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Abstract A Taylor–Galerkin finite element time marching scheme is derived to numerically simulate the flow
of a compressible and nonisothermal viscoelastic liquid between eccentrically rotating cylinders. Numerical
approximations to the governing flow and constitutive equations are computed over a custom refined unstruc-
tured grid of piecewise linear Galerkin finite elements. An original extension to the DEVSS formulation for
compressible fluids is introduced to stabilise solutions of the discrete problem. The predictions of two models:
the extended White–Metzner and FENE-P-MP are presented. Comparisons between the torque and load bear-
ing capacity predicted by both models are made over a range of viscoelastic parameters. The results highlight
the significant and interacting effects of elasticity and compressibility on journal torque and resultant load,
and the stability of the journal bearing system.

1 Introduction

Lubricants reduce wear and vibration in bearing systems by preventing contact between moving parts. The
physical characteristics of lubricants are a crucial determining factor in the performance and longevity of
lubricated systems such as car engines and axles. As a consequence, lubrication theory is of particular interest
to the automotive industry. The flow between eccentrically rotating cylinders is of particular interest in the
mathematicalmodelling of journal bearing lubrication [30] since it is an idealised problem that retains important
elements of the engineering problem.

Journal bearing systems are an intricate part of a large number of industrial and commercial mechanical
devices. The working temperature of bearing systems can vary widely within the flow and has a huge impact on
the overall performance of the system [20]. Thermal analysis of dynamically loaded bearings (journal bearings)
is an invaluable tool in the design of bearing systems and lubricants [20]. Polymers are added to mineral oils to
make multigrade oils. The reason for doing this is to weaken the dependence of viscosity on temperature [30].
The addition of elastic polymer chains in Newtonian lubricants results in a viscoelastic mixture. The effect
of viscoelasticity on journal bearing performance has been a subject of interest in many investigations. Real
journal bearing systems operate at high rates of rotation where the flow Mach number is large enough to be
in a weakly compressible regime. Furthermore, the compressibility of a lubricant has been shown to play a
significant role in the load bearing capacity of a journal bearing [6].

From a mathematical standpoint, the flow between eccentrically rotating cylinders is an attractive bench-
mark problem because of its closed geometry, free from sharp andmoving boundaries [30]. Several comprehen-
sive numerical investigations of the statically and dynamically loaded bearing problem have been performed by
Phillips, Bollada and Davies [5–7,19,20,30], and is a commonly visited benchmark problem in CFD. Phillips
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and Roberts [32] showed that at high eccentricities the predicted reaction forces exerted on the journal by a
UCM fluid during rotation are significantly larger than for Newtonian fluids.

Beris et al. [2,3] calculated the flow between eccentrically rotating cylinders for UCM and PTT fluids using
spectral/finite element methods. The method used was based on a formulation of the governing equations in
terms of a stream function and extra-stress tensor. Solutions were obtained for De = 90 for an eccentricity ratio
of 0.1. Davies and Li [13] investigated the effects of temperature thinning and pressure thickening using an
incompressible White–Metzner model. They found that, at high eccentricities, pressure thickening dominates
the viscosity behaviour due to the enormous pressure gradients generated across the narrow gap region of the
flow [13].

The first comprehensive study into the effect of fluid compressibility in Newtonian lubricants in journal
bearing systems was performed by Bollada and Phillips [5]. In their investigation, they used a log density
formulation, in which the governing equations for mass and momentum were rewritten in terms of log density
and then solved using a semi-Lagrangian discretisation in time and spectral elements in space. The numerical
results showed that even at Mach numbers as low as 0.02 compressibility had a significant effect on the
resultant load bearing capacity. Despite these findings, only a small percentage of papers in the literature have
considered the fully nonisothermal and compressible problem. To the authors’ knowledge, no investigations
have been carried out assessing the numerical predictions of compressible, nonisothermal and viscoelastic
flows between eccentrically rotating cylinders.

In this paper, we will focus solely on the statically loaded bearing problem in which a cylinder, radius RJ
rotates under a time-dependent load inside a cylindrical container with radius RB (RB − RJ > 0). The centre
of the journal is fixed at a distance, e, to the left of the centre of the bearing. The concentric configuration of
this problem (e = 0) is known as the Taylor–Couette problem, which is one of the classical problems in fluid
mechanics (Fig. 1).

For a Newtonian fluid, Taylor [34] showed that the purely azimuthal shearing flow that occurs at low speeds
becomes unstable as the inertial forces increase. The flow then becomes fully 3D with steady toroidal roll cells
forming. As a consequence, an upper limit exists to the Reynolds number if the assumption of 2D flow is to be
used. Taylor [34] proposed a parameter, now commonly known as the Taylor number, T , to characterise this
critical condition for instability. In the concentric case, this parameter is defined by T = (Re)2(RB − RJ )/RJ
when the outer cylinder is stationary. The critical value of Taylor number for primary instability obtained
using linear stability analysis is T = 1708 and this agrees with the experiments that Taylor [34] performed.
For the values of RB and RJ considered in this paper, the value of Re that corresponds to the critical Taylor
number is Re = 58 for the concentric configuration. Cole [9] performed extensive experiments to explore the
influence of eccentricity on the critical Taylor number. He showed that for an eccentricity ratio of 0.8 the critical
Taylor number increases by between 100 and 200%. This means that for the configuration considered here the
Reynolds number corresponding to the critical Taylor number lies in the range [116, 174]. The inclusion of
viscoelasticity and nonisothermality is likely to lead to an earlier onset of instabilities. However, to the best of
our knowledge the impact of eccentricity ratio in these settings has not been explored.

Significant contributions to the development of continuum models for viscoelastic fluids were made in the
middle of the last century by Truesdell, Coleman and Noll [10,11,35] and Oldroyd [29]. Oldroyd [29] derived
a constitutive equation suitable for modelling the behaviour of dilute polymer solutions under quite general
flow conditions. The Oldroyd-B model generalised the equations of linear viscoelasticity by expressing the
stress/strain relationship in tensorial form and ensuring certain admissibility criteria are satisfied.

The inability of many macroscopic constitutive models to predict the flow of viscoelastic fluids in complex
flows prompted the development of kinetic theory models (Bird et al. [4]) based on the coarse-grained concept
of an elastic dumbbell immersed in a Newtonian solvent. However, many problems in engineering and industry
require the prediction of nonisothermal compressible flows and so models that are fit for this purpose need to
be constructed.

In this paper, numerical predictions are generated using constitutive models for compressible nonisother-
mal viscoelastic fluids. A suitable theoretical framework for modelling such complex fluids is provided by
nonequilibrium thermodynamics. In particular, the generalised bracket framework of Dressler et al. [14] and
Beris and Edwards [15,16] provides a general structure for deriving models that are consistent with the laws
of thermodynamics. In this paper, two thermodynamically derived viscoelastic models are considered: the
extended White–Metzner (EWM) model (Souvaliotis and Beris, [33]) and the FENE-P-MP model (Mackay
and Phillips, [26]). Viscometric analysis shows that both models are shear thinning whilst the FENE-P-MP
model displays strong extensional strain hardening.
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Fig. 1 Taylor–Couette problem. At lower Reynolds numbers, the flow is steady and azimuthal (Image: Magasjukur2, 2011)

The EWM model of Souvaliotis and Beris [33] is a differential-type phenomenological viscoelastic fluid
model that closely resembles the White–Metzner model [36] in which the relaxation time is considered as
a scalar function of an internal structural tensorial parameter rather than the rate of deformation tensor. The
EWMmodel retains an important advantage of theWMmodel in that it can accurately predict the viscosity and
first normal stress difference of any polymeric fluid in a simple shear flow using only a single relaxation time.
In addition, it guarantees the evolutionary character of the flow field and a nonnegative entropy production by
the fluid. Because the EWM model is thermodynamically admissible, it is possible to extract thermodynamic
(and statistical) information about the fluid from its predictions. Germann et al. [17] were the first to solve one
of the benchmark problems in computational rheology using the EWM model when they studied eccentric
Taylor–Couette flow.

