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Abstract The effect of non-Boltzmann energy distributions on the free propagation of shock waves through
a monoatomic gas is investigated via theory and simulation. First, the non-Boltzmann heat capacity ratio γ ,
as a key property for describing shock waves, is derived from first principles via microcanonical integration.
Second, atomistic molecular dynamics simulations resembling a shock tube setup are used to test the theory.
The presented theory provides heat capacity ratios ranging from the well-known γ = 5/3 for Boltzmann
energy-distributed gas to γ → 1 for delta energy-distributed gas. The molecular dynamics simulations of
Boltzmann and non-Boltzmann driven gases suggest that the shock wave propagates about 9% slower through
the non-Boltzmann driven gas, while the contact wave appears to be about 4% faster if it trails non-Boltzmann
driven gas. The observed slowdown of the shock wave through applying a non-Boltzmann energy distribution
was found to be consistent with the classical shock wave equations when applying the non-Boltzmann heat
capacity ratio. These fundamental findings provide insights into the behavior of non-Boltzmann gases and
might help to improve the understanding of gas dynamical phenomena.

Keywords Microcanonical · Heat capacity ratio · Atomistic molecular dynamics · Non-Boltzmann shock
wave

1 Introduction

Non-equilibriumgas dynamics are essential for describing atmospheric entry processes [1,2], hypersonic cruise
[3], and nozzle flow [4,5]. The mathematical formulation of such processes is well-established through the
Boltzmann equation [6,7], which allows for a continuous description of, typically, rarefied gas dynamics. Non-
Boltzmann dynamics of dense gases are commonlymodeled through approximate schemes, many of which use
the assumption of microcanonical equilibrium. The present work provides a microcanonical non-equilibrium
derivation of the heat capacity ratio of non-Boltzmann energy-distributedmonoatomic gas.Atomisticmolecular
dynamics simulations of shock waves freely propagating through Boltzmann and non-Boltzmann energy-
distributed monoatomic gases are utilized to validate the theoretical findings. Ultimately, the simulation results
are compared to ideal equilibrium shock calculations using non-equilibrium heat capacity ratios.

The non-equilibrium state of a monoatomic gas is characterized by variations of the number density over
the entire accessible phase space, spanned by the positions q and the momenta p. The Boltzmann equation
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provides the means for continuously describing the evolution of such a non-equilibrium state by phase space
integration [7]. Solving the Boltzmann equation, however, becomes increasingly demanding with decreasing
Knudsen number, hence it is typically applied only for rarefied gas flows [6]. Probably the most popular
approach for averting the high computational efforts required for solving the Boltzmann equation is the use of
Direct Simulation Monte Carlo (DSMC), which was pioneered by Bird [8]. For a good overview of relevant
studies about and with the DSMC method, please refer to Gallies [9].

For the transition regime from large to small Knudsen numbers, usually more efficient, yet more approxi-
mate approaches are utilized [10]. For intermediate Knudsen numbers, the use of moment equations has been
established, for which Torrilon [10] provided a good overview of how moments are defined and how these
equations can be used for modeling non-equilibrium gas flows. For the strong non-equilibrium start-up phase
of a shock tube process for instance, Au et al. [11] found that the use of moment equations allows for reliably
describing the first moments of start-up, which cannot be captured by the Navier–Stokes equation. Another
example is provided in the recent special issue on “non-equilibrium thermodynamics” edited by Ván [12], in
which Öttinger et al. [13] formulated moment equations for rarefied gases based on the Boltzmann equation,
showing that the rotational extended thermodynamics (RET) approach [14] is a special case of the general
equation for the non-equilibrium reversible-irreversible coupling (GENERIC) [15], with both approaches being
used for describing non-equilibrium gas dynamics.

With increasing gas density, i.e., decreasing Knudsen number, the models used for describing non-
equilibrium start using the assumption of Boltzmann energy-distributed gases. Various approaches for describ-
ing non-equilibrium thermodynamics have been developed [16], such as superstatistics [17], stochastic thermo-
dynamics [18], and local equilibrium thermodynamics [19]. The above methodologies all aim at formulating
an unified description of non-equilibrium thermodynamics [12], yet they do not necessarily include non-
Boltzmann energy distributions, i.e., local non-equilibrium in the momentum space. The most widely used
approach for modeling microcanonical non-equilibrium gas states is the use of distinct temperatures for distin-
guishable degrees of freedom [20]. For instance, Kosareva et al. [2] recently applied a four-temperatures kinetic
model for modeling the vibrational relaxation of CO2 during atmospheric entry. This approach can generally
be used to separate excitation of translational, rotational, vibrational, and electronic degrees of freedom, yet it
is still based on the concept of the Boltzmann energy distribution.

