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Abstract An adjoint-based method is presented for determining manufacturing tolerances for aerodynamic
surfaces with natural laminar flow subjected to wavy excrescences. The growth of convective unstable dis-
turbances is computed by solving Euler, boundary layer, and parabolized stability equations. The gradient
of the kinetic energy of disturbances in the boundary layer (E) with respect to surface grid points is calcu-
lated by solving adjoints of the governing equations. The accuracy of approximations of �E , using gradients
obtained from adjoint, is investigated for several waviness heights. It is also shown how second-order deriva-
tives increase the accuracy of approximations of �E when surface deformations are large. Then, for specific
flight conditions, using the steepest ascent and the sequential least squares programming methodologies, the
waviness profile with minimum L2−norm that causes a specific increase in the maximum value of N - factor,
�N , is found. Finally, numerical tests are performed using the NLF(2)-0415 airfoil to specify tolerance levels
for �N up to 2.0 for different flight conditions. Most simulations are carried out for a Mach number and angle
of attack equal to 0.5 and 1.25◦, respectively, and with Reynolds numbers between 9× 106 and 15× 106 and
for waviness profiles with different ranges of wavelengths. Finally, some additional studies are presented for
different angles of attack and Mach numbers to show their effects on the computed tolerances.
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1 Introduction

Reducing aircraft’s specific fuel consumption (SFC) is of utmost importance in the 21st century, both for
economical/operational and primarily for ecological compatibility reasons. One example is the goal for a
reduction of 75% in CO2 per passenger kilometer emissions by 2050 when compared with the levels of 2000,
which has been set by the Advisory Council for Aviation Research and Innovation in Europe (ACARE) [1],
putting companies in a race for new technologies. Some methodologies for reducing the SFC are already
in place, like the increased propulsion efficiency of high bypass ratio engines and the reduction in weight by
using carbon fiber-reinforcedmaterials and composites. Other options are still waiting to come out of the paper,
like the open-rotor with contra-rotating propellers [2]. Natural laminar flow (NLF) design is one promising
technology that may be implemented soon for larger aircraft extents to reduce the SFC.

The potential to reduce drag by achieving the laminar flow regime resides in the fact that the friction drag
represents 40–60% of a high-subsonic airplane’s total drag [3], and this parcel is considerably affected by
surface irregularities/quality [4,5]. The use of such technology can reduce the total drag by 7–16% depending
on the extent of the use, where the 16% mark requires a laminarization of 40% on the wings, vertical and
horizontal stabilizers and nacelles [6,7].

To maintain the NLF regime, many demands need to be fulfilled. From the geometrical consideration,
we can mention the limited sweep angles for transition dominated by Tollmien–Schlichting (TS) waves and
the requirement of favorable pressure gradient [6,8–12], the limitation of airfoils’ nose-radius due to the
attachment-line instability [13,14], high-lift compatibility (Krüger flaps) for performance and/or insect shield-
ing [5,15–17]. The demands for surface quality, i.e., roughness, rivets excrescences, gaps, steps, and waviness
[18–22], and finally, from the operational standpoint, the conditions for in-flight contamination, anti-ice main-
tainability, free stream turbulence levels, noise, and vibration [23–28].

During the 80 and 90s, many companies performed experimental (wind-tunnel and in-flight) tests to assess
the performance gains of laminar flow designs, N -factor correlations, maintainability, and the requirements
mentioned previously. As examples of these tests, we cite here the ELFIN I and II investigations and the
LARA, ATTAS, HYDA, HYLTEC, and ALTTA flight test programs [11,29–34]. All these tests showed that it
is possible to obtain significant laminar flow over aerodynamic surfaces, even though some of them had used
gloves to perform the investigations.

Although using modern technology, manufacturers can provide smooth surfaces suitable for maintaining
NLF, excrescences are unavoidable during the assembly and construction of such geometries. These excres-
cences, such as waviness, gaps, and steps, can change the transition location (compared to a smooth surface),
affecting the NLF design’s performance. Thus, manufacturers need to know the allowable size of surface
irregularities that do not lead to a sudden transition to turbulence. There is substantial literature concerning
criteria for the allowable size of surface irregularities regarding the transition; here, we cite the works of Fage
[35] with empirical relations to find allowable sizes of bulges, hollows, and ridges on a flat plate, Carmichael
[18] that using experimental data, proposed an empirical formula that gives the maximum height of waviness
(for a specific Reynolds number, wavelength of surface waviness, and chord length) to maintain full-chord
NLF in the presence of suction, Crouch [36] which proposed two correlations concerning the TS type of
instabilities for forward and backward facing steps capable of informing the resulted �N in the envelope
curve, and Perraud [37] proposing criteria concerning cross-flow instabilities. Wie and Malik [38], based on
their numerical calculations, presented an empirical equation which predict the change in N -factor due to
geometrical parameters of waviness (number of waves, height, wavelength) and Reynolds number. The reader
is referred to these works for more detailed information.

This work presents a physics-based numerical framework to find manufacturing tolerances for smooth
waviness on NLF surfaces. To find these tolerances, the critical waviness profile which affects the transition
should be found. Such awaviness profile can be found by solving an optimization problem using gradient-based
methods. Here, we use the approach by Amoignon et al. [39] to find the gradients of energy of perturbations
inside the boundary layer with respect to surface deformation using an adjoint-based method. The largest
allowable surface deformation with minimum L2−norm, causing a specific increase in the amplification of
disturbances, is found by solving an unconstrained optimization problem using the gradient ascent method and
a constrained problem using the sequential least squares programming (SLSQP) algorithm.

The initial part of the paper describes the computation of the gradients (sensitivities) of perturbation energy
with respect to surface deformation. The methodology to find the gradients are presented in Sect. 2, with the
corresponding governing equations introduced in Sect. 2.2. Sensitivity analysis, including definitions of the
objective function and design variables, and gradient calculation are described in Sect. 2.3. The airfoil and the
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Fig. 1 Flowchart for calculating the gradient

setup used in this work are introduced in Sect. 2.4, and methods to compute the manufacturing tolerances are
described in Sect. 2.5. The results are presented in Sect. 3 with the gradient validation in Sect. 3.1, and results
concerning the manufacturing tolerances in Sects. 3.4 and 3.5. Finally, conclusions are presented in Sect. 4.

2 Methodology

2.1 Overview of sensitivity calculation

As mentioned in the introduction, the goal of this work is to find the gradient of the energy of perturbations
to surface deformation. To reduce the computational cost, we follow Amoignon et al. [39] and consider the
viscous boundary layer flow and the inviscid outer flow separately. A schematic of the steps toward finding
the gradient is shown in Fig. 1. Below, an overview of these steps is given, and the details will be provided in
the following sections.

