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Abstract An extension of Boley’s continuummechanics-based successive approximationmethod is presented
for rectangular beams composed of two isotropic linear elastic layers. The solution is cast into the form of
tables, in complete analogy to the tables originally presented by Boley and Tolins for single-layer strips.
The first column in these tables corresponds to the classical Bernoulli–Euler theory of beams. The further
columns represent comparatively fast converging correction terms of an increasing refinement. Our two-layer
formulation automatically satisfies the stress continuity conditions at the interface of the two layers. Enforcing
displacement continuity at the interface between the layers, we derive results that do satisfy the equilibrium
field equations, the stress continuity conditions at the interface and the stress boundary conditions at the
upper and lower edges. When converged, the field constitutive relations and the displacement continuity at the
interface between the two layers are also satisfied. We present a compact formulation, which allows writing
down the results for more than the three successive steps considered by Boley and Tolins. The elasticity
solutions presented subsequently can be used as novel analytic benchmarks for comparison with refined
structural mechanics beam theories. Interior solutions for beams with a finite axial extent can be obtained by
assigning approximate boundary conditions at the lateral ends. Comparisons to finite element computations
for a clamped–clamped beam give strong evidence for the correctness of our analytic results.

Keywords Boley’s method · Two-layer beam · Higher-order beam theory · Iterative procedure

1 Introduction

The continuum-mechanics-based theory of elasticity, see, e.g., Timoshenko and Goodier [28], serves as bench-
mark for the assessment of the accuracy of various structuralmechanics beam theories of increasing complexity.
The latter beam theories intend to approximatemulti-dimensional elasticity solutions by one-dimensional solu-
tions, stemming from the fundamental formulations of continuum mechanics, see Altenbach and Öchsner [5],
by one-dimensional solutions, see, e.g., Krommer and Vetyukov [21]. Particularly, the plane stress formula-
tion of two-dimensional linear elasticity ever since has been used for a comparison in case of plane bending
and stretching of beams with rectangular cross sections. This strategy dates back to von Karman [16] and
Seewald [26], who, using integral transform techniques, studied an isotropic homogeneous rectangular strip
in plane stress according to the elasticity theory and compared their results to the classical Bernoulli–Euler
(BE) theory of beams. Von Karman [16] eventually showed that the curvature of the axis of an infinitely
extended strip can be expressed as an infinite series in the bending moment and its spatial derivatives. The
second (non-vanishing) term in the curvature series, containing the second derivative of the bending moment,
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was explicitly communicated in [16]. Von Karman’s work [16] was accompanied by a study of Seewald [26],
who gave a corresponding series representation for the stresses across the strip. The first terms in the series
representations of [16,26] for the curvature, the axial stress and the shear stress turned out to be equal to the
formulations provided by the classical BE theory of beams. For smoothly varying external loadings and for
slender beams, this explained the success of the BE theory in a relatively wide range of practical applications.
The next terms in [16,26] represent corrections of the classical beam theory that are of an increasingly minor
refinement, if the loadings, and thus the bending moments, are smooth enough. The work of von Karman [16]
and Seewald [26] suggested developing step-by-step procedures for deriving these correction terms for various
load cases. A review on such successive approximation techniques was provided by Ghugal and Shimpi [12].
A first step-by-step procedure for stresses was introduced in a brief note by Donnell [8], who studied trans-
verse loadings that are continuously distributed at both the upper and the lower edges of rectangular beams.
The corresponding computation of the beam displacements was also sketched in [8]. Independently, Boley
and Tolins [7] used a convenient iterative procedure in order to derive, from the continuum mechanics-based
two-dimensional elasticity theory, the stresses and deflections due to transverse and shear loadings that vary
smoothly along the outer edges of rectangular beams. The iterative procedure used in [7] was derived previ-
ously for thermally loaded rectangular beams by Boley [6]. For an introduction into the iterative computation
of stresses in rectangular beams, we refer to the book of Altenbach and Naumenko [4] where some instructive
applications to cantilever beams are to be found also. In Boley’s step-by-step technique, use is made of the
properties of the Airy stress function, where the traction (stress) boundary conditions at the upper and lower
faces of the beam are exactly satisfied. In [7], results for the first three steps were presented in the form of
tables, the highly informative form of which represent a strong motivation for the present work. The tables
given by Boley and Tolins [7] demonstrate how displacements and stresses within the rectangular beam do
depend on bending moment and axial force, i.e., on integrals or derivatives of the latter, where a single order
only appears in each of the steps of the successive computation of the stresses. From the latter, displacements
are derived by integration the elastic constitutive relations. Again, only one order of derivative is kept in the
columns of the tables presented in [7]. This means that, for the displacements, some results from one respective
step of successive approximation were shifted tacitly to the next column in [7]. Since derivatives of bending
moment and axial force are related to the known loading of the beam by ordinary differential equations via
equilibrium considerations, the higher-order correction terms in the columns of the tables of [7] are known.
For an application of Boley’s method to the problem of piezoelectric rectangular beams, see Krommer and
Irschik [20]. Duva and Simmonds [9] modified the expressions in the step-by-step expansions in [7,8] to
account for orthotropic beams weak in shear and gave an explicit presentation of computable error estimates.
The step-by-step formulations in [7,8,16,26] refer to beams that are infinitely extended in axial direction.
They satisfy exactly the stress boundary conditions at the upper and lower edges of the rectangular beam,
as well as the equilibrium relations within the beam, while constitutive relations are generally satisfied only
approximately. For polynomial loadings of a finite order, only a limited number of terms in the step-by-step
procedures is necessary to satisfy constitutive relations exactly. For beams of finite length, three boundary
conditions can be assigned at each of the lateral ends in a more or less straightforward manner, e.g., normal
force, shear force and bending moment at a free end or bending moment and two displacements of the axis
point at a simply supported end. The resulting solutions do coincide with some analytic results for plane stress
problems presented in Timoshenko and Goodier [28]. It was shown by Irschik [15] that the corresponding
two-dimensional elasticity results for beams of finite length can be obtained conveniently from enhanced BE
beam problems by analogy, since BE problems are also assigned with three boundary conditions at a lateral
end. Enhancement suggested in [15] concerns fictitious, but known additional eigenstrain loadings, the latter
corresponding to the correction terms in the above step-by-step solutions in [7,8]. However, the solutions
with only three boundary conditions at each of the lateral beam ends generally cannot satisfy the boundary
conditions that must be required to hold at each of the cross-sectional points on a lateral end, in order to obtain
a completely exact two-dimensional elasticity solution. Solutions for beams of a finite length with only three
selected boundary conditions at each lateral end therefore often are denoted as interior solutions. The difference
between an interior solution and the completely exact two-dimensional elasticity solution should vanish away
from the lateral ends according to St. Venant’s principle, which, however, must be considered with certain
care, see, e.g., Karp and Durban [17] and the literature cited there. For elastic interior solutions for orthotropic
beams, see Tullini and Savoia [29], who provided a successive approximation technique involving Fredholm
equations of the second kind and stated a sufficient condition for the convergence of their series expansion.
An exact interior solution for a beam with span-wise constant transverse loading was presented by Karttunen
and von Hertzen [18], see [19] for the anisotropic case. In extension on studies on homogeneous beams, an
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extensive literature has been published on problems of the deformation of functionally graded and layered or
laminated beams. For reviews, see Irschik [14], and Altenbach [3], Ghugal and Shimpi [12], as well as Sayyad
and Ghugal [23]. For advanced topics in laminated beams concern, e.g., deformable interfaces, see Schulze
[25], Weps [30], Adam and Heuer [2], or for spatially varying interfaces see Li and Liu [22]. Concerning
Boley’s successive method, an anisotropic beam theory has been given recently by Gahleitner and Schöftner
[11], and an application to bimorph piezoelectric beams of finite length composed of two layers with equal
material parameters was recently presented by Schöftner and Benjeddou [24]. Nir Enuma [10] presented an
extension of the works of von Karman [16], Seewald [26], Donnell [8] and Boley and Tolins [7] by developing
a successive procedure for functionally graded orthotropic rectangular beams with transverse loading over the
upper surface. A strategy for extending Boley’s method to laminated rectangular beams was also sketched in
[10], but no explicit analytic formulas were presented.