Besides the research on the Boltzmann equation and its derivatives for describing non-Boltzmann energy
distributions, the role of non-Boltzmann energy distributions has been intensely investigated in the field of
theoretical chemical kinetics recently [21,22]. In 2015, Klippenstein and co-workers [21,22] revived the topic
of non-Boltzmann chemical kinetics, which had probably been initially observed in the 1970s and 1980s
[23–25]. Subsequent studies by Labbe et al. [26,27] and by Döntgen et al. [28,29] advanced the fundamental
understanding of non-Boltzmann chemical kinetics. In particular, the prompt dissociation reactions of radical
species were found to significantly affect macroscopic properties, such as the flame speed [27] and the ignition
delay time [30]. The combination of non-Boltzmann gas dynamics and non-Boltzmann chemical kinetics was
intensely investigated by Kustova and co-workers [2,31–33], who investigated not only the role of vibrational
excitation on CO2 chemistry during atmospheric entry [2], but also the behavior of N2 [31], O2 [32], and CO
[33] in vibrationally excited gas dynamical flows. In this context, the use of state-to-state dynamics is widely
established for describing the transition between energy levels and chemical states [2,31–35].

Non-equilibrium effects are known to or might be affecting various gas dynamical experiments. For
instance, Campbell et al. [36] compared calculated and experimentally derived thermodynamic variables for
postshock states of vibrationally excited, i.e., non-Boltzmann, gases. The authors highlighted that vibrational
excitation can lead to deviations in temperatures of up to 8% [36]. As a less definite example, Bedin [37]
found an anomalous alteration of the velocity of a shock wave traversing a non-equilibrium plasma, which
was intensely re-investigated experimentally [38,39] and numerically [40,41]. The controversial discussion
of the underlying mechanism is not yet fully resolved [42], indicating the high complexity of the underlying
mechanism and non-equilibrium gas dynamics in general.

The present work will show that non-Boltzmann energy distributions affect the heat capacity ratio, as
the most relevant gas dynamical property, even at high density conditions. First, the heat capacity ratio of
a non-Boltzmann energy-distributed monoatomic gas will be derived from first principles by applying and
integrating a microcanonical formulation of the heat capacity ratio, weighted by prototypical energy distribu-
tions. Second, the theoretical dependence of the heat capacity ratio on the energy distribution will be validated
through atomistic molecular dynamics simulations of a monoatomic gas for the two presently limiting energy
distributions: The Boltzmann and the delta energy distributions. Third, the shock velocities obtained through
the molecular dynamics simulations will be compared to the ideal equilibrium shock calculations, carried out
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with the theoretical heat capacity ratios of the Boltzmann and delta energy distributions. The present work will
provide fundamental insights into the role of non-Boltzmann energy distributions on the most fundamental
gas dynamical property: The heat capacity ratio.

2 Theory

Themicrocanonical heat capacity ratio, i.e., isentropic coefficient, γ of amonoatomic ideal gaswith an arbitrary
energy distribution is derived here. In the present work, the Boltzmann energy distribution (B) will be used
as reference of systems in thermal equilibrium and a delta function (δ) will be used to represent the upper
limiting case of non-Boltzmann energy distributions. The delta energy distribution is selected in particular, as
it comes with no entropy at all. In essence, a delta energy distribution represents a system in which all particles
have exactly the same energy. Such an energy distribution has limited physical relevance, since any collisional
interaction would disrupt the delta energy distribution. However, it allows to quantify the upper limiting effect
of non-Boltzmann energy distributions on the heat capacity ratio.

The general definition of the heat capacity ratio is given as follows [43]:

γ = CP, j

CV, j
, (1)

with j identifying the energy distribution, CP, j being the the isobaric heat capacity of distribution j , and
CV, j being the isochoric heat capacity of distribution j . The heat capacity is typically defined as the second
derivative of the Helmholtz free energy with respect to temperature. Here, however, it is more suitable to
describe the heat capacity through the energy fluctuations of the system. In a Boltzmann energy-distributed
system, the heat capacity is given as:

Ci, j = kB · 〈E2〉i, j − 〈E〉2i, j
(kBT )2

, (2)

with i being P or V , kB being Boltzmann’s constant, E being the energy, and 〈...〉 being the microcanonical
averaging operator. When combining Eqs. 1 and 2, one obtains the following expression:

γ = 〈E2〉P, j − 〈E〉2P, j

〈E2〉V, j , −〈E〉2V, j

(3)

Since Eq. 3 solely depends on the averaged squared and squared averaged energies, 〈E2〉 and 〈E〉2, respectively,
it is applicable for arbitrary energy distributions. The averaged squared energy 〈E2〉 is given as:

