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Abstract The thermodynamic theory of dislocation/grain boundary interaction, including dislocation pileup
against, absorption by, and transfer through the grain boundary, is developed for non-uniform plastic deforma-
tions in polycrystals. The case study is carried out on the boundary conditions affecting work hardening of a
bicrystal subjected to plane constrained shear for three types of grain boundaries: (i) impermeable hard grain
boundary, (ii) grain boundary that allows dislocation transfer without absorption, and (iii) grain boundary that
absorbs dislocations and allows them to pass later.
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1 Introduction

The interaction between dislocations and grain boundaries plays an essential role in the mechanical response
of polycrystalline materials to loading. Several outcomes of this interaction are possible. At low dislocation
density, the grain boundary blocks themovement of dislocations and forces them topileup against it,with the by-
product of linearly increased kinematic work hardening. As the dislocation density exceeds some critical value,
a certain amount of dislocations is absorbed by the grain boundary, causing an increase in the surface dislocation
density and the misorientation between adjacent grains. Dislocations can also be emitted at a later stage of
straining in the neighboring grain or transferred through the grain boundary. In the presence of grain boundaries,
non-uniform plastic deformation occurs, leading to non-redundant (geometrically necessary) dislocations, so
the need for continuummodels that include the gradient of plastic deformation becomes evident. Berdichevsky
and Sedov [1] were the first to introduce the curl of plastic deformation (Nye–Bilby–Kröner’s tensor) into the
continuum dislocation theory (CDT) and associate it with the density of non-redundant dislocations. They
also proposed the thermodynamics of dislocations, using this density of non-redundant dislocations as a state
variable in the free energy and giving the variational formulation of CDT (see the further developments in
[2,3]). The main drawback of this thermodynamic approach is the absence of configurational entropy and
its dual quantity, the effective temperature of dislocations, introduced a few decades later by Langer et al.
[4]. Together with the density of redundant dislocations, this configurational entropy enables ones to build
up the meaningful thermodynamics of dislocations satisfying two universal laws for plastic flows discovered
in [5,6]. Recently, one of us extended CDT by introducing the density of redundant dislocations as well
as the configurational entropy as additional state variables [7]. He has shown that the new theory, called
thermodynamic dislocation theory (TDT), can predict both kinematic and isotropic work hardening. This TDT
has been applied to model grain boundaries as hard obstacles that block dislocations, leading to dislocation

Communicated by Andreas Öchsner.

Y. Piao · K. C. Le (B)
Lehrstuhl für Mechanik - Materialtheorie, Ruhr-Universität Bochum, D-44780 Bochum, Germany
E-mail: chau.le@rub.de

http://orcid.org/0000-0002-7313-8647
http://crossmark.crossref.org/dialog/?doi=10.1007/s00161-022-01088-6&domain=pdf


764 Y. Piao, K. C. Le

pileup, kinematic work hardening, and Bauschinger effect [8,9]. Piao and Le [10] further applied the theory to
the problem of interaction between screw dislocations and permeable grain boundary based on the experiments
performed by Kondo et al. [11]. There, an interfacial dissipation potential is proposed and additional boundary
conditions for the grain boundary are derived to model screw dislocation/grain boundary interaction.

Alternative phenomenological models that include the interaction between dislocations and grain bound-
aries have been proposed in the context of strain gradient plasticity by Fleck et al. [12]; Aifantis [13]; Gao et al.
[14]; Gurtin [15], and a large number of investigations have been carried out within this approach. Fredriksson
and Gudmundson [16] proposed an energetic model according to which the plastic work is stored as interfacial
energy that depends on the jump of plastic slip at the grain boundary, while Fleck and Willis [17] argued that
material hardening due to the grain boundary is mainly carried by energy dissipation. Note that both models
allow for a discontinuity in the plastic slip at the grain boundary. Gurtin [18] introduced a Burgers’ tensor
at the grain boundary, analogous to the Nye–Bilby–Kröner’s tensor for bulk crystals, to determine both the
interfacial energy and dissipation. One merit of this tensorial measure is that it allows the theory to satisfy the
slip transfer criteria. Van Beers et al. [19] proposed a similar theory that takes into account the criteria of slip
transfer, but differs from the formulation of Gurtin [18]. Inter-grain interaction modules from two theories are
compared by Gottschalk et al. [20]; Bayerschen et al. [21]. Erdle and Böhlke [22] developed the continuum
model of dislocation/grain boundary interaction based on the micromorphic strain gradient plasticity. We also
mention the references [23–29] which use the same strain gradient plasticity. Similar to the CDT developed in
[1–3], this standard strain gradient plasticity ignores completely configurational entropy, so none of the work
done within this approach is consistent with thermodynamics of dislocations proposed in [4–6].

The aim of this work is to model the interaction of edge dislocations with the grain boundary in polycrystals
within the framework of TDT. In contrast to the interaction between screw dislocations and grain boundaries
studied in our previous paper [10], the processes of dislocation pileup against, absorption by, and transfer
through the grain boundary may occur in this situation. Using the variational formulation together with the
proposed surface energy and dissipation potential, we will derive the interface boundary conditions for these
processes. The case study is carried out on the boundary conditions affecting work hardening of a bicrystal
subjected to plane constrained shear for three types of grain boundaries: (i) impermeable hard grain boundary,
(ii) grain boundary that allows dislocation transfer without absorption, and (iii) grain boundary that absorbs
dislocations and allows them to pass later. Note that, according to various experimental observations reported,
e.g., in [30,31], the grain boundary could be migrated during this dislocation absorption, but this possible
migration is ignored in this continuummodel. We show especially the effect of dislocation absorption on work
hardening.

The paper is organized as follows. After this brief introduction, we lay down the kinematics and thermody-
namic framework of TDT in Sect. 2. In Sect. 3, we analyze the effects of dissipation potential and interfacial
energy on the work hardening of materials and derive the conditions at the grain boundary for various processes
during plastic deformation. In Sect. 4, the application of the developed theory to the problem of a bicrystal
subjected to plane constrained shear is illustrated and its numerical treatment is presented. Detailed numerical
simulations are then performed and the results are discussed. We conclude the paper with a brief summary in
Sect. 5.