Although themore recent literature refers to advanced topics in composite beams, such asmentioned above,
there is a lack of systematic extensions of Boley’s successive method to layered rectangular beams. Successive
methods would allow to obtain analytic solutions of increasing accuracy for the sake of comparison. It is the
scope of the present contribution to extend the successive presentation given in Boley and Tolins [7] to the
case of a composite rectangular beam of constant total height, made of two isotropic homogeneous layers
with different material parameters and heights, the two layers being connected rigidly by a common straight
interface. This problem has the advantage of including the original single-layer problem treated in [7,8,16,28]
as a special case. As simple as the problem may appear, the analytic results for the two-layer beam turn out to
be quite complex. Therefore, from space limitations, we subsequently restrict to the corresponding extension
of Case I of [7], where results for a single-layer beam under transverse loading applied at the upper edge of
the beam were considered. Our intent is to enable formulations for the two-layer beam in a compact manner,
in the form of tables, analogous to the ones given in [7]. The method presented below, however, can be easily
applied to the other two load cases treated in [7] by analogy. Our subsequent methodology is different from the
one in [10], since we satisfy the stress continuity conditions at the interface between the two layers from the
onset. We also take the opportunity of clarifying somemathematical aspects of the Boley method of successive
approximation, which were not explicitly addressed in the above cited literature. Particularly, we explain the
consequences of the above-mentioned shifting process of bringing the results into a form, in which only one
order of derivative appears in a single step, i.e., in each of the columns of the tables in [7]. Moreover, as a main
result, we present formal mathematical expressions, which allow to compute the results for any number of
considered successive steps, enabling to obtain complete analytic results for any order of polynomial loading.
This is not directly possible from the results presented originally, e.g., in Boley and Tolins [7], where results
for the first three steps were presented, which, however, do not allow extensions by complete induction.

Our paper is organized as follows: Notations and basic relations of our problem are stated in Sect. 2. Boley’s
successive approximation technique is shortly discussed in Sect. 3. Extended Boley-type tables for the single
layer of the composite two-layer beam, which are needed subsequently, are provided in Sect. 4. A strategy
for extending Boley’s method to two-layer beams is given in Sect. 5. Displacement and stress continuity
conditions at the interface are treated, eventually leading to a form that is indeed in complete analogy to the
results for a single-layer beam treated in Table I of Boley and Tolins [7], namely in dependence from the
bending moment and from the axial force, as well as from their respective integrals and derivatives. A Boley-
type table representation for considering three successive steps is presented for the two-layer beam, as well as
more general formulas allowing the consideration of any number of steps, see Table 1 and Eqs. (60)–(62) for the
Airy stress functions. In Sect. 6, emphasis is given to the computation of displacement fields and the necessary
shifting process for obtaining the desired successive form, see Table 1 for three successive steps, and the more
general representation in Eqs. (74) and (75) for formal displacement representations that are applicable to any
number of steps. Completeness of the successive representation for a given polynomial order of the applied
loading is discussed. Also, for the sake of comparison with numerical computations, specific entries to Table 1
are presented for some special ratios between the elastic parameters, as well as between the thicknesses of the
layers. In Sect. 7, using these specific entries, comparisons to numerical computations are presented, where a
comparatively thick clamped–clamped beam of finite length with a linearly varying applied loading is used.
For this case, the three steps considered in Table 1 give a complete analytic set of solutions for the infinitely
extended beam. For the beam of finite length, analytic results are obtained by imposing additionally three
advantageous boundary conditions for a clamped end that were suggested by Szabo [27]. Since these three
boundary conditions are approximate, displacement distributions are obtained at the beam ends, which do not
vanish completely there, although they satisfy Szabo’s three boundary conditions. Numerical comparison is
performed utilizing the computer-code ABAQUS [1], on the basis of a sufficiently fine net of 1000 Elements. A
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Fig. 1 Composite beam made of two layers under transverse loading q(x)

first set of comparisons is obtained by prescribing the non-vanishing end displacements of the analytic solution
to the finite element model at the beam ends. In this case, the exterior solution should vanish, and the analytic
solution should completely coincide with the numerical solution. It is found that this is indeed the case, for
both stresses and displacements. A second comparison is performed by prescribing vanishing displacements at
the beam ends to the ABAQUS model. Then, an exterior solution should represent the differences between the
ABAQUS solution and the analytic solution, the latter one representing the interior solution. These differences
can be expected to fade away from the beam ends, due to the principle of St. Venant, see, e.g., [17] and Ziegler
[31]. This also is nicely reflected by the presented results. These successful comparisons give strong evidence
for the appropriateness of our Boley-type analytic solutions for the two-layer composite beam.

2 Problem statement

Consider an initially straight rectangular beam under the action of a distributed transverse loading that is
applied at the upper edge of the beam. The beam is composed of two rectangular, homogeneous, isotropic and
linear elastic layers, which are firmly bonded1 together at their common interface, see Fig. 1.