〈E2〉i, j =

∞∫

0
E2 · ρi (E) · f j (E) · dE
∞∫

0
ρi (E) · f j (E) · dE

, (4)

with ρi (E) being either the isobaric density of states (i = P) or the isochoric density of states (i = V ) and f j
being the probabilities of energy distribution j . The squared averaged energy 〈E〉2 is given as:

〈E〉2i, j =

⎛

⎜
⎜
⎜
⎝

∞∫

0
E · ρi (E) · f j (E) · dE
∞∫

0
ρi (E) · f j (E) · dE

⎞

⎟
⎟
⎟
⎠

2

. (5)

For a monoatomic gas, the density of states is obtained through inverse Laplace transformation of the
translational partition function [44] and is independent of the energy distribution. In case an isobaric state is
considered, the density of states is given as:

ρP(E) = qtr/p

�(5/2)
· (E)3/2, (6)
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with the translational partition function pre-factor qtr = (2πm/h2)3/2, the pressure p, and the gamma function
�. In case an isochoric state is considered, the density of states is given gas:

ρV (E) = qtr · V
�(3/2)

· (E)1/2, (7)

with the volume V .
Combining Eqs. 3–7 yields the heat capacity ratio γ for a given energy distribution f j (E). For the Boltz-

mann energy distribution fB(E) = exp(−E/kBT ) and the delta energy distribution fδ(E) = δ(E − E0), γ
can be obtained analytically and amounts to γ = 5/3 and γ → 1, respectively. To allow for comparability
between different energy distributions, the total energy of the compared energy distributions is required to be
equal. For the delta and Boltzmann energy distributions, the following equation relates the delta peak position
E0 to the temperature T of the Boltzmann energy distribution.

〈Eδ〉 != 〈EB〉

⇔

∞∫

0
E · ρ(E) · fδ(E) · dE
∞∫

0
ρ(E) · fδ(E) · dE

=

∞∫

0
E · ρ(E) · fB(E) · dE
∞∫

0
ρ(E) · fB(E) · dE

⇔

∞∫

0
E · √

E · δ(E − E0) · dE
∞∫

0

√
E · δ(E − E0) · dE

=

∞∫

0
E · √

E · exp
(
− E

kBT

)
· dE

∞∫

0

√
E · exp

(
− E

kBT

)
· dE

⇔ E0 = 3/2 · kBT

(8)

The transition between the Boltzmann and delta energy distributions is modeled through the Gaussian energy

distribution fG(E) = 1√
2π ·b · exp

(
− (E−EG,0)

2

2b2

)
with the Gaussian width b and the Gaussian position EG,0.

When setting 〈EG〉 != 〈EB〉, the Gaussian width b can be determined numerically for a given Gaussian position
EG,0. Through this procedure, the Gaussian distribution can be converged to the Boltzmann distribution for
EG,0 → -∞ and to the delta distribution for EG,0 → 3/2 · kBT . For the Gaussian energy distributions,
however, γ cannot be determined analytically and the integrals in Eqs. 4 and 5 have to be solved numerically.

3 Methodology

Pseudo-three-dimensional Lennard–Jones (LJ) molecular dynamics (MD) simulations have been carried out
with super-critical Argon in the driver and driven sections at an initial temperature of 300K and ideal gas
pressures of 500 and 50bar, respectively, using the LAMMPS software package [45]. The Lennard–Jones
potential used in the present MD simulations is defined as follows [46]:

VLJ(r) = 4 · ε ·
((σ

r

)12 −
(σ

r

)6)

, (9)

with distance r between two LJ particles, LJ well depth ε, and LJ diameter σ . The large pressures in the driver
and driven sections are selected to generate a sufficiently strong shock wave for shock position post-processing
and to keep the width of the shock wave rather small. Thermodynamic real gas effects will be considered in the
theoretical shock velocity calculations, as detailed below. Argon is modeled via the LJ well depth ε = 114K
and the LJ diameter σ3D = 3.47Å. To reduce the simulation size, the three-dimensional domain has been
reduced to a two-dimensional domain and the LJ diameter has been adopted by requiring that the ideal gas LJ
collision frequencies [47] of the three- and two-dimensional domains are equal, yielding σ2D = 2 · σ 2

3D/L ,
with L being the reference length of the reduced dimension. Here, L = 5Å has been used. This ensures
that the collision frequencies of the present pseudo-three-dimensional simulations resemble those of actual
three-dimensional simulations.
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Fig. 1 Initial setup of the molecular dynamics simulation. Driver gas particles on the left are shown in red and driven gas particles
on the right are shown in blue

The two-dimensional simulation box was 1µm long and 0.2µmwide. The area defined by the first 0.1µm
of the long axis was filled with 11,941 driver gas molecules (red), the remaining area was filled with 10,852
driven gas molecules (blue). All molecules have been randomly positioned inside the respective areas. Figure1
shows the corresponding setup of the simulation.

