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Abstract Evolution of three-dimensional body motion within surrounding three-dimensional fluid motion is
addressed, each motion affecting the other significantly in a dynamic fluid–body interaction. This unsteady
problem is set near awall. The spatial three-dimensionality present is a new feature. For inviscid incompressible
fluid, a basic nonlinear formulation is described, followed by a linearised form as a first exploration of param-
eter space and solution responses. The problem reduces to solving Poisson’s equation within the underbody
planform, subject to mixed boundary conditions and to coupling with integral equations. Numerical and ana-
lytical properties show dependence mainly on the normal and pitch motions, as well as instability or bounded
oscillations depending on the position of the centre of mass of the body, and a variety of three-dimensional
shapes is examined.

Keywords Fluid-solid interactions · Three-dimensional · Near a wall · Poisson’s equation · Nonlinear and
linearised formulation · Mixed boundary conditions · Numerical analysis

1 Introduction

A dynamic fluid–body interaction involves the unsteady motion of a solid body that is freely moving in a
surrounding fluid and affecting the fluid flow substantially, which thereby affects the bodymotion substantially
and produces two-way interplay. In the scenarios of current concern, we have an incident unidirectional fluid
flow over a solid wall but with a free finite three-dimensional body located initially above the wall such that
part of the oncoming fluid travels through the gap between the underneath of the body and the wall. This yields
an unsteady three-dimensional interaction.

Background motivations for focussing on these interactions include the applications to industrial, biomed-
ical and environmental modelling. Dynamic fluid–body interactions have been much studied through direct
numerical simulations and experiments. Examples include contributions by Portela et al. [18], Wang and Levy
[23], Dehgahan and Basirit Tabrizi [3] concerned with turbulent flow and contributions by Hall [7], Einav
and Lee [5], Petrie et al. (1993) [17], Schmidt and Young [19], Loisel et al. [13] on flow transition. Further
related studies are by Owen [15], Miller et al. [14], Foucaut and Stanislas [6], Virmavirta et al. [22], Kudrolli
et al. [11], Diplas et al. [4], Akoz and Kirkgoz [1], Hewitt et al. [8], Kudrolli et al. [12]. As far as we are
aware, comparatively little analysis has ever been performed or presented in three spatial dimensions in the
area despite the three-dimensionality of interactions in many practical configurations such as those above.

The works mentioned above are, to repeat, predominantly computational or experimental studies and much
of the interest in those works as well as in the background motivations is centred on properties at fairly high
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Fig. 1 Sketch (not to scale) of the three-dimensional body which is free to move in the otherwise uniform fluid flow, near a wall
z̃ = 0, leading to fluid–body interaction. Dimensional coordinates are shown

Reynolds numbers. In that parameter range relatively little exploration of fluid–body interaction has been
undertaken even for two spatial dimensions in terms of applied mathematical studies apart perhaps from quite
recent papers by Smith and Ellis [20], Smith and Wilson [21], Palmer and Smith [16], Jolley et al. [9] for
inviscid fluids concerning bodies in boundary layers and channel flows. This sets the scene for the present
study which is focussed on an applied mathematical investigation of a dynamic fluid–body interaction in three
spatial dimensions.

The three-dimensional body is taken to be moving in the vicinity of the wall or ground and to be almost
aligned with the wall. The body is thin as regards its representative dimension normal to the wall, relative to
the typical streamwise and spanwise dimensions, and the spatial variation of the underbody shape is supposed
to be of the same order as the thickness of the fluid-filled gap between the wall and the underbody. The fluid is
assumed to be inviscid and incompressible and its motion to be laminar. There are connections here with the
study in Jones and Smith [10] of three-dimensional flow due to a car underbody with ground effects present,
but in the current cases the underbody is freely moving due to interaction with the fluid flow. The current
scenario has the coordinate frame of reference to be used being such that the origin moves horizontally with
the centre of mass of the body; the wall then appears as non-stationary in general. The oncoming fluid stream
is assumed to be uniform.

Section 2 describes the formulation of the model, including the scales and the derivation of the unsteady
three-dimensional system. See also Figs. 1, 2, 3. Here, the interaction in the gap between the underbody and the
wall is found to exert most influence on the combined fluid and body motions. A model simplification with a
linearised approach, in Sect. 3, is then adopted as a means of gaining a first appreciation of the parameter space
involved. Section 4 describes analytical features and Sect. 5 discusses the numerical method which is applied
to the system, while numerical case studies are presented in Sect. 6. Section 7 provides further discussion and
conclusions.

2 Model formulation

The typical scales of x̃ and ỹ are comparable and can be denoted as l̃ say, while the typical scale of z̃ is h̃
where the ratio h̃/l̃ � 1. The body slopes are typically O(h̃/l̃). We therefore write, for the thin gap between
the underbody and the wall,

(x̃, ỹ, z̃) = l̃(X, Y, (h̃/l̃)Z), (1)

with X , Y , Z of order unity and anticipate that in the gap

(ũ, ṽ, w̃) = ũ∞(U, V, (h̃/l̃)W ) + . . . , (2a)

p̃ = ρF ũ
2∞P + . . . , (2b)

t̃ = (β l̃/ũ∞)T . (2c)

Here, the expansions in (2a) follow from a balancing in the continuity equation as well as in the streamwise
and spanwise momentum equations, the pressure expansion in (2b) is also inferred from those momentum
balances; the positive constant β in the time scale (2c) is taken to be large, β � 1, which stems from the
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Fig. 2 A top-down plan view of the body in the (x̃, ỹ) plane. The incoming stream ũ is aligned with the x̃-axis. The body’s
leading edge x̃1(ỹ) is depicted by a solid line, while the trailing edge x̃2(ỹ) is by a dotted line. The angle of rotation about the
z̃-axis (yaw) is denoted as θ2, and θ3 denotes the rotation about the x̃-axis (roll). σ is the angle between the tangent to the leading
edge x̃

′
1(ỹ) and the outer stream direction (x̃-axis)

Fig. 3 A cross-sectional view of the body in the (x̃, z̃) plane. The incoming stream ũ is aligned with the x̃-axis. The under-body
surface is denoted by f̃ (x̃, ỹ, t̃); the kinematic conditions for w̃ at z̃ = f̃ and z̃ = 0 are illustrated in the diagram. The angle of
rotation about the ỹ-axis (pitch) is denoted as θ1, and θ3 denotes the rotation about the x̃-axis (roll)

property that for a sufficiently dense body the representative time scale of the body motion is significantly
greater than that of the fluid motion.