Young’s modulus, Poisson’s ratio and thickness of a layer are denoted by E, ν and c, respectively. These
entities are assumed to be different in the two layers. Index l refers to the lower layer, while index u corresponds
to the upper one. Numbers α, β, γ are introduced in order to denote the ratios between the values of E, ν and
c in the two layers:

α = El

Eu
= El

E
β = cl

cu
= cl

c
γ = νl

νu
= νl

ν
(1)

In the following, the thickness of the upper layer is abbreviated with cu = c, and we write shortly Eu =
E, νu = ν. The two layers have an equal width b, see Fig. 1, which is used as unit reference length, b = 1 in
the following. It is more over assumed that the thickness of each layer is sufficiently larger than b, i.e., that the
rectangular cross section is sufficiently narrow, such that a state of plane stress can be taken into account. A
global Cartesian (x, y)-coordinate system is attached to the interface of the layers, where the axial coordinate
is denoted by x , and y is the transverse coordinate. The transverse loading is denoted as q(x); it is applied at
y = c, see Fig. 1, and it is assumed to be sufficiently smooth. Suppressing the index that indicates a specific
layer, the plane stress field equations in each of the layers read, see, e.g., Timoshenko and Goodier [28]:

∂σx

∂x
+ ∂τxy

∂y
= 0

∂τxy

∂x
+ ∂σy

∂y
= 0 (2)

E
∂u

∂x
= σx − νσy E

∂v

∂y
= σy − νσx E

(
∂u

∂y
+ ∂v

∂x

)
= 2(1 + ν)τxy (3)

1 A solution on imperfect bonded interfaces has been proposed by one of the authors and is under review. For stress singularities
produced, e.g., by single transverse forces, the Fourier integral technique by Seewald [26] should be extended to composite beams,
which is planned to be undertaken in a future study.
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Normal stresses are denoted as σx and σy , and τxy stands for the shear stress; axial and transverse displacements
are denoted by u and v, respectively. The stress boundary conditions at the upper and lower edges of the beam
are, see Fig. 1:

σy(x, c) = q(x) τxy(x, c) = 0 (4)

σy(x, −βc) = 0 τxy(x,−βc) = 0 (5)

3 Boley’s successive approximation technique

Our strategy for solving the above stated problem is to apply and to extend a methodology originally developed
by Bruno A. Boley for single-layer rectangular beams, Boley and Tolins [7], see Boley [6] also. Boley’s
methodology consists in expanding Airy’s stress function ϕ in the form of a step-by-step series solution:

ϕ = ϕ1 + ϕ2 + ϕ3 + · · · (6)

with

∂4ϕi

∂y4
= −2

∂4ϕ(i−1)

∂x2∂y2
− ∂4ϕ(i−2)

∂x4
ϕi = 0 for i < 1 (7)

This formulation ensures thatϕ satisfies the bi-harmonic differential equation, as this should be, seeTimoshenko
and Goodier [28]. Note that Eq. (7) are to be understood as ordinary differential equations in the coordinate y.
The nonzero stress boundary conditions at the upper and lower edges of the single layer are satisfied by means
of the first term, ϕ1. The stress boundary conditions for ϕi , i > 1, thus become trivial at the upper and lower
edges, which means that there is

ϕi = ∂ϕi

∂y
= 0 for i > 1 (8)

Having solved these one-dimensional boundary value problems step by step, the stresses follow as, see [28]:

σx = ∂2ϕ

∂y2
σy = ∂2ϕ

∂x2
τxy = − ∂2ϕ

∂x∂y
(9)

Airy stress functions subsequentlywill be shortly denoted as potential functions or potentials. From the stresses,
displacements are eventually computed by integrating the constitutive relations, Eq. (3), and by adjusting the
arbitrary functions which arise so as to satisfy the third of Eq. (3). In [7], stresses and displacements were
computed step-wise for three loading cases, and the results were presented in the form of three tables, each
showing the respective results of the first three steps of the procedure. The loading cases considered in [7]
were a transverse loading at the upper edge of the single-layer beam (Table I of [7]), and a symmetric as well
as an anti-metric shear loading applied at the upper and lower edges (Tables II and III of [7]). Some short
explanations seem to be in order. The tables presented in [7] are formulated in terms of bending moments
and normal forces and their integrals and derivatives. As already mentioned, for the displacements a single
order of derivative only was used also in each of the columns of the tables in [7], the rest of the results of
the respective steps being shifted tacitly to the next columns. The first columns in the tables by Boley and
Tolins [7] correspond to ϕ1 in Eq. (7) and coincide with the results of the elementary Bernoulli–Euler beam
theory, see, e.g., Ziegler [31] for the latter theory. The second column, corresponding to ϕ2 in Eq. (7), dates
back to fundamental contributions by Karman [16] and Seewald [26], who obtained their results via an integral
transform technique. The third columns in the tables of [7], corresponding to the third step in Eq. (7), were
presented for the first time in [7]. Nowadays, results of a higher-order multi-step procedure can be easily
obtained by means of symbolic computation. It is the scope of our present paper to extend the Boley-type
integrate technique to two-layer beams.
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4 Extended Boley-type tables for the single layer of the composite two-layer beam

In a first step, the composite beam presented in Fig. 1 is cut along the common interface of the two layers into
two single-layer beams, in y = 0. The resulting free-body diagrams are shown in Figs. 2 and 3, which result
in five loading cases, three for the upper layer and two for the lower one.

In Fig. 2, the interfacial stresses are denoted by σ = σy(x, 0) and τ = τxy(x, 0), respectively. Note that the
interfacial stress continuity conditions at y = 0 are satisfied automatically by this convention. Results for the
Airy stress functions and the displacements for the five loading cases are gathered in abbreviated Boley-type
tables, which are given in “Appendix A.” Captions for these tables are denoted as follows: Table 2 belongs to
Fig. 2a, and Table 3 is due to the loading case in Fig. 2b. Two Tables, 4 and 5, are needed for the shear loading
case in Fig. 2c. These follow by representing the τ -loading case as the sum of a symmetric and an antimetric
loading, likewise to Case II and Case III in [7]. Correspondingly, the lower layer, see Fig. 2d, e, is represented
in Tables 6, 7 and 8, respectively. The potentials and displacements presented in the tables of “Appendix A”
are to be understood for the single layer of the composite beam, see Fig. 3 for positive directions of bending
moments M , shear forces Q and normal forces P . Note that bending moments in “Appendix A” are to be
understood with reference to the respective axis of the layer.