Numerical solutions are obtained by discretising the governing equations in time using a two-step Taylor–
Galerkin method and in space using Galerkin finite elements. In order to combat numerical instability phe-
nomena, the computations are stabilised using both SUPG and a novel adaptation of DEVSS for compressible
flow.

This paper is organised as follows. The general set of governing equation domain and boundary conditions
are presented in Sec. 2. The numerical scheme used to generate results is given in Sec. 3. In Sec. 4, the numerical
scheme for incompressible flow is benchmarked and numerical results are compared to those from the literature
for an incompressible Oldroyd-B fluid. In Sec. 5, the compressible flow of an (i) extendedWhite–Metzner and
(ii) FENE-P-MP fluid is analysed. Measurements of the reaction forces and torque on the rotating journal are
assessed for 0 ≤ We ≤ 1.0, 10 ≤ Re ≤ 200 and 0 ≤ Ma ≤ 0.1. A discussion of the parameter values used
in the compressible flow simulations is also given. Some concluding remarks are provided in Sec. 6.

2 Mathematical formulation

The flow is bounded between two cylinders of different radii. The inner cylinder (or journal) of radius RJ
rotates with a constant angular velocity ω within a hollow outer cylinder (or bearing) of radius RB that remains
stationary. We assume that the viscoelastic liquid completely fills the region between the two cylinders. Both
cylinders are assumed to be of infinite extent in the axial z-direction so that the long bearing approximation can
be invoked. The distance between the axes of rotation of the journal and bearing is known as the eccentricity,
e, where

ε = e

RB − RJ
, (2.1)

so that the eccentricity ratio ε is in the range 0 ≤ ε ≤ 1. The computational domain is the two-dimensional
region between the two cylinders,

� = {(x, y) : x2 + y2 ≤ R2
B and (x + e)2 + y2 ≥ R2

J } (2.2)
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Fig. 2 Schematic diagram of the computational domain �

with boundaries

�J = {(x, y) : (x + e)2 + y2 = R2
J } �B = {(x, y) : x2 + y2 = R2

B} (2.3)

A diagram of the computational domain is shown in Fig. 2.
The governing equations comprise the conservation ofmass,momentumand energywritten in the following

form

∂ρ

∂t
+ ∇ · (ρu) = 0,

ρ
Du
Dt

= −∇ p + μs

(
∇2u + 1

3
∇(∇ · u)

)
+ ∇ · τ p + F,

ρCp
Dθ

Dt
= −∇ · q + σ : ∇u,

(2.4)

where ρ is the density, u is the velocity, p is the pressure, τ p is the polymeric contribution to the extra-stress
tensor, θ is absolute temperature, σ = −pI+2μsD+τ p is the Cauchy stress tensor, q = −κ∇θ is the heat flux
vector and F is the applied force. The material parameters are μs , the solvent viscosity, Cp, the specific heat at
constant pressure and κ the heat conduction coefficient. The solvent viscosity is assumed to be constant. The
eccentrically rotating cylinder problem is a prototype for journal bearing lubrication. In automotive engineering
mineral oils are formulated tominimise the dependence of viscosity on temperature. This is achieved by adding
polymers to mineral oils to formulate a multigrade oil. With the addition of polymers, the oil becomes non-
Newtonian. Thus, we have implemented a constant solvent viscosity to describe the behaviour of the base
mineral oil and a polymeric viscosity that depends on temperature to model the polymer additives.

The stress tensor τ p is a function of both C and θ

τ p = g1(C, θ), (2.5)

where C is the conformation tensor satisfying the constitutive equation

C + λ(θ)(
�
C +(∇ · u)C) + g2(C,D) = I, (2.6)
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and D is the rate of deformation tensor. In equations (2.5) and (2.6), g1 and g2 are model-dependent tensor
functions. Finally, an equation of state is required to relate pressure and density. Here we use the equation

∂p

∂ρ
= c20

(
1 + α

(θ − θ0)

θ0

)
, (2.7)

where c0 is the speed of sound and θ0 is a reference temperature. The parameter α is related to the expansion
of the fluid at θ = θ0. A value α = 0 corresponds to isothermal flow and α = 1 to an ideal gas equation.

On �J , no-slip boundary conditions and constant temperature are imposed

u = φ(t)√
x2 + y2

(y,−x), θ = θ0,

where the ramp function φ is defined by

φ(t) = ω

2
(1 + tanh(8(t − 0.5))), (2.8)

and ω is the maximum angular velocity of the journal. The hyperbolic tangent function was chosen so that the
rotational speed of the journal increases smoothly to approximately ω over the time interval [0, 2]. On �B , a
Dirichlet (no-slip) condition for the velocity and a Robin condition for the temperature are imposed

u = 0,
∂θ

∂n
= − Bi

hc
θ,

where hc is a characteristic thickness and the Biot number, Bi , is a nondimensional measure of the heat transfer
at the outward facing boundary of the journal bearing. The relative thickness, υ, is defined by

υ = RB − RJ

RJ
. (2.9)

Note the relative thickness is a measure of the ratio gap to journal radius, whereas hc is a dimensional
parameter related to convective heat transfer through the outer boundary. Let L , U and (θh − θ0) denote
characteristic length, velocity and temperature scales, respectively. We introduce the dimensionless variables

u∗ = u
U

, x∗ = x
L

t∗ = tU

L
,

ρ∗ = ρ

ρ0
, p∗ = pL

μ0U
, θ∗ = θ − θ0

θh − θ0
, τ ∗

p = Lτ p

μ0U
.

(2.10)

The system of equations (2.4), (2.6), (2.7) can be written in the following nondimensional form

∂ρ

∂t
+ ∇ · (ρu) = 0,

Reρ
Du
Dt

= −∇ p +
[
βv

(
∇2u + 1

3
∇(∇ · u)

)
+ ∇ · τ p

]
+ F,

ρ
Dθ

Dt
= Di∇ · q̃ + Vhσ : ∇u,

C + Weψ̃(θ)(
�
C +(∇ · u)C) + g2(C,D) = I,

∂ρ

∂p
= Ma2

Re(1 + α̃θ)
,

(2.11)

where Re is the Reynolds number,We is theWeissenberg number, Ma is the Mach number, βv is the viscosity
ratio, Di is the diffusion number and Vh is the viscous heating number with definitions

Re = ρ0UL

μ0
, We = λU

L
,

Ma = U

c0
, βv = μs

μ0
, Bi = h

kB
L ,

Di = κ

ρ0CpUL
, Vh = Uμ0

ρ0CpL(θh − θ0)
.

(2.12)
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In the above definitions, h and kB are the heat transfer coefficient and the thermal conductivity of the outer
boundary, respectively. We define hc = L so that the thermal boundary condition on �B can be expressed
purely in terms of the Biot number,

∂θ

∂n
= −Bi θ.

