10)
(po= p1) = {po} E {p1})) (11)
({p)c G, {p}d) & ({p}cC,d) (12)

Lemma 2 (Parallel-precondition) For any predicate p, and commands ¢ and d,
{p}(c Il d) = ({pic) Il ({p}d)
Lemma 3 (Make-atomic) For any predicate p and relation q, [p, q] E (p, q).

Lemma 4 (Consequence) For any predicates py and py, and relations gy and qi, provided py = p1 and py A q1 =
q0,

(Po, q0) C (p1,q1) (13)
[P0, o] T [p1. a1] (14)
Lemma 5 (Sequential) For any predicates po and p1, and relations q, qo and q1, such that po A ((qo A p}) | q1) = ¢,
[Po, 4] E [po, 90 A P15 [P1s @1]-
Lemma 6 (Introduce-test) For any boolean expression b, [def (), b A id] C [[B]].
Lemma 7 (Iteration-induction) For any relation r and commands c, d and x,
xC,dnc; x = xC,.c"; d (15)
dnc; xC,x = ¢“;dC, x (16)
Lemma 8 (Conjunction-monotonic) For any relation r and commands c, c|, dy and d,
(co Er do) A1 B, di) = (coMer) E, (do Mdr)
Lemma 9 (Conjunction-strict) For any predicate p and commands c and d,
{pcmd)=({plc)md = cm({p}d) = ({p}c) M ({p}d).
Lemma 10 (Interchange-conjunction) For any commands ¢y, ¢y, dy and d,, the following hold.
(co Il er) M (do |l di) C (co Mdy) || (c1 Md) (17)
(co5 cr)M(do; di) E (coMdy); (c1 Mdy) (13)

Formal approaches to concurrency 493

Lemma 11 (Distribute-conjunction) For any relation g and commands ¢ and d,
(gm(clld)=g)*Mme)ll ((g)” Md)

Lemma 12 (Refine-in-guarantee-context) For relations g and r and commands cy, ¢i and d, such that cy Egy, ci,
co || (guarg e d) =, c1 || (guar g o d).

Lemma 13 (Tests) For any boolean expressions a and b the following hold.

[la ADYl =T[la]] I[[ENE [la]l; [[6]] = [[a cand b]]
[la v b]] = [[a]l M [[P]] E [[a]] M [[— all 5 [[p]] = [[a cor b]]

and for variables x and y assuming atomic access to a single variable,
[[x<y]]=|_|{veVal,weVal|v<wo(x=v/\id) I (y=wAid)}

and other relational operators are treated similarly.
Lemma 14 (Parallel-interference) For any relations ro and ry, (ro)* || (r1)* = (ro V r1)*.
Lemma 15 (Repeated-interference) For any relationr, (r)*; (r)* = (r)*.

Lemma 16 (Interference-atomic) For any predicate p and relations q and r,

* *

(Pg) 1 (r)" =75 (p,g); (r)".

Lemma 17 (Distribute-parallel) For any commands ¢y, ¢, and d, non-empty set of commands C, and relation r,

([Te)na=[Tcececiay (19)
(coz en) Il {r)* = (eo 1 4r)"): e 11 4r)") (20)
(coll e I14r)* = (o ") Il er 1l (") @1

A.3. Derived laws

This section presents a set of higher-level refinement laws which can be derived from the lemmas. The laws
presented below are the subset of laws used in the development of the Sieve. A much larger set of laws and an
additional example of their application is given in [HIC14]. Proofs of several of the laws are included to show the
incremental and algebraic style of proof that may be adopted; all of the laws are proved in full in [HIC14].

Law 18 (Refinement-monotonic) For any commands ¢ and d and relations ry and ry, if ro = r; Vid and ¢ &, d,
thenc C,, d.

Law 19 (Refine-iterated-relation) For any relation g, [g*] C (g)*.
A.3.1. Laws for program conjunction

Law 20 (Refine-conjunction) For any commands ¢y, ¢c; and d, if ¢ C, d and ¢| C, d, then ¢y M ¢ E, d.

Proof Any trace of d in environment » must also be a trace of both ¢y and ¢, and hence it is a trace of ¢y M ¢y,
noting that if either ¢y or ¢; can abort their conjunction also can. O

Law 21 (Simplify-conjunction) For commands c and d,if c &, d, c¢MdC, d.
Proof The proof follows from Law 20 as ¢ C, d and d C, d. O
Law 22 (Conjoined-specifications) For any relations ¢y and ¢,

(a0 A q1] = [q0] M [q1] -

Law 23 (Conjunction-with-terminating) For any predicate p, relations r and g, and command c, such that p =
stops(c,r),

{p}eg)" &, (&) m({plo).