Bending moments, shear and axial forces are assigned with additional indices in order to distinguish
between the load cases indicated in Fig. 2; e.g., Mτu and Pτu denote bending moments and normal forces due
to the loading case τ in the upper layer, see Fig. 2c and Tables 4 and 5, respectively. The tables of “Appendix
A” have been independently derived using the step-wise original method of Boley and Tolins [7], but they
are formulated already in the global interfacial coordinate system shown in Fig. 1, using the coordinate y

x

x

y

y

c

βc

q

σ

σ

τ

τ

E, νE, νE, ν

αE, γναE, γν

(a)

(b) (c)

(d) (e)

Fig. 2 Free-body diagrams of the two layers of the composite beam

yu

Pu

Mu Qu

Qu + dQu

Mu + dMu

Pu + dPu

E, ν

q

τ

τ

σ

σ

yl

x

x

Pl

QlMl

Ql + dQl

Ml + dMl

Pl + dPl

αE, γν βc

c

Fig. 3 Stress resultants in the two layers of a differential beam element
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introduced there. The following convention for abbreviating x-derivatives is used:

()′ = d()

dx
, ()(n) = dn()

dxn
(10)

Particularly, we have for the upper layer

Mu =
∫ c/2

−c/2
σx yudyu Pu =

∫ c/2

−c/2
σxdyu (11)

Mu = Mqu + Mσu + Mτu Pu = Pτu (12)

Analogously, there is for the lower layer

Ml =
∫ βc/2

−βc/2
σx yldyl Pl =

∫ βc/2

−βc/2
σxdyl (13)

Ml = Mσ l + Mτ l Pl = Pτ l (14)

The following layer-wise differential equilibrium relations do hold, see Fig. 3

P ′
u − τ = 0 Q′

u + q − σ = 0 M (2)
u + q − σ + c

2
τ ′ = 0 (15)

P ′
l + τ = 0 Q′

l + σ = 0 M (2)
l + σ + β

c

2
τ ′ = 0 (16)

The tables of “Appendix A” can be used for single-layer homogeneous beams, in addition to the ones that were
presented before by Boley and Tolins [7]. As in the latter reference, displacements in these tables are to be
understood modulo rigid-body displacements.

5 A strategy for extending Boley’s method to two-layer beams

In the Boley-type tables of “Appendix A,” the expressions for potential functions and displacements in the
two layers are expressed as functions of the respective internal forces and moments and their axial integrals
and derivatives. Continuity of the interfacial stress components σ and τ , see Fig. 2, is automatically taken into
account. What remains is to assure continuity of the displacements of the two layers at the common interface
at y = 0,


u0 = u0u − u0l = 0 
v0 = v0u − v0l = 0 (17)

The index 0 refers to the interface of the two firmly bonded layers.
In order to reduce the unknowns in the tables of “Appendix A,” namely Mqu , Mσu , Mτu , Pτu and their

counterparts in the lower layer, Mσ l , Mτ l , Pτ l , it turns out that it is sufficient to study the difference at
y = 0 of the first derivatives of the axial displacements, 
u′

0, and of the second derivatives of the transverse

displacements, 
v
(2)
0 , which also must vanish:


u′
0 =

n∑
i=1

(
u′
0ui − u′

0li

) = 0 
v
(2)
0 =

n∑
i=1

(
v

(2)
0ui − v

(2)
0li

)
= 0 (18)

For instance, u′
0u1 follows as the sum of the first derivatives of the axial displacements in the first columns of

Tables 2, 3, 4 and 5 . This also holds for the next columns in the latter tables.
In a first step, we replace the unknowns Mqu, Mσu, Mτu, Mσ l , Mτ l and Pτ l , by four quantities, which we

choose as M, Mu0, P and Pτu . This can be performed by using the following relations of static equivalence:

Mu0 = Mqu + Mσu + Mτu + c

2
Pτu Ml0 = Mσ l + Mτ l − βc

2
Pτ l (19)
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The bending moment Mu0 denotes the moment of the axial stress σx in the upper layer with respect to the
interface y = 0. Ml0 is defined analogously. The total bending moment with respect to y = 0, and the resulting
normal force P becomes:

M0 = Mu0 + Ml0 = M P = Pτu + Pτ l (20)

Note that we suppress the subscript 0 for M in the following. The subsequent differential relations are also
needed:

M (2) = −q P ′ = 0 (21)

M (2)
qu = M (2) P ′

τu + P ′
τ l = 0 (22)

M ′
τu = − c

2
P ′

τu, M ′
τ l = β

c

2
P ′

τ l (23)

Equation (21) represent equilibrium relations for the composite two-layer beam, with no external loadings
at the lower edge, at y = −βc, and no shear force loadings at the upper and lower edge. Equation (22) are
immediate consequences of Eq. (21). The two relations in Eq. (23) follow from the vanishing of shear stresses
at the upper edge, in y = c, superposing Tables 4 and 5. Analogously, at the lower edge, at y = −βc, we use
Tables 7 and 8, respectively. Differentiating Eq. (19) twice, substituting the derivative of Eqs. (23), (22) and
the second derivative of Eq. (20) as well yields:

M (2)
σu = M (2)

u0 − M (2) M (2)
σ l = M (2) − M (2)

u0 (24)

We eventually obtain the following expressions:

E
u′
1 = − 6

αβ2

M

c2
+ 6

(
1 − αβ2

)
αβ2

Mu0

c2
+ 4(1 + αβ)

αβ

Pτu

c
− 4

αβ

P

c
(25)

E
u′
2 = 1 + 5ν(α − γ )

5α
M (2) − 1 − α + 5ν(α − γ )

5α
M (2)

u0 − 4(α + β)

15α
cP(2)

τu (26)

E
u′
3 =

(
175α − 104β2

)
2100α

c2M (4) − 26
(
α − β2

)
525α

c2M (4)
u0 + 4

(
α + β3

)
1575α

c3P(4)
τu (27)

E
v
(2)
1 = 12

αβ3

M

c3
− 12

(
1 + αβ3

)
αβ3

Mu0

c3
− 6

(
1 − αβ2

)
αβ2

Pτu

c2
+ 6

αβ2

P

c2
(28)

E
v
(2)
2 = − 12

5αβ

M (2)

c
+ 12(1 + αβ)

5αβ

M (2)
u0

c
+ 1 − α + 5ν(α − γ )

5α
P(2)

τu (29)

E
v
(2)
3 = (175α + 128β)

350α
cM (4) − 64(α + β)

175α
cM (4)

u0 + 26
(
α − β2

)
525α

c2P(4)
τu (30)

Recall that in the original tables of Boley and Tolins [7], all entities were expressed by the bending moment
M and the normal force P of the single-layer beam, as well as by their integrals and differentials. In order to
approach Boley-type tables for the two-layer composite beam, it is straightforward to further express Mu0 and
Pτu by a series in the bending moment M , its even-order derivatives and the normal force P . Hence, we write

Mu0 = a0M + a1cP + a2c
2M (2) + a4c

4M (4) + · · · (31)

Pτu = b0
c
M + b1P + b2cM

(2) + b4c
3M (4) + · · · (32)

Recall that P is taken as constant, see Eq. (21), since no distributed external axial loading is present for the
case at hand. The shear stress at both sides of the interface of the two layers cancels out, and a constant total
axial force P , if any, remains. Substituting Eqs. (31) and (32) into Eqs. (25)–(30) yields

E
u′
1 = − 6

αβ2c2
M − 4

αβc
P + 6

(
1 − αβ2

)
αβ2c2

(
a0M + a1cP + a2c

2M (2) + a4c
4M (4)

)

+ 4(1 + αβ)