2 Formulation for bulk crystals

2.1 Kinematics

In the small strain theory, we ignore the differences between the Lagrangian and Eulerian coordinates and
assume that the total displacement gradient (distortion) u∇ can be decomposed additively into elastic and
plastic counterparts

u∇ = βe + β, (1)

where u(x) is a displacement field, x = (x1, x2, x3) a position vector of a material point of the body, and ∇ the
nabla operator. The incompatible plastic distortion of the crystal having n active slip systems takes the form

β(x) =
n∑

α=1

βα(x)sα ⊗ mα, (2)
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with sα andmα being the pair of unit vectors denoting the slip direction and the normal to the slip planes of the
corresponding α-th slip system. The plastic slip of the α-th slip system, βα(x), is assumed to be continuously
differentiable function except at the interfaces or grain boundaries. Since sα andmα aremutually orthogonal, the
trace of the plastic distortion always vanishes, trβ = 0, which indicates volume-preserving plastic deformation
due to the conservative motion of dislocations. The total strain ε and the plastic strain εp are the symmetric
part of the displacement gradient and the plastic distortion, respectively, so that

ε = 1

2
(∇u + u∇), εp = 1

2
(β + βT ). (3)

Accordingly, the elastic strain equals

εe = ε − εp. (4)

The net Burger’s vector B of non-redundant dislocations whose lines cross the area S bounded by the closed
curve ∂S is given by

B =
∮

∂S
β · dx =

∫

S
α · nda, (5)

where α is the Nye–Bilby–Kröner’s dislocation tensor [32–34],

α = −β × ∇, (αi j = ε jklβil,k). (6)

In particular, if there is only one active slip system such that s and m lie in the (x1, x2)-plane, while the
dislocation lines are parallel to the x3-axis, then α under the plane strain has only two nonzero components
αi3 = si (∂sβ), where ∂s denotes the derivative in the s-direction. Consequently, the scalar density of the
non-redundant dislocations is given by

ρg = |dB|
bda

= 1

b
|∂sβ|, (7)

with b being the magnitude of Burger’s vector.

2.2 Thermodynamic framework

Suppose thematerial body in formof a slab of constant depth L occupies the 3-D domainV , and its boundary ∂V
consists of two non-intersecting surfaces, ∂k and ∂s , on which the displacement field u(x) and the traction-free
condition are specified, respectively. Assuming that no body force acts on the crystals, the energy functional
reads

I =
∫

V
ψ(εe, ρg, ρr, χ)d3x, (8)

where d3x = dx1dx2dx3 denotes the volume element and ψ is the density of the Helmholtz free energy. The
dislocation network is assumed to be two-dimensional, such that the dislocation lines are parallel to the x3-axis
and the Burgers’ vector of edge dislocations lies in the (x1, x2)-plane.We let ρr denote the density of redundant
dislocations whose resultant Burgers’ vector vanishes, and ρg the density of non-redundant dislocations (see
subsection 2.1 ). The sum of the two types of dislocation densities is the total dislocation density ρ = ρr+ρg. In
the spirit of the dislocationmediated plasticity [4], which decomposes the thermodynamic system of dislocated
crystal into two subsystems and traces it back to statistical aspects of the defects, χ is the effective temperature
characterizing the slow rearrangement of configuration of atoms during the motion of dislocations, while the
ordinary temperature T characterizes the fast vibration of atoms of the kinetic vibrational subsystem. In some
cases, such as thermal softening [35–37] or adiabatic shear banding [38], the ordinary temperature plays an
important role. However, in the present study we set T to be constant and drop it from the list of arguments of
the free energy density ψ . The state variables εe and ρg are dependent variables expressed by u and β, while
ρr and χ are independent state variables. We decompose ψ into the part due to the elastic strain, ψe, and the
remaining parts

ψ(εe, ρg, ρr, χ) = ψe(ε
e) + ψr(ρ

r) + ψm(ρg) + ψc(χ, ρ), (9)
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where ψr is the self-energy density of redundant dislocations, ψm is the energy density of the non-redundant
dislocations, while ψc is the configurational heat associated with the configurational entropy [7,35]. The
additive decomposition of the energy of dislocations into two partsψr andψm is possible because the interaction
between dislocation dipole and dislocation has a much shorter range compared to the interaction between
dislocations of the same sign. These contributions are given below

ψe(ε
e) = 1

2
λ(εekk)

2 + μεei jε
e
i j , ψr(ρ

r) = γDρr,

ψm(ρg) = γDρ
g
ss ln

⎛

⎝ 1

1 − ρg

ρ
g
ss

⎞

⎠ ,

ψc(χ, ρ) = −χ̄(−ρ ln(a2ρ) + ρ),

(10)

where λ and μ are Lamé constants, and γD the dislocation energy per unit length. Since −ρ ln(a2ρ) + ρ is
the entropy per unit area of the two-dimensional dislocation network (see the detailed derivation in [39]), the
“two-dimensional” temperature χ̄ = χ/L is introduced to get the configurational heat having the unit of energy
density [7]. Note that a is a length scale of the order of atomic spacing. The defect energy ψm describing the
interactions of non-redundant dislocations captures the kinematic hardening. The logarithmic term, originated
from [40], ensures that the defect energy increases linearly for small dislocation density and tends to infinity
as ρg approaches the saturated density of non-redundant dislocations ρ

g
ss . We assume that ρ

g
ss = k0ρss is a

fraction of ρss by coefficient k0, where ρss = (1/a2)e−γD/χ̄ is the steady-state dislocation density determined
by minimizing the free energy of the configurational subsystem [4]. Note that k0 is characterized by the
interaction between dislocations of the same sign, which is similar to the interaction between charges [41]. We
will see in the subsequent section the role of ρg

ss in the contribution of interfacial energy to the work hardening.
The applied loading can lead to nucleation, propagation and movement of dislocations, which result in

plastic deformations in the crystal. In these processes, dislocations always experience resistance, which causes
energy dissipation. The dissipation potential in the bulk has the form

Db(β̇, ρ̇, χ̇) = τiβ̇ + 1

2
dρρ̇2 + 1

2
dχ χ̇2. (11)