494

Law 24 (Conjunction-atomic-iterated) For any relations go and g1 both the following hold.

(80)” M (g1)” = (go A g1)”
(go)" M (g™ = (go A g1)"

A.3.2. Laws for the guarantee command

Law 25 (Guarantee-monotonic) For any commands ¢ and d, and relations g and r,
¢cC,d = (guargec)C, (guarg e d).

Proof The proof relies on Lemma 8. If ¢ C, d,
(guargec)=(gVvid)?mMcC, (g Vid)® Md = (guar g e d).

Law 26 (Guarantee-true) For any command c, (guar true e ¢) = c.

Law 27 (Strengthen-guarantee) For any command ¢ and relations gy and g,
(80= g1 vid) = (guarg; ec)C (guargg e c).

Law 28 (Intro-g) For any command ¢ and relation g, ¢ C (guar g e c¢).

Proof The proof follows from Laws 26 and 27:
¢ = (guar true e ¢) C (guar g e ¢)

Law 29 (Nested-g) For a command ¢ and relations gy and g,

(guar go o (guar g e c)) = (guar gy A g1 e c).

Proof The proof relies on the property of relations: (go Vv id) A (g1 Vv id) = (go A g1) V id.

(guar go e (guar g, e c))

= by (9) twice, “M” is associative
(go Vid)?” m (g1 vid)* mc

= by Law 24 part (22) using the above property of relations
((go A g1) Vid)”mc

= (guar gy A g1 ec)

Law 30 (Distribute-g-parallel) For any relation g and commands ¢ and d,
guarg e (c || d) = (guarg ec) | (guarg e d)
Proof Follows directly from the definition of guarantee (9) and Lemma 11.

Law 31 (Trading-g-q) For any relations g and ¢,
(guarg e [g* A g]) = (guarg e [q]).

C. B. Jones et al.

(22)
(23)

Proof By Lemma 4 [q] E [g" A ¢| and hence by Law 25 the refinement holds from right to left. The refinement

from left to right below uses the fact that (g v id)* Ciq (g Vv id)” M [¢] by Law 23.

guarge (g* A g
= by(9), Law 2
(g vid) @gg*] m [q]
= byLaw19and (g vid)* =g*
(g vid)* m (g vid)* @ [q]
Cia by Law 21 as (g v id)* Gig (g Vv id)” M [¢]
(g vid)”m [q]
= by
guarg e [q|

Note that Laws 28, 29, 30, and 31 correspond to laws given in Sect. 2.3.

Formal approaches to concurrency 495

A.3.3. Introducing concurrency

The following law decomposes a specification to two parallel processes, each with a stronger rely condition and
weaker guarantee, with the trade-off that each need fulfill a weaker specification. It corresponds to the parallel
introduction law of [Jon83b], and is a binary version of the law Intro-multi- || used in Sect. 2.3.

Law 32 (Introduce-parallel-spec) For any predicates p, po and p;, and relations ¢, qo, g1, go and g1, such that
p=poAprandp AqgoAq1=q,

[P, q] C (guar gy e (rely g1 ® [po, q0])) || (guar g; (rely go o [p1, q1])).

References

[Abro6]
[Abr10]
[AMT1]
[ANS76]
[BA10]
[BA13]
[BGMY12]
[Boy03]
[BS91]
[BVvWI8]
[CJO0]

[CJO7]
[Col08]

[Cou08]
[DDH72]
[DFPV09]
[Dij68]
[Din00]
[Din02]
[dRO1]

[dRPDYD*11]

[DYBG*13]

[DYDG*10]
[Fen09]
[FFS07]
[Flo67]
[GCPV09]
[GY11]
[HA10]

[HBDJ13]

Abrial JR (1996) The B-book: assigning programs to meanings. Cambridge University Press, Cambridge

Abrial JR (2010) The event-B book. Cambridge University Press, Cambridge

Ashcroft EA, Manna Z (1971) Formalization of properties of parallel programs. In: Meltzer B, Michie D (eds) Machine
intelligence, vol 6. Edinburgh University Press, Edinburgh, pp 17-41

ANSI (1976) Programming language PL/I. Technical report X3.53-1976, American National Standard

Bornat R, Amjad H (2010) Inter-process buffers in separation logic with rely-guarantee. Form Asp Comput 22(6):735-772
Bornat R, Amjad H (2013) Explanation of two non-blocking shared-variable communication algorithms. Form Asp Com-
put 25(6):893-931