2.1 Constitutive models

2.1.1 Extended White–Metzner (EWM) model

The generalisation of the Oldroyd-B model to account for variable relaxation time was proposed byWhite and
Metzner [36]. The extended White–Metzner (EWM) model [33] is a thermodynamically derived constitutive
equation suitable for modelling viscoelastic fluids with variable relaxation time. Importantly the dependence of
λ on the conformation tensor and not the strain rate and pressure avoids the potential loss of evolutionarity that
can occur with the White–Metzner model ([1] p. 230). The polymeric viscosity and relaxation time depend on
both temperature and conformation stress. The nondimensional form of the EWMmodel is given by (2.5)–(2.6)
with

g1(C, θ) = (1 − βv)ψ̂(C, θ)

Weψ̃(C, θ)
(C − I) g2(C,D) = 0. (2.13)

Combining both the EWM stress thinning and temperature dependence, we obtain the following functions
for the viscosity and relaxation time

ψ̂(C, θ) = 1

2
I1(C)k exp(−Ap,0θ), (2.14)

and

ψ̃(C, θ) = 1

2
I1(C)k

(
θ

θs
+ 1

)
exp(−Ap,0θ), (2.15)

where we define

θs = θ0/(θh − θ0),

Ap,0 is the activation energy and k is a power law index.
Note that the coefficient of 1/2 appears in the 2D formulation to ensure that ψ = 1 when C = I and

θ = 0. For the 3D case, the coefficient is 1/3 as presented in the literature [17,33]. The values of the various
parameters used in the simulations of the EWM model are given in Table 1. The value for k has been chosen
to represent moderate shear thinning and is equal to the value chosen by Germann et. al [17] for ‘fluid 1’ in
their study of the same problem. The value of the viscosity ratio, βv , is a standard choice in computational
rheology. The parameters θs and Ap,0 have been chosen to represent moderate temperature dependence of the
fluid’s elastic response.

Table 1 Nondimensional parameters in the viscosity relations for the EWM model

Nondimensional parameter Value

βv 0.5
Ap,0 0.1
θs 6
k −0.7



Compressible and nonisothermal viscoelastic flow 737

2.1.2 FENE-P-MP model

The second model considered is the FENE-P-MP model (Mackay and Phillips [26]), described by (2.5)–(2.6)
with

g1(C, θ) = (1 − βv)ψ̂(C, θ)

Weψ̃(C, θ)
(f(trC)C − I),

g2(C,D) = (f(trC) − 1)C + Weφ(ε̇)[C · D + D · C],
(2.16)

where

f(trC) = b2

b2 − trC
, (2.17)

and

φ(ε̇) = cosh(λD ε̇) − 1

2
, (2.18)

where λD is the dissipation parameter, ε̇ is the generalised strain rate and b is the maximum extension of the
spring in the FENE model.

3 Numerical approximation

3.1 Time discretisation: Taylor–Galerkin method

The governing equations are temporally discretised using a Taylor–Galerkinmethod. Taylor–Galerkinmethods
were initially developed for solving convective transport problems for which the governing equations are
hyperbolic [30]. The motivation for Taylor–Galerkin methods stems from the desire to derive high-order
accurate time-stepping schemes which can be used in conjunction with spatial discretisation methods. A two-
step Taylor–Galerkin algorithm for computing nonisothermal and (weakly) compressible viscoelastic flow is
given by

Step 1a
(

ρn+ 1
2 − ρn

�t/2

)
= −un · ∇ρn − ρn(∇ · un)

Step 1b Re

(
ρn+ 1

2 un+ 1
2 − ρnun

�t/2

)
= βv

(
∇2un + 1

3
∇(∇ · un)

)
− Reun · ∇un + ∇ · τ n

p − ∇ pn

Step 1c Weψ̃(θ)

(
Cn+ 1

2 − Cn

�t/2

)
= [I − C − Weψ̃(θ)(u · ∇C − C∇u + ∇uTC + ∇ · uC) − g2(C,D)]n

Step 1d ρn

(
θn+ 1

2 − θn

�t/2

)
= Di∇2θn − ρnun · ∇θn + Vh(σ

n : ∇un − pn∇ · un)

Step 2 Reρn
(
u∗ − un

�t

)
= 1

2
βv

(
∇2un + 1

3
∇(∇ · un)

)
− Reun+ 1

2 · ∇un+ 1
2 + ∇ · τ

n+ 1
2

p − ∇ pn

Step 3
(

ρn+1 − ρn

�t

)
= −un+ 1

2 · ∇ρn+ 1
2 − ρn+ 1

2 (∇ · un+ 1
2 )

Step 4 pn+1 − pn = Re(1 + α̃θn)

Ma2
(ρn+1 − ρn)

Step 5 Re

(
ρn+1un+1 − ρnu∗

�t

)
= −1

2
∇(pn+1 − pn) + 1

2
βv

(
∇2un+1 + 1

3
∇(∇ · un+1)

)

Step 6 Weψ̃(θ)

(
Cn+1 − Cn

�t

)
+ Cn+1 = [I − Weψ̃(θ)(u · ∇C − C · ∇u + ∇uT · C + (∇ · u)C)
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− g2(C,D)]n+ 1
2

Step 7
(

ρn+1θn+1 − ρnθn

�t

)
= Di∇2θn+1 − ρn+ 1

2 un+ 1
2 · ∇θn+ 1

2 + Vh(σ
n+ 1

2 : ∇un+ 1
2 − pn∇ · un)

(3.1)

where D̂ = D − 1
2 (∇ · u)I. Equation (3.1) represents a second-order (in time) discretisation for the system of

equations for weakly compressible viscoelastic flow (Eq. (2.11)).
Step 1 represents an explicit discretisation of the continuity, momentum, constitutive and energy equations

over a half time step. An intermediate velocity is computed in Step 2, and together with Step 5, these represent
a second-order Crank–Nicolson discretisation of the momentum equation. Step 3 is a discretisation of the
continuity equation using the mid-point rule. Step 4 is a discretisation of the equation of state in which the
temporal derivative of density is replaced by the temporal derivative of pressure using the chain rule

∂ρ

∂t
= Ma2

Re(1 + α̃θ)

∂p

∂t
. (3.2)

Steps 5, 6 and 7 represent discretisations of the momentum, constitutive and energy equations, respectively, in
which the nonlinear terms are evaluated using the mid-point rule and the linear terms are treated implicitly.

3.2 Weak formulation

The weak formulation of the semi-discrete problem 3.1 is discretised using the finite element method. In order
towrite theweak form of the problem,we introduce appropriate function spaces. The space of square integrable
functions in a domain, �, is denoted L2(�) and the space of functions whose first-order partial derivatives
are square integrable is denoted by H1(�). We define the function spaces for the velocity, pressure, stress and
temperature as follows

V = {
v ∈ H1(�)2 : v = vJ on �J , v = 0 on �B

}
, (3.3)

Q = {
q ∈ L2(�)

}
, (3.4)

Z = {
R : Ri j ∈ H1(�), Ri j = R ji , i, j = 1, 2

}
, (3.5)

QT = {
θ ∈ H1(�) : θ = θ0 on �J

}
. (3.6)

Similarly, we define the corresponding test spaces for velocity and temperature as follows

V0 = {
v ∈ H1(�)2 : v = 0 on ∂�

}
, (3.7)

QT
0 = {

θ ∈ H1(�) : θ = 0 on �J
}
. (3.8)

The weak formulation of each step in Eq. 3.1 is derived by multiplying each equation by a test function
from an appropriate test space and integrating over �. By applying Green’s theorem, we are able to express
the second-order derivatives appearing in Eq. 3.1 in terms of first-order derivatives of the weak solution and
test functions.

3.3 Numerical stabilisation

3.3.1 DEVSS and DEVSS-G

The governing equations can be expressed in a modified but mathematically equivalent form to improve the
ellipticity of the momentum equation and to stabilise the corresponding numerical approximation. The success
of schemes introducing additional ellipticity into the momentum equation arises from the explicit form of the
viscous operator in the momentum equation, which results in solving an elliptic saddle point problem. For
viscoelastic fluids, this viscous term is scaled with the ratio of Newtonian to total viscosity, β. As our interest
is predominantly in flow configurations with dominant viscoelastic effects, β ≈ 0.1. In this case, the elastic
stress contribution can dominate the viscous term and this can lead to instabilities. Perera and Walters [31]
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introduced the idea of introducing ellipticity through a change of variable. This approach was first employed
in the elastic viscous split stress (EVSS) formulation byMendolson et al. [28] for flows of second-order fluids.
The change of variables performed in EVSS-type methods may be impossible for some constitutive equations.
This motivated Guénette and Fortin [18] to propose the discrete EVSS (DEVSS) formulation, which does
not require a change of variables and the viscous term in the momentum equation is introduced only in an
approximate sense.