The first step is to find the pressure distribution (Cp) on the airfoil surface by solving Euler equations.
For this, we have used the ADflow code [40], which is a 3D structured compressible Euler and RANS finite-
volume solver. To increase the robustness of the solver, we have used the approximate Newton–Krylov solver
implemented in ADflow [41]. The corresponding governing equations for this step are covered in Sect. 2.2.1.

After finding the pressure distribution, we used an in-house compressible boundary layer solver to solve
the boundary layer equations (BLE) (using the Cp found in the previous step) and to find the mean flow
quantities inside the boundary layer, which will be used in the next step. The corresponding BLE are given in
Sect. 2.2.2.1.

The next step is to solve stability equations inside the boundary layer, for which we have used compressible
parabolized stability equations (PSE) to account for compressibility, surface curvature, and non-parallel effects
inside the boundary layer. To solve PSE, we have used the NOLOT code [42]. We also need to specify the
perturbation mode following the methodology explained in Sect. 2.3. The corresponding governing equations
are discussed in Sect. 2.2.2.2.

After solving all direct equations (Euler, BLE, and PSE), we will solve adjoint equations in the reverse
order, i.e., firstly adjoint of PSE (APSE), then adjoint of the BLE (ABLE), and finally adjoint of Euler equation
(AdEuler), to get the gradients. To solve APSE and ABLE, we have used in-house codes [43], and AdEuler is
solved using the open-source code ADflow [40,44]. The following sections give the governing equations and
further details about each step.

2.2 Governing equations

2.2.1 Inviscid region: Euler equations

The inviscid flow around the airfoil is computed using the Euler equations which in the compact form can be
written as

∇ · (ρU) = 0, (1)

∇ · (ρUUT ) + ∇ p = 0, (2)

and

∇ · [U(Etotal + p)] = 0. (3)
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In these equations, ρ is density, U = [U, V,W ] is the velocity vector in the inviscid region with U, V and W
being its Cartesian components, p is the pressure and Etotal the total energy per unit volume, which is the sum
of internal and kinetic energies of the flow. Under the assumption of an ideal and perfect gas, we can write

Etotal = p

γ − 1
+ 1

2
ρU2, (4)

where γ is the specific heat ratio of the gas.

2.2.2 Viscous region

The total flow inside the boundary layer can be decomposed into the mean and disturbance flow quantities as

qtotal(x1, x2, x3, t) = q̄(x1, x3) + q̃(x1, x2, x3, t). (5)

In this equation, q̄ and q̃ are mean flow and disturbance quantities, and x1, x2, and x3 are streamwise,
spanwise, and wall-normal directions in an orthogonal curvilinear coordinate system, respectively (shown in
Fig. 3). In an orthogonal curvilinear coordinate system, under an infinite swept wing, a length element (ds) is
defined by ds2 = (dx1)2 + (dx2)2 + (dx3)2.

2.2.2.1 Boundary layer equationsThe quasi-3D non-dimensional compressible boundary layer equations on
a swept wing with an infinite span (∂/∂x2 = 0), in an orthogonal curvilinear coordinate system, are given
by Eqs. (6)–(9). Except for the pressure, the flow and material quantities are made non-dimensional based on
chord length, c, and free-stream quantities. Pressure is made non-dimensional with twice the dynamic pressure
of the free stream.

∂(ρ̄ū)

∂x1
+ ∂(ρ̄w̄)

∂x3
= 0 (6)

ρ̄ū
∂ ū

∂x1
+ ρ̄w̄

∂ ū

∂x3
= −d p̄e

dx1
+ 1

Re

∂

∂x3

(
μ̄

∂ ū

∂x3

)
(7)

ρ̄ū
∂v̄

∂x1
+ ρ̄w̄

∂v̄

∂x3
= 1

Re

∂

∂x3

(
μ̄

∂v̄

∂x3

)
(8)

c̄pρ̄ū
∂ T̄

∂x1
+ c̄pρ̄w̄

∂ T̄

∂x3
= 1

RePr

∂

∂x3

(
κ̄

∂ T̄

∂x3

)

+ (γ − 1)M2

{
ū
d p̄e
dx1

+ μ̄

Re

[(
∂ ū

∂x3

)2

+
(

∂v̄

∂x3

)2
]}

(9)

In these equations, [u, v, w] are streamwise, spanwise, and wall-normal velocities, respectively, T is
temperature, and ρ is density. Reynolds number, Mach number, and Prandtl number are defined as Re =
cu∞/ν∞, M = u∞/

√Rγ T∞, and Pr = c̄pμ̄/κ̄ , respectively, where c is chord length, u∞, ν∞, and T∞ are
free-stream velocity, kinematic viscosity, and temperature, respectively.R is specific gas constant, c̄p specific
heat at constant pressure, γ specific heat ratio, μ̄ dynamic viscosity, and κ̄ is heat conductivity. Also, pe is the
pressure at boundary layer edge, which under the boundary layer assumptions (p = pe(x1)), is related to ρ
and T through the equation of state as

γ M2 p̄e = ρ̄T̄ . (10)

The streamwise pressure gradient can also be written as

d p̄e
dx1

= −ρ̄eūe
dūe
dx1

, (11)

where ρe and ue are density and streamwise velocity measured at the edge of boundary layer, respectively.
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2.2.2.2 Disturbance equationsWe decomposed the disturbances into time- and spanwise periodic waves as

q̃(x1, x2, x3, t) = q̂(x1, x3)�(x1, x2, t), (12)

where the wave function, �, is defined as

�(x1, x2, t) = exp

(
i

{∫ x1

xs
α(x ′)dx ′ + βx2 − ωt

})
. (13)

In Eq. (13), α is the complex-valued streamwise wavenumber, β is the real-valued spanwise wavenumber,
andω is the real-valued disturbance angular frequency. Disturbances start to grow from the streamwise location
xs (shown in Fig. 3). Assuming boundary layer approximations, there is a scale separation between the weak
variation in x1 and strong variation in x3 directions, as well as between wall-normal and streamwise mean
velocity components. By applying these assumptions and introducing the ansatz (12) into the governing
equations, a set of nearly parabolic equations, called parabolized stability equations (PSE) [45],will be obtained,
which can be written, in symbolic notation, as