The fluid motion in the thin gap is then governed by a nonlinear thin-layer system in 3D for an inviscid
fluid, namely the continuity equation and two momentum equations in X, Y of the form

UX + VY + WZ = 0, (3a)

UUX + VUY + WUZ = −PX , (3b)

UVX + VVY + WVZ = −PY . (3c)

The order unity scaled pressure P = P(X, Y, T ) here is independent of the normal coordinate Z by virtue of
the normal momentum balance. The boundary conditions below are written now for a leading edge planform
of body with shape which is given in general by X = X1(Y ), and F denotes the body surface in contact with
the fluid:

W |Z=0 = 0, (4a)

W |Z=F(X,Y,T ) = UFX + V FY , (4b)

(U, V,W, P) = (1, 0, 0, 0), (in the incoming stream), (4c)

U cos σ + V sin σ = cos σ, (at inflow edges X = X1(Y )+), (4d)

P = 0, (at trailing edges X = X2(Y )−). (4e)
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The condition (4a) corresponds to the requirement of tangential flow at the solid wall and the condition
(4b) is the kinematic condition at the moving underbody surface F ; we repeat that the scaled time T is slow
in terms of the fluid flow. Further, (4c) represents the match with the oncoming flow in the far field and (4d)
refers to the expected continuous quantities, but there are also discontinuities in velocity and pressure across
the leading edge of the planform as X → X1− and X → X1+. Here, σ is the angle between the tangent to the
curved leading edge and the outer stream direction (X -axis), such that cot σ = X ′

1(Y ) [10]. The condition (4d)
stems from a thin Euler-like region lying along the leading edge in which the horizontal velocity component
normal to the edge adjusts in a quasi-planar manner along with the vertical velocity; the distance coordinate, s,
along the edge being of order unity but the tangential component is convected pressure-free along the inward
directed streamlines locally. Consequently, the horizontal velocity tangential to this edge is continuous across
the above region. In (4d) moreover, U , V are expected to be independent of Z , although usually they depend
on s. Constraint (4e) is associated with the Kutta-like requirement that the pressure be continuous across
the trailing edge of the planform [10,20]. This last condition leads to the constraint that P must be zero for
any trailing edge location at the boundary of the planform, the reason being that the thinness of the body
induces only small variations in P except in the gap where P is of order unity. We comment also that as in the
2D case [20,21] there is upstream influence present in spite of the locally parabolic nature of the governing
equations (3). The leading edge here corresponds to fluid particles which travel from the surrounding flow
onto or beneath the body, whereas the trailing edge refers to particles travelling into the surrounding flow. In
the present nonlinear setting, the junctions between the leading and trailing edges are unknown in advance.

The bodymotion is now considered. Dynamic fluid–body interaction occurs when the body is free to move,
its motion being controlled by the forces and moments due to the flow pressure. In the present configuration of
a thin body, only three factors are directly interactive with the motion, over the current time scales, namely the
scaled lift force LZ acting in the normal direction, the scaled moment or torque MY acting about the Y -axis and
the scaled moment MX about the X -axis. The corresponding drag force LX in the X direction, for instance,
is too small to alter the streamwise movements, which consist of the body continuing to translate at its initial
velocity (thus, relative to the body, the oncoming stream is uniform as in (4c)), and similarly the spanwise drag
force LY in the Y direction and the moment MZ about the Z -axis are negligible. The translational velocities
U = 1, V = 0 in the streamwise and spanwise directions are therefore uniform and likewise for any angular
velocity dθ/dT about the Z -axis. On the other hand, the flow pressure is dependent on the body shaping as is
evident from the original problem (3-4). So the fluid and body motions are coupled.

The scaled angles of rotation about the Y, Z , X axes are writtenΘ1(T ), Θ2(T ), Θ3(T ), denoting the pitch,
yaw and roll angles, respectively; the vertical distance moved by the body is H(T ) and Xc, Yc denote the
X -wise and Y -wise centres of mass in turn. The rates of change of Xc, Yc and the yaw angle Θ3 are taken to
be zero as a prime example. We have

m
d2H

dT 2 =
∫∫

P(X, Y, T )dXdY, (5a)

j1
d2Θ1

dT 2 =
∫∫

(X − Xc)P(X, Y, T )dXdY, (5b)

j2
d2Θ2

dT 2 =
∫∫

(Y − Yc)P(X, Y, T )dXdY, (5c)

where the double integrals extend over the XY -planform of the body. Here, m, j1, j2 are, respectively, the
scaled mass and moments of inertia with respect to Θ1, Θ2. Also the leading edge X1 and trailing edge X2 are
quasi-steady, as is the fluid flow, in contrast with the motion of the body which is fully unsteady with scaled
time variable T of order unity. The underbody shape is given by

F(X, Y, T ) = G(X, Y ) + H(T ) + (X − Xc)Θ1(T ) + (Y − Yc)Θ2(T ). (6)

The largeness of the factor β mentioned after (2c) is consistent with the body-motion balances in (5), provided
that the density ratio ρB/ρF is sufficiently large.
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3 Model simplifications and linearised interactions

Returning to the fluid dynamical part of the model, we seek a solution in which U, V are uniform in Z inside
the gap. The conditions (4a, 4b) then establish that the velocity components must satisfy

∂(UF)

∂X
+ ∂(V F)