In the case of incompressible flow, the rate of deformation tensor D = (∇u + ∇uT ) is introduced as an
additional variable and the momentum equation is expressed in the form

Re
Du
Dt

+ ∇ p + γu(∇2u − ∇ · D) + βv∇2u − ∇ · τ p = 0, (3.9)

where γu is the DEVSS stabilisation parameter. At the continuous level, it is clear that the term multiplied by
γu is equal to zero because ∇ ·D = ∇2u. This is not true when the approximation space forD does not contain
the gradient of the approximation space for velocity. As a result, in regions of high deformation rate where
stress gradients are largest the DEVSS term stabilises the solution.

In the case of compressible flow, we propose the following extension to the DEVSS formulation (3.9) in
which the momentum equation is now expressed in the form

Re
Du
Dt

+ ∇ p + γu

(
∇2u + 1

3
∇(∇ · u) − ∇ · D

)
+ βv

(
∇2u + 1

3
∇(∇ · u)

)
− ∇ · τ p = 0, (3.10)

where the expression for D is given by

D =
(

∇u + ∇uT − 2

3
(∇ · u)I

)
. (3.11)

In both cases, τ p is determined by the constitutive equation.
Brown et al. [8] used the velocity gradient tensor, G = ∇u, as an additional unknown, instead of using

the rate of deformation tensor, D. In this method, called the EVSS-G method, the additional unknown, G, is
computed by means of an L2 projection of ∇u. In analogy to the EVSS-G method, the DEVSS-G method
(Liu et al. [22]) may be defined, where a projection of the velocity gradient tensor is made instead of the rate
of deformation tensor. In this formulation, the velocity gradient projection tensor is used in the constitutive
equation as well as in the momentum equation.We choose the solution space for the velocity gradient tensor as
[L2(�)]2×2, to be consistent with the spaces for pressure and polymeric stress, which are chosen to be L2

0(�)

and [L2(�)]2×2
s , respectively.

3.3.2 SUPG

The first application of streamlined upwind methods to viscoelastic flows was performed by Marchal and
Crochet [27]. The authors used both the SUPG method and streamlined upwind (SU) method for computing
the stress; however, they found that the consistent SUPG integration of the constitutive equation produced
errors in the calculation of stick–slip flow and flow through an abrupt contraction. Crochet and Legat [12]
concluded that the failure of SUPG to prevent numerical breakdown was due to errors occurring at the sharp
corners within the flow. They substantiated this claim by illustrating that SUPG was both stable and accurate
when used to solve the flow of a UCM fluid around a sphere and through a corrugated tube. A review of SUPG
methods for viscoelastic flows by Phillips and Owens can be found here [30].

The weak formulation of the constitutive equation (2.11) is modified using SUPG augmented test functions
R̂h and q̂h defined by

R̂h = Rh + h
uh
|uh | · ∇Rh, (3.12)

and

q̂h = qh + h
uh
|uh | · ∇qh, (3.13)
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Fig. 3 a Piecewise linear P1, b piecewise quadratic P2 and c piecewise constant P0 elements

where h is the cell diameter of the finite element. The weak formulation of the constitutive and continuity
equations becomes

∫
�

(
Ch + We(

�
Ch +(∇ · uh)Ch) + g2(Ch,Dh) − I

)
: R̂h d� = 0, (3.14)

and ∫
�

(
∂ρ

∂t
+ ∇ · (ρu)

)
q̂h d� = 0, (3.15)

respectively.
For problems with smooth boundaries, high-order accuracy and stability for the stress and density solutions

can be obtained. For problemswith singularities, the augmented test functions collapse to the standardGalerkin
test function near the boundary and spurious oscillations can occur.

3.4 Discretised problem

The computational domain, �, is partitioned into triangular finite elements. On each element, each dependent
variable is approximated using a low-order polynomial in which the unknowns are the coefficients of the basis
functions. These are the degrees of freedom of the problem and are typically approximations to the dependent
variables at the nodes. A set of algebraic equations is then derived by choosing appropriate test functions and
evaluating or approximating the integrals that appear in the weak formulation of Eq. (3.1). Essentially a test
function is associated with each unknown in the problem. In this paper, we restrict ourselves to three types of
compatible finite elements suitable for modelling viscoelastic flow, namely P1 piecewise linear continuous
Lagrangian elements for pressure, density and temperature, P2 piecewise quadratic for velocity and P1
discontinuous Lagrangian elements for stress (see Fig. 3). In the implementation of DEVSS-G stabilisation,
we make use of the space of discontinuous functions over � constructed using P0 elements for approximating
G.

We can construct conforming finite element spaces Vh ⊂ V , Qh ⊂ Q and Zh ⊂ Z in the usual manner

Vh = {
vh ∈ H1(�)2 : v = vJ on �J , vh = 0 on �B

}
, (3.16)
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Qh = {
qh ∈ L2(�)

}
, (3.17)

Zh = {
R : Rh,i j ∈ H1(�), Rh,i j = Rh, j i , i, j = 1, 2

}
, (3.18)

QT
h = {

θh ∈ H1(�) : θ = θ0 on �J
}
. (3.19)

This combination of discrete function spaces ensures that the Ladyzhenskaya–Babuška–Brezzi (LBB) or inf-
sup condition is satisfied.

Analogous to Eq. (3.1), the fully discrete problem can be expressed in terms of the following steps in which
each step requires the solution of a linear system of equations:

Step 1a 2MQ�n+ 1
2 = 2MQ�n − �t

(
H1,u + H2,u)�n

Step 1b
(
2ReMV + �tγvA −�tγvC

−�tÊ �tMZ

)(
Un+ 1

2

Dn+ 1
2

)
=

(
F̃u

1
0

)

Step 1c 2WeMZTn+ 1
2 = [(2We − �t)MZ − WeFn]Tn + Î

Step 1d 2MQ�n+ 1
2 = [2MQ − M + �t DiGn]�n + LnUn

Step 2
(
ReMV + �tγvA −�tγvC

−�tÊ �tMZ

)(
U∗
D∗

)
=

(
F̃u

2
0

)

Step 3 MQ�n+1 = MQ�n − �t
(
H1,u + H2,u)�n+ 1

2

Step 4
(
Ma2

�t
MQ

ϑ + �t

2
G

)
Pn+1 =

(
Ma2

�t
MQ

ϑ + �t

2
G

)
Pn −

(
H1,ρ + H2,ρ

)
U∗

Step 5
(
ReMV + �tγvA −�tγvC

−�tÊ �tMZ

)(
Un+1

Dn+1

)
=

(
F̃n

3
0

)

Step 6 (We + �t)MZTn+ 1
2 = [WeMZ − WeFn+ 1

2 ]Tn+ 1
2 + Î

Step 7 2MQT �n+1 = [2MQT − M + �t DiG]�n+ 1
2 + Ln+1/2Un+1/2

(3.20)

where F̃u
i i = 1, 2, 3 represent the discretised form of the explicit terms in Steps 1b, 2 and 5, respectively, in

Eq. (3.1).
The matrices appearing in Eq. (3.20) are defined by the following expressions

MV
i j =

∫
�

� jφ j · φi d�, MZ
i j =

∫
�

ξ j : ξ i d�

MQ
i j =

∫
�

ζ jζi d�, MQT
i j =

∫
�

� jζ jζi d�,

Ai j =
∫

�

∇φ j : ∇φi d�,

Bn
i j =

∫
�

ûn · ∇φ j · φi d�, Ci j = −
∫

�

ξ j : ∇φi d�,

Di j =
∫

�

∇ζ j · φi d� = −
∫

�

ζ j∇ · φi d�,

Ei j =
∫

�

1

2
(∇φ j + ∇φT

j ) : ξ i d�,

Fi j =
∫

�

Ul(φl · ∇ξ j − ξ j · ∇φT
l − ∇φl · ξ j + (∇ · φ)ξ j ) : ξ i d�,

Gi j =
∫

�

∇ζ j · ∇ζi d�, Mi j =
∫

�

(
U jφ j · ∇ζ j

)
ζi d�,

H
ρn
h ,1

i j =
∫

�

� jζ j∇ · φ jζi d�, H
ρn
h ,2

i j =
∫

�

� jφ j · ∇ζi d�
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Ln
i j =

∫
�

[� jξ j : ∇φ j ]ζi d�. (3.21)

where {φi } are velocity basis functions, {ξ i } are stress basis functions and {ζi } are pressure basis functions.