Aq̂ + B ∂q̂
∂x3

+ C ∂2q̂
(∂x3)2

+ D 1

h1

∂q̂
∂x1

= 0, (14)

where q̂ ∈ [ρ̂, û, v̂, ŵ, T̂ ]T , (h1)2 = ( ∂X
∂x1

)2 + ( ∂Y
∂x1

)2 + ( ∂Z
∂x1

)2, and X, Y, and Z are the Cartesian coordinates.
The matrices A,B, C and D are large 5 × 5 matrices which can be found in Ref. [43]. In PSE formulation,
both the amplitude q̂ and wave function depend on x1. To remove this ambiguity, and also, to guarantee that
variations of q̂ in x1-direction remain small allowing to neglect the higher-order streamwise derivatives, a
so-called auxiliary condition [46,47] is used as

∫ +∞

0
q̂H ∂q̂

∂x1
dx3 = 0. (15)

Here, superscript H denotes complex conjugate transpose. Equation (14) is integrated downstream with an
initial condition at x1 = xs given by local stability theory, and at each streamwise location x1, the value of α is
iterated until the auxiliary condition is satisfied. After finding all the disturbance quantities q̂ and streamwise
wavenumber α at all x1 stations, the perturbation kinetic energy Ê and spatial growth rate σ can be found as

Ê =
∫ +∞

0
ρ̄(|û|2 + |v̂|2 + |ŵ|2)dx3, (16)

and

σ = −αi + ∂

∂x1

(
ln(

√
Ê)

)
, (17)

where αi is the imaginary part of α. Finally, with the growth rate, the N -factor, which is a measure of integrated
growth of perturbations, can be calculated as

N =
∫ x

xn1
σdx1, (18)

where xn1 is the lower branch of the neutral curve, where disturbance amplification starts (σ = 0). The N -factor
(or growth rate) can then be used in the eN method [48] to predict the transition location. The combination
of Euler, boundary layer, and PSE codes allows a stability analysis of the boundary layers over a given wing
section. In what follows we present the procedure to obtain the sensitivity of disturbance energy with respect
to surface waviness.
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Fig. 2 NLF(2)-0415 airfoil

2.3 Sensitivity analysis

This work aims to use gradient-based optimization to find the surface waviness profile with a minimum
L2−norm that causes a specific increase in the amplification of perturbations. Therefore, the objective function
J should be a measure of the growth of perturbations in the domain. Here, the kinetic energy of a specific
disturbance E1, integrated over a selected region, has been chosen for this measure as the objective function
[39]. This can be formulated as

J (q̃, X) = E1(q̃, X) = 1

2

∫ x f

xs

∫ z1

z0

∫ +∞

0
(|ũ|2 + |ṽ|2 + |w̃|2)dx3dx2dx1, (19)

where X is the vector of nodal coordinates, and [xs, x f ] is the region where the perturbation exists. The
amplitudes of disturbances, which are used to calculate the objective function, are the solutions of the PSE
[Eq. (14)] for a specific mode, which is determined by α(xs), β, and ω. Here, by computing the envelopes of
N -factor curves, we have found the most amplified mode among a wide range of modes with different ω and
β, and we have used the disturbance amplitudes of that mode to compute the objective function.

To optimize the objective function (J ) with respect to design variables, which here are taken as all surface
grid points and are denoted by z, using gradient-based method, we need to calculate the sensitivity (gradient)
of the objective function with respect to the same design variables, which is denoted by ∇z J . As mentioned
in the introduction, we have used the adjoint method to calculate the gradients efficiently. For adjoints of BLE
and PSE, we have used a continuous approach similar to Amoignon et al. [39] and Pralits et al. [43], where
the adjoint equations and their derivations can also be found. For adjoint of Euler equations, we have used the
discrete adjoint implementation in the ADflow [44].

2.4 Flow case

The NLF(2)-0415 airfoil [49] designed for commuter aircraft applications was chosen for the analysis in this
work (Fig. 2). The airfoil is designed for natural laminar flow, and it is thus interesting to evaluate how surface
waviness may degrade the boundary layer stability characteristics. Here, the flight conditions are: M∞ = 0.5,
Re = 6 × 106, and AoA = 1.25◦. Also, thermodynamic properties of the air were calculated for an altitude
of 9600m.

The computational domain for solving Euler equations, as well as the angle of attack (AoA), and the
beginning (xs) and end (x f ) of the region on airfoil used for stability analysis and optimization are shown
in Fig. 3. A farfield boundary condition is set around the domain and a no-penetration boundary condition is
used on the airfoil. Since ADflow is a 3D CFD solver, we have extruded the domain in the spanwise direction
with 1 volume cell, and at the two sides of the domain, a symmetry boundary condition is used. A C-type
structured grid with 1198 grid points (598 volume cells) on the airfoil surface and 69,201 total volume cells
has been generated using the Construct2D mesh generator code [50]. In Fig. 3, the generated mesh around
the airfoil is shown. It should be noted that for the purpose of validation of adjoint implementation, as will be
discussed in Sect. 3.1.1, a mesh with 792 grid points (395 volume cells) on the airfoil has been used to reduce
the computational cost of validation process; however, the finer grid (with 1198 grid points on the surface) has
been used for all other simulations carried out in this work.
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Fig. 3 Computational domain (a), generatedmesh (b). The region between xs and x f is used for stability analysis and optimization

2.5 Algorithms for finding the manufacturing tolerances

To find the manufacturing tolerances, we need to find the largest allowable waviness profile with minimum
L2−norm of surface deformations that might cause early transition due to the existence of waviness on the
airfoil. Such a waviness profile means that no other surface deformation with the same L2−norm will cause
surface-induced transition at a particular position of the chord, and manufacturing tolerances can be computed
once we have found this waviness profile. Here, this profile is found by solving an optimization problem
(unconstrained or constrained) using gradient-based methods, where in this work, the adjoint method is used
to find the gradients as explained earlier.

Two optimization problems are solved to determine the allowablewavy profiles: an unconstrained optimiza-
tion problem using gradient ascent (GA) method, and a constrained optimization problem using the sequential
least squares programming (SLSQP). The reasons for these choices are the capability of finding the optimum
solution, i.e., the largest allowable deformation profiles by the SLSQP approach, and the time-save1 benefit
of the GA approach at the cost of not obtaining the optimum solution, but something that is close to it. In the
following, these two optimization problems and the algorithms to solve them will be explained.

2.5.1 Gradient ascent

The idea behind the approach is shown in Fig. 4. First, using the stability tools, i.e., NOLOT code, we find the
growth history of the most unstable mode over the airfoil, described by the N -factor curve, which is used in our
algorithm as a monitoring quantity. Then, an allowable increase in the maximum value of N -factor, denoted
by �N , is chosen based on the critical value of N used in the design of the NLF airfoil. After choosing �N ,
by taking small steps in the direction of the gradient of E , we will find the waviness profile that increases the
maximum value of N -factor by�N units. Note that there is no objective function to be minimized in this case.