αβc

(
b0
c
M + b1P + b2cM

(2) + b4c
3M (4)

) (33)
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E
u′
2 = 1 + 5ν(α − γ )

5α
M (2) − 1 − α + 5ν(α − γ )

5α

(
a0M

(2) + a2c
2M (4) + a4c

4M (6)
)

− 4c(α + β)

15α

(
b0
c
M (2) + b2cM

(4) + b4c
3M (6)

) (34)

E
u′
3 = c2

(
175α − 104β2

)
2100α

M (4) − 26c2
(
α − β2

)
525α

(
a0M

(4) + a2c
2M (6) + a4c

4M (8)
)

+ 4c3
(
α + β3

)
1575α

(
b0
c
M (4) + b2cM

(6) + b4c
3M (8)

) (35)

E
v
(2)
1 = 12

αβ3c3
M + 6

αβ2c2
P − 12

(
1 + αβ3

)
αβ3c3

(
a0M + a1cP + a2c

2M (2) + a4c
4M (4)

)

− 6
(
1 − αβ2

)
αβ2c2

(
b0
c
M + b1P + b2cM

(2) + b4c
3M (4)

) (36)

E
v
(2)
2 = − 12

5αβc
M (2) + 12(1 + αβ)

5αβc

(
a0M

(2) + a2c
2M (4) + a4c

4M (6)
)

+ 5ν(α − γ ) + 1 − α

5α

(
b0
c
M (2) + b2cM

(4) + b4c
3M (6)

) (37)

E
v
(2)
3 = c(175α + 128β)

350α
M (4) − 64c(α + β)

175α

(
a0M

(4) + a2c
2M (6) + a4c

4M (8)
)

+ 26c2
(
α − β2

)
525α

(
b0
c
M (4) + b2cM

(6) + b4c
3M (8)

) (38)

In order to find expressions for the unknown coefficients a and b in Eqs. (33)–(38), we re-substitute Eqs. (33)–
(38) into Eq. (18). Since the solution must hold for arbitrary functions M , we require that Eq. (18) must be
satisfied for P and for each order of derivative of M separately. This yields the following set of equations
gathered in Eqs. (39)–(46), which allows to compute the coefficients a and b in a step-by-step manner:

1 − a0
(
1 − αβ2) − b0

2β

3
(1 + αβ) = 0 (39)

1 − a0
(
1 + αβ3) − b0

β

2

(
1 − αβ2) = 0 (40)

1 − b1(1 + αβ) − a1
3

2β

(
1 − αβ2) = 0 (41)

1 − b1
(
1 − αβ2) − a1

2

β

(
1 + αβ3) = 0 (42)

1 + 5ν(α − γ ) − [
5ν(α − γ ) − α + 1

]
a0 − 4

3
(α + β)b0

+ 30
(
1 − αβ2

)
β2 a2 + 20(1 + αβ)

β
b2 = 0 (43)

1 − (1 + αβ)a0 − β

12

[
1 − α + 5ν(α − γ )

]
b0

+ 5

β2 (1 + αβ3)a2 + 5

2β
(1 − αβ2)b2 = 0 (44)

1 − 104β2

175α
− 104(α − β2)

175α
a0 + 16(α + β3)

525α
b0 − 12

[
1 − α + 5ν(α − γ )

]
5α

a2

− 16(α + β)

5α
b2 − 72

(
αβ2 − 1

)
αβ2 a4 + 48(αβ + 1)

αβ
b4 = 0 (45)

1 + 128β

175α
− 128(α + β)

175α
a0 + 52

(
α − β2

)
525α

b0 + 24(αβ + 1)

5αβ
a2
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+ 2
[
5ν(α − γ ) − α + 1

]
5α

b2 − 24
(
αβ3 + 1

)
αβ3 a4 + 12

(
αβ2 − 1

)
αβ2 b4 = 0 (46)

One obtains from the first four relations, see Eqs. (39)–(42):

a0 = αβ(3β + 4) + 1

α2β4 + 2α
(
2β2 + 3β + 2

)
β + 1

(47)

b0 = 6αβ(β + 1)

α2β4 + 2α
(
2β2 + 3β + 2

)
β + 1

(48)

a1 = 2αβ2(β + 1)

α2β4 + 2α
(
2β2 + 3β + 2

)
β + 1

(49)

b1 = α(4β + 3)β2 + 1

α2β4 + 2α
(
2β2 + 3β + 2

)
β + 1

(50)

This results for a0 and b0 can be substituted into the next two relations, Eqs. (43) and (44), in order to compute
a2 and b2, etc. The expressions for a2, b2, a4 and b4 are already lengthy, but can be easily obtained via symbolic
computation.

Now that Mu0 and Pτu have been obtained according to Eqs. (31) and (32), the potentials in the upper and
lower layers of the composite beam can be computed. We exemplary show this for the first part ϕu1 of the
upper layer’s potential. The corresponding transversal stress σyu1 is computed from the potentials of the first
columns of Tables 2, 3, 4 and 5 by using Eq. (9):

σyu1 =
(
2y3

c3
− 3y2

c2

) (
M (2)

qu + M (2)
σu + M (2)

τu

)
+ y

c
M (2)

τu + M (2)
σu +

(
y2

2c
− y

2

)
P(2)

τu (51)

Substituting derivatives of Eqs. (19), (22), (23) and (24) into Eq. (51), σyu1 is expressed via M (2), M (2)
u0 and

P(2)
τu only:

σyu1 = −M (2) +
(
1 + 2y3

c3
− 3y2

c2

)
M (2)

u0 −
(
y3

c2
− 2y2

c
+ y

)
P(2)

τu (52)

Following an argument by Seewald [26], the functional dependency on the y-coordinate in the potentials and
in σy , which is the second axial derivative of the former, see Eq. (9), can be taken as equal. Hence, we find:

ϕu1 = −M +
(
1 + 2y3

c3
− 3y2

c2

)
Mu0 −

(
y3

c2
− 2y2

c
+ y

)
Pτu (53)

Analogously, in order to compute ϕu2 and ϕu3, the relations in Eqs. (19)–(24) as well as their derivatives with
respect to x are substituted into the potentials of the second and third column of Tables 2, 3, 4 and 5 . The same
procedure has to be applied to the lower layer to get ϕl . Substituting Mu0 and Pτu from Eqs. (31) and (32) and
resorting with respect to M , P , M (2) and M (4), we get the counterparts for the two-layer beam of Case I of the
original single-layer table in Boley and Tolins [7]. In order to demonstrate the procedure, we note the result
for the first term ϕu1 and ϕl1 in more detail:

ϕu1 = M

[
a0 − 1 − b0

y

c
+ (2b0 − 3a0)

y2

c2
+ (2a0 − b0)

y3

c3

]

+ cP

[
(−3a1 + 2b1)

y2

c2
+ (2a1 − b1)

y3

c3

]
(54)