Both ends of the short axis were modeled with periodic boundary conditions, through which the corre-
sponding dimension of the simulation was pseudo-infinite. The boundaries at both ends of the long axis were
modeled as perfectly reflecting walls, through which collisions of gas particles with these walls were perfectly
elastic. The driver and driven sections were initially separated by five layers of particles with frozen positions.
Before removing the separating particle layers, the particle velocities were randomly distributed so that they
resemble a Maxwell–Boltzmann distribution and each section was thermalized at 300K for 0.1ns using a
Nosé-Hoover thermostat. Then, the separating particle layers were removed and the entire system was simu-
lated for 2ns without thermostating. Post-processing, however, was stopped before the shock wave reached the
endwall of the driven section. A total of five repetitions with different random number generator seeds have
been carried out for the Boltzmann and the delta energy-distributed driven gases.

The propagation of the contact wave between the driver and driven gases and the shock wave inside the
driven gas was tracked through the particle density over the long axis of the simulation box. The driven gas
density was fitted using two logistic functions, one for modeling the contact wave and the other for modeling
the incident shock wave. The positions of the transitions from the lower to the upper limits of the logistic
functions are used as contact and shock wave positions in the post-processing.

Simulation of the Boltzmann energy-distributed driven gas was immediately possible, since the driven gas
had been thermalized through the Nosé–Hoover thermostat and the subsequent constant particle (N ), constant
volume (V ), and constant energy (E) simulations preserved the Boltzmann energy distribution in the driven
gas. A delta energy-distributed gas, however, would rapidly thermalize toward a Boltzmann energy-distributed
gas at the present high-pressure conditions, which come with large collision frequencies. Any collision within
the driven gas would re-distribute the kinetic energy and relax the energy distribution toward the Boltzmann
distribution. This relaxation is especially pronounced for the delta energy distribution, as can be concluded from
the H -function presented in Fig. 3. To allow for the shock wave to actually traverse a delta energy-distributed
gas, the relaxation was counteracted by actively maintaining the delta distribution in the present simulations.

Based on a readily available thermostat routine, a routine has been implemented in the LAMMPS software
package which rescales the velocities of the driven gas particles to a target velocity, which was defined so
that the kinetic energies of the Boltzmann and delta energy distributions are equal for the driven gas. To allow
unbiased interactions of the driven gas with the shock front, the routine was only applied to a dynamically
shrinking sub-section of the driven section which is preceding the shock front. This shrinking sub-section
spanned the entire short axis of the driven section, had one side fixed to the endwall of the driven section,
and had the other side move toward the endwall at a constant velocity. The velocity at which this section
was shrinking was selected so that the shock front would not be affected by the routine for maintaining the
delta energy distribution. This velocity was taken from the simulations of the Boltzmann energy-distributed
gas, which was larger than the shock velocity obtained through the simulations of the non-Boltzmann energy-
distributed gas. Through this, a buffer zone between the sub-section in which the delta energy distribution was
actively maintained and the shock front was implemented.

For comparison, the ideal shock velocities for the above simulated conditions were calculated using the
Shock and Detonation Toolbox [48] in conjunction with the Cantera software package [49]. The effective
pressures of the driver and driven sections used for shock velocity calculation were obtained through the Van
der Waals equation of state with a molar co-volume of 0.03201 l/mol and a co-pressure of 135.5 Pa · l2/mol2

[50]. This leads to effective pressures of 821 and 48bar for the driver and driven sections, respectively. The
pronounced real gas effects leading to the large driver pressure are acceptable in the present simulations,
since the real gas interactions in the driver gas are not affecting the shock velocity in the driven section. This
shock velocity only depends on the ratio of effective pressures between driver and driven sections, the initial
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Fig. 2 Heat capacity ratio γG of a Gaussian energy-distributed monoatomic gas as function of the ratio of the averaged squared
energies 〈E2〉 of the Boltzmann and Gaussian energy distributions. The horizontal dashed line represents the well-established
heat capacity ratio of a Boltzmann energy-distributed monoatomic gas γB = 5/3. The vertical dashed lines represent the limiting
cases defined through the Boltzmann and delta energy distributions, 〈E2

G〉 = 〈E2
B〉 and 〈E2

G〉 = 〈E2
δ 〉, respectively

temperature, the molar mass, and the heat capacity ratio of the driven gas. Since the driven gas is sufficiently
well described by the ideal gas law (4% deviation from ideal gas pressure), the presently calculated heat
capacity ratios of the monoatomic ideal gases with a Boltzmann and a delta energy distribution can be used to
determine the shock velocity in the driven section. These shock velocities will be used for validating the present
molecular dynamics simulations of Boltzmann energy-distributed gas and for testing if the same theories are
applicable to non-Boltzmann energy-distributed gases.