As mentioned earlier, the sensitivity of kinetic energy with respect to surface grid points (∇z E(z)) for the
baseline airfoil is found using the steps shown in Fig. 1. The waviness profile is found using the gradient ascent
method, which can be written as

zn+1 = zn + γ
∇z E(zn)

max |∇z E(zn)| , (20)

where zn is the vector of airfoil’s surface nodal vertical coordinates at iteration n, and γ is a sufficiently small
step size. It should be noted that at each iteration, the step that we take in the direction of the gradient is

γ
max |∇z E(zn)| . This results in an optimal deformation in a local sense, as the gradient shows the direction of
maximal increase of E for each iteration; however, as will be shown later, such local optima does not lead to
an optimal deformation in a global sense after several iterations.

1 The SLSQP performs multiple function evaluations, here CFD simulations, in the process of searching for a new direction,
which is time-consuming when compared with the GA that performs only one CFD simulation between each new gradient
computation.
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Fig. 4 Algorithm to find the waviness profile for a target �N using gradient ascent method

The input for the algorithm, which is also the convergence criteria, is the expected value for �N . As it
will be explained in the next section, we project the gradient onto a specified waviness profile and take a
sufficiently small step in the gradient direction and find the new waviness profile. Then, the algorithm updates
the geometry and the grid using the IDWarp package [51] to solve all the direct and adjoint equations for the
newly updated airfoil and finds the new gradient. Subsequent iterations are performed until the convergence
criteria �N is achieved.

Another important point is that since at iteration n + 1, the shape of the airfoil has been changed, the
most amplified disturbance mode inside the boundary layer may change. So, as an option, it is possible in the
algorithm to find the most unstable mode for the corresponding airfoil at each iteration and solve all equations
based on the newly updated mode.

2.5.2 Gradient projection

The wavelengths of possible waviness on airfoils are usually dictated by manufacturing process and their inner
structure, especially for composite panels, and by induced deformations due to the application of thousands of
rivets on the surface panels. Thus, it is more practical if we limit the possible wavelengths of the waviness on
the airfoil. This can be done by projecting the gradient onto a specific basis. Considering that at each iteration,
we have projected the gradient onto a basis of k sine Fourier modes as

(∇z E)pr =
k∑

n=1

[
bnsin

(
nπ(x1 − xs)

x f − xs

)]
, (21)

where the coefficient of each Fourier mode, bn , is calculated as

bn = 2

x f − xs

∫ x f

xs
∇z E(x)sin

(
nπ(x1 − xs)

x f − xs

)
dx, (22)

where x1 is the vector of surface nodal coordinates along the chord. We have chosen the Fourier sine basis
instead of the complete Fourier series because it enforces that the displacements at the extremes of the function
are always zero, i.e., there will be no forward- or backward-facing steps on the airfoil. For the NLF(2)-0415
used in this work, xs = 8% and x f = 70% of the chord. After projecting the gradient, we use (∇z E)pr in the
algorithm.
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2.5.3 SLSQP

As mentioned before, using the gradient ascent method, there is no guarantee that the profile we obtain by
marching in the gradient direction is the profile with minimum L2−norm leading to the specified�N . To solve
this issue, a constrained optimization problem can be solved to ensure the profile with minimum L2−norm that
will increase the maximum value of N -factor by �N units is obtained. For this, we parameterize the surface
using k sine Fourier bases, which also determines the minimum wavelength of waviness on the surface as

z = z0 +
k∑

n=1

[
bnsin

(
nπ(x1 − xs)

x f − xs

)]
. (23)

Then, the Fourier coefficients, bn , are considered as design variables and they are found as the solution to the
following optimization problem:

min
�z∈R J = �z1

2 + �z2
2 + · · · + �znp

2

w.r.t. b1, b2, . . . , bk
s.t. E = Etarget = ERE0.

(24)

Here, J is the objective function that represents the L2−norm of the deformations, �zi = zi − z0,i is
the vertical surface deviation of the i th node on the surface, np is the number of surface grid nodes to be
modified, E is the kinetic energy of disturbances in the boundary layer, Etarget is the target kinetic energy of
disturbance in the boundary layer which corresponds to a specific�N , E0 is the kinetic energy of disturbances
in the boundary layer for the clean baseline airfoil, and ER = Etarget

E0
. This optimization problem is solved

using the sequential least squares programming (SLSQP) algorithm from the SciPy [52] library. The SLSQP
algorithm is based on Kraft’s work [53] and determines a local search direction by solving the second-order
local approximation of the cost function that satisfies the constraints [54]. To solve (24) using SLSQP, the
gradients of the objective function and constraint with respect to design variables, i.e., dJ

dbk
and dE

dbk
, are needed.

d J
dbk

can be found analytically, using the chain rule, from the definition of the objective function in (24) and
parameterization of the surface (23) as

dJ

dbk
= dJ

dz

dz

dbk
. (25)

Also, dE
dbk

can be calculated, using the chain rule, from gradients of the kinetic energy of perturbation with

respect to surface deformation dE
dz , which is obtained from the adjoint method, and dz

dbk
as

dE

dbk
= dE

dz

dz

dbk
. (26)

Once dJ
dbk

and dE
dbk

are calculated, they are passed to the optimizer and the optimal values for design variables,
bk , are found and then the waviness profile is reconstructed using Eq. (23). Here, it should be noted that one of
the major differences of this approach compared to gradient ascent is that in the gradient ascent approach, the
input and stopping criteria of the algorithm is the target �N . Although the algorithm marches in the direction
of the gradient of the kinetic energy of perturbations, at each iteration, the value of �N is monitored until we
reach the desired value. In the SLSQP approach, on the other hand, we cannot use target �N as the constraint
(since we calculate the gradient of kinetic energy, not N -factor with respect to surface deformation), and also
we need to pass the gradient of constraint with respect to the design variables to the optimizer. Thus, we need
to correlate the target �N with its corresponding kinetic energy of the domain (Etarget ). This can be done
using trial and error by choosing a specific Etarget and checking the resulting �N , or can be approximated
from the results of gradient ascent method.
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Fig. 5 Pressure coefficient (Cp) and N -factor envelope curve for the upper surface of the airfoil. M∞ = 0.5, AoA = 1.25◦ and
Re = 6 × 106
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Fig. 6 Sensitivity of objective function (calculated with adjoint method) w.r.t surface deformation for the upper surface of the
airfoil as a function of chord length. M∞ = 0.5, Re = 6 × 106, and AoA = 1.25◦ with f = 5850Hz, β = 0, and αxs = 600
[m−1]

3 Results

3.1 Computing sensitivity

For validation purposes, we have chosen an unstable mode with β = 0, αxs = 600 [m−1], and frequency ( f )
equal to 5850Hz. For such conditions, the pressure distribution on the NLF(2)-0415 airfoil together with its
N -factor envelope (on the upper surface) are shown in Fig. 5 and the sensitivity (gradient) of the objective
function (calculated with adjoint method) is shown in Fig. 6.