The first term is the plastic power, where τi is the internal stress, while the last two terms represent the
dissipation due to the multiplication of dislocations and the increase of the configurational temperature [7].
Langer et al. [4] developed the kinetics of dislocation depinning that dominantly controls the plastic slip rate.
Averaging this kinetic equation over the representative volume element, we have established in [42] that

˙̄β = q(T, τi, ρ
r)

t0
= b

t0

√
ρ

[
fP(T, τi, ρ

r) − fP(T, −τi, ρ
r)

]
(12)

where t0 is a microscopic time scale of the order of the inverse Debye frequency, and

fP(T, τi, ρ
r) = exp

[
−TP

T
exp

(
− τi

τT(ρr)

)]
. (13)

Note that TP is the activation temperature of the potential well of a pinning site and τT(ρr) = μTb
√

ρr is the

Taylor stress with μT being proportional to the shear modulus μ. It was shown that this kinetic equation for ˙̄β
can correctly describe the rate-reducing behavior of isotropic work hardening both when the crystal is loaded
on one direction and in the load reversal process [10]. Provided there is only one slip system inclined at an
angle φ to the x1-axis, then, using similar arguments as in [8], we lay down one governing equation for τ̇i

τ̇i = μ
q0
t0

(
cos 2φ − q(T, τi, ρ

r)

q0

)
(14)

where q0/t0 denotes the total shear strain rate. This equation plays the role of the kinematic constraint for the
internal stress τi. The remaining equations in the bulk can be derived from the following variational principle:
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The true displacement field ǔ(x), the true plastic slips β̌(x), the true density of redundant dislocations ρ̌r(x),
and the true configurational temperature χ̌ (x) obey the variational equation

δ I +
∫

V

(
∂Db

∂β̇
δβ + ∂Db

∂ρ̇
δρ + ∂Db

∂χ̇
δχ

)
d3x = 0 (15)

for all variations of admissible fields u(x), β(x), ρr(x) and χ(x). Focusing on the contribution of the grain
boundary to work hardening, we assume that the whole external boundary ∂V admit dislocation to reach it. In
this case, the plastic slip can be varied arbitrarily at ∂V . The variational equation (15) allows one to derive the
remaining governing equations. From the variation of I with respect to the displacement field u(x), we obtain
the quasi-static equilibrium equation and the boundary condition [43]

σi j, j = 0 in V,

σi j n j = 0 on ∂s,
(16)

withσ = ∂ψe/∂εe being theCauchy stress tensor andn the outward unit normal vector to the external boundary.
In Eq. (15), the vanishing variation with respect to the plastic slip β(x) yields the balance of microforces acting
on dislocations [7] and the natural boundary condition at the entire external boundary as

τ − τb − τi = 0 in V,

∂ψm

∂ρg = γD on ∂V,
(17)

where τ = siσi jm j is the resolved shear stress acting on the slip system, while the back stress is

τb = −1

b

(
∂ψm

∂ρg signβ,s

)

,s
= − 1

b2
∂2ψm

∂(ρg)2
β,ss . (18)

Note that (.),s = si∂i (.) is the shorthand notation for ∂s(.). Following the suggestions by Le [7] for functions
of dρ and dχ , the remaining equations obtained from Eq. (15) for χ̇ and ρ̇ can be cast into the form

χ̇ = KχeDτi
q(T, τi, ρ

r)

t0

(
1 − χ

χ0

)
,

ρ̇ = Kρ

τi

a2 ν(T, ρr, q0)2
q(T, τi, ρ

r)

t0

(
1 − ρ

ρss(χ)

)
.

(19)

Here, χ0 is a constant denoting the steady-state configurational temperature, while the steady-state dislocation
density at a given effective temperature is ρss(χ) = (1/a2)e−γD/χ̄ .Kχ is a factor inversely proportional to the
effective specific heat and Kρ is a energy conversion coefficient [44]. The function ν(T, ρr, q0) is defined as

ν(T, ρr, q0) = ln

(
TP
T

)
− ln

[
ln

(
b
√

ρr

q0

)]
. (20)

3 Interface boundary conditions

As a prototype, we study a simple problem of plane deformation of a bicrystal whose single grain boundary,
which is a plane perpendicular to the y-axis, lies at y = yg (see Fig. 1). The extension to the case of polycrystals
with multiple grain boundaries can be done without complications. Since the tensorial index notation is no
longer required, the coordinates (x1, x2, x3) are changed to (x, y, z) for simplicity. For the sake of definiteness,
we assume that only edge dislocationsmove to and interact with the grain boundary. If the plastic slipβ depends
only on y due to the sample geometry and specific boundary conditions, then the non-redundant dislocation
density is proportional to β,y , ρg = �|β,y |/b, where � depends on the slip system, as will be discussed in
Sect. 4.
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3.1 Interfacial energy and dissipation

Dislocations are long-lived and well-defined defects and have various interactions with the grain boundary,
e.g., dislocation pileup, absorption, and transmission. Within the continuum approach, it should be possible
to mimic these interactions by the interfacial energy and dissipation that reflect the underlying physics at the
nano-/submicron scale. The low-angle grain boundary itself can be regarded as an array of dislocations [45]
whose interfacial energy depends on the surface dislocation density [46,47]. It also acts as an additional barrier
to the movement of dislocations and can later absorb or release them. Therefore, in addition to bulk dissipation,
interfacial dissipation must also be taken into account. In order to choose the appropriate argument for the
interfacial energy, the state variables of the surface must first be recognized. Although the plastic distortion and
the corresponding plastic slip are not the state variables in the bulk, the jump in the plastic slip representing the
surface dislocation density is the state variable at the grain boundary (cf. with the Burgers tensor introduced
in [18]). We propose the densities of interfacial energy and dissipation potential as follows

ψs(β
∣∣
yg±0) = ψs(|[[β]]Γ |), (21)

and

Ds(β̇
∣∣
yg±0) = ζy

|〈〈β̇〉〉Γ |
b

+ 1

2
ζa

([[β̇]]Γ )2

b2
. (22)

Here, the vertical line followed by yg ± 0 indicates the limits of the preceding expression as y approaches the
grain boundary position yg from above and below, while 〈〈.〉〉Γ and [[.]]Γ denote the mean value and the jump
of a variable at the interface Γ , respectively. Thus, according to these definitions

〈〈β̇〉〉Γ = 1

2
(β̇

∣∣
yg+0 + β̇

∣∣
yg−0), [[β̇]]Γ = (β̇

∣∣
yg+0 − β̇

∣∣
yg−0). (23)

Eq. (21) requires that only the surface dislocation density |[[β]]Γ |/b, regarded as the state variable, can be
the argument of ψs. The first term on the right-hand side of Eq. (22) is the dissipation by the rate of the
mean plastic slip at the interface, where ζy plays a role of the yield surface tension. The second term in (22),
quadratic in [[β̇]]Γ , describes rate-dependent dissipation due to the acoustic emission of waves generated during
the absorption of dislocations by the grain boundary.