4 Numerical scheme validation for incompressible Oldroyd-B fluid parameters

The numerical scheme presented in the previous section is benchmarked by performing numerical simulations
of incompressible flow and comparing results with the predictions of Li et al. [21] based on a spectral element
approximation and analytical predictions based on a combination of lubrication theory and the long bearing
approximation. The study of Li et al. [21] used the dimensional form of the governing equations, which is
also adopted in this section so that direct and meaningful numerical comparisons can be made between the
approaches. The governing equations are given by (2.4)–(2.6) with

g1(C) = μp

λ0
(C − I), g2(C,D) = 0. (4.1)

In addition, we assume that the flow is incompressible and isothermal, and therefore, in these equations we set
ρ = ρ0,∇·u = 0,λ(T ) = λ0 andμp(T ) = μp. The parameters in the numerical scheme are chosen as follows:
�t = h2min, c1 = 0.1, c2 = 0.05 and γu = 1 − βv . The computational domain is defined by RJ = 0.03125m,
RB = 0.03129m. A finite element mesh with 3448 elements and 216,272 degrees of freedom is used.

In the case of a Newtonian fluid, the load on the journal is in the direction orthogonal to the line joining
the centres of the journal and bearing. When the gap c = RB − RJ 	 RB , it is possible to perform an order
of magnitude analysis on the full Navier–Stokes equations. This analysis gives rise to Reynolds’ equation.
In the long bearing approximation to Reynolds’s equation, it is assumed that the pressure is constant in the
z-direction, and thus, the effects of the side boundary conditions are negligible.

4.1 Comparison with long bearing theory

Analytical solutions for the journal bearing problem can be obtained by invoking the lubrication approximation.
In the thin bearing approximation, Reynolds’ equation can be solved analytically to obtain the following
expression for the pressure field

p = p0 + 6μωR2
J

c2
εsin θ(2 + ε cos θ)

(2 + ε2)(1 + ε cos θ)2
,

(p. 292 [30]) from which the load and torque can be computed

Fy = 24πμωnR4
J ε

c2((1 − ε2)(2 + ε2))
1
2

, C = 4πμωnR4
J

c(1 − ε2)
1
2

+ Fye

2
,

where n > 1 is the ratio of the length of the bearing to its diameter [21,30]. This allows the load and torque
to be calculated explicitly as a function of the viscosity, rotation speed and eccentricity.

4.2 Benchmark results

Solutions are generated using the nondimensionalised scheme and so the appropriate dimensional factors are
included in order to compare with predictions from the literature. Load and torque are calculated using the
following formulae

F =
(
Fx
Fy

)
=

(
L3

μU

) ∫
�J

σ · n dS, (4.2)

C =
(

L4

μU

)∫
�J

nT · σ · t dS, (4.3)
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Table 2 Comparison of load and torque on the journal calculated using the present method, SEM calculations and long bearing
theory for Newtonian flow: ω = 25 rad/s, μp = λ = 0, μs = μ = 5 × 10−3 Pa s, RJ = 1 × 10−2m (Re = 50)

ε Normal Load (Fy) Torque (C)

Current SEM [21] LBT Current SEM [21] LBT

0.7 0.23 × 104 0.21 × 104 0.22 × 104 0.84 × 100 0.82 × 100 0.84 × 100

0.8 0.28 × 104 0.27 × 104 0.28 × 104 0.11 × 101 0.11 × 101 0.11 × 101

0.9 0.37 × 104 0.40 × 104 0.41 × 104 0.15 × 101 0.16 × 101 0.16 × 101

0.95 0.52 × 104 0.56 × 104 0.59 × 104 0.19 × 101 0.23 × 101 0.23 × 101

Table 3 Dependence of the load and torque on the relaxation time with ω = 25 rad/s,μs = μp = 2.5×10−3 Pa s,μ = 5×10−3

Pa s, RJ = 1 × 10−2m t = 10s

λ Fx Fy C

0.0 0.0 38.20 0.7776
1.0 × 10−3 1.9750 38.19 0.7776
1.0 × 10−2 1.9760 38.19 0.7775
1.0 × 10−1 1.9765 38.17 0.7741
5.0 × 10−1 1.9801 35.41 0.7200

where n and t are unit vectors normal and tangent to �J . The characteristic length and velocity scales are
chosen to be

L = RJ , U = ωRJ , (4.4)

Tables 2 and 3 compare the approximations to F and C generated using the numerical scheme in Sect. 3 to
the prediction of long bearing theory and the numerical predictions of Li et al. [21]. In Table 2, the influence
of the load and torque on ε is presented for a Newtonian fluid. Both F and C increase with increasing ε. Good
agreement between the different approaches is obtained for ε < 0.95. In Table 3, the influence of the load
and torque on λ is presented for a viscoelastic fluid. When λ = 0, the horizontal force component, Fx = 0.
For λ > 0, Fx 
= 0 and Fx 	 Fy . However, for the range of relaxation times considered there is negligible
effect on F and C . The difference between the LBT and numerical predictions for high eccentricities is almost
certainly due to resolution problems in the narrow gap due to the large velocity gradients that occur in that
region.

5 Weakly compressible and nonisothermal viscoelastic flow

5.1 Geometrical data and fluid parameters

In order to establish a clear relationship between the effects of viscoelasticity and compressibility, we consider
a fixed geometry and keep most of the fluid parameters constant. Simulations are computed over a range of
values of Re, Ma and We, and the results allow for both qualitative and quantitative analysis of the effects
on the flow characteristics of two important variables: the journal rotation rate, ω, and the relaxation time,
λ. Three finite element meshes M1–M3 were used with increasing refinement, from the coarsest mesh M1
to the finest mesh M3, to ensure the mesh independence of the numerical approximations (see Fig. 4). The
mesh characteristics are given in Table 4. The computational domain is specified by the following choice of
geometric parameters: RJ = 1 × 10−2m, RB = 2 × 10−2m, e = 8 × 10−3m.

Chosen fluid parameters are given in Table 5. The influence of the angular velocity of the journal and the
fluid relaxation time on the behaviour/stability of the journal bearing is investigated. The angular velocity is
allowed to vary in the interval [100, 1000] rad/s. The fluid density and viscosity were chosen to be that of
15W40 engine oil (data from Anton Paar Ltd). The journal bearing of radii 1 cm (journal) and 2 cm (bearing)
was chosen so that empirical measurements of the same flow problem can be easily obtained. The eccentricity
is kept fixed at ε = 0.8 as this was near the upper limit of the range of ε values where the incompressible
scheme produced reliable results. The dimensionless groups for this problem have been defined earlier.
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Table 4 Flow between eccentrically rotating cylinders: Mesh characteristics and degrees of freedom M1–M3

Mesh Cells hmin hmax DoF(p) DoF((u,D)) DoF(C)

M1 4466 0.01446 0.09855 2745 33310 29868
M2 5704 0.01086 0.07136 3364 41976 37296
M3 11930 0.00883 0.04536 6447 85558 74652

To reduce the large number of nondimensional variables, we set the fluid and experimental parameters
to those given in Table 5. In this case, Re and Ma are directly proportional to the angular frequency of the
bearing, ω, and due to the choice of characteristic velocity, We is proportional to ωλ.