∂Y
= 0, (7)

while (3b, 3c)with (4c) imply that the vertical vorticity is zero, leading to the formsU = ∂Φ/∂X, V = ∂Φ/∂Y .
Here, Φ(X, Y, T ) is the scaled vertical potential function, it is governed by the elliptic equation

∂

∂X

(
F

∂Φ

∂X

)
+ ∂

∂Y

(
F

∂Φ

∂Y

)
= 0, (8)

on account of (7), with the pressure then given by

P = 1

2

(
1 −

(
∂Φ

∂X

)2

−
(

∂Φ

∂Y

)2)
. (9)

The planform-edge boundary conditions (4d, 4e) written in terms of Φ thus become

Φ = X, (at X = X1(Y )), (10a)

align

(
∂Φ

∂X

)2

+
(

∂Φ

∂Y

)2

= 1, (at X = X2(Y )). (10b)

The fluid flow is thus controlled by (8-10) but with the unknown moving shape F(X, Y, T ) in (8) coupling the
fluid flow with the body motion through (5-6).

Some ideas on solving the fluid-flow part (8-10) alone are presented in Sect. 5.2 of Jones and Smith [10],
especially equations (5.4)–(5.6) there. The presence of the body-motion part (5-6) in the current overall system
makes it more difficult however. So we turn to an analytical investigation next.

A linearised version of the problem described in the previous section is found to yield valuable insight. We
write:

(X, Y, Z , T ) ∼ (x, y, z, t), (11a)

(F − 1, H,G, Θ1, Θ2) ∼ ε( f, h, g, θ1, θ2). (11b)

For this almost-constant case F = 1 + ε f with the parameter ε being small, we can perform a linearisation
such that the potential function Φ and pressure P expand as

Φ = x + εφ(x, y, t) + O(ε2), (12a)

P = 0 + εp + O(ε2). (12b)

Substitution into (8) shows that at leading order we are then left with solving

∂2φ

∂x2
+ ∂2φ

∂y2
= −∂ f

∂x
, (13)

for the perturbation potential φ(x, y, t). The boundary conditions at the given planform edge of the body are
now

φ = 0, (x = x1(y)), (14a)

∂φ

∂x
= 0, (x = x2(y)) (14b)

from (10). For prescribed underbody f (x, y, t) and planform shape the formulation (13)-(14) constitutes a
closed problem for φ(x, y, t), once φ is found then the pressure p follows from

p(x, y, t) = −∂φ

∂x
. (15)
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Further, the rates of change of xc, yc and the yaw angle θ3 referred to in the previous section are taken to be
zero as a prime example. It is notable also that the junctions between inflow and outflow edges (leading and
trailing edges) are known in advance for the current linearised setting.

The underbody shape perturbation is given, from (6), by

f (x, y, t) = g(x, y) + h(t) + (x − xc)θ1(t) + (y − yc)θ2(t), (16)

and coupled with the above we have, from (5):

m
d2h

dt2
=

∫∫
p(x, y, t)dxdy, (17a)

j1
d2θ1
dt2

=
∫∫

(x − xc)p(x, y, t)dxdy, (17b)

j2
d2θ2
dt2

=
∫∫

(y − yc)p(x, y, t)dxdy, (17c)

where, to repeat, the double integrals are over the xy-planform of the body. The governing equations and
boundary conditions of the interaction are now thus (13-17); initial conditions on h, θ1, θ2 and their temporal
derivatives h′, θ ′

1, θ
′
2 are assumed known at time zero.

Concerning solution properties, first we see that the roll angle θ2 has no effect on the total interaction.
This is a perhaps surprising feature. It happens because, in (16), θ2 contributes to f only a term independent
of x and has no influence on φ due to the right-hand side of (13), and hence no influence on pressure p and
no influence on the double-integral forces in (17). Therefore, the body’s roll angle is able to evolve simply
as θ2(0) + θ ′

2(0)t (where the constants are determined by the initial conditions), giving a uniform rolling
movement of the body. This makes physical sense since the rolling takes place in a plane perpendicular to the
oncoming stream. Second, it is similarly clear that the body’s vertical displacement h(t) in (16) has no effect
on the evolution of the pitch angle θ1(t) by virtue of the x-derivative on the right-hand side of (13). Hence, the
linearised interaction reduces to (13-17b) in effect. Third, a numerical treatment of this linearised interaction
is called for in general, following the analysis immediately below.

4 Analysis of special model cases

This section provides analytical features of several special model shapes, which can serve as helpful compar-
isons for the numerical work to be discussed in the next section, as well as shedding some extra light on the
overall solution properties. The special cases considered here are (a) the circular planform, (b) the almost 2D
case associated with a large span in the y direction and (c) the thin-planform case of a relatively small span in
the y direction.

4.1 On the circular planform when g is negligible

This corresponds to the special case where f = θ1x (which is also concerned with exponential growth, see
below), whose visual illustration is given in Fig. 4a. The basic problem in the real plane is then to solve the
Poisson equation

Δφ = −θ1 (18)

inside the semi-circle bounded by r = 1 and y = 0, together with the boundary conditions

φ = 0,
(
at r = 1,

π

2
< θ < π

)
, (19a)

∂φ

∂x
= 0,

(
at r = 1, 0 < θ <

π

2

)
, (19b)

∂φ

∂y
= 0, (at y = 0, −1 < x < 1) . (19c)



Three-dimensional evolution of body and fluid motion near a wall 975

In this subsection, we are working for convenience in terms of x = r cos θ, y = r sin θ as the planar Cartesian
coordinates and ω = x + iy is the associated complex coordinate. The condition (19c) stems from symmetry
about the x-axis in the original circle case. The analytical solution via conformal mapping can be found in
“Appendix 7”, where the pressure along the boundary of the flow domain is obtained and shown in Fig. 4. The
result is found to agree closely with the direct numerical solution of this special case.