The boundary conditions involving interfacial energy and dissipation can be derived from the following
variational equation

δ

(
I +

∫

Γ

ψs(|[[β]]Γ |)da
)

+
∫

V

(
∂Db

∂β̇
δβ + ∂Db

∂ρ̇
δρ + ∂Db

∂χ̇
δχ

)
d3x

+
∫

Γ

(
∂Ds

∂[[β̇]]Γ
δ[[β]]Γ + ∂Ds

∂〈〈β̇〉〉Γ
δ〈〈β〉〉Γ

)
da = 0, (24)

which extends Eq. (15) to the case involving the grain boundary, where da denotes the area element, while I
and Db remain exactly the same as in (8) and (11), respectively. Edge dislocations may either penetrate the
grain boundary or be absorbed by it through dissociation of the dislocations. The latter process requires the
continuity of displacement field but causes a jump in plastic slip [[β]]Γ at the interface. This is revealed by the
volume integral containing the variation of the non-redundant dislocation density δρg during the integration
by parts, permitting the discontinuity to enter into the interface as

∫

V

(
∂ψm

∂ρg + ∂ψχ

∂ρg + ∂Db

∂ρ̇g

)
δρgd3x = −

∫

V
�

b

(
∂ψm

∂ρg − γD

)

,y
signβ,yδβd

3x

+
∫

∂s

�

b

(
∂ψm

∂ρg − γD

)
signβ,yδβda −

∫

Γ

[[�
b

(
∂ψm

∂ρg − γD

)
signβ,yδβ]]Γ da. (25)

The governing equation with respect to ρr from Eq. (15), given as [7,48]

γD + χ ln(a2ρ)/L + dρρ̇ = 0, (26)
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is utilized for γD in the derivation of Eq. (25). Expanding the interface integral term on the right-hand side of
Eq. (25) by means of the jump identity [49]

[[p q]]Γ = [[p]]Γ 〈〈q〉〉Γ + [[q]]Γ 〈〈p〉〉Γ (27)

and substituting it into Eq. (24), we transform the latter to
∫

Γ

{
−〈〈�

b

(
∂ψm

∂ρg − γD

)
signβ,y〉〉Γ δ[[β]]Γ − [[�

b

(
∂ψm

∂ρg − γD

)
signβ,y]]Γ δ〈〈β〉〉Γ

+ ∂ψs

∂[[β]]Γ δ[[β]]Γ + ζy
1

b
sign〈〈β̇〉〉Γ δ〈〈β〉〉Γ + ζa

1

b2
[[β̇]]Γ δ[[β]]Γ

}
da = 0. (28)

To derive consequences from (28), we need to analyze the variations of plastic slip on both sides of the
grain boundary, which may be subject to constraints depending on the accumulated dislocation densities. We
therefore consider two different processes.

Pileup process: When dislocations move toward the grain boundary under the Peach–Koehler force, they
first pile up against it. Since the dislocations cannot initially penetrate the grain boundary acting as an obstacle,
the plastic slips on both sides of the grain boundary are subject to homogeneous Dirichlet boundary condition
which fulfills Eq. (28) due to δβ

∣∣
yg−0 = δβ

∣∣
yg+0 = 0. So we have during the pileup process

β̇(yg ± 0, t) = 0. (29)

The time derivative in Eq. (29) ensures the continuity of plastic slip at the interface with respect to time in the
reversal loading [10].

Absorption and transmission processes: As more dislocations of the same sign pile up against the
interface, the back stress near the pileup sites is increased. When the accumulated non-redundant dislocation
density and with it the back stress in the vicinity of the grain boundary exceeds a threshold, the latter can no
longer block dislocations. When the grain boundary starts to absorb dislocations, the jump in plastic slip as
well as the misorientation between two adjacent grains will increase. The plastic slip at the grain boundary
as well as its jump [[β]]Γ may change during the process of dislocation absorption, and consequently, δ〈〈β〉〉Γ
and δ[[β]]Γ can be chosen independently and arbitrarily. Eq. (28) then implies

�

(
∂ψm

∂ρg − γD

)∣∣∣
yg+0

+ �

(
∂ψm

∂ρg − γD

)∣∣∣
yg−0

= ζy, (30)

and

[[β̇]]Γ = b2

ζa

(
[[ �

2b

∂ψm

∂ρg ]]Γ − ∂ψs

∂[[β]]Γ
)

, (31)

provided signβ,y |yg±0 = ±1, sign〈〈β̇〉〉Γ = 1 and sign[[β̇]]Γ = 1.
For simplicity, let us assume the symmetry such that �l = �u = �. Let ρy be the root of the equation

∂ψm/∂ρg = ζy/2� + γD which exists and is unique due to the monotonicity of function ∂ψm/∂ρg. It turns
out that this dislocation density plays the role of the first threshold. If the dislocation density on the one side
of the grain boundary exceeds this threshold value, Eq. (30) can only be satisfied if

{
ρg|yg+0 = �|β,y |/b|yg+0 = ρy + ρj,

ρg|yg−0 = �|β,y |/b|yg−0 = ρy − ρj.
(32)

Indeed, taking into account that ρj is much less than ρy, we can expand function ∂ψm/∂ρg into the Taylor
series near ρy and neglect terms of order higher than ρj. Then it is easy to see that (32) satisfies Eq. (30).