3.1.1 Gradient validation

To validate the implementation of the adjoint method, we have compared gradients obtained from the adjoint
method with gradients calculated using a central finite difference scheme as given by

∂ J

∂gk
≈ J (q(z + �z), z + �z) − J (q(z − �z), z − �z)

2�gk
. (27)

In Eq. (27), J is the objective function, q is the state vector (velocity components, pressure, and energy),
z is the surface nodal coordinate vector of the clean airfoil, gk is the kth design variable, and �z is the vector
of surface deformation (as a result of �gk). To calculate the gradients using the finite difference method (FD),
in Eq. (27), we must specify gk and the corresponding �z. As mentioned earlier, the design variables in the
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Fig. 7 Hicks–Henne bump functions for different width (t) and location for maximum amplitude (h) parameters, all with a = 1
(colour figure online)

adjoint method are all surface grid points. Thus, to compare the gradients from two different methods, choosing
the same design variable for FD seems to be a good choice, i.e., disturbing one point of the surface mesh grid
at a time (gk = zk and �z = �gkêz). However, this often leads to inaccurate and noisy gradients due to
the sharp edges created in the mesh, particularly when solving the flow field with the Euler equations or any
potential method. This happens because the absence of the boundary layer does not smooth the changes in
pressure distribution, which can lead to such oscillations. The option used here is to parameterize the surface
using the so-called Hicks–Henne Bump Functions (HHBFs) and find the gradients with respect to a specific
control parameter. HHBFs are smooth bump functions introduced by Hicks and Henne [55] and are used in
aerodynamic shape optimization applications to smoothly modify the shape of the airfoils. They have the
analytical definition given by

fi (x, a, h, t) = ai

[
sin

(
πx

log(0.5)
log(hi )

)]ti
= ai f0,i (x, h, t), (28)

where x is the vector of x-coordinates of grid points on the airfoil, and for the i th bump, ai is the maximum
height of the bump, hi is the x location (based on the chord) where the height of the bump is maximum, and
ti controls the width of the bump. For each set of parameters a, h, and t , the value of HHBF is calculated for
all points in x. The parameterized geometry using HHBFs can be written as

z = z0 +
N∑
i=1

ai f0,i (x, h, t), (29)

where z is the parameterized and z0 the baseline airfoil geometry, and N the number of HHBFs used to modify
the geometry. In Fig. 7, several HHBFs for different values of parameter t (in each panel) and for different
values of parameter h (each color) are shown.

To validate gradients, in Eq. (27), we have chosen the maximum height of the bump, a, as the design
variable, and we deform the airfoil with HHBF, i.e., gk = ak and �z = �ak f0,k(x, h, t)êz .

It should be mentioned that we need to change the position of the bump (using the parameter h), along the
surface, and for each position of the bump, the geometry and grid should be updated. To update the geometry
and the mesh, we have used the IDWarp package [51], which uses an inverse distance method to modify the
location of mesh volume nodes given a perturbation of the surface nodes. Also, as expected for FD methods,
we need to be sure that the step size we are using (here �a) is not too small or too large to have a balance
between truncation and cancellation errors. Thus, we need to do all calculations for different step size values
to be sure that the results are independent of step size. Here, we have calculated the gradients using FD for x/c
going from 0.15 to 0.60, which consists of 77 grid points, with ti = 500. Also, we repeated FD simulations
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Fig. 8 Comparison of gradient obtained using the adjoint method and finite difference (�a = 10−5) for upper surface of
NLF(2)-0415 airfoil along the chord. M∞ = 0.5, Re = 6× 106, and AoA = 1.25◦ with f = 5850 Hz, β = 0, αxs = 600 [m−1]

for four different step sizes (�a) in the range of 10−7 to 10−4, and the FD convergence was achieved for
�a = 10−5. Thus, in total for the central FD method, 77 × 2 × 4 = 616 simulations were conducted.

The next step is to calculate the sensitivity of the objective function with respect to the same design variable
as we used in FD, i.e., HHBF height (a). This can be done by putting HHBF centered at all surface grid points
and then applying Eq. (30).

(
∂ J

∂ai

)
Ad joint

=
∫

∇z J f0,i (x, h, t)dx . (30)

In this equation, f0,i (x, h, t) is HHBFwith maximum value located at i th grid in x . Equation (30) shows how a
directional derivative is obtained by an inner product between the gradient and the surface deformation induced
by the HHBF. The comparison of ∇a E = ∂ J

∂a obtained from the adjoint method and central finite difference is
shown in Fig. 8. From the figure, it is evident that there is a good match between the two methods validating
the implementation of the adjoint method.

3.1.2 Limitations of adjoint-based approximations

Using the adjoint method, we are able to get the gradient of an objective function with respect to design
variables. Thus, if we want to use the gradient, we are limited to a first-order analysis. As an example, if we
want to approximate the change in kinetic energy of perturbations (�E) in a domain as a result of a smooth
surface deformation on an airfoil, we can write the Taylor expansion of the objective function, here E , around
the baseline airfoil, as

�E = E(z0 + �z) − E(z0) ≈ ∂E

∂z
�z + 1

2
(�z)T

∂2E

∂z2
(�z). (31)

In this equation, �E is the change in kinetic energy of the boundary layer, z0 the clean airfoil surface
nodal coordinates vector, and �z the vector of surface deformation. From the adjoint method, we obtain the
first-order term in the Taylor series of Eq. (31). To shed more light on this, Fig. 9 shows the final energy
E(z0 +�z) (on the left y-axis), and change in kinetic energy of the domain (on right y-axis), for two different
HHBFs, centered at 33.3% of the chord with a width equal to 13.86% (narrow bump) and 32.01% (wide bump)
of the chord. For each case, we have increased the height of the bump up to 26% of displacement thickness
of the baseline airfoil, δ∗, which is measured at 33.3% of the chord where the bump has a maximum height.
For each case, we have calculated the exact final energy and �E by solving Euler, BLE, and PSE based on
the new deformed geometry, and also we have approximated them using the first-order approximation based
on Eq. (31) and the gradient of baseline airfoil obtained from the adjoint method. The results are shown in
Fig. 9. For clarity, Fig. 10 shows the shape and the corresponding displacement thickness and N -factor for the
narrow and wide bumps with �zmax/δ