4.2 On the nearly-2D case

Here, the parameter q is large; |y| is large compared with |x | and the y derivatives become relatively small.
With leading and trailing edge positions written suitably as x = x1(y), x = x2(y), respectively, equation (13)
for the special case f = θ1x (see Fig. 5c) gives us

1

θ1

∂2φ

∂x2
= −1 (20)

to leading order and so since we require φ = 0 at x = x1 and ∂φ/∂x = 0 at x = x2 we have

φ

θ1
= [−1

2
(x − x1)

2 + (x2 − x1)(x − x1)]. (21)

Hence, the pressure solution is simply

P

θ1
= x − x2. (22)

The torque τ is, therefore, the integral from x1 to x2 of (x − xc)p with respect to x , giving

τ

θ1
= 1

2
(x2 − x1)

2
(
xc − x1 − x2 − x1

3

)
. (23)

Here, B1 = B− A andC1 = c− A. Consequently, we see that τ/θ1 is negative for (xc−x1) < (x2−x1)/3 and
positive for xc − x1 > (x2 − x1)/3. The tipping point is thus 1/3 of the distance from the leading edge to the
trailing edge. Because of (17b), a CoM (centre of mass) lying ahead of the tipping point leads to oscillations
of θ1 and a CoM behind the tipping point leads to exponential growth.

Figure 5 demonstrates the contrasting behaviours of the body motion for different centre of mass positions
xc = −1 and 0; the body is configured to have a large span along the y-axis with q = 10 in (30), as such the
flow domain is of an ellipse with x ∈ [−1, 1], y ∈ [−10, 10]. Figure 5a–b shows the oscillatory behaviour
of the body’s pitch angel θ1 and height h when its centre of mass is at the leading edge xc = −1, whereas
Figure 5c–d shows the exponential growth nature of θ1 and h when xc = 0 and is behind the 1/3 threshold.

4.3 On the very thin case

This is for q � 1 in the ellipse notation where the y scale � the x scale. So the governing equation (13)
becomes

∂2φ

∂y2
= −∂ f

∂x
(24)

to leading order. If the body surface function f is independent of y throughout then we obtain, for x < 0,

φ = 1

2
(Ω(x)2 − y2)

∂ f

∂x
(25)

after applying the conditions that φ = 0 at the planform edges which are given by y = Ω(x) and y = −Ω(x)
say. The pressure here is therefore

P = P− = 1

2

(
y2

∂2 f

∂x2
− ∂

∂x

(
Ω2 ∂ f

∂x

))
. (26)
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For x > 0 application of the requirement ∂φ/∂x = 0 at the edges leads to the pressure being

P = P+ = 1

2
(y2 − Ω2)

∂2 f

∂x2
. (27)

In the special case of f = θ1x , these pressures reduce to: P− = −θ1ΩΩx , P+ = 0. Thus, when the scaled
angle θ1 is positive the scaled pressure is negative under the front half of the body but zero under the rear half.

Additionally for the example of the ellipse where (x/A)2 + (y/B)2 = 1, thus Ω(x) = B(1 − x2/A2)
1
2 , we

have in the special case that

P− = θ1(B/A)2x, (−A < x < 0), (28a)

P+ = 0, (0 < x < A). (28b)

The torque τ follows from (5) as:

τ = B2

6
θ1(2A + 3xc). (29)

This implies that the critical position of the centre of mass, say xk , takes the value xk = −2A/3, corresponding
to criticality at 1/6 of the chord measured from the leading edge of the planform. If xc < xk then τ/θ1 is
negative from (6) and so the angular momentum equation (A7) yields (d2θ1/dt2)/θ1 being negative, implying
oscillatory behaviour. If xc > xk on the other hand then exponential growth is implied. Such behaviour can
be seen in our direct numerical solutions in Fig. 6; we also demonstrate the agreement in pressure solution
implied in (28) in Fig. 6b.

5 Numerical methods

Here, we present a numerical method of solving the Poisson equation with mixed boundary conditions in
(13, 14), which involves at each time step encoding their finite difference discretisations as coefficients of
a sparse linear equation matrix. So long as our model is well posed and correctly discretised, this encoding
matrix should be well conditioned and invertible, and its solution yields our desired flow potential over the
discretisation grid. This method can be repeated and marched forward in time to obtain the body’s motion.

We begin by establishing the shape of the flow channel. Suppose the vertical projection of the body onto
the ground is in the shape of an ellipse, which can be configured as a reasonable approximation to a wide
range of model objects. The flow gap of interest is the space between this ground area and the lower surface
of the body. The lower body’s surface need not be smooth, instead it can have various “bumps” and “grooves”
prescribed via the underbody surface function (16); various surface configurations will be demonstrated as
part of our solution analysis.

Since the 3D flow problem is reduced to characteristically 2D as outlined in Sect. 3’s linearisation analysis
and has a domain of elliptical shape, we first translate the model equations into elliptical coordinates before
applying any numerical treatments. Suppose the flowdomain centred at the origin is given by x2/A2+y2/B2 =
1, where 2A and 2B are the lengths of the ellipse’s two axes, or equivalently:

x2 + 1

q2
y2 = A2, (30)

whereq = B/A; the parameterq is a constant andprescribedbasedon themodel shape. In elliptical coordinates,
we write x = r cos(θ) and y = qr sin(θ) for r ∈ (0, A] and θ ∈ (0, 2π]; thus, the Poisson model equation
(13) becomes:

(cos2 θ + q−2 sin2 θ)
∂2φ

∂r2
+ r−2(sin2 θ + q−2 cos2 θ)

∂2φ

∂θ2
+ r−2(1 − q−2) sin 2θ

∂φ

∂θ

+ r−1(sin2 θ + q−2 cos2 θ)
∂φ

∂r
− r−1(1 − q−2) sin 2θ

∂2φ

∂θ∂r
= sin θ

r

∂ f

∂θ
− cos θ

∂ f

∂r
.