But there is another threshold that does not permit dislocations to reach the grain boundary even if the
dislocation density on the one side exceeds ρy. The reason lies in the second term on the right-hand side of
(31). Since ψs is a function of |[[β]]Γ |, its derivative is equal to

∂ψs

∂[[β]]Γ = ∂ψs

∂|[[β]]Γ | sign[[β]]Γ . (33)
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Fig. 1 Plane constrained shear of bicrystal

Because the largest absolute value of this derivative is achieved at [[β]]Γ = ϑ0, with ϑ0 being the initial
misalignment, as long as the first term in the bracket on the right-hand side is less than this value, [[β]]Γ cannot
increase. To simplify (31), we take into account Eq. (32) and the smallness of ρj. Expanding ∂ψm/∂ρg into
the Taylor series near ρy, we transform (31) to

[[β̇]]Γ = b2

ζa

(
�

b

∂2ψm

∂(ρg)2
(ρy)ρj − ∂ψs

∂|[[β]]Γ | sign[[β]]Γ
)

. (34)

For the density of interfacial energy, we will consider the modified Read–Shockley’s interfacial energy
[46],

ψs = γD

4π(1 − ν)b
ϑ ln

eϑm

ϑ + δ
, (35)

where ϑ = |[[β]]Γ |. A small number δ is added to the denominator of the logarithm to make the derivative of
ψs finite at ϑ = 0. Finally, we need an equation for ρy which is similar to Eq. (14) for τi. As such, we propose

ρy = ρy0 + κa|[[β]]Γ |. (36)

4 Application

4.1 Plane constrained shear

Suppose that a bicrystal slab is subjected to plane constrained shear by a given displacement uy(t) = γ̇ t y
specified at the upper and lower surfaces (see Fig. 1) and that the system is driven at a constant shear rate
γ̇ = q0/t0. Let the green colored plane Γ be the plane of the grain boundary that is parallel to the (x, y)-plane
and is located at y = yg. This grain boundary divides the bicrystal occupyingV into two perfectly bonded single
crystals occupying V− and V+, i.e., V = V− ∪V+ ∪Γ . Let the cross section of this bicrystal perpendicular to
the z-axis be a rectangle of width c and height h, having the same shape and size over the entire length L . We
assume h � c � L to neglect the end effect near x = 0 and x = c. Edge dislocations can occur during the
plastic deformation, and we assume that only one slip system is activated in each single crystal, colored blue
and red, respectively. The slip directions are perpendicular to the z-axis and inclined at angles φu and φl to the
plane of the grain boundary. Given the geometry of the specimen as well as boundary conditions, we assume
that the displacements (ux , uy) as well as the plastic slip β depends only on y: ux = ux (y), uy = uy(y),
β = β(y). The displacement uz vanishes.

When the plastic deformation occurs, the edge dislocations move on the active slip system with the slip
direction s = (cosφ, sin φ, 0)T and the normal to the slip planem = (− sin φ, cosφ, 0)T . The plastic distortion
tensor is given by

β = β(y, t)

⎛

⎝
− sin φ cosφ cos2 φ 0

− sin2 φ sin φ cosφ 0
0 0 0

⎞

⎠ . (37)
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The plastic and elastic strain tensor becomes

εp = 1

2
β(y, t)

⎛

⎝
− sin 2φ cos 2φ 0
cos 2φ sin 2φ 0

0 0 0

⎞

⎠ , (38)

εe = 1

2

⎛

⎝
β sin 2φ ux,y − β cos 2φ 0

ux,y − β cos 2φ 2uy,y − β sin 2φ 0
0 0 0

⎞

⎠ , (39)

where the displacement fieldu = (ux , uy, 0) is yet unknown. The nonzero components ofNye–Bilby–Kröner’s
tensor are αxz = β,y sin φ cosφ and αyz = β,y sin2 φ. Therefore, the density of the non-redundant dislocation
per unit area perpendicular to the z-axis equals

ρg = 1

b
|α · ez| = �|β,y |/b, where � = | sin φ|. (40)

The total energy functional of a crystal becomes

I = cL
∫ h

0
[ψe(ε

e) + γDρr + ψm(ρg) + ψc]dy + cLψs|y=yg, (41)

where ψe is the energy density due to the elastic strain

ψe = 1

2
λu2y,y + 1

2
μ(ux,y − β cos 2φ)2 + 1

4
μβ2 sin2 2φ + μ

(
uy,y − 1

2
β sin 2φ

)2

. (42)

Note that the angle φ(y) is piecewise constant:

φ(y) =
{

φl for 0 < y < yg,
φu for yg < y < h.

(43)

Taking the variation of functional I with respect to ux and uy at fixed β(y), we obtain the equilibrium equations
which, after integration, lead to

ux,y = γ + (β − 〈β〉) cos 2φ,

uy,y = κ(β − 〈β〉) sin 2φ,
(44)

with κ = μ
λ+2μ and 〈β〉 = 1

h

∫ h
0 βdy. Inserting Eq. (44) into Eq. (41), we reduce the energy functional to

I = cL
∫ h

0

[
1

2
μκ〈β〉2 sin2 2φ + 1

2
μ(〈β〉 cos 2φ − γ )2 + 1

2
μ(1 − κ)β2 sin2 2φ + γDρr

+γDk0ρss ln

(
1

1 − ρg

k0ρss

)
− χ(−ρ ln(a2ρ) + ρ)/L

]
dy + cLψs

∣∣∣
y=yg

. (45)

Varying this functional with respect to β and substituting into (24), we obtain the equilibrium equation

τ − τb − τi = 0, (46)

with the resolved and back shear stresses being

τ = −μ(κ〈β〉 sin2 2φ + (〈β〉 cos 2φ − γ ) cos 2φ + (1 − κ)β sin2 2φ), (47)

and

τb = − C1

(1 − C2|β,y |)2 β,yy, C1 = γD

k0ρssb2
sin2 φ, C2 = 1

k0ρssb
| sin φ|. (48)

At the top and bottom surfaces of the sample, the boundary conditions ∂ψm/∂ρg = γD must be fulfilled. It is
obvious that these imply the Neumann conditions β,y(0, t) = β,y(h, t) = 0. Besides, at y = yg, the boundary
conditions (31) (or (34), alternatively), (32), and (36) must be fulfilled.
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4.2 Rescaled boundary value problem