ϕl1 = M

[
a0 − 1 − b0

y

c
+ (3 − 3a0 − 2b0)

(
y

βc

)2

+ (2 − 2a0 − b0)

(
y

βc

)3]

− cP

[
(3a1 + 2b1)

y2

(βc)2
+ (2a1 + b1)

y3

(βc)3

]
(55)
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For a compact notation, a dimensionless parameter λ has been introduced:

λ = α2β4 + 4αβ3 + 6αβ2 + 4αβ + 1

12(αβ + 1)
(56)

It is noted that Eλc3 can be interpreted as an effective flexural rigidity, reducing to E2c3/3 for the homogeneous
beam of thickness 2c. Equations (54) and (55) now transform to:

ϕu1 = M

λ

[
k10 + k11

y

c
+ k12

( y

c

)2 + k13
( y

c

)3 ]
+ cP

λ

[
k̄12

( y

c

)2 + k̄13
( y

c

)3 ]
(57)

ϕl1 = M

λ

[
g10 + g11

y

c
+ g12

( y

c

)2 + g13
( y

c

)3 ]
+ cP

λ

[
ḡ12

( y

c

)2 + ḡ13
( y

c

)3 ]
(58)

For instance, the following abbreviations have been introduced in Eq. (57):

k10 = −αβ2
(
αβ2 + 4β + 3

)
12(αβ + 1)

k11 = −αβ(β + 1)

2(αβ + 1)
k12 = αβ2 − 1

4(αβ + 1)
k13 = 1

6
(59)

Repeating the procedure for the next successive steps and applying the method of complete induction, the
potentials ϕu and ϕl can be represented in the following compact series form, which allows to consider any
number n of steps in the successive procedure:

ϕu = 1

λ

[
n∑

i=1

c2(i−1)M (2(i−1)) fi + cP f p

]
(60)

ϕl = 1

λ

[
n∑

i=1

c2(i−1)M (2(i−1))gi + cP gp

]
(61)

with i as the number of iterations and f , g as polynomials in y:

fi =
2i+1∑
j=0

ki j
( y

c

) j
f p =

3∑
j=2

k̄1 j
( y

c

) j
gi =

2i+1∑
j=0

gi j
( y

c

) j
gp =

3∑
j=2

ḡ1 j
( y

c

) j
(62)

The coefficients for f and g can be taken from Tables 9 and 10 in “Appendix B,” where ki j , k̄1 j correspond
to the upper layer and gi j , ḡ1 j to the lower layer. Now, using Eqs. (60) and (61) and restricting to the first
three steps lead to a Boley-type table for the two-layer composite beam, see Table 1. Together with the formal
series representation in Eqs. (60) and (61), Table 1 represents the main results of our paper. Table 1 extends
Case I in the table of Boley and Tolins [7] also with respect to a non-vanishing constant axial force P: For the
homogenous beam, α = β = γ = 1, Table 1 reduces to the Case I in the table of Boley and Tolins [7], if we set
P equal zero in Eq. (20). For the sake of comparison to numerical computations, coefficients corresponding to
a two-layer composite beam with α = 4, β = 1, γ = 3 are presented in Tables 11 and 12 in “Appendix C.”

We now add a brief note on criteria to truncate the number of iterations. For polynomial loadings of order
n ≥ 0, the number of iterations

i(n) =
{
2 + n/2 if n is even
(3 + n)/2 if n is odd

(63)

is necessary for an exact solution which follows from Table 1. Furthermore, the magnitude of the correction
terms for i > 1 depends on the thickness-to-length ratio (aspect ratio) μ. This is exemplarily shown subse-
quently for the non-dimensional potential for a homogeneous beam (Case I of [7]) with reference bending
moment M , non-dimensional transverse coordinate η = y/c, aspect ratio μ = 2cβ/L < 1, beam length L
and parameter β of Eq. (1).

ϕ̄ = M(x)

M

[
(η − 2)(η + 1)2

4
μ0 − η

(
η2 − 1

)2
160

μ2 + (. . . ) μ2(i−1) + · · ·
]

(64)
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Fig. 4 Dependency of the upper fiber normal stress σx (x, c) on the iterations i and aspect ratio μ

x

y
m = 1 m = 5

L

2c

Fig. 5 Simply supported beam loaded by a sinusoidal load exemplarily with half-wave numbers m = 1, m = 5

Since the methodology is comparatively fast converging, a three-step procedure often is accurate enough,
dependent on the aspect ratio, which is exemplarily shown for the upper fiber normal stress σx (x, c) of a
homogeneous beam in Fig. 4. The results are normalized to the elementary (first iteration) normal stress. The
exact solution is a polynomial of 11th order which approximates a sine half-wave and leads to i = 7 necessary
iterations, see Eq. (63).

For non-polynomial loads, such as sine and cosine, the half-wave number must be taken into account
in order to achieve convergence of the iteratively obtained results. Exemplarily, this is shown for a simply
supported, homogeneous beam loaded by a distributed load q(x) = q0 sin(mπx/L) with the integer odd
half-wave number m ≥ 1, see Fig. 5. For this special case of loading and supporting conditions, a closed-form
solution can be determined with the Ansatz φ(x, y) = M(x) f (y) where the bending moment is computed
from M (2) = −q(x) satisfying boundary conditions at the lateral ends. Substituting the Ansatz into the bi-
potential equation leads to an ordinary differential equation of fourth order for f (y). Four constants of f (y)
are to be adjusted so that the stress boundary conditions at the horizontal surfaces are satisfied, see Fig. 5. To
demonstrate the convergence behavior of the introduced iterative procedure, the iteratively determined entities
are compared to those obtained from the closed-form solution. Exemplarily, this is shown for the upper fiber
normal stress σx (c, L/2) evaluated at x = L/2 where the closed-form solution reads

σx (c, L/2) = σ ∗
x = q0 sin

(πm

2

) 2π2μ2m2 + cosh(2πμm) − 1

−2π2μ2m2 + cosh(2πμm) − 1
(65)

including the parameters μ and m. Convergence studies are presented for two half-wave numbers (m = 1,
m = 5) and for two aspect ratios (μ = 1/5, μ = 1/4), see Fig. 6. In Fig. 6a, the iterative and closed-form
results agree already at the third and fourth iteration i for a sine half-wave withm = 1. For a half-wave number
m = 5, the iteratively obtained results agree for i = 7 and i = 8, see Fig. 6b. This gives evidence for the
statement by Boley and Tolins in their Paper [7] concerning the limited usage of the method for non-smoothly
varying forces.
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Fig. 6 Convergence behavior of the upper fiber normal stress dependent on the aspect ratio μ, the half-wave number m and the
number of iterations i