(31)

Now introducing the finite difference scheme, we take A to be unity without loss of generality and impose
a M × N discretisation grid over this elliptical domain such that MΔr = 1, NΔθ = 2π , where r = iΔr ,
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θ = jΔθ and i ∈ [1, M], j ∈ [1, N ]. Note our grid points do not include the origin itself where r = 0. The
discretised Poisson equation (31) will be treated in three separate sections:
1) on the exterior curve r = 1, where the boundary conditions (14) apply;
2) on the innermost curve surrounding the origin, r = Δr ;
3) in the interior enclosed by the innermost curve and the outer boundary.

On the interior section where i ∈ [2, M − 1] and j ∈ [1, N ], the Poisson equation (31) can be discretised
using a 4th-order central finite difference scheme:

(C j
1 + C j

2

2i
)φi+1, j + (C j

1 − C j
2

2i
)φi−1, j − 2(C j

1 + C j
2

i2Δθ2
)φi, j + (

C j
2

i2Δθ2
+ C j

3

2i2
)φi, j+1 + (

C j
2

i2Δθ2

− C j
3

2i2
)φi, j−1 − C j

3

4i
(φi+1, j+1 − φi+1, j−1 − φi−1, j+1 + φi−1, j−1) = Δr2

( sin θ

r

∂ f

∂θ
− cos θ

∂ f

∂r

)
,

(32)

where C j
1 = cos2( jΔθ) + q−2 sin2( jΔθ), C j

2 = sin2( jΔθ) + q−2 cos2( jΔθ) and C j
3 = (1 −

q−2)Δθ−1 sin(2 jΔθ). We leave the Right-Hand-Side (R.H.S.) of the equation undiscretised for presenta-
tion simplicity: a body surface function f can be discretised using an appropriate finite difference scheme or,
in many cases, its derivatives are explicitly known. Since there are in total M × N grid points and thus as many
unknown fluid potential data points, this “interior discretisation” offers (M − 2) × N linear equations with
unknowns of φi, j for i ∈ [2, M − 1], j ∈ [1, N ].

On the exterior boundary, there are two boundary conditions. Firstly at a = 1 and θ ∈ [π
2 , 3π

2 ], we have
the Dirichlet condition:

φM, j = 0, (33)

secondly on the rest of the curve we have the Neumann condition for θ ∈ (−π
2 , π

2 ):

∂φ

∂x
= cos θ

∂φ

∂r
− sin θ

∂φ

∂θ
= 0,

which can be discretised using a 4-th order backward difference scheme:

cos
(
jΔθ

)(25
12

φM, j − 4ψM−1, j + 3ψM−2, j − 4

3
φM−3, j + 1

4
φM−4, j

)

− sin
(
jΔθ

)
MΔθ

( 1

12
φM, j−2 − 2

3
φM, j−1 + 2

3
φM, j+1 − 1

12
φM, j+2

) = 0.

(34)

These two boundary conditions together offer another N linear equations for the unknowns of φM, j for
j ∈ [1, N ].

Finally, to discretise the innermost curve we find an approximation to the fluid potential at the origin φ0, j ,
which itself is off the discretisation grid. To do so we apply a Taylor expansion of the fluid potential at r = 0:

φ1, j = φ0, j + Δr
∂φ

∂r
(0, j) + 1

2
Δr2

∂2φ

∂r2
(0, j) + O(Δr3). (35)

Note that we opted towrite the fluid potential at the origin asφ0, j as opposed toφ0; this should be the same value
for all angle indexers j at this point of origin (at least in theory). We do so to keep track of the discretisation
angle as will become clear below. The first-order derivative ∂φ

∂r (0, j) can be discretised via a central difference
scheme as:

∂φ

∂r
(0, j) = 2

3
(φ1, j − φ1, j̄ ) − 1

12
(φ2, j − φ2, j̄ ),

where θ̄ = j̄Δθ is the 180◦ reflection of the angle θ = jΔθ over the point of origin, that is θ̄ = |θ + π, 2π |;
likewise for the second-order derivative ∂2φ

∂r2
(0, j):

∂2φ

∂r2
(0, j) = −5

2
φ0, j + 4

3
(φ1, j + φ1, j̄ ) − 1

12
(π2, j + φ2, j̄ ).
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Substituting the two expressions into Taylor expansions of (35) gives the following discretisation of the fluid
potential at the point of origin:

φ0, j = 4

3
φ1, j − 1

2
φ2, j + 1

6
φ2, j̄ . (36)

We now can discretise the Poisson equation on the innermost curve via a central difference scheme. Substituting
in the origin discretisation of (36) where necessary we have all the grid points we need to apply our scheme:

2C j
1 + 3C j

2

4
φ2, j + 2C j

1 − C j
2

12
φ2, j̄ + C j

3

24

(
φ2, j+1 − φ2, j−1

)
− 3C j

3

8

(
φ2, j+1 − φ2, j−1

)
−

(
5C j

3

6

− C j
2

Δθ2

)
φ1, j−1 − 2

3

(
C j
1 + 3 + Δθ2

Δθ2
C j
2

)
φ1, j +

(
5C j

3

6
+ C j

2

Δθ2

)
φ1, j+1 = Δr2

(
sin θ

r

∂ f

∂θ
− cos θ

∂ f

∂r

)
.

(37)

This, therefore, delivers another set of N equations for φ1, j for j ∈ [1, N ], and we thus have altogether M×N
linear equations for the same number of unknowns φi, j .

To solve this finite difference system, we encode the equations of (32, 33, 34, 36) into a (M×N )×(M×N )
linear equation system:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 2
3 (C

1
1 + 3+Δθ2

Δθ2
C1
2),

5C1
3

6 + C1
2

Δθ2
, 0, ... 0

−(
5C2

3
6 − C2

2
Δθ2

), − 2
3 (C

2
1 + 3+Δθ2

Δθ2
C2
2 ),

5C2
3

6 + C2
2

Δθ2
, ... 0

. . . ... .

. . . ... .

. . . ... .

0, 0, 0, ... 25
12 cos((N − 1)Δθ)

0, 0, 0, ... 25
12 cos(NΔθ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

φ1,1
φ1,2

.

.