To facilitate numerical integration, we introduce the following rescaled variables and quantities

ỹ = y

b
, ρ̃ = a2ρ, ρ̃r = a2ρr, ρ̃g = b2ρg = �|β,ỹ |,

χ̃ = χ̄

γD
, θ = T

TP
, τ̃ = τ

μ
, τ̃i = τi

μ
, τ̃b = τb

μ
,

(49)

where the variable ỹ changes from zero to h̃ = h/b. The plastic slip rate is rewritten in the form

q(T, τi, ρ
r)

t0
= b

a

q̃(θ, τ̃i, ρ̃
r)

t0
. (50)

in which

q̃(θ, τ̃i, ρ̃
r) = √

ρ̃r( f̃P(θ, τ̃i, ρ̃
r) − f̃P(θ, −τ̃i, ρ̃

r)). (51)

We set μ̃T = (b/a)μT = μr and assume that r is independent of temperature and strain rate. Then

f̃P(θ, τ̃i, ρ̃
r) = exp

(
−1

θ
exp

(
− τ̃i

r
√

ρ̃r

))
. (52)

We define q̃0 = (a/b)q0 such that q/q0 = q̃/q̃0, and function ν̃ becomes

ν̃(θ, ρ̃r, q̃0) = ln

(
1

θ

)
− ln

(
ln

(√
ρ̃r

q̃0

))
. (53)

The dimensionless steady-state quantities are

ρ̃ss(χ̃) = exp

(
− 1

χ̃

)
, χ̃0 = χ0

eD
. (54)

Using q̃ instead of q as the dimensionless measure of plastic strain rate means that we are effectively rescaling
t0 by a factor b/a. We assume that (a/b)t0 = 10−12 s. Since the shear rate γ̇ = q0/t0 is constant, we can
replace the time derivative by the derivative with respect to γ so that t0∂/∂t → q0∂/∂γ . Using the introduced
dimensionless variables, the governing equations in the bulk, Eqs. (14), (19) and (46), are transformed to the
following system of partial differential equations

τ̃ − τ̃b − τ̃i = 0,

∂τ̃i

∂γ
= cos 2φ − q̃(θ, τ̃i, ρ̃

r)

q̃0
,

∂χ̃

∂γ
= Kχ τ̃i

q̃(θ, τ̃i, ρ̃
r)

q̃0

(
1 − χ̃

χ̃0

)
,

∂ρ̃

∂γ
= Kρ τ̃i

q̃(θ, τ̃i, ρ̃
r)

ν̃(θ, ρ̃r, q̃0)2q̃0

(
1 − ρ̃

ρ̃ss(χ̃)

)
,

(55)

with the rescaled resolved shear stress and back stress being

τ̃ = −(κ〈β〉 sin2 2φ + (〈β〉 cos 2φ − γ ) cos 2φ + (1 − κ)β sin2 2φ),

τ̃b = − k1
(1 − k2|β,ỹ |)2 β,ỹ ỹ,

(56)

where

k1 = γD

μb2
k sin2 φ, k2 = k| sin φ|, k = a2

k0ρ̃ssb2
. (57)
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During the absorption and transmission process, the density of non-redundant dislocation ρg near the grain
boundary hardly reaches the saturated density ρ

g
ss . Therefore, using the Taylor expansion, we can approximate

the defect energy ψm as follows

ψm = γDψ̃m, ψ̃m = ρ
g
ss

(
ρg

ρ
g
ss

+ 1

2

(
ρg

ρ
g
ss

)2
)

. (58)

By this approximation, the equilibrium equation for microforces (55)1, a stiff second-order quasi-linear dif-
ferential equation, can be transformed into an elliptic differential equation

Aβ ′′ + Bβ + C = 0, (59)

which is numericallymore stable than the first onewhen the jump condition is implemented. The prime denotes
the derivative of a function with respect to ỹ, and

A = γD

μb2
a2

b2
1

k0ρ̃ss
sin2 φ, B = (1 − κ) sin2 2φ,

C = −(κ〈β〉 sin2 2φ + (〈β〉 cos 2φ − γ ) cos 2φ + τ̃i),

(60)

At the external boundaries, Eq. (55)1 is subjected to the boundary condition

β,ỹ(0, f̃ ) = 0, β,ỹ(h̃, f̃ ) = 0. (61)

From (31), we get the rescaled interface condition at the grain boundary as

∂[[β]]Γ
∂γ

= 1

ζ̃a

(
�

2
[[∂ψ̃m

∂ρ̃g ]]Γ − sign[[β]]Γ
4π(1 − ν0)

log
ϑm

|[[β]]Γ | + δ

)
,

[[β,ỹ]]Γ = 2

�
ρ̃y.

(62)

where ζ̃a = ζat0/(q0b γD) and ρ̃y = b2ρy. The dimensionless form of Eq. (36) reads

ρ̃y = ρ̃y0 + κ̃a|[[β]]Γ |, (63)

where κ̃a = b2κa.
We also need to pose the initial conditions for β, τ̃i , ρ̃ and χ̃ . For the internal shear stress, we assume that

the specimen is not plastically pre-deformed, i.e., τ̃i(ỹ, 0) = 0. As for the plastic slip, two scenarios can be
studied: (i) vanishing initial misalignment and (ii) nonzero initial misalignment. The numerical simulations
will be performed for the first case where β(ỹ, 0) = 0. The rescaled dislocation density ρ̃(ỹ, 0) and the rescaled
disorder temperature χ̃ (ỹ, 0) are assigned reasonable initial values based on various numerical simulations. It
should be noted that, from the physical point of view, these initial values depend on the sample preparation.