∗ = 0.26.
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Fig. 10 N -factor for wide and narrow bumps with �zmax/δ
∗ = 0.26 (upper panel). Corresponding displacement thickness and

shape of the bumps (lower panel). M∞ = 0.5, Re = 6 × 106

From Fig. 9, it is evident that for both bumps, as the height of the bump is increased, the deviation between
the exact and approximated solution increases. This is due to the fact that the linear approximation is accurate
only when the deformation is sufficiently small. Another important point of this figure is that for the narrow
bump, the deviation from the exact solution starts to increase for smaller bump heights than that of the wide
bump (�zmax

δ∗ ≈ 5% for narrow bump vs. �zmax
δ∗ ≈ 10% for wide bump). This is because, for the same bump

height, the narrow bump is sharper; thus, the change in meanflow and pressure is more abrupt in the boundary
layer and nonlinearity is stronger. This can be seen clearly from Fig.10 where the variations in displacement
thickness and N -factor for the narrow bump ismuchmore abrupt than the wide bump for�zmax/δ

∗ = 0.26. As
a result, the linear approximation is only valid for smaller bump heights. For larger deformations, second-order
derivatives ∂2E

∂z2
could be used to increase accuracy.
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Fig. 11 Effect of second-order derivatives on the approximation of final energy and �E . The center of the bump is located at
x/c = 0.333 with corresponding δ∗ = 0.39486(mm). The width of the bump is 13.86% of the chord. To find second-order
derivative approximation using Eq. (33), �a = 10−6 is used

The Hessian matrix (H ) is a square matrix containing second-order partial derivatives of the objective
function (J ) with respect to the design variables (zi ) defined as follows:

HJ =

⎡
⎢⎢⎢⎢⎢⎣

∂2 J
∂z12

∂2 J
∂z1∂z2

· · · ∂2 J
∂z1∂zn

∂2 J
∂z2∂z1

∂2 J
∂z22

· · · ∂2 J
∂z2∂xn

...
...

. . .
...

∂2 J
∂zn∂z1

∂2 J
∂zn∂z2

· · · ∂2 J
∂zn2

⎤
⎥⎥⎥⎥⎥⎦

, (32)

where n is the number of design variables. In general, finding the full Hessian matrix using FD method is
very expensive. Here, to see the effect of second-order derivatives on the approximation of energy for large
deformations, instead of finding the full hessian matrix, we have calculated the second-order derivatives of
objective function (E) with respect to HHBF height parameter (a) for one bump using the following central
difference equation:

∂2E

∂a2
= ∂

∂a

(
∂E

∂a

)
=

∂E
∂a (z + �a f0(x, h, t)êz) − ∂E

∂a (z − �a f0(x, h, t)êz)

2�a
. (33)

Then, for deformed geometries, we need to find the gradients with respect to HHBF height parameter, i.e.,
∂E
∂a (z ± �a f0(x, h, t)êz), from the gradients obtained using adjoint method, which can be done using Eq. (30)
as explained in Sect. 3.1.1. Finally, the second-order derivatives can be calculated using Eq. (33).

We have found the second-order derivatives for the narrow bump in Fig. 9, and the results are shown in
Fig. 11. From Fig. 11, it is clear that adding the second order derivatives to Eq. (31) has significantly increased
the accuracy of approximation for large deformations. However, due to the high cost of calculating Hessian,
in the rest of this work, to solve the optimization problem, we applied gradient ascent and SLSQP methods
employing first-order gradients at the cost of more iterations.

3.2 Choice of step size γ for the GA approach

One important step to find the wavy deformation profiles with gradient ascent approach is choosing the step
size γ . If γ is too small, the convergence will be slow; on the other hand, if it is too large, it is possible that
higher-order terms in the Taylor series expansion of E become relevant, and one does not follow the steepest
ascent direction. To choose the proper step size, we have compared the final waviness profile for Re = 15×106,
M∞ = 0.5 and k = 16 using different step sizes, i.e., γ = [1; 4; 16; 64; 128] × 10−6m. Here, it is important
to mention that since we are working in the compressible regime, the most unstable disturbance mode inside
the boundary layer is a 3D mode, i.e., β 
= 0. Therefore, we have used an in-house code to compute the
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Fig. 12 Largest allowable deformation profile using different γ for �N = 2 at Re = 15 × 106 using 16 Fourier modes on the
NLF(2)-0415 airfoil (left panel) and corresponding convergence of the L2−norm for final wavy profiles (right panel). The colors
of the circles in the right panel match the colors of each curve in the left panel

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-2

-1.5

-1

-0.5

0

0.5

1

1.5
10-4

Fig. 13 Largest allowable deformation profiles to reach �N ≈ 2.0 for k = 10 and k = 16 for Re = 15× 106 using SLSQP and
GA

spanwise wavenumber (β) and initial streamwise wavenumber (αxs ) of the most unstable mode to be used
for PSE calculations. For the mentioned conditions, this constitutes f = 8346 Hz, β = 288.34 m−1 and
αxs = 889.99 m−1. Figure12 shows the corresponding final waviness profiles using the five different values
for γ , all reaching �N = 2 but with different L2−norms. Figure12 indicates that γ = 4× 10−6(m) is a good
value to guarantee the convergence to the same solution, thus is used in all calculations in the GA approach.

3.3 Results for largest allowable deformation profiles

Figure13 shows the final largest allowable deformation profiles for k = 10 and k = 16 obtained with SLSQP
and the near optimum solution obtained with GA, both for �N ≈ 2, using the NLF(2)-0415 airfoil for
Re = 15 × 106 at AoA = 1.25◦ and M∞ = 0.5. The L2−norm of the wavy profiles shown in Fig. 13 are
4.46% (k = 10) and 2.58% (k = 16) higher for the GA than for the SLSQP method, exemplifying that the GA
approach is not ideal for when the largest allowable wavy deformation with minimum L2−norm is desired.
The analysis of both profiles permits us to understand that the lower L2−norm was achieved with the SLSQP
wavy shape due to large bumps presented in the upstream position of the chord, where the boundary layer is
thinner, with a more significant effect in disturbing the flow in this region. The large bumps at the beginning of
the chord also create a high slope just after it, which results in a large adverse pressure gradient. This allows
solutions with lower amplitude bumps in the rest of the airfoil’s downstream positions, bringing the L2−norm
value down and showing how the SLSQP method is more robust in the optimization process.
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Fig. 14 Effect of pressure distribution on the gradient for Re = 15 × 106 and �N = 2 and k = 16

Fig. 15 Growth for the most unstable mode and envelope curves for baseline and wavy airfoils (Re = 15 × 106 and �N = 2
and k = 16)

The physical explanation of the wavy shapes obtained in Fig. 13 are explained by Fig. 14, in which it is
possible to understand that the gradient of kinetic energy in the boundary layer is dictated by the way pressure
is distributed on the airfoil.