.
φM,N−1
φM,N

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Δr2 ∂ f
∂x

∣∣
1,1

−Δr2 ∂ f
∂x

∣∣
1,2

.

.

.
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (38)

This sparse matrix, which consists of M × N linearly independent equations, is of full rank and invertible:
it can be solved using a linear algebra software package such as NeRSC’s SuperLU. At each time step, we
solve this linear system of fluid potentials φ, based on which the pressure p can be deduced via (15), and we
subsequently obtain the body’s positional parameters h, θ1 and θ2 through (17), where the double integrals
are evaluated via the composite trapezoidal rule. This scheme can be repeated and marched forward in time to
obtain the combined evolution of the body and fluid motions.

Figure 7 demonstrates this numerical solver over a circular domain for a test case where the fluid potential
is φ = r2(sin θ + cos θ) and r ∈ (0, 1]. In this test case, q = 1 in equation (30) and the left-hand-side
of equation (31) becomes 3r2(sin θ + cos θ); consequently, the Dirichlet and Neumann conditions become
φ = sin θ + cos θ and cos θ

∂φ
∂r − sin θ

r
∂φ
∂θ

= sin θ cos θ + cos2 θ + 1, respectively. The test case shows the
solution of our numerical solver agrees with the real solution closely.

6 Numerical case studies

In this section, we apply the aforementioned numerical scheme to bodies with various shapes, particularly by
adding a “thickness” function g(x, y) to the body shape f , i.e. f (x, y, t) = g(x, y) + xθ1(t). We assume the
body’s centre of mass is at the origin throughout this section and θ1(t) is the angle that controls the pitch of
the body.
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Fig. 7 Test solution of φ = r2(sin θ + cos θ). Solid lines of various colours indicate the real solutions for different values of
r of the unity circle; the black cross markers indicate the corresponding numerical solutions. The mean absolute error of the
(1000 × 100) solution points is 5.578 × 10−6, with dr = 1.0 × 10−2, dθ = 6.283 × 10−3

6.1 Case 1

In the first case, the body resembles an inverted cone whose shape is given by f = x2 + (y/q)2 − 1 + xθ1,
that is g(x, y) = x2 + (y/q)2 − 1. See Fig. 8b for a surface profile plot where q is taken to be unity, that is the
body has the same length span in the x and y dimensions.

The fluid flows in the direction of the positive x-axis and slows down as it comes in contact with the body’s
leading surface. This is associated with an increase in flow pressure in a region at the body’s leading edge;
Fig. 8a shows the pressure of the fluid and Fig. 8b depicts such pressure exerted on the body surface in the
form of a heat map. Past this leading contact region the flow increases in speed as the flow channel narrows,
the speed reaches a maximum at the tip of the cone where the channel is at its narrowest. Such an increase in
flow speed is marked by a drop in fluid pressure which is visualised by the heat map: a negative pressure region
can be seen surrounding the tip of the cone and extending to the body’s trailing edge, where the atmospheric
pressure condition applies.

Figure 8c and d contrasts the fluid pressure for a body with narrow frontal profile facing the oncoming
flow (q = 0.1) against one with a wide profile (q = 10), as can be seen by the different scales of the y-axis in
the two figures. The fluid pressure for a flow past a body with a narrow frontal profile is comparatively small
in magnitude and has less variation throughout the flow channel, but, on the other hand, the flow past a body
with wide contact profile causes a large pressure variation. It is also interesting to note that a body with narrow
profile where q = 0.1 has approximately 13% of its body surface subject to a positive pressure force, whereas
for a wide profile case q = 10 less than 1% of its body surface experiences positive pressure lift.

Figure 9 shows the lift and torque forces exerted on the body for a range of span parameter q values (from
0.1 to 10). The body experiences a net suction as well as negative torque in all cases. The suction force on the
body grows larger as the body increases in span q , while the torque force has two distinct behaviours: for a
narrow body where 0 < q < 1 it experiences an increasingly larger torque about the y-axis as q increases; for
a wide body where q ≥ 1 on the other hand, the torque gradually decreases as the body’s span becomes wider.

Figure 10 demonstrates the evolution of the body’s position over timewhereq is taken to be unity. Figure 10a
shows the change of the pitch angle against the oncoming stream and the body’s vertical centre of mass (CoM)
position over time: the vertical CoM initially drops lower from its starting position due to the suction effect of
the large negative pressure region under the body, but over time the net force under the body becomes positive
as the region of positive pressure grows from the leading edge, which begins to lift the body upwards; the pitch
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Fig. 9 Solutions of the lift and torque forces for a body with shape of f = x2 + (y/q)2 −1 for different values of span parameter
q . As the body increases in span (q = 0.1, ..., 10), the negative pressure force under the body becomes more pronounced (blue
line, left vertical axis). The torque force exerted on the body has two distinct behaviours (orange line, right axis): a body with
narrow frontal contact profile q < 1 experiences a growing negative torque as q increases; for q becomes greater than one the
torque on the body becomes smaller as q increases (colour figure online)

angle on the other hand becomes more negatively acute over time due to the torque resulting from the pressure
distribution acting on the body surface. Figure 10b shows pressure profile under the body at simulation end
time (t = 6): over time the positive pressure region grows in size as well as magnitude near the leading edge,
which contributes to the net positive lift on the body as well as a negative torque about the y-axis.

6.2 Case 2

In our second case, the body shape is given by f = cos(πx/4) cos(πy/(2q)) + xθ1 and loosely resembles
the chassis of an automobile or the under-carriage of a catamaran, as seen in Fig. 11b surface plot where q is
taken to be unity.

The interactive behaviour for the present relatively complicated shape of case 2 and for the shape in case 1
can be explained in terms similar to those for the earlier more basic shapes. The fluid flows through a (vertically
narrow) channel entrance at the leading edge into a wide-open region under the mid-section of the body; in
contrast to the inverted cone case, the fluid first increases in speed as it flows past this leading edge and then
slows down at the wide mid channel section, this flow behaviour being marked by a low pressure region near
the body’s leading edge and a correspondingly high pressure region in its mid flow section, where the body’s
surface height is at its greatest. As the flow approaches the trailing edge it increases in speed once again and
the fluid pressure gradually drops to be atmospheric at this edge. See Fig. 11a for a 3D plot of the pressure
solution and Fig. 11b for the corresponding pressure heat map on the body.