Note that for the generation of results for compressible flowwe only consider the nondimensional equations
and solutions without re-dimensionalising. The input data given in Table 5 are used to guide the range of
nondimensional parameters used. In a real experiment, the Reynolds, Mach and Weissenberg number would
not be independent, and instead would be directly dependent on the angular velocity of the inner cylinder.
However, in order to gain insight into the effects of compressible viscoelasticity we will vary Re,We and Ma
independently.

5.2 Results and discussion

Results were generated on a single CPU machine, and the numerical method was implemented using the
FEniCS finite element [23] library. Python modules used to generate the following results can be found here

Fig. 4 Finite element meshes for the flow between eccentrically rotating cylinders: a Coarse mesh (M1), b medium (M2) and c
fine (M3)
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Table 5 Fluid parameters

Parameter Value (SI units)

ω 100–1000 rad/s
ρ0 8.2 × 102 kg/m3

μs 1.25 × 10−2 Pa s
μ0

p 1.25 × 10−2 Pa s
μ∞

p 1.25 × 10−3 Pa s
μ0 2.5 × 10−2 Pa s
λ 0–10−3 s
c0 1500m/s
Cv 1.75 × 103 J/K
K0 5 × 10−10

κ 0.14W/mK
T0 300K
Th 350K

F

F_x

F_y

Fig. 5 Flow between eccentrically rotating cylinders: the resultant force acting on the journal calculated using Eq. (4.2)

[24]. Typical simulations had a run time of between 4 and 8 hours depending onmesh resolution. Throughout the
computations, DEVSS (Sec. 3.3.1) parameters were set to γu = 1−βv . The keymeasurements of the efficiency
and effectiveness of a journal bearing lubricant are the torque and resultant load on the journal. Pressure is
the dominant contribution to the force around the journal. In the numerical simulation of an incompressible
Newtonian fluid, the pressure is antisymmetric about the narrow gap [5,30].When eitherWe orMa is nonzero,
this asymmetry is broken leading to an inevitable nonzero component of force in the x direction.

The ratio of the magnitude of horizontal and vertical forces, denoted by χ , can be used as a measurement
of rotational stability [6]

χ = Fx
|Fy | . (5.1)

When Fx > 0, there is a component of the load that acts along the line joining the centres of the journal and
bearing and in a direction away from the smallest gap. In a dynamic setting, this would ensure that the journal
is pushed away from the bearing, thereby contributing to journal stability. Clearly, if Fx � Fy then the axial
component of the load dominates the perpendicular component, and so increasing stability is characterised by
the limit χ → ∞ (Fig. 5).
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Fig. 6 Mesh convergence analysis: evolution of a kinetic energy, b elastic energy for an extended White–Metzner fluid with
Re = 50, We = 0.25, Ma = 0.001

Fig. 7 Mesh convergence analysis: torque profile in the range 0 ≤ t ≤ 4 using mesh M1, M2 and M3. The parameter values are
shown in Table 6 with Re = 50, We = 0.25 and Ma = 0.001

5.2.1 Mesh convergence

First we demonstrate the temporal and spatial mesh convergence by analysing the kinetic and elastic energy
profile with flow parameters Re = 50, We = 0.25 and Ma = 0.001 and solutions generated over the coarse
(M1), medium (M2) and fine (M3) meshes. Figure 6 shows the evolution of kinetic and elastic energy using
each of these three meshes. Spatial convergence is demonstrated and the near overlapping of the solutions,
especially for meshes M2 and M3, is observed. The steady-state values of both the kinetic and elastic energy
are attained rapidly at t ≈ 2 in all cases.

Figure 7 shows the convergence behaviour of the torque on meshes M1, M2 and M3 for Re = 50,
We = 0.25 and Ma = 0.001. All three meshes predict the location and height of the initial overshoot and
undershoot. There is a slight variation in the passage to the steady-state value of the torque. However, the
behaviour on meshes M2 and M3 agrees as shown in the zoomed region in this figure.

5.2.2 Extended White–Metzner model

The results in the previous section demonstrated that convergence was obtained on mesh M2. Therefore, all
results in this section are generated on this mesh. The compressible version of the extended White–Metzner
model is used.
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Table 6 Nondimensional parameters

Nondimensional parameter Value

Re 10–100
We 0–2.0
Ma 0.001–0.1
ε 0.8
υ 0.2
Di 0.0016 × Re−1

Vh 1.06 × 10−6 × Re
Bi 0.2
βv 0.5

Table 7 Flow between eccentrically rotating cylinders

Ma\We 0 0.1 0.25 0.5 1.0

0.001 0.019 0.059 0.094 0.183 0.366
0.01 0.019 0.059 0.096 0.186 0.372
0.05 0.024 0.081 0.122 0.214 0.406*

Values of the stability factor, χ , for the extended White–Metzner flow (Re = 50, *flow did not reach a steady state). Other
parameter values are taken from Table 6

Table 8 Flow between eccentrically rotating cylinders

Re\We 0 0.1 0.25 0.5 1.0

25 0.019 0.020 0.074 0.188 0.550
50 0.019 0.059 0.096 0.186 0.372
100 0.019 0.054 0.094 0.227 0.366
200 0.061 0.135 0.376* 0.437* 0.552*

Values of the stability factor, χ , for extended White–Metzner flow Ma = 0.01, We ∈ (0, 0.1, 0.25, 0.5, 1.0) k = −0.7 *flow
did not reach a steady state. Other parameter values are taken from Table 6

As the journal begins to rotate a film of fluid close to the journal is dragged around the journal. The
dominant flow feature is a recirculation region in the wider gap in which the fluid recirculates with the centre
of rotation just below the centre line. Thus, the majority of the fluid is not dragged around the cylinder as in
the concentric case leading to a mechanism for greater journal efficiency [6]. The kinetic energy grows as the
flow accelerates, reaches a maximum as the journal reaches its maximum speed and then reduces significantly
as the elastic energy grows. The steady-state kinetic energy decreases as the Weissenberg number increases in
contrast to the elastic energy which decreases.

A quantitative comparison with the literature is made with respect to the maximum value of the stream
function in the case ε = 0.8. In particular, this value is compared to the value reported by Germann et al.
[17]. For this specific simulation, we set υ = 1 and not the value provided in Table 6. The maximum value
of the stream function obtained for this simulation was 0.0622 compared with a value of 0.0627 obtained by
Germann et al. [17].

In Table 7, the values of the stability factor, χ , are tabulated for the extended White–Metzner fluid for
Re = 50. The influence of compressibility and viscoelasticity on χ is explored. For a fixed value of Ma, χ
increases as We increases. This highlights the growing contribution of Fx to the force on the journal as the
viscoelasticity of the fluid increases producing a resultant force that increasingly aligns with the line joining
the centres of the journal and bearing. For a fixed value of We, χ increases slowly with increasing Ma. Local
increases in density in the narrow gap generate an additional resistance.