In Fig. 14, which shows ∇z E , d(−Cp)/dx , and d2(−Cp)/dx2 on the upper skin of the wavy airfoil for
Re = 15 × 106, �N = 2 and k = 16, we observe that the sensitivity tends to be positive in regions where
d(−Cp)/dx decreases (moving toward the adverse type), while d2(−Cp)/dx2 is negative. This is clear in the
region for x/c < 0.185, delimited by the first vertical blue line. As the level of pressure gradient starts to move
toward the favorable type, i.e., d(−Cp)/dx stars to increase (d2(−Cp)/dx2 is positive), the sensitivity tends
to become negative, which is the trend observed right after x/c > 0.185, and is repeated along all the airfoil’s
surface. The vertical blue lines in Fig. 14, together with the plot of the second derivative, help to identify the
mentioned trend and regions where the switch happens.

In Fig. 15, the envelopes of N -factor curves for the upper skin of baseline airfoil and final wavy airfoil for
Re = 15× 106, k = 16, and �N = 2 are shown by blue and red dashed lines, respectively, for computations
carried with a constant frequency and β. It has been noticed that updating the mode often during the iteration
process is unnecessary and time-consuming. To show that the N -factor envelope for the final wavy airfoil (red
dotted line) in Fig. 15 was obtained after updating the modes at each iteration, and there is a match between
the growth of the initial most unstable mode (black line) used along the iteration process with the final updated
one. It is evident from the figure that the maximum value of N -factor is increased by 2 units compared to the
initial airfoil.
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Fig. 16 Evolution of htol for Re = 9 × 106 and different �N and k

3.4 Calculating manufacturing tolerances

The waviness profile shown in Fig. 13 for the SLSQP approach is the largest allowable deformation profile with
minimum L2−norm that will increase the kinetic energy of the boundary layer by predefined initial values of
19 (k = 10 and �N = 1.93) and 19.47 (k = 16 and �N = 2.0), and it means that any other waviness profile
with the same L2−norm will cause a lower kinetic energy variation (and �N ) in the boundary layer. Thus,
we have defined the tolerance htol as the L2−norm of surface deviations of the allowable deformation profile
(for a specific flight condition and k) with respect to the clean airfoil. This can be written as

htol =
√

1

(x f − xs)

∫ xs

x f

(�zi )2dx, (34)

where �zi is surface nodal vertical deformation, calculated using SLSQP or GA approaches, for x ∈ [xs, x f ].
In Figs. 16, 17 and 18, the calculated tolerances, htol, obtained with both SLSQP and GA approaches are

shownas a function�N ∈ [0, 2]. The resultswere obtained for Re = [9, 12, 15]×106 and k = [10, 12, 14, 16].
The choice of Reynolds numbers was made based on the mean aerodynamic chords of some straight-wing
aircraft (P180, HA-420, EMB-500, ATR-72, DCH-8) flying at maximum operational speeds (VMO ) at ISA
conditions. For the mentioned Reynolds numbers, the values for f , β, and αxs for the most unstable modes
are informed in Table 1.

These figures show that the tolerance increases by increasing the target �N . On the other hand, for a
specific target �N and Re, by decreasing the wavelength of waviness on the airfoil, i.e., by increasing k, the
tolerance decreases significantly due to the higher levels of the adverse-favorable pressure gradient that smaller
wavelengths introduce on the surface. As for the Reynolds number effect, since the boundary layer gets thinner
with the increase in Re, smaller oscillations in pressure coefficient (Cp), i.e., surface deviations, start to have
more effect on the growth of disturbances, and larger Re numbers result in smaller tolerance levels.

It is also evident from Figs. 16, 17 and 18 that the difference in the tolerances obtained with both methods
reduces as the Reynolds number is increased, especially for large wavelengths (small values of k). A significant
discrepancy in the tolerances for the methods, i.e., around 15%, is observed only for moderate Reynolds
numbers at large values of �N for k = 10. For the most part of Figs. 16, 17 and 18, the tolerances calculated
with both methods differ by less than 10%. When we take into consideration that a full curve using gradient
ascent method can be obtained in less than 5h using only four processors, which takes 50 to 60 iterations
with γ = 4 × 10−6 [m] to reach �N = 2, and that each point of the same curve, i.e., htol corresponding to
each �N for a specific Re and k, using SLSQP can take up to 12h (depending on the values of ER) using the
same number of processors, the gradient ascent approach can become an option to estimate the manufacturing
tolerances, especially if the goal is to map multiple wing sections at different flight conditions using limited
computation resources and at a small time frame.

To assure that the tolerances informedwith the SLSQPmethodology are the ones with minimum L2−norm
and to test by howmuchwewould bemakingmistakeswhen theGA tolerances are applied, using a combination
of different wavy profiles, we have created and tested 2210 feasible randomwavy shapes. Each profile is scaled
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Fig. 17 Evolution of htol for Re = 12 × 106 and different �N and k
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Fig. 18 Evolution of htol for Re = 15 × 106 and different �N and k

Table 1 Frequencies, spanwise and initial streamwise wave numbers for the most unstable mode for each Reynolds number

Re f [Hz] β [m−1] αr [m−1] αi [m−1]

9 × 106 7519 223.34 760.90 −3.75
12 × 106 8173 257.40 847.79 −6.42
15 × 106 8346 288.34 889.97 −6.20

M∞ = 0.5 and AoA = 1.25◦

once to have an L2−norm equal to the tolerance obtained using the gradient ascent (GA) method, and once
to the tolerance obtained using the SLSQP method (for Re = 15× 106, k = 16, �N = 2), and for each case,
we have calculated the maximum increase in N -factor. All the wavy shapes created had a random number of
Fourier modes, limited to 16, and random amplitudes. The �N distribution for the profiles with the tolerance
calculated using gradient ascent is shown in the left panel, and using SLSQP is shown in the right panel
of Fig. 19. It is clear that no case reached �N = 2 when the tolerance from the SLSQP approach is used,
consistent with the properties of the largest allowable deformation (minimum L2−norm). On the other hand,
11 profiles (0.5 %) with the tolerance found using gradient ascent went beyond�N = 2, which shows that the
waviness profile found using gradient ascent is not the profile with minimum L2−norm to reach a specific�N .
However, the probability of having these violating cases is not substantial. Nevertheless, choosing between
gradient ascent (much faster) and SLSQP (minimum L2−norm) to calculate the tolerances depend on the
accuracy which is needed for a certain application.
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Fig. 19 Distribution of �N for random waviness profiles (number of Fourier modes limited to 16) with the tolerance obtained
using gradient ascent (left) and SLSQP (right) for �N = 2, Re = 15 × 106, and k = 16
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Fig. 20 Effect of angle of attack (AoA) onmanufacturing tolerances (left panel). Pressure distribution on both suction and pressure
sides (right panel). M∞ = 0.5, Re = 15 × 106, k = 10, �N = 2