Figure 11c and d contrasts the fluid pressure for a body with narrow frontal profile facing the oncoming
flow (q = 0.1) against one with a wide profile (q = 10). Consistent with the previous case study, the fluid
pressure for a flow past a body with a narrow frontal profile is comparatively small in magnitude and has less
variation throughout the flow channel, whereas the flow past a body with wide span has a comparatively greater
pressure variation. We also note that a body with narrow profile where q = 0.1 has approximately 13% of its
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Fig. 12 Solutions of the lift and torque forces for a body with shape of f = cos(πx/4) cos(πy/(2q)) for different values of
span parameter q . As the body increases in span (q = 0.1, . . . , 10), the positive pressure force under the body becomes more
pronounced (blue line, left vertical axis). The torque force exerted on the body has two distinct behaviours (orange line, right
axis): a body with narrow frontal contact profile q < 1 experiences a growing positive torque as q increases; for q becomes
greater than one the torque on the body becomes smaller as q increases (colour figure online)

body surface near the leading edge subject to a negative pressure force, whereas for a wide profile case q = 10
less than 1% of its leading surface region experiences a negative pressure force.

Figure 12 shows the effect of the span parameter q on the lift and torque forces exerted on the body. We
first note that the body experiences a net positive pressure force for all configurations of span (q ranges from
0.1 to 10), this contrasting with the case of an inverted cone where a net suction force is produced by the flow,
thus reinforcing the importance of the surface shape in controlling pressure force effects. The suction force on
the body grows larger as the body increases in span q , while the torque force has two distinct behaviours: for
a narrow body where 0 < q < 1 it experiences an increasingly larger torque about the y-axis as q increases;
for a wide body where q ≥ 1 on the other hand, the torque gradually decreases as the body’s span becomes
wider.

Figure 13 demonstrates the evolution of the body’s position over timewhereq is taken to be unity. Figure 13a
shows changes in the body’s pitch angle against the oncoming stream and its vertical centre of mass (CoM)
position: its vertical CoM initially climbs higher from its starting position due to positive pressure lift under the
body, but as the pitch angle evolves this pressure force drops to below zero as the region of negative pressure
grows from the leading edge. As a consequence, the body’s vertical CoM drops lower; its pitch angle on the
other hand becomes more positive over time due to the torque from the pressure distribution. Figure 13b shows
pressure profile under the body at the simulation end time (t = 6): over time the negative pressure region
grows in size as well as magnitude near the leading edge, which contributes to the gradual reduction in lift on
the body as well as a positive torque about the y-axis.

7 Further discussion and conclusions

This study which has addressed numerically and analytically the evolution of three-dimensional body motion
within, and interacting with, surrounding three-dimensional fluid motion is felt to have revealed some inter-
esting features of fluid–body interaction. The unsteady interaction problem here is set near a solid wall and
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supposes the body to be solid and the fluid to be inviscid; flow separation is assumed to be absent. As regards the
main findings, a dependence predominantly on the normal and pitch motions of the body has been shown in the
formulation of Sects. 2 (nonlinear) and 3 (linearised), while instability or bounded oscillations are found from
Sects. 4, 5 to depend on the position of the centre of mass of the body. The issue of instability or oscillations
here is associated broadly with exponential growth of the normal and pitch deviations in which the underbody
shape becomes negligible. Various cases of three-dimensional shapes have also been considered.

There is a useful comparison to be made between the present three-dimensional findings and those for
two-dimensional interactions addressed in previous works. Foremost among these is probably the effect of
moving the centre of mass of the body forward towards the leading edge. When the body is two-dimensional,
or has a relatively wide span as discussed in Sect. 5, then the positioning xc of the centre of mass has a critical
value at the 1/3 chord station. If xc is positioned ahead of this station then the fluid–body interaction tends
to be stable, inducing oscillations, whereas an xc value greater than 1/3 gives instability corresponding to
exponential growth of small disturbances. By contrast, when the body is “very” three-dimensional, having a
narrow span, then the critical positioning is at the 1/6 station, with stability (instability) being present upstream
(downstream) of the critical value. The stabilising effect here is physically sensible. Another notable feature
is that more variations in the underbody pressure responses arise in the three-dimensional interactive results.

A number of aspects that follow on from the present first study of unsteady three-dimensional interplay
between a body and the surrounding fluid are equally interesting. First, the nonlinear version of the interactive
system as originally formulated in Sect. 2 would be of considerable value. The roll motion of the body
represented by variations in the angle θ2 is then expected to come into play. Next, allowance could be made
for an incident stream which is angled, with constant velocity componentsU = Uw, W = Ww instead of the
incoming stream in (4c). This yields a situation not dissimilar to that considered by Jones & Smith (2003) and
a similar mathematical approach can be expected to hold. Third, the centre of mass positions xc, yc might vary,
travelling at constant nonzero speed, and there may be a rotation of the body planform, as for a thrown discus
or Frisbee, implying that the underbody shape can rotate. Finally here, other cases of dynamic fluid–body
interaction such as in boundary layers and channel flows (Smith and Ellis [20], Smith andWilson [21], Palmer
and Smith [16], Jolley et al. [9]) would seem to call for spatially three-dimensional investigations. Although
rather little progress has been seen previously, we believe there are many intriguing facets to explore in the
future within this area of three-dimensional freely moving objects.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit
line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To
view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Data availability The datasets generated during and/or analysed during the current study are available from the corresponding
author on reasonable request.