Burckhardt S, Gotsman A, Musuvathi M, Yang H (2012) Concurrent library correctness on the TSO memory model. In:
ESOP

Boyland J (2003) Checking interference with fractional permissions. In: Cousot R (ed) Static analysis, vol 2694 of LNCS.
Springer, New York, pp 55-72

Back RJ, Sere K (1991) Stepwise refinement of action systems. Struct Program 12:17-30

Back R-JR, von Wright J (1998) Refinement calculus: a systematic introduction. Springer, New York

Collette P, Jones CB (2000) Enhancing the tractability of rely/guarantee specifications in the development of interfering
operations. In: Plotkin G, Stirling C, Tofte M (eds) Proof, language and interaction, vol 10. MIT Press, USA, pp 277-307
Coleman JW, Jones CB.(2007) A structural proof of the soundness of rely/guarantee rules. J] Log Comput 17(4):807-841
Coleman JW (2008) Constructing a tractable reasoning framework upon a fine-grained structural operational semantics.
PhD thesis, Newcastle University

Cousot P (2008) The verification grand challenge and abstract interpretation. In: Meyer B, Woodcock J (eds) Verified
software: theories, tools, experiments, vol 4171. Lecture notes in computer science. Springer, Berlin/Heidelberg, pp 189—
201. doi:10.1007/978-3-540-69149-5_21

Dahl OJ, Dijkstra EW, Hoare CAR (1972) Structured programming. Academic Press, Dublin

Dodds M, Feng X, Parkinson M, Vafeiadis V (2009) Deny-guarantee reasoning. In: Castagna G (ed) Programming lan-
guages and systems, vol 5502. Lecture notes in computer science. Springer, Berlin/Heidelberg, pp 363-377

Dijkstra EW (1968) Letters to the editor: go to statement considered harmful. Commun ACM 11(3):147-148

Dingel J (2000) Systematic parallel programming. PhD thesis, Carnegie Mellon University, CMU-CS-99-172

Dingel J (2002) A refinement calculus for shared-variable parallel and distributed programming. Form Asp Comput
14(2):123-197

de Roever WP (2001) Concurrency verification: introduction to compositional and noncompositional methods. Cambridge
University Press, Cambridge

da Rocha Pinto P, Dinsdale-Young T, Dodds M, Gardner P, Wheelhouse M (2011) A simple abstraction for complex
concurrent indexes. In: Proceedings of the 2011 ACM international conference on object oriented programming systems
languages and applications, pp 845-864. ACM

Dinsdale-Young T, Birkedal L, Gardner P, Parkinson M, Yang H (2013) Views: compositional reasoning for concur-
rent programs. In: Proceedings of the 40th annual ACM SIGPLAN-SIGACT symposium on principles of programming
languages, pp 287-300. ACM

Dinsdale-Young T, Dodds M, Gardner P, Parkinson MJ, Vafeiadis V (2010) Concurrent abstract predicates. In: Proceedings
of the 24th European conference on object-oriented programming. Springer, Berlin, pp 504-528

Feng X (2009) Local rely-guarantee reasoning. In: Proceedings of the 36th annual ACM SIGPLAN-SIGACT symposium
on principles of programming languages, POPL’09. ACM, New York, pp 315-327

Feng X, Ferreira R, Shao Z (2007) On the relationship between concurrent separation logic and assume-guarantee reason-
ing. In: ESOP: programming languages and systems. Springer, New York, pp 173-188

Floyd RW (1967) Assigning meaning to programs. Math Asp Comput Sci 19:19-32

Gotsman A, Cook B, Parkinson M, Vafeiadis V (2009) Proving that non-blocking algorithms don’t block. In: Proceedings
of the 36th annual ACM SIGPLAN-SIGACT symposium on principles of programming languages, POPL’09. ACM, New
York, pp 16-28

Gotsman A, Yang H (2011) Liveness-preserving atomicity abstraction. In: ICALP

Hoang TS, Abrial JR (2010) Event-B decomposition for parallel programs. In: Frappier M, Glaesser U, Sarfraz K, Laleau
R, Reeves S (eds) ABZ, vol 5977 of LNCS. Springer, New York, pp 319-333

Hayes 1J, Burns A, Dongol B, Jones CB (2013) Comparing degrees of non-deterministic in expression evaluation. Comput
J 56(6):741-755

http://dx.doi.org/10.1007/978-3-540-69149-5_21

496

[HIC14]
[HMSW11]