4 Results and discussion

4.1 Non-Boltzmann heat capacity ratio

The theoretical heat capacity ratio of non-Boltzmann energy-distributed monoatomic gases provided above is
evaluated numerically for a Gaussian energy distribution with the limiting cases of the Boltzmann and delta
energy distributions. Asmentioned above, the Gaussian energy distribution converges to the Boltzmann energy
distribution if the Gaussian position EG,0 diverges to −∞ and the average energies of the two distributions are
set to be equal. For the sake of compact representation, however, the ratio of the isochoric averaged squared
energies (cf. Eqs. 4 and 7) of the Boltzmann and Gaussian distributions 〈E2

B〉/〈E2
G〉 is used to characterize the

deviation from the Boltzmann distribution. This ratio yields unity in case the Gaussian distribution resembles
the Boltzmann distribution and it yields 15/9 ≈ 1.67 in case the Gaussian distribution resembles the delta
distribution.

Figure 2 shows the heat capacity ratio of a Gaussian energy-distributed monoatomic gas γG as function
of the ratio of the averaged squared energies of the Boltzmann and Gaussian distributions. The dashed lines
represent the Boltzmann heat capacity ratio (cf. black dashed line, γB = 5/3), the Boltzmann limiting case
of the Gaussian distribution (cf. blue dashed line, 〈E2

G〉 = 〈E2
B〉), and the delta limiting case of the Gaussian

distribution (cf. red dashed line, 〈E2
G〉 = 〈E2

δ 〉).
As would be expected, the Gaussian heat capacity ratio resembles the Boltzmann and delta heat capacity

ratios if the Gaussian distribution converges to either of these two limiting distributions. However, there is
an unexpected minimum for 〈E2

B〉/〈E2
G〉 ≈ 1.47, for which the heat capacity ratio of the respective Gaussian

distribution amounts to γG ≈ 0.92. This averaged squared energy ratio corresponds to a Gaussian position
rather close to the upper limiting case of E0 = 3/2 · kBT , with EG,0 = 0.9 · E0. It was tested if the observed
minimum can be attributed to numerical uncertainties, yet changing the convergence threshold and the energy
increment of the numerical integrations from 10−9 to 10−15 and from 1 cm−1 to 0.1 cm−1, respectively, had a
negligible effect on γ in the range of 10−5. This means that the numerically calculated γG curve is an accurate
representation of the underlying theory and that the observed γG < 1 is theoretically valid.

From a classical thermodynamics perspective, the heat capacity ratio determines the volume response
to adiabatic temperature changes as dV/dT = (Cp − CV)/p. In this classical context, a heated gas with
γ > 1 would expand, with γ = 1 its volume would not change, and with γ < 1 it would contract. In the
present work, the effect of non-Boltzmann energy distributions on the adiabatic change of states was tested by
randomly sampling velocities from Gaussian energy distributions and optimizing the Gaussian peak position
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Fig. 3 H -function of the Boltzmann, Gaussian, and delta energy distributions as function of the ratio of the averaged squared
energies 〈E2〉 of the Boltzmann and Gaussian energy distributions. The vertical dashed lines represent the limiting cases defined
through the Boltzmann and delta energy distributions, 〈E2

G〉 = 〈E2
B〉 and 〈E2

G〉 = 〈E2
δ 〉, respectively

EG,0 and width b so that the pressure, the internal energy, and the entropy remained constant. All presently
tested Gaussian energy-distributed monoatomic gases expand with increasing temperature according to the
well-established description of isentropic expansion within numerical uncertainties: V2/V1 = (T1/T2)1/(γ−1),
with γ = 5/3. This means that the non-Boltzmann heat capacity ratio must not be confused with the classical
heat capacity ratio for thermal equilibrium.

The observed γ < 1 originates from the energy dependencies of the isochoric and isobaric densities of
states.While the isochoric density of states increases sub-proportional with energy, the isobaric density of states
increases super-proportional with energy. As a consequence, the relative population of low energy states is
larger and the relative population of high energy states is smaller for isochoric conditions compared to isobaric
conditions. While this still leads to CP > CV for probability distributions which monotonically decline with
energy, such as the Boltzmann distribution or the Gaussian distribution with 〈E2

B〉/〈E2
G〉 < 1.22, it results in

CP ≤ CV for a range of non-monotone Gaussian distributions with 〈E2
B〉/〈E2

G〉 � 1.3. For these Gaussian
energy distributions, the contributions of the densely populated low energy states to the isochoric heat capacity
exceed the contributions of the sparsely populated high energy states to the isobaric heat capacity.