Appendix: Analytical solution of a body with circular planform

This is the special case where f = θ1x whose visual illustration is given in Fig. 4a. The basic problem in the
real plane is then to solve the Poisson equation

Δφ = −θ1 (39)

inside the semi-circle bounded by r = 1 and y = 0, together with the boundary conditions This corresponds
to the special case where f = θ1x (which is also concerned with exponential growth, see below), whose visual
illustration is given in Fig. 4a. The basic problem in the real plane is then to solve the Poisson equation

Δφ = −θ1 (40a)

inside the semi-circle bounded by r = 1 and y = 0, together with the boundary conditions given in (19).

http://creativecommons.org/licenses/by/4.0/


990 F. T. Smith, K. Liu

In this subsection, we are working for convenience in terms of x = r cos θ, y = r sin θ as the planar
Cartesian coordinates and ω = x + iy is the associated complex coordinate. The condition (19c) stems from
symmetry about the x-axis in the original circle case.

φ = 0,

(
at r = 1,

π

2
< θ < π

)
, (40b)

∂φ

∂x
= 0,

(
at r = 1, 0 < θ <

π

2

)
, (40c)

∂φ

∂y
= 0,

(
at y = 0,−1 < x < 1

)
. (40d)

In this subsection, we are working for convenience in terms of x = r cos θ, y = r sin θ as the planar Cartesian
coordinates and ω = x + iy is the associated complex coordinate.

First, we put φ/θ1 = − 1
2 y

2 + φ̂, which transforms the problem to Laplace’s equation

Δφ̂ = 0 (41)

inside the semi-circle bounded by r = 1 and y = 0, with the boundary conditions becoming

φ̂ = 1

2
sin2 θ,

(
at r = 1,

π

2
< θ < π

)
, (42a)

∂φ̂

∂x
= 0,

(
at r = 1, 0 < θ <

π

2

)
, (42b)

∂φ̂

∂y
= 0,

(
at y = 0,−1 < x < 1

)
. (42c)

Second, we apply amapping of the interior of the semi-circle in theω-plane to an upper half-plane in ζ = ξ +iη
by means of the relation

ζ = −1

2

(
ω + 1

ω

)
. (43)

This maps the points ABC (1, i, −1) lying on the boundary in ω to the points A’B’C’ (−1, 0, 1) lying along
the ξ -axis in ζ , while the x-axis between −1 and 1 in the ω-plane is mapped to the two parts ξ > 1, ξ < −1
of the ξ - axis. See Fig. 14. In component form, the mapping reads as

ξ = −1

2
(x + x

x2 + y2
), η = −1

2
(y − y

x2 + y2
), (44a)

ξ = −1

2
(r + 1

r
) cos θ, η = −1

2
(r − 1

r
) sin θ, (44b)

thus confirming that inside the circle (r < 1) the ξ value can be positive or negative but η is positive.
Third, we consider the corresponding transformed problem which is to solve Laplace’s equation for φ̂ in

terms of ξ, η (i.e. ∂2ξ φ̂ + ∂2η φ̂ = 0) within the upper half plane η > 0 subject to mixed boundary conditions
along the ξ -axis and boundedness at infinity. Expressed in terms of the complex function

G1(ζ ) = U1 − iV1 (45)

where U1 = ∂φ̂/∂ξ, V1 = ∂φ̂/∂η, the conditions along the ξ -axis become

V1 = 0, (|ξ | > 1), (46a)

U1(ξ
2 − 1) + V1ξ(1 − ξ2)

1
2 = 0, (−1 < ξ < 0), (46b)

U1 = −ξ, (0 < ξ < 1). (46c)

These confirm the crossover points as ξ = −1, 0, 1.
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Fig. 14 Conformal mapping of the upper half circular flow domain for Laplace’s equation (41)

Fourth, we define the complex function

G2(ζ ) = U2 − iV2 = (U1 − iV1)(ζ − 1)
1
2 (ζ + 1)

1
2 (47)

in order to account for the main crossover points at |ξ | = 1. This is found to deal also with the crossover at

ξ = 0. The square root functions are defined by (ζ − 1)
1
2 = R1eiβ1 , (η + 1)

1
2 = R2eiβ2 with angles β1, β2

between 0 and π in the upper half-plane. So along the ξ -axis, we have

U2(ξ, 0) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−U1(ξ
2 − 1)

1
2 , (ξ < −1),

V1(1 − ξ2)
1
2 , (−1 < ξ < 0),

V1(1 − ξ2)
1
2 , (0 < ξ < 1),

U1(ξ
2 − 1)

1
2 , (ξ > 1);

(48a)

V2(ξ, 0) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, (ξ < −1),

−U1(1 − ξ2)
1
2 , (−1 < ξ < 0),

ξ(1 − ξ2)
1
2 , (0 < ξ < 1),

0, (ξ > 1).

(48b)

We now use the Cauchy–Hilbert relation

U2(ξ, 0) = 1

π

∫ ∞

−∞
V2(s, 0)

ξ − s
ds (49)

which, applied for the interval −1 < ξ < 0 in particular and with the middle equation of (46) recalled, leads
to the equation

πV1(ξ, 0)(1 − ξ2)
1
2 = B(ξ) + P.V .

∫ 0

−1

sV1(s, 0)

ξ − s
ds. (50)

Here, B(ξ) is a known function,

B(ξ) =
∫ 1

0

s(1 − s2)
1
2

ξ − s
ds. (51)

The singular integral equation (50) for V1(ξ, 0) applies for −1 < ξ < 0, with P.V. denoting the Cauchy
principal value (Carrier et al. [2], pages 422-423).

We solved (50) for V1(ξ, 0) for −1 < ξ < 0 by means of an iterative scheme, and from the solution
we also have U1(ξ, 0) there because of the middle equation of (46). Hence, we obtain V2(ξ, 0) for all ξ via
(48b) and then U2(ξ, 0) follows for all ξ from (49). Finally, we can work back to deduce the scaled pressure

P = − ∂φ̂
∂x = ξ(ξ2 − 1) − ξU2(ξ, 0) for 0 < ξ < 1, i.e. along “BC”, whose result is demonstrated in Fig. 4.
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