Table 2 Lift coefficient (Cl ), and stability analysis parameters for the most unstable mode for different angle of attacks

AoA(◦) 0.7 0.9 1.25 1.50

Cl 0.72 0.75 0.80 0.837
f [Hz] 8385.25 8382.31 8346.18 8265.47
β[m−1] 446.37 445.99 288.34 286.75
αr [m−1] 907.09 894.41 889.97 869.29
αi [m−1] −3.75 −4.97 −6.20 −7.30

M∞ = 0.5, Re = 15 × 106

3.5 Effect of angle of attack and mach number

The effect of different angles of attack on the manufacturing tolerances for Re = 15× 106, k = 10, �N = 2
(calculated using GA) is shown in Fig. 20. The lift coefficient (Cl ) and the values for f , β, and αxs of the most
unstable mode used for each case are informed in Table 2. It is clear that by increasing the angle of attack
the tolerance to reach �N = 2 decreases. The reason for this relies on the difference in pressure distribution
on airfoil for AoA = [0.7◦; 1.5◦] shown in Fig. 20. As the angle of attack increases, the adverse pressure
gradient, especially close to leading edge, becomes stronger, which destabilize the TS waves and results in a
faster growth in their amplitude. Thus, the tolerances for �N = 2 decreases.

The change inMachnumber also affects directly the pressure distribution on the entire airfoil, i.e., increasing
this parameter will increase all existing pressure gradients roughly by a constant, which can be accessed by
subsonic compressibility relations such as the Karman–Tsien [56]. Therefore, increasing this parameter will
increase the level of adverse pressure gradients caused by the wavy bumps, reaching the target�N much faster,
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Table 3 Tolerances for Re = 15 × 106, k = 10 and AoA = 1.25◦ at different M∞

M∞ 0.45 0.5 0.55 0.6

htol [m] 7.31 × 10−5 5.98 × 10−5 5.42 × 10−5 4.37 × 10−5

which translates into small tolerances. Table 3 shows the effect of compressibility in the computed tolerances
(with GA) using the same airfoil at AoA = 1.25◦ and Re = 15×106 for four differentMach numbers. It has to
be mentioned that although compressibility has a strong stabilizing effect on the TS waves until M∞ ≈ 2 [57],
the manufacturing tolerances are computed based on the variation of the N -factor, i.e., the initial maximum
N -factor for M∞ = 0.5 will be larger than for M∞ = 0.6; however, to reach a �N = 2, the tolerances for the
higher Mach number will be smaller.

4 Conclusion

An adjoint-based methodology was proposed and tested for computing the surface waviness tolerances in
manufacturing NLF surfaces. The main goal is to find the manufacturing tolerances based on the largest
allowable waviness profile with minimum L2−norm of surface deformations that might cause early transition
due to the existence of waviness on the airfoil. In the required cycle of computations, the inviscid baseflow was
obtained by solving the Euler equations and the viscous meanflow by solving the boundary layer equations
(BLE) for compressible flows. The instability of the boundary layerwas analyzed using the parabolized stability
equations (PSE), and the gradient of the objective function with respect to surface deformations was obtained
using the adjoint method by solving the adjoints of the Euler, BLE, and PSE. It was shown that the accuracy
of approximation using the adjoint method depends on the amplitudes of surface waviness, and the accuracy
decreases when the height of waviness increases. It was also shown that the accuracy of approximations for
large deformations increases significantly when second-order gradients are used.

The methodology for computing the surface waviness tolerance consists in an iterative gradient-based
amplification of the kinetic energy of the boundary layer to find the minimum L2−norm of the surface
deviations, i.e., a wavy profile that causes a specified energy amplification (ER) or a �N in the N -factor
envelope. For this task, the NLF(2)-0415 airfoil designed for the commuter aircraft segment was used to test
and validate the approach mostly for M∞ = 0.5, AoA = 1.25◦ and Reynolds numbers between 9 × 106 and
15 × 106 based on common mean aerodynamic chords of straight-wing aircraft for less than 90 passengers.

The results obtained using the two approaches, i.e., gradient ascent (GA) and SLSQP, show how tolerances
scale with different Reynolds numbers, where the thickness of the boundary layer plays a significant role in
the final tolerances together with the effect of different wavelengths of surface oscillations responsible for the
level of adverse-favorable pressure gradients. It also has been shown that the SLSQP is the method capable of
finding the largest allowable deformation profile, with minimum L2−norm of surface deformation, at the cost
of additional computational time compared to the GA approach, which informs tolerances within an error of
less than 10% but in a shorter time frame. It also has been shown that increasing the angle of attack and Mach
number, for a specific �N , will result in lower tolerances due to the increase in the adverse pressure gradient
imposed on the airfoil.

The methodology proposed here expresses the efforts made to obtain manufacturing tolerances for NLF
surfaces for aerodynamic applications, with waviness profiles aligned in the chordwise direction, where the
advantage of the proposed methodology is the extra information that is given at the beginning of the process,
i.e., the final �N that the manufactured geometry will result. This helps engineers dictate manufacturing
tolerances with more confidence about their effects.

To extend the presented methodology to find the tolerances for a 3D wing and allowing deformations to be
in both spanwise and chordwise directions, a general approach could be to implement a similar methodology
with full 3D boundary layer and plane marching PSE-3D equations and also their adjoints. However, solving
the 3D boundary layer and stability equations would be a much more complicated task. A simple approach,
when waviness is assumed to be only in the chordwise direction, to address the full three-dimensionality of
base flow is to handle it in the same manner as when natural laminar flow wings are designed and analyzed.
In this case the flow at different wing sections along the span are considered separately and a local infinite
swept wing approximation is applied. This can be done with the present methodology as the BLE and PSE
used in this work are based on infinite swept approximation and can handle both TS and cross-flow type of
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perturbations. The sensitivity of cross-flow perturbation using adjoint methods has already been studied, e.g.,
by Pralits and Hanifi [58], using a similar approach. In this case, a manufacturing tolerance at each span section
will be found.
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