While the energy of the presently investigated probability distributions is set to be equal, the entropy is
certainly not. Here, Boltzmann’s H -theorem [51] is utilized to obtain insights into the stability/entropy of the
Boltzmann, Gaussian, and delta energy distributions. Figure3 shows the H -function of the Boltzmann energy
distribution (left-most limit), of the delta energy distribution (right-most limit), and of the Gaussian energy
distributions interpolating between these two limiting cases. The H -function is calculated as follows:

H =
∑

k

pk · ln (pk) , (10)

with the probability pk of energy Ek , defined as pk = ρi (Ek) · f j (Ek)/
∞∫

0
ρi (E) · f j (E) · dE .

As would be expected, the Boltzmann energy distribution comes with the smallest value of the H -function.
The delta energy distribution comeswith a H -function value of zero,which indicates that the entropy of the delta
energy distribution is also zero. This underlines that the Boltzmann and delta energy distributions are suitable
limits for the investigation of non-Boltzmann energy distributions. Starting from the delta energy distribution,
the H -function of Gaussian energy distributions rapidly drops from zero to a monotonous convergence toward
the H -function value of the Boltzmann energy distribution. The rapid drop of the H -function close to the delta
limiting case indicates that the delta energy distribution is entropically extremely unstable.

4.2 Atomistic shock wave simulations

The present atomistic molecular dynamics simulations are used to test and validate the above theoretical
findings on the non-Boltzmann heat capacity ratio. The simulations resemble an ideal shock tube process, as
the heat capacity ratio directly affects the velocity at which shock waves propagate through the driven gas.
First, potential non-idealities of the simulations will be discussed, followed by discussion of the simulation
results and their comparison to theory.
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Fig. 4 Driver gas count during the inception phase directly after abrupt removal of the diaphragm particles which separated the
driver and driven sections during thermalization. The theoretical vacuum expansion velocity [52] for the simulated condition is
provided as reference

Fixed particles have been used as diaphragm between the driver and driven sections of the simulation to
allow independent thermalization of the two gases. The abrupt removal of the diaphragm particles, however,
leaves a 12.32 Å wide void between the two sections, which corresponds to about 1.5 free mean path lengths.
Based on the rather large effective pressure ratio between the driver and driven sections of about 17, it is
assumed that the void between the driver and driven sections is solely penetrated by the driver gas. This
penetration through the driver gas into the void generates expansion and compression waves bouncing forth
and back within this void during the first 12ps of the simulation, which have been traced through the driver
gas count. Figure4 shows an exemplary driver gas count during the inception phase of the main simulation
directly after abruptly removing the diaphragm particles.

When loosely attributing kinks and jumps in the driver gas count to expansion and compression waves, one
can find three characteristic velocities: 899–926m/s, 616–680m/s, and 513m/s. Each characteristic velocity
comes in pairs, indicating that each wave which traverses the void toward the driven section is being reflected at
the interface between the void and the driven section. With each expansion and compression process, the void
is filled with more driver gas particles, leading to a reduction in the characteristic velocities of the succeeding
waves. While the very first forth and back propagating wave has a characteristic velocity comparable to the
theoretical vacuum expansion velocity vvac = 963m/s based on the formula provided byGreenspan and Butler
[52], the characteristic velocities of the two succeeding forth and back propagating waves are already rather
close to the shock velocity of the main shock wave propagating through the bulk of the driven gas after the
inception phase (vS = 545.6m/s for the particular example in Fig. 4, cf. Table 1 for all results).

After the forth and back propagating wave has traversed the void between the driver and driven sections
three times, the driver gas flow is established and the driver gas count remains constant at the time scale relevant
for the inception phase. The large volume ratio of the driven section to the driver section of 9, however, causes a
significant drop in driver gas concentration at later times, as visible in the sequence of frames provided in Fig. 5.
Neither the dropping pressure in the driver section nor the observed bouncing expansion and compressionwaves
during the inception phase are expected to affect the shock velocity of the main shock wave freely propagating
through the bulk of the driven gas.

Each simulation is post-processed based on the driver and driven gas particle counts along the long axis of
the simulation, which ranges from−1000Å to 9000Å. In order to improve statistics, ten subsequent simulation
steps are always merged into a single frame, yielding a total of 119,410 driver gas particles and 108,520 driven
gas particles for evaluating the particle distribution along the x-axis. Figure5 shows two sequences of such
particle distributions together with snapshots of the simulation boxes for a Boltzmann energy-distributed
driven gas (5a) and for a non-Boltzmann energy-distributed driven gas (5b). Note that both simulations have
an identical random number generator seed, thus are identical except for the energy distribution of the driven
gas preceding the shock wave. The particle counts are discretized along the long axis in 100Å increments
with the driver gas particles shown in red and the driven gas particles shown in blue for both the simulation
snapshots and the particle count plots. The red left pointing arrow and the blue right pointing arrow in the
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Table 1 Shock wave velocities vS and contact wave velocities vC of the Boltzmann and non-Boltzmann driven gases