In Table 8, the values of the stability factor, χ , are tabulated for a slightly compressible extended White–
Metzner fluid with Ma = 0.01. The influence of inertia and viscoelasticity on χ is explored. For a fixed
value of Re, χ increases as We increases. Again viscoelasticity is responsible for moving the direction of the
resultant force away from a direction perpendicular to the line joining the centres of the journal and bearing to
one that has a greater component in the x-direction. For a fixed value of We, the behaviour of χ as a function
of Re is not so uniform. The greatest change, an increase in the value of χ , takes place from Re = 100 to
Re = 200. However, this increase diminishes asWe increases so that forWe = 1 there is hardly any difference



748 A. T. Mackay, T. N. Phillips

Fig. 8 Extended White–Metzner flow between eccentrically rotating cylinders: steady-state a pressure, b temperature and c ρu.
The parameter values are shown in Table 6 with We = 0.1, Re = 100, Ma = 0.1 and t = 20

between the values of χ obtained for Re = 25 and Re = 200. Note that although some of the computations
for Re = 200 have not reached steady-state values they are converging in a damped oscillatory manner and
the computations are terminated when the amplitude of the oscillations falls below 0.005.

Figures 8 and 9 show the steady-state pressure, temperature and density profiles of the flow for We = 0.1
and We = 1, respectively, with Ma = 0.1 and Re = 100. There is a region of high pressure as the fluid is
forced through the narrow gap by the rotating journal. As the fluid emerges from this region, there is a region
of low pressure with the lowest value of pressure attained on the journal wall. For a Newtonian fluid, i.e.
We = 0, it is well known that the pressure distribution is asymmetric about the line joining the centres of the
journal and bearing. This gives rise to a load with zero horizontal component. When We 
= 0, the asymmetry
in the pressure distribution is broken giving rise to a nonzero horizontal component of the load which grows
in magnitude as We increases. The load then increasingly acts in a direction which moves the journal away
from the region of smallest gap as the viscoelasticity of the fluid as measured by We is increased.

Figure 10 shows the influence ofWe and Re on the behaviour of the axial normal stress component, σxx for
Ma = 0.1. Whilst for a Newtonian fluid the extra-stress components are antisymmetric about the line y = 0
giving rise to a vanishing component of force in the x-direction, both viscoelasticity and compressibility break
this symmetry. For We > 0, there is a concentration of elastic stress in the narrow gap region of the geometry
that increases with increasing We. This results in a nonzero force component Fx . As We is increased, the
stress concentration that occurs downstream of the narrow gap and the asymmetry of this stress component
around the journal about the line y = 0 increases. The increased values of Fx result in increased values of χ
and hence increased stability characteristics.

The temperature of the fluid is maximum near the journal and in the region around the narrow gap. Larger
temperature gradients can be found in the narrow gap when the eccentricity or viscous heating parameter, Vh ,
are increased. The influence of this parameter will be explored fully in future work.
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Fig. 9 Extended White–Metzner flow between eccentrically rotating cylinders: steady-state a pressure, b temperature and c ρu.
The parameter values are shown in Table 6 with We = 1, Re = 100, Ma = 0.1 and t = 20

Figure 11 shows the influence of We on the evolution of the kinetic and elastic energies for βv = 0.5,
Re = 100 and Ma = 0.01. For Re = 100, the evolution of the energies is largely independent of We so
inertia rather than elasticity is the dominating influence. When Re = 25, elasticity becomes more important
giving rise to a sharp increase in the kinetic energy. The elastic energy increases dramatically for We = 1 for
both Re = 25 and Re = 100 compared with We = 0 and We = 0.1 as one would expect with increased
levels of viscoelasticity. For We = 1, the steady-state elastic energy dominates the kinetic energy by almost
two orders of magnitude.

Figure 12 demonstrates the competing influence of Re, We and Ma on the torque, C , and normal load,
Fy . Compressibility has very little effect on C as can be seen from Fig. 12a, c. For Re = 100, there is an
initial large overshoot in C independent of the value of We. In the case We = 1 and Re = 25, there is a
much smaller overshoot in C due to the reduced influence of inertia followed by a slight undershoot before the
steady-state value is attained. There is a slightly enhanced steady-state value of the torque forWe = 1 for both
Re = 25 and Re = 100. The transient behaviour of the normal load is characterised by a series of overshoots
and undershoots, the amplitudes of which are larger for the more compressible fluid, i.e. for Ma = 0.1, and
take longer to decay. ForWe = 1 and Re = 25, the normal load rapidly reaches the steady-state value. Varying
Re has a much larger influence on the maximum torque value reached within the first two seconds of the flow.
However, for each set of simulations the steady-state torque value increased with increases inWe. For nonzero
Ma, increasing Re results in larger temporal oscillations in both Fy and torque spanning the initial ten second
flow phase. Ma has little influence on the torque profiles in the range 0 < Ma < 0.1 as is shown by the
similarity between 12a, c.
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Fig. 10 Flow between eccentrically rotating cylinders: steady-state (extended White–Metzner fluid) σ xx for a We = 1.0,
Re = 100 b We = 0.1, Re = 100 and c We = 0.1, Re = 25 (the parameter values are shown in Table 6 with Ma = 0.1)

Fig. 11 Flow between eccentrically rotating cylinders: influence of the evolution of We on a kinetic energy, b elastic energy in
extended White–Metzner flow (the parameter values are shown in Table 6 with Re = 100 and Ma = 0.01)
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Fig. 12 Influence of We, Re and Ma on the evolution of the torque, C , and vertical load, Fy , for an extended White–Metzner
fluid: a C for Ma = 0.05; b Fy for Ma = 0.05; c C for Ma = 0.1; d Fy for Ma = 0.1 (remaining parameters defined in Table 6)

In Fig. 13, the dependence of the stability parameter, χ , on We is presented. In Fig. 13a, the dependence
of χ on We is plotted for different values of Re for a fixed value Ma = 0.05. For intermediate values of Re,
there is little influence of χ on We and the behaviour is almost independent of We. For Re = 200, there is
a large initial increase in the value of χ until a value of We ≈ 0.25 followed by a more gradual increase for
0.25 ≤ We ≤ 1. For Re = 25, the behaviour of χ is similar to that for intermediate values of χ except for
We = 1 when there is a large uplift in its value which agrees with its value for Re = 200. In Fig. 13b, the
dependence of χ on We is plotted for different values of Ma for a fixed value Re = 50.

There is a weak relationship betweenMach number and rotational stability. ForMach numbers in the range
0 ≤ Ma ≤ 0.05, the stability factor increases with Re forWe < 0.5whilst forWe > 0.5 this trend is reversed.
The Weissenberg number has a much stronger influence on the stability factor. In the range 0 ≤ We ≤ 1, the
value of χ increases from around 0.02 to 0.4 (Re = 50). However, at higher Ma values (> 0.05) the resultant
force starts to display unsteady behaviour (as displayed in Fig. 12), and therefore, accurate steady-state stability
factors cannot be obtained. Figure 13 illustrates the interacting effects of Re, Ma and We on χ .

In cases where the flow did not reach a steady state, the reaction forces, and by implication the stability
factor itself, oscillated around steady mean values. Flow solutions were computed over 0 < t ≤ 40 and the
mean value of the stability factor over the time interval 35 ≤ t ≤ 40 was computed and this value is provided
in the tables.
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Fig. 13 Flow between eccentrically rotating cylinders: extended White–Metzner flow values of the stability factor, χ againstWe
for a varying Re (Ma = 0.05) and b varying Ma (Re = 50)

5.2.3 FENE-P-MP model

We now turn our attention to numerical results generated using the FENE-P-MP constitutive model. In Fig. 14,
the effect of the dissipation parameter λD on the evolution of the torque and normal load is presented for the
following parameter values: We = 0.5, Re = 50 and Ma = 0.01. In Fig. 14a, we observe that the overshoot
and steady-state value of the torque increases with λD . We recall that λD = 0 corresponds to the FENE-P
model. We observe a similar trend in Fig. 14b with heightened values of the normal load with increasing
values of λD . There is also an initial overshoot which is larger for larger values of λD followed by a series of
undershoots and overshoots which damp out over time. This behaviour is typical of viscoelastic fluids.