[Hoa69]
[Hoa72]

[HW90]

[Jon80]
[Jon81]

[Jon83a]
[Jon83b]

[Jon90]
[Jon96]

[Jon03]

[Jon07]
[Jon10]

[Jonl2a]

[Jon12b]
[JPO8]

[JP11]
[Lan66]
[Lial4]
[Mid93]
[Mor87]

[Mor94]
[Mos85]

[0G76]
[0°HO7]
[Owi75]
[Par10]
[PBCO6]
[Pre01]
[Pre03]
[Rey00]
[Rey02]

[Rod08]
[San99]

[SB14]

[Sim90]
[STER11]

[Ste90]

C. B. Jones et al.

Hayes 1J, Jones CB, Colvin RJ (2014) Laws and semantics for rely-guarantee refinement. Technical report CS-TR-1425,
Newcastle University

Hoare T, Moller B, Struth G, Wehrman I (2011) Concurrent Kleene algebra and its foundations. J Log Algebra Program
80(6):266-296

Hoare CAR (1969) An axiomatic basis for computer programming. Commun ACM 12(10):576-580, 583

Hoare CAR (1972) Towards a theory of parallel programming. In: Operating system techniques. Academic Press, Dublin,
pp 61-71

Herlihy M, Wing JM (1990) Linearizability: a correctness condition for concurrent objects. ACM Trans Program Lang
Syst 12(3):463-492

Jones CB (1980) Software development: a rigorous approach. Prentice Hall International, Englewood Cliffs

Jones CB (1981) Development methods for computer programs including a notion of interference. PhD thesis, Oxford
University. Printed as: Programming Research Group, Technical Monograph 25.

Jones CB (1983) Specification and design of (parallel) programs. In: Proceedings of IFIP’83, North-Holland, pp 321-332
Jones CB (1983) Tentative steps toward a development method for interfering programs. Trans Program Lang Syst 5(4):596—
619

Jones CB (1990) Systematic software development using VDM, 2nd edn. Prentice Hall International, USA

Jones CB (1996) Accommodating interference in the formal design of concurrent object-based programs. Form Methods
Syst Des 8(2):105-122

Jones CB (2003) Wanted: a compositional approach to concurrency. In: Mclver A, Morgan C (eds) Programming method-
ology. Springer, New York, pp 5-15

Jones CB (2007) Splitting atoms safely. Theor Comput Sci 375(1-3):109-119

Jones CB (2010) The role of auxiliary variables in the formal development of concurrent programs. In: Jones CB, Roscoe
AW, Wood K (eds) Reflections on the work of C.A.R. Hoare, vol 8. Springer, New York, pp 167188

Jones CB (2012) Abstraction as a unifying link for formal approaches to concurrency. In: Eleftherakis G, Hinchey M,
Holcombe M (eds) Software engineering and formal methods, vol 7504. Lecture notes in computer science, pp 1-15
Jones CB (2012) A specification for ACMs. Technical report CS-TR-1360, Newcastle University

Jones CB, Pierce KG (2008) Splitting atoms with rely/guarantee conditions coupled with data reification. In: ABZ2008,
number 5238 in lecture notes in computer science. Springer, New York, pp 360-377

Jones CB, Pierce KG (2011) Elucidating concurrent algorithms via layers of abstraction and reification. Form Asp Comput
23(3):289-306

Landin PJ (1966) The next 700 programming languages. Commun. ACM 9(3):157-166

Liang H (2014) Refinement verification of concurrent programs and its applications. PhD thesis, USTC, China
Middelburg CA (1993) Logic and specification: extending VDM-SL for advanced formal specification. Chapman and Hall,
London

Morris JM (1987) A theoretical basis for stepwise refinement and the programming calculus. Sci Comput Program 9(3):287—
306

Morgan CC (1994) Programming from specifications, 2nd edn. Prentice Hall, USA

Moszkowski B (1985) Executing temporal logic programs. In: Brookes SD, Roscoe AW, Winskel G (eds) Seminar on
concurrency, vol 197 of LNCS. Springer, Berlin, pp 111-130

Owicki SS, Gries D (1976) An axiomatic proof technique for parallel programs I. Acta Inform 6:319-340

O’Hearn PW (2007) Resources, concurrency and local reasoning. Theor Comput Sci 375(1-3):271-307

Owicki S (1975) Axiomatic proof techniques for parallel programs. PhD thesis, Department of Computer Science, Cornell
University