6 Computation of the displacement fields

We demonstrate the displacement–computation procedure for the upper layer in more detail, since it performs
analogously for the lower layer. The displacements are computed according to Eq. (3), where the normal
stresses σx and σy from Table 1 are substituted. By integration, one finds for the axial displacement:

u = 1

λE

[
f (I I )
1

∫
M dx + f (I I )

p cPx + c2 f (I I )
2 M ′ + c4 f (I I )

3 M (3)

− ν
(
f1M

′ + c2 f2M
(3) + c4 f3M

(5)
) ]

+ G(y)

(66)

and for the transversal displacement:

v = 1

λE

[
M (2)

∫
f1dy + c2M (4)

∫
f2dy + c4M (6)

∫
f3dy

− ν
(
f (I )
1 M + f (I )

p cP + c2 f (I )
2 M (2) + c4 f (I )

3 M (4)
) ]

+ F(x)

(67)

where roman superscripts denote derivatives with respect to y. In the course of the integration procedure, two
unknown functions, G(y) and F(x), are to be introduced. The latter functions have to be determined so that
the third of Eq. (3) is satisfied. Derivatives of Eq. (66) with respect to y, and of Eq. (67) with respect to x , as
well as the shear stress τxy from Table 1 are substituted into the third of Eq. (3). This gives

f (I I I )
1

∫
Mdx + f (I I I )

p cPx + M ′ (c2 f (I I I )
2 + 2 f (I )

1

)
︸ ︷︷ ︸

2(k11+3k23)/c

+M (3)
(
c4 f (I I I )

3 + 2c2 f (I )
2 +

∫
f1dy

)
︸ ︷︷ ︸

2(k21+3k33)c

+ M (5)
(
c2

∫
f2dy + 2c4 f (I )

3

)
+ M (7)c4

∫
f3dy + λEF ′ + λEG(I ) = 0

(68)

Substituting the coefficients according to “Appendix B” shows that the terms containing
∫
Mdx, cPx, M ′

and M (3) are functions of x only. However, the terms containing M (5) and M (7) are y dependent also. To
satisfy the requirement that Eq. (68) must contain functions of x and y only, but no mixed terms, we assume
that M (5) = const for the time being. One then finds the following ordinary differential equation to compute
G(y):

M (5)
(
c2

∫
f2dy + 2c4 f (I )

3

)
+ λEGI = 0 (69)
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In the framework of this reasoning, we obtain for F(x):

f (I I I )
1

∫
Mdx + f (I I I )

p cPx + M ′ (c2 f (I I I )
2 + 2 f (I )

1

)

+M (3)
(
c4 f (I I I )

3 + 2c2 f (I )
2 +

∫
f1dy

)
+ λEF ′ = 0

(70)

The displacements are determined by integration of Eqs. (69) and (70) and re-substituting the results into
Eqs. (66) and (67). Modulo rigid-body displacements, this leads to

u(x, y) = 1

λE

[
f (I I )
1

∫
Mdx + f (I I )

p cPx + M ′ (c2 f (I I )
2 − ν f1

)

+M (3)
(
c4 f (I I )

3 − νc2 f2
)

− M (5)
(
c2

∫∫
f2dy

2 + c4(2 + ν) f3

)]
(71)

v(x, y) = 1

λE

[
− f (I I I )

1

∫∫
Mdx2 − f (I I I )

p cP
x2

2
− ν f (I )

p cP − M
(
c2 f (I I I )

2 + (2 + ν) f (I )
1

)

−M (2)
(
c4 f (I I I )

3 + c2(2 + ν) f (I )
2

)
+ M (4)

(
c2

∫
f2dy − νc4 f (I )

3

)]
(72)

The so-determined displacements do satisfy the constitutive relations in Eq. (3). With respect to the displace-
ment continuity conditions, see Eq. (17), we find from the coefficients of Tables 9 and 10 in “Appendix B”
that


u0 = c4k30(γ − α)(2 + ν)

αEλ
M (5) 
v0 = c3k31(γ − α)

αEλ
M (4) (73)

Thus, Eq. (17) are satisfied with M (4) = −q(2) = 0, or for the homogeneous case with α = β = γ = 1.
First, some short remarks concerning the homogeneous case seem to be instructive. In order that the interface
displacement continuity conditions are satisfied, M (4) and M (5) need not to vanish here. In order to include
corresponding non-vanishing terms into a Boley-type table, an additional column n = 4 must be opened, to
which the terms containing M (4) and M (5) have to be shifted. But additional terms containing M (4) and M (5),
as well as derivatives of M of higher order, come into the play from integrating the stress contributions in
the newly opened columns, and these terms must be included in the table also. So, it is to be noted that the
displacement terms in the i th column of a Boley-type table, say, do not only stem from the stresses in this i th
column, but also include contributions from column i−1.We have designed our present notation by introducing
functions fi in order to make this fact more visible and tractable than this is possible from the original tables in
Boley and Tolins [7]. The above remarks on the shifting procedure of course apply to the composite two-layer
beam also, c.f. the columns in our Table 1. However, for this case of an inhomogeneous beam, the situation is
complicated in so far, as it has turned out above to be necessary to assume that M (4) = −q(2) = 0, in order
that the displacement continuity conditions at the interface y = 0 are satisfied in the course of a three-step
procedure, n = 3, see Eq. (73). Now, in order that complete solutions can be obtained for polynomial loadings
q of a higher order than one, the situation again turns out to be resolvable by opening additional columns and
repeating the above procedure. Analogous to our above discussion for n = 3, the vanishing of derivatives
of the loading of a properly increased order has to be required, in order to satisfy the respective extended
forms of Eq. (73). Following the above reasoning, the displacements presented in Table 1 have been eventually
obtained, restricting to the first three columns, n = 3; likewise this was done in Boley and Tolins [7]. Note
that our Table 1 reduces to Case I of [7] for the homogeneous case, α = β = γ = 1. However, as already
shortly noted above, our present notation allows to formulate the displacements of the composite beam in the
following series form, without restricting the number n of columns, with n > 1. By complete induction, the
results in Table 1 for the displacements can thus be written as:

u(x, y) = 1

λE

[
f (I I )
1

∫
Mdx + f (I I )

p cPx +
n∑

i=2

M (2i−3)c2(i−2)
(
c2 f (I I )

i − ν fi−1

) ]
(74)

v(x, y) = − 1

λE

[
f (I I I )
1

∫∫
Mdx2 + cP

(
f (I I I )
p

x2

2
+ ν f (I )

p

)
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Table 1 Boley-type table for a two-layer beam

i 1 2 3

fi (y)
3∑
j=0

k1 j
( y

c

) j 5∑
j=0

k2 j
( y

c

) j 7∑
j=0

k3 j
( y

c

) j

f p(y)
3∑
j=2

k̄1 j
( y

c

) j
0 0

ϕi
M

λ
f1 + cP

λ
f p c2

M (2)

λ
f2 c4

M (4)