4.3 Numerical implementation

We discretize the boundary value problem formulated above by a finite difference method called the line
method. The latter replaces the spatial derivatives by finite differences, which allow us to transform partial
differential equations into a system of ordinary differential equations with respect to γ . We illustrate this
method for the case ỹg = h̃/2. For the case ỹg �= h̃/2, the discretization can be done in a similar way. Let
the interval 0 < ỹ < h̃ be divided into 2n equal subintervals. Then the step in ỹ along the grid becomes
Δỹ = h̃/2n. Because of the jump in β at the interface, we distinguish the left and right nodes located at the
same point ỹg = nΔỹ. The coordinates of the nodes on the left interval 0 < ỹ < h̃/2 are

ỹi = iΔỹ, i = 0, . . . , n, (64)

while those on the right interval h̃/2 < ỹ < h̃ are

ỹi = (i − 1)Δỹ, i = n + 1, . . . , 2n + 1. (65)
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Thus, altogether we have 2(n+1) nodes. The spatial derivatives of the plastic slip, β,ỹ and β,ỹ ỹ , for all internal
nodes not lying at the external boundaries or the interface, are approximated as

∂β(ỹi , γ )

∂ ỹ
= βi+1 − βi−1

2Δỹ
,

∂2β(ỹi , γ )

∂ ỹ2
= βi+1 − 2βi + βi−1

Δỹ2
, (66)

where βi = β(ỹi , γ ). We decompose the integral 〈β〉 in the resolved shear stress into two integrals that are
calculated using the trapezoidal rule. Thus,

〈β〉 = 1

2n

(
1

2
β0 + β1 + · · · + 1

2
βn + 1

2
βn+1 + βn+2 + · · · + 1

2
β2n+1

)
. (67)

After these replacements, Eq. (55)1 becomes an ordinary differential equation in all internal nodes.
The first derivatives at the external nodes are replaced by

∂β(ỹ0, γ )

∂ ỹ
= β1 − β0

Δỹ
,

∂β(ỹ2n+1, γ )

∂ ỹ
= β2n+1 − β2n

Δỹ
. (68)

Thus, the boundary conditions (61) become

β0 = β1, β2n+1 = β2n . (69)

The first left and right derivatives at the interface are replaced by

∂β(ỹn, γ )

∂ ỹ
= βn − βn−1

Δỹ
,

∂β(ỹn+1, γ )

∂ ỹ
= βn+2 − βn+1

Δỹ
. (70)

while the jump in β is

[[β]]Γ = βn+1 − βn . (71)

These transform Eqs. (62) into two differential algebraic equations.
Since the three remaining equations of (55) do not contain derivatives, they are satisfied node by node.

Besides, as the unknown functions are continuous at the interface, we have

τ̃in = τ̃in+1, ρ̃n = ρ̃n+1, χ̃n = χ̃n+1. (72)

It is easy to see that the system of partial differential equations and boundary conditions becomes a system
of 4(2n + 1) ordinary differential algebraic equations (DAE) for 4(2n + 1) unknowns, so the problem is well
posed. For the numerical discretization we choose n = 200, while for the integration of DAEs with respect to
the time-like variable γ a step sizeΔγ = 10−4 is chosen. The DAE system is then integrated by the MATLAB
integrator ode15s.

4.4 Numerical results

In the numerical simulations, we keep the temperature and shear rate constant at T = 298K and q̃0 = 10−13.
The parameters for the thermodynamic dislocation theory for copper are chosen as presented in [4]:

r = 0.0323, θ = 0.0073, Kχ = 350, Kρ = 96.1, χ̃0 = 0.25. (73)

We choose the following parameters for the copper bicrystal

h = 5.1μm, b = 0.255 nm, a = 10b, μ = 50GPa, ν0 = 0.34, φ = 30◦. (74)

The active slip systems of two grains in the bicrystal are constrained to symmetry. The initial conditions for
dislocation density and configuration temperature are ρ̃(0) = 6.25 × 10−5, χ̃ (0) = 0.23 and we assume
γD = μb2. The critical density is set as ρ̃y0 = 1.3× 10−5 and the other two interfacial dissipation parameters
are given as ζ̃a = 1.5 and κ̃a = 5×10−4. The parameters for the defect energy and interfacial energy are chosen
as follows: k0 = 0.2, ϑm = 0.192, δ = 1 × 10−7. Unless some parameters are changed for the parameter
study, they are kept as default values.
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Fig. 2 (a) Distribution of plastic slips at γ = 8 ∗ 10−3 for k0 = 0.1, k0 = 0.2, and k0 = 0.5. (b) Corresponding hardening
behaviors in the pileup process

Fig. 3 (a) Plastic slips during the pileup process, (b) evolution of the misorientation at the grain boundary

The saturation density of the non-redundant dislocationsρ
g
ss aswell as the defect energyψm is characterized

by the factor k0, so that its value affects the distribution of plastic slip and work hardening. Figure 2a shows the
distributions of plastic slip in the pileup process for three different values of k0. When k0 is small, the plastic
slip decreases gradually near the grain boundary, while it decreases more steeply to zero for a higher value
of k0. Since the slope of plastic slip is proportional to the accumulated dislocation density, these distributions
imply that a smaller k0 leads to a larger dislocation accumulation zone and a lower accumulated density of non-
redundant dislocations near the grain boundary. This is because a small k0 makes ρ

g
ss small, so a lower density

of non-redundant dislocations is required for the backstress to have an effect on the balance of microforces.
The hardening behavior in the pileup process is shown in Fig. 2b. It can be seen that the hardening rate is larger
for smaller k0. The reason is that the wider dislocation accumulation zone and the slower gradient increase
of plastic slip resulting from the small k0 lead to a higher resolved shear stress and consequently a larger
hardening rate. A smaller value of k0 also leads to a longer length of the accumulation phase. This is because
the accumulated ρg is relatively low for small k0, and therefore, it takes longer to reach the required critical
density ρy.

At different shear strains γ , the distribution of plastic slip in the processes of dislocation pileup is shown
in Fig. 3a. The Neumann boundary conditions β,ỹ(0) = β,ỹ(h̃) = 0 cause the curve of plastic slip to remain
flat on two sides, while a groove is formed at the position of the grain boundary due to the Dirichlet interface
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Fig. 4 (a) Plastic slips for absorption process, (b) plastic slip omitting the jump

condition. A dislocation pileup zone is located in the center and two dislocation-free zones are located at the
boundary layers. In this process, the homogeneous Dirichlet interface condition is applied, and the dislocations
cannot penetrate into the grain boundary. Therefore, the groove sinks with increasing strain, but the tip remains
attached to the bottom (Fig. 3a). Figure 3b shows the evolution of the misalignment at the grain boundary,
which is obtained from Eq. (31). When the non-redundant dislocation density ρg reaches the critical value ρy0
at γ = 0.011, the evolution equation is activated. The grain boundary starts absorbing dislocations and the
misorientation increases only when the strain exceeds the second threshold value at γ = 0.0151, up to which
the accumulation process continues. The dislocation absorption process stops at γ = 0.0403 when the slope
of the misorientation changes.