Parkinson M (2010) The next 700 separation logics. In: Leavens G, O’Hearn P, Rajamani S (eds) Verified software: theories,
tools, experiments, vol 6217. Lecture notes in computer science. Springer, Berlin/Heidelberg, pp 169-182

Parkinson M, Bornat R, Calcagno C (2006) Variables as resource in Hoare logics. In: Proceedings of the 21st annual IEEE
symposium on logic in computer science, pp 137-146

Prensa Nieto L (2001) Verification of parallel programs with the owicki-gries and rely-guarantee methods in Isabelle/HOL.
PhD thesis, Institut fur Informatic der Technischen Universitaet Miinchen

Prensa Nieto L (2003) The rely-guarantee method in Isabelle/HOL. In: Proceedings of ESOP 2003, vol 2618 of LNCS.
Springer, New York

Reynolds JC (2000) Intuitionistic reasoning about shared mutable data structure. In: Davies J, Roscoe B, Woodcock J (eds)
Millennial perspectives in computer science. Houndsmill, Hampshire, Palgrave, pp 303-321

Reynolds JC (2002) Separation logic: a logic for shared mutable data structures. In: Proceedings of 17th LICS. IEEE, pp
55-74

Rodin (2008) Event-B and the Rodin platform. http://www.event-b.org.

Sangiorgi D (1999) Typed 7 -calculus at work: a correctness proof of Jones’s parallelisation transformation on concurrent
objects. Theory Pract Obj Syst 5(1):25-34

Svendsen K, Birkedal L (2014) Impredicative concurrent abstract predicates. In: Programming languages and systems.
Springer, New York, pp 149-168

Simpson HR (1990) Four-slot fully asynchronous communication mechanism. Comput Dig Tech IEE Proc E 137(1):17-30
Schellhorn G, Tofan B, Ernst G, Reif W (2011) Interleaved programs and rely-guarantee reasoning with ITL. In: Proceedings
opf the eighteenth international symposium on temporal representation and reasoning (TIME), pp 99-106

Stoelen K (1990) Development of parallel programs on shared data-structures. PhD thesis, Manchester University. Available
as UMCS-91-1-1.

http://www.event-b.org

Formal approaches to concurrency 497

[TDB13] Turon A, Dreyer D, Birkedal L (2013) Unifying refinement and Hoare-style reasoning in a logic for higher-order concur-
rency. In: Proceedings of the 18th ACM SIGPLAN international conference on functional programming, ICFP’13. ACM,
pp 377-390

[Vaf07] Vafeiadis V (2007) Modular fine-grained concurrency verification. PhD thesis, University of Cambridge

[VP07] Vafeiadis V, Parkinson M (2007) A marriage of rely/guarantee and separation logic. In: Caires L, Vasconcelos V (eds)
CONCUR 2007— concurrency theory, vol 4703 of LNCS. Springer, NEw York, pp 256-271

[vW04] von Wright J (2004) Towards a refinement algebra. Sci Comput Program 51:23-45

[Wicl3] Wickerson J (2013) Concurrent verification for sequential programs. PhD thesis, Cambridge

[WW10] Wang S, Wang X (2010) Proving Simpson’s four-slot algorithm using ownership transfer. VERIFY Workshop, Edinburgh.

Received 19 August 2013

Revised 29 June 2014

Accepted 8 July 2014 by George Eleftherakis, Mike Hinchey, Michael Butler and Jim Woodcock
Published online 29 August 2014

	Balancing expressiveness in formal approaches to concurrency
	Abstract
	1 Introduction
	1.1 Suitably expressive abstractions
	1.2 Structure of the paper

	2 Reasoning about interference (race tolerance)
	2.1 The original rely/guarantee 5-tuples
	2.2 A racy example
	2.3 An algebraic presentation of R/G

	3 Reasoning about separation (race avoidance)
	3.1 Concurrent separation logic
	3.2 Ownership
	3.3 Framing

	4 Abstraction as a key tool
	4.1 Abstract race avoidance
	4.2 Reasoning about separation as an abstraction

	5 Other approaches
	5.1 SLs meet R/G
	5.2 Another 700 SLs
	5.3 Ghost variables
	5.4 Actions/events
	5.5 RGITL
	5.6 Linearisability

	6 Conclusions
	Acknowledgments
	A Precis of a refinement calculus for rely/guarantee reasoning
	A.1 Specification language
	A.2 Lemmas
	A.3 Derived laws
	A.3.1 Laws for program conjunction
	A.3.2 Laws for the guarantee command
	A.3.3 Introducing concurrency

	References