Replica vS,sim (m/s) vS,sim err. (m/s) vC,sim (m/s) vC,sim err. (m/s)

Boltzmann
1 545.6 2.0 185.8 1.3
2 555.4 2.6 182.7 1.1
3 558.7 1.6 180.8 1.2
4 549.2 1.8 181.4 1.1
5 536.7 1.5 183.5 1.3
Non-Boltzmann
1 477.2 2.0 197.9 0.8
2 502.9 2.3 188.6 1.1
3 516.6 3.6 191.3 1.1
4 515.8 3.1 188.1 1.1
5 493.4 2.2 182.8 1.5

particle count plots assign the left and right y-axes of the plots to the driver and driven gas particle counts,
respectively. The upward pointing red and blue arrows directly below the simulation snapshots in turn indicate
the contact and shock wave positions, respectively. These positions were determined through the steps of the
double sigmoid fits to the driven gas particle counts (black lines). The full video of the presently provided
simulation frames can be found in the supplementary information.

The first observation from Fig. 5 is that the shock positions differ between the Boltzmann and non-
Boltzmann energy-distributed driven gases. In the Boltzmann case, the shock velocity extracted from the
provided example is 545.6m/s, while the shock velocity in the corresponding non-Boltzmann case is only
477.2m/s. Interestingly, the shock front appears to be thicker in the Boltzmann case compared to the non-
Boltzmann case, with a sigmoid width of 8.4 free mean path lengths for the Boltzmann case and 3.4 free
mean path lengths for the non-Boltzmann case, averaged over the entire simulations. The differences in shock
velocities and in shock front widths can be qualitatively explained by the differences in the energy distributions.
The presently applied non-Boltzmann energy distribution closely resembles a delta energy distribution; thus,
the driven gas particles have almost exclusively one randomly oriented velocity. This means that the driven
gas particles do not have high or low velocity particles, as it is the case for a Boltzmann energy-distributed
driven gas. The high velocity gas particles facilitate a faster shock propagation, leading to the observed larger
shock velocity in the Boltzmann case. At the same time, the low velocity particles are trailing the shock front,
leading to a more stretched shock front in the Boltzmann case.

For each replica simulation of the Boltzmann and the non-Boltzmann cases, the contact and shock wave
positions are obtained as described above and traced over time. Figure6 shows the wave position profiles for
the two exemplary simulations provided in Fig. 5. The reported wave velocities and uncertainties are obtained
via linear fitting, with the uncertainties being explicitly for the slope of the linear fit.

This linear fitting procedure is carried out for all replica simulations and the resulting contact and shock
wave velocities with their respective fitting uncertainties are tabulated in Table 1. The wave velocities are
sorted by the energy distribution case of the driven gas, either Boltzmann or non-Boltzmann.

The differences observed in Fig. 5 for a single example of a Boltzmann and a non-Boltzmann case prevail
in the other replica simulations, as well as in the averaged velocities. The five simulations with the Boltzmann
energy-distributed driven gas give an average shock velocity of vS,B,sim = 549.1 ± 6.4m/s and the five
simulations with the non-Boltzmann energy-distributed driven gas give an average shock velocity of vS,δ,sim =
501.2± 12.7m/s. This means that the presently employed non-Boltzmann energy distribution, which closely
resembles the delta distribution, hinders the free propagation of shock waves through the monoatomic gas by
about 9% with respect to the shock velocity. Note that convergence of the presented results has been tested by
simulating with a doubled temporal resolution and post-processing with doubled spatial resolution, resulting
in−0.08% and−0.1% deviations in the shock velocity, respectively. In addition, the total energy of the present
NVE simulations should be constant and was found to deviate by 0.13% over the entire simulation time at
most.

Therefore, the presented results are assumed to be sufficiently converged and the observed scatter is
solely attributed to the statistical uncertainties inherent to molecular dynamics simulations [53]. For the non-
Boltzmann molecular dynamics simulation, the speed of the dynamically shrinking sub-section which is used
to maintain the delta energy distribution has been modified as well, resulting in a shock velocity within the
aforementioned methodological uncertainty.



70 M. Döntgen

Fig. 5 Sequences of frames taken from the post-processing of the simulations ofBoltzmann and non-Boltzmann energy-distributed
driven gases with the same random number generator seed
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Fig. 6 Contact and shock wave positions over simulation time for two exemplary simulations of a comparable Boltzmann and
non-Boltzmann case

Interestingly, the contact wave appears to accelerate from an average of vC,B,sim = 183.0 ± 1.3m/s to
vC,δ,sim = 189.7 ± 3.9m/s when applying a delta energy distribution to the driven gas. This effect amounts
to about 4% and is larger than the observed statistical uncertainties of the simulations. Noteworthy, this effect
is trailing the incident shock wave, yet the gas behind the shock wave would typically be expected to be
unaffected by the energy distribution in front of the shock wave.