The distribution of plastic slip during the dislocation absorption process is shown in Fig. 4a. In this process,
the grain boundary is no longer impenetrable but absorbs dislocations, increasing themisorientation and causing
non-redundant dislocations to accumulate. These are two factors that cause the distribution of plastic slip to
take a different form than in the pileup process, as shown in Fig. 4a. Here, it can be observed that the plastic
slip on two sides of the grain boundary converges not to a single point, but to two points apart, and the distance
between them increases, which means that the misorientation of the grain boundary increases. To see the effect
of the additionally accumulated non-redundant dislocations, we omit the jump from the plastic slip distribution
at γ = 0.02 and γ = 0.03 (solid lines) and compare it with that at the beginning of the absorption process
(dashed lines) in Fig. 4b. It can be seen that the tip leaves the bottom, and as the shear stress increases, the
discrepancy between the solid and dashed lines also increases, indicating that the groove does not stop sinking.

In the pileup process, the rate of accumulated dislocation density is the highest among the different processes
because all dislocations are blocked by the grain boundary. When positive and negative dislocations enter the
grain boundary and increase the misorientation in the absorption process, the ability of the grain boundary to
block dislocations from transfer is enhanced, and no additional dislocations are accumulated after this process.
This behavior is shown in Fig. 5a. In the pileup process, the positive and negative non-redundant dislocation
densities are symmetrically distributed on both sides of the grain boundary, while in the absorption process, a
jump in the non-redundant density occurs near the grain boundary, as shown in Fig. 5b. Under the interfacial
condition Eq. (32), the same amount of dislocation density is shifted from one side to the other.

In Fig. 6a, the stress–strain curve of the present model (red curve) is shown, where P1 and P2 indicate the
first and second thresholds and P3 the end of the absorption process. For comparison we plot also the stress–
strain curves obtained by two other models. The blue curve represents the hardening behavior of bicrystals
with impenetrable grain boundary, which blocks all non-redundant dislocations and therefore hardens the
most. The black curve describes the hardening behavior of bicrystals without absorption process. When ρg

reaches the critical density ρy0, the pileup process ends at P1 and the traversal process follows. These two
curves represent the limits above and below which the hardening with absorption can vary due to different
interfacial dissipation. Figure 6b shows the partition of work hardening into isotropic and kinematic hardening.
Isotropic work hardening results from the internal stress required by the dislocations to overcome the resistance
due to pinning. Kinematic work hardening is caused by back stresses describing the interaction between non-
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Fig. 5 (a) Evolution of the mean density of the non-redundant dislocations, (b) evolution of the non-redundant dislocation density
at two sides of grain boundary

Fig. 6 Rescaled stress–strain curves: (a) with impenetrable grain boundary (blue), with dislocation absorption process included
(red), without dislocation absorption process (black), (b) partition of work hardening

redundant dislocations. In the non-uniformplastic deformation of small size crystals, kinematicwork hardening
tends to contribute strongly, while in the present study the contribution is small because bicrystals have only
one grain boundary where non-redundant dislocations accumulate. It is worth mentioning that for crystals with
multiple grain boundaries, the kinematic work hardening rate is higher [10].

Among the interfacial dissipation parameters, ρy0 determines the first threshold and ζ̃a the second, so they
determine the onset of the dislocation absorption process. The size of the jump in the plastic slip and the
length of the absorption process are controlled by ζ̃a, as shown in Fig. 7a. Note that the jump exhibits a linear
dependence on the shear strain. The kinematic strain hardening in the absorption process (Fig. 7b) is influenced
by the additional accumulated non-redundant dislocations originating from the increased misorientation, so
that κ̃a is the key controlling parameter.

Finally, we show the distribution of plastic slip at γ = 0.01 with κa = 2 × 10−4 for φ = 30◦, φ = 35◦
and φ = 55◦ in Fig. 8a. It can be seen that for 0 < φ < 45◦ and 135◦ < φ < 180◦ the plastic slip is positively
distributed, while for 45◦ < φ < 135◦ it is the reverse. The dashed curve is symmetrical to the black curve
about the horizontal coordinate axis. We see that the blue and dashed curves coincide in the dislocation-free
zone. This is because the resolved shear stress τ and the residual stress τi for φ = 35◦ are identical inmagnitude
but opposite in sign to those for φ = 55◦. The distributions of plastic slip are different near the grain boundary
because the accumulation of non-redundant dislocation density is inconsistent due to the different slip systems.
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Fig. 7 (a) Influence of ζ̃a to the evolution of jump in plastic slip, (b) influence of κ̃a to the hardening behavior

Fig. 8 (a) Distribution of plastic slips in pileup process for φ = 30◦, φ = 35◦ and φ = 55◦, (b) corresponding hardening
behaviors

Figure 8b shows the strain hardening behavior for three different φ, where the asterisks indicate the beginning
and end of the absorption processes. It can be seen that the slip system affects not only the hardening rate but
also the length of the absorption process lγ , as indicated in the bar graph.

5 Conclusion

In the framework of thermodynamic dislocation theory for non-uniformplastic deformation,we have developed
the interface conditions for various interactions of dislocations with the grain boundary, e.g., dislocation
accumulation, absorption, and transfer. Interfacial dissipation in terms of rates for the mean and jump of
plastic slip has been proposed. An evolution equation for grain boundary misorientation has been developed.
The proposed interface dissipation yields two thresholds for the dislocation absorption process. The dislocation
absorption leads to asymmetry in the distribution of plastic slip and non-redundant dislocation density on two
sides of the grain boundary. It turns out that due to the additional accumulated density of non-redundant
dislocations, kinematic work hardening also develops during the process of dislocation absorption. The extent
of misorientation and the length of the dislocation absorption process are determined not only by the interfacial
dissipation, but also by the slip system of the grains.
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