In Fig. 15, the stream function and the divergence of the velocity field are plotted for the following parameter
values: We = 0.5, Re = 10, Ma = 0.05, β = 0.9, λD = 0.1. As shown in Fig. 15b, the flow is largely
incompressible and exhibits slight compressibility in the narrow gap and in the converging and diverging part
of the journal boundary. The maximum absolute value of ∇ · u is approximately 10−2. The value of λD has
a considerable effect on rotational stability χ . When λD = 0, there is a quasidependence of χ on We. For
λD 
= 0, there is a sharp increase in the value of χ for 0.25 ≤ We ≤ 0.5 followed by a slightly less sharp
decrease forWe ≥ 0.5. This demonstrates the stabilising effect of viscoelasticity on the stability of the system.

In Table 9, the influence of We and the dissipation parameter λD on the stability factor χ is explored for
a FENE-P-MP fluid with Ma = 0.05 and Re = 50. For a fixed value of We, χ increases as λD increases.
For λD = 0, χ increases monotonically with increasing We. For λD 
= 0, χ initially increases with We until
We = 0.5 before decreasing as We increases further (Fig. 16).

Figure 14 shows a sample of the numerical results for the FENE-P-MP model with Ma and Re fixed at
Re = 50, We = 0.5. The dissipation parameter, λD , has a very significant impact on the journal torque, C ,
and the stability factor ranges from χ = 0.81 to 21.25. The steady-state value of Fy and range of values for
Fy achieved during transient flow reduces as λD is increased within the range 0 ≤ λD ≤ 0.2. The transient
behaviour of Fy is oscillatory after the initial flow acceleration (0 ≤ t ≤ 1) and this influences the behaviour
of χ as well. For parameter values satisfying λD > 0, We > 0.5, Ma > 0.01, Re > 50, the unsteady
flow behaviour continued up until the numerical simulation ceased at t = 20 and hence are noted in Table 9.
However, in all of the numerical experiments the frequency and amplitude of the oscillations decreased over
time and either converged to steady-state values or were terminated once the amplitude fell below 0.005. In
the latter case, this was always within the time range 0 < t < 20.

In a steady-state FENE-P-MP flow, the influence of We on σ is such that the vertical component of F
reverses in the range 0.5 ≤ We ≤ 1.0. [25] Hence, a sample of stability factor values on this range show that
a maximum value occurs in the range 0.5 ≤ We ≤ 1.0. When Fy = 0, there is no component of the force
perpendicular to the line joining the centres of the journal and bearing and since Fx > 0 in these calculations
the journal is stabilised. In the case of the dynamic problem in which the journal is free to translate as well
as rotate, the force would cause the journal to move away from the narrow gap in the direction in which the
clearance is greatest.
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Fig. 14 Flowbetween eccentrically rotating cylinders: the effect of dissipation parameterλD on a torque and b Fy for FENE-P-MP
flow (We = 0.5, Re = 50 Ma = 0.01)

Fig. 15 Flow between eccentrically rotating cylinders: FENE-P-MPmodel. Contours of a stream functions, b∇ ·u forWe = 0.5,
Re = 10, Ma = 0.05, β = 0.9, λD = 0.1)

Table 9 Flow between eccentrically rotating cylinders

λD\We 0 0.1 0.25 0.5 0.75 1.0

0 0.149 0.161 0.595 0.952 1.511 1.854*
0.1 0.149 1.157 1.599 7.698* 6.379* 3.211*
0.15 0.150 2.159 3.179* 10.344* 8.971* 5.261*

Values of the stability factor, χ , for FENE-P-MP flow (Ma = 0.05, Re = 50) *flow did not reach a steady state

The maximum values of the generalised shear rate, defined by

γ̇ =
√
1

2
γ̇ : γ̇ (5.2)

where γ̇ is the rate of strain tensor, are shown in Table 10 for a range of We values for both FENE-P-MP and
EWMmodels and contour plots of the generalised shear rate are shown in Fig. 17 for both models considered
in this paper for Re = 50, Ma = 0.01.
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Fig. 16 Flow between eccentrically rotating cylinders: FENE-P-MP values of the stability factor, χ against We (Ma = 0.05,
Re = 50)

Fig. 17 Contour plots of the steady-state generalised shear rate, γ̇ for a EWM, b FENE-P-MP, for Re = 50, We = 0.5,
Ma = 0.01 with other parameter values taken from Table 6

Table 10 Dependence of the maximum value and location of the generalised shear rate, γ̇ , for the EWM and FENE-P-MPmodels
for Re = 50, Ma = 0.01, λD = 0.05 (FENE-P-MP only)

We 0 0.1 0.5 1.0

EWM 0.294 0.295 0.298 0.307
[0.469, −0.278] [0.469, −0.278] [0.472, −0.288] [0.474, −0.310]

FENE-P-MP 0.333 0.3348 0.301 0.311
[0.519–0.120] [0.523–0.057] [0.526, 0.274] [0.5213, 0.312]

6 Summary

Recent developments in the derivation of mathematical models have facilitated the description of the behaviour
of compressible nonisothermal viscoelastic fluids. For example, Mackay and Phillips [26] derived a class of
models based on theFENE-Pmodel using the generalised bracket formulation.This formulation ensures that the
derived models are thermodynamically consistent. A class of dissipative models for Boger fluids, developed by
Mackay and Phillips [26] within the bracket framework, complements the class of phenomenological models
that already exist in the literature. There are many examples of compressible nonisothermal models in the
literature that are ad hoc in the sense that they are modifications of existing incompressible isothermal models
formed by suitably adjusting material functions or adding additional terms in the governing equations. For
any flow problem concerning non-Newtonian liquids under nonisothermal conditions, thermodynamically
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consistent modelling of the fluid permits a more accurate analysis of the flow and predicts behaviour that
cannot be captured with simpler, parametrised models.

A Taylor–Galerkin finite element scheme is used as the basis of the numerical simulations presented in
this paper. Numerical results for the flow of a viscoelastic fluid or lubricant between eccentrically rotating
cylinders have been presented. This problem is sometimes referred to as the statically loaded journal bearing
problem. Both incompressible and compressible flows have been considered, and the scheme presented is
validated using numerical results in the literature and compared with those obtained using lubrication theory
under the long bearing assumption.

Analysing the flow using the (incompressible) Oldroyd-B model suggests that viscoelasticity (as measured
byWe) has little influence on the load bearing characteristics of the journal. A nonzero value of the relaxation
time introduces a nonzero component of the force in the axial direction, but this is significantly smaller than
the component in the perpendicular direction and there is almost no variation in either the load or the torque
when the relaxation time is increased by over two orders of magnitude. However, significant stabilisation of
the journal bearing system is found when both the EWM and FENE-P-MP models are used. The separate and
combined effects of compressibility and viscoelasticity stabilise the system as quantified using the stability
parameter. Although both models predict shear thinning behaviour, the FENE-P-MP model predicts increases
in both torque and rotational stability asWe is increased. This can be explained by the hidden extensional flow
behaviour which is introduced by the journal’s rotational eccentricity. Although the flow is shear-dominated,
the nip or narrow gap region creates a significant extensional component to the flow. Hence, the FENE-P-MP
model, which predicts extensional strain hardening demonstrates a large increase in effective viscosity which
in turn affects the forces on the journal bearing.

This paper has focussed on the statically rotating journal bearing or eccentrically rotating cylinder problem
in which the journal or inner cylinder rotates about its axis but does not translate in response to the force it is
subjected to by the fluid. One extension of this work is to consider the dynamic problem in which the journal
is permitted to move in response to the load. Whilst the current paper has focussed on the effects of the narrow
gap on viscosity and heat transfer, the dynamic problem would enable further exploration of the physics of an
eccentrically rotating cylinder.
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