The averaged shock velocities of the Boltzmann and non-Boltzmann cases agree well with the ideal shock
calculations using the incident shock prediction of the Shock and Detonation Toolbox [48], which yields
vS,B,calc = 548m/s for γ = 5/3 and vS,γ→1,calc = 494m/s when slowly converging γ to unity. While
the shock velocity is ill-defined for γ = 1, it converges with γ → 1. Although the value for γ → 1 is
slightly below the average simulation result, it is clearly within the statistical uncertainty of the simulations.
The comparison of the ideal shock calculation with the present simulations show that a non-Boltzmann heat
capacity ratio can be combined with the standard description of ideal shock waves, which has originally been
formulated for Boltzmann energy-distributed gases. As mentioned above, however, the non-Boltzmann heat
capacity ratio should not be confused with the classical heat capacity ratio for thermal equilibrium.

It is worth mentioning that the Mach number would behave quite differently from the shock velocities.
When using the nominal temperatures, but with γ = 1, the speed of sound would drop by 22.5% in the non-
Boltzmann case relative to the Boltzmann case. As a consequence, the non-Boltzmann Mach number would
actually be larger than that of the Boltzmann case, despite exhibiting a slower shock wave.

5 Conclusions

In the present study, a formulation of the heat capacity ratio of non-Boltzmann energy-distributed monoatomic
gas has been derived from first principles. This theory is applied to non-Boltzmann energy distributions which
all exhibit the same total energy and are limited by the Boltzmann energy distribution as the equilibrium
case and the delta energy distribution as the most extreme non-equilibrium case. A continuous description
of distributions between the two limiting cases is facilitated using a Gaussian distribution with variable peak
position. Applying the presented theory in the Boltzmann case yields the well-established heat capacity ratio of
γB = 5/3, while in the delta case it yields γδ → 1. Interestingly, applying the presented theory to the Gaussian
case with a peak position close to the delta peak position, the heat capacity ratio appears to drop below unity.
Investigation of the isentropic thermal expansion behavior of non-Boltzmann energy-distributed monoatomic
gas, however, revealed that the energy distribution does not affect thermal expansion and that a monoatomic
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gas always expands with a γ = 5/3 in the isentropic case. To stress it once more, the non-Boltzmann heat
capacity ratio should not be confused with the classical heat capacity ratio for thermal equilibrium.

The presented atomistic molecular dynamics simulations resemble a shock tube process and have been
carried out for Boltzmann and non-Boltzmann energy-distributed driven gases. The contact wave and shock
wave velocities extracted from these simulations reveal a consistent difference between the Boltzmann and
non-Boltzmann cases. While the shock wave propagates about 9% slower through the non-Boltzmann driven
gas, the contact wave appears to be faster by 4% when trailing a shock wave through a non-Boltzmann driven
gas. The difference between the Boltzmann and non-Boltzmann shock wave velocities are reproduced through
the ideal shock equations when utilizing the heat capacity ratios of γ = 5/3 and γ → 1 for the Boltzmann
and non-Boltzmann cases, respectively, as provided by the present theory. Firstly, this validates the present
theory for non-Boltzmann heat capacity ratios in the context of shock propagation, and secondly, it appears that
non-Boltzmann heat capacity ratios can be combined with the classical shock wave formulations for describing
non-Boltzmann gas dynamics.

Building on the presented theory, the non-Boltzmann heat capacity ratio should be formulated for poly-
atomic compounds by replacing the monoatomic density of states with a polyatomic formulation in future
studies. Further simulations of gas dynamical processes, both atomistic and continuous, would be necessary to
explore the limits of the present theory. The non-Boltzmann energy distributions in between the Boltzmann and
the delta energy distributions are of particular interest, but molecular dynamics simulations will require rather
sophisticated thermostating routines for maintaining such non-Boltzmann energy distributions. Ultimately,
experiments need to be designed which would allow to test the presented theoretical and computational find-
ings.

The present work provides insights into gas dynamics of non-Boltzmann gases and proposes interesting
and partly counter-intuitive aspects of the heat capacity ratio. Since the heat capacity ratio is a key property
for describing gas dynamical processes, the present findings might help to improve the understanding of gas
dynamical phenomena and could potentially allow discovering new phenomena.

Supplementary information Animated sequences of exemplary Boltzmann and non-Boltzmann molecular
dynamics simulations, corresponding to the frames presented in Fig. 5.
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