λ
f3

σx
M

λ
f (I I )
1 + cP

λ
f (I I )
p c2

M (2)

λ
f (I I )
2 c4

M (4)

λ
f (I I )
3

τxy −M (1)

λ
f (I )
1 −c2

M (3)

λ
f (I )
2 −c4

M (5)

λ
f (I )
3

σy
M (2)

λ
f1 c2

M (4)

λ
f2 c4

M (6)

λ
f3

Enλu(x, y) f (I I )
1

∫
M dx + f (I I )

p cP x M ′
(
c2 f (I I )

2 − νn f1
)

M (3)
(
c4 f (I I )

3 − νnc2 f2
)

Enλu(x, 0)
2k12
c2

∫
M dx + 2k̄12

c
cP x M ′(2k22 − νnk10

)
M (3)c2

(
2k32 − νnk20

)

Enλv(x, y)− f (I I I )
1

∫∫
Mdx2 − f (I I I )

p cP
x2

2
−M

[
c2 f (I I I )

2 + (2 + νn) f
(I )
1

]
− νnc P f (I )

p −M (2)
[
c4 f (I I I )

3 + (2 + νn)c2 f
(I )
2

]

Enλv(x, 0)−6k13
c3

∫∫
Mdx2 − 3k̄13

P

c2
x2 −M

[
(2 + νn)k11 + 6k23

c

]
−M (2)c

[
(2 + νn)k21 + 6k33

]

λ = 1 + α2β4 + 4αβ3 + 6αβ2 + 4αβ

12(1 + αβ)
α = El

E
β = cl

c
γ = νl

ν

Upper layer : En = E, νn = ν lower layer : En = αE, νn = γ ν, replace k by g

()(I ) = d()

dy
, ()(I I ) = d2()

dy2
, ...()′ = d()

dx
, ()(2) = d2()

dx2
, ...

+
n∑

i=2

M (2(i−2))c2(i−2)
(
c2 f (I I I )

i + (2 + ν) f (I )
i−1

) ]
(75)

Note that such an inductive reasoning is not directly possible when starting the original forms presented in
[7]. Recall that, for displacements in the lower layer, fi and f p have to be replaced by gi and gp in Eqs. (74)
and (75).

7 Numerical example

For the sake of comparison to numerical computations, the previously determined results are applied to a
clamped–clamped two-layer beam, see Fig. 7, with length L , thickness 2c, a stiffer lower layer with El = 4E ,
νl = 3ν and a thickness-to-length ratio μ = 2c/L = 1/4.

Stresses and displacements are computed and compared to a two-dimensional (2D) finite element analysis
(FEA), using the commercial software ABAQUS [1]. The example beam with L = 50mm, 2c = 12.5 mm,
ν = 0.1, E = 104 N/mm2 and q0 = 12 N/mm is meshed with elements of the type CPS8, an 8-node bi-
quadratic plane stress quadrilateral element. A comparatively high number of 200 elements in axial direction
and 50 elements in transverse direction, respectively, are used in order to obtain sufficiently converged solutions.
The boundary conditions that are applied at the clamped ends read

u(−L/2, 0) = 0 v(−L/2, 0) = 0 φ(−L/2) = 0

u(L/2, 0) = 0 v(L/2, 0) = 0 φ(L/2) = 0 (76)
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x

y

q(x) = q0
(
3
4 − x

2L

)

L/2L/2

E, ν

4E, 3ν
2c

Fig. 7 Redundant two-layer beam subjected to a linear distributed loading, acting on the upper surface at y = c

The following convenient definition for a generalized cross-sectional rotation, suggested by Szabo [27], is used
as trivial boundary condition in order to obtain the analytic solutions according to the above formulations:

φ(x) = u(x, c) − u(x, −c)

2c
(77)

The FEA is performed by setting up two different types of boundary conditions, which are denoted as “elastic”
and “rigid” in the following, and are abbreviated by the superscripts “E” and “R,” respectively. For the elastic
case “E,” the set of boundary conditions reads at x = ±L/2:

uE(±L/2, y) = u(±L/2, y) vE(±L/2, y) = v(±L/2, y) (78)

where u and v mean the analytic solutions derived by our above theory. Hence, since in our case of a linearly
distributed loading, see Fig. 7, the three-step formulation in Table 1 gives a complete solution, the FEA for
case “E” should coincide with our analytic solution.

For the rigid case “R,” the following trivial constraints are prescribed at x = ±L/2 for the FEA:

uR(±L/2, y) = 0 vR(±L/2, y) = 0 (79)

This corresponds to the model of a completely undeformable clamped end.
In order to obtain the analytic solution according to Table 1, taking into account the reduced clamping

boundary conditions inEq. (76), the correspondingbendingmomentM andnormal force P are needed.They are
obtained by integration of the beam equilibrium relations, Eq. (21), with the three redundant static integration
constants. We now take into account the displacements in Table 1 and substitute the coefficients of Tables 11
and 12, which refer to our present example with α = 4, β = 1, γ = 3. Adding rigid-body displacement fields
with three further kinematic unknown constants, satisfaction of the six boundary conditions in Eq. (76) leads to
a set of six linear relations for the three static redundant constants and the three kinematic constants. Bending
moment and normal force eventually follow in analytic form to:

M(x) = q0L
2
[

x3

12L3 − 3x2

8L2 − x

80L
+ 1

32

+νμ2 25
(
1459μ2 + 328

)
L − 2

(
3755μ2 + 13156

)
x

11680
(
μ2(73ν + 40) + 20

)
L

+μ2 1100
(
2μ2 + 1

)
L − 3

(
1529μ2 + 144

)
x

46720
(
2μ2 + 1

)
L

]

P(x) = cq0
3(229ν − 90)

584
(80)

Note that our analytic formulation indeed reflects the presence of a normal force, the sign of which is governed
by the value of Poisson’s ratio ν. Such a result cannot be obtained in the framework of the kinematic Bernoulli–
Euler assumptions.
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(b) stresses at x = −L/4
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x σE

y τE
xy

σR
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y τR
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Fig. 8 Stress distributions in non-dimensional form, see Eq. (81). The analytic results are represented by the continuous lines,
FEA results corresponding to the markers. The superscript “E” denotes elastic and “R” rigid supporting constraints for the FEA
model, see Eqs. (76) and (78) for the elastic case and Eq. (79) for the rigid case, respectively

7.1 Stress field

For determining the analytic stress solutions, we substitute bending moment M and normal force P into
Table 1 by using the coefficients of Tables 11 and 12 in “Appendix C.” Corresponding non-dimensionalized
stress distributions are shown in Fig. 8 where the stresses σx , σy and τxy are evaluated at three axial coordinates:

(a) in the vicinity of a clamped end, at x = −49L/100
(b) in the mid of the left field, at x = −L/4
(c) in the middle of the span, at x = 0

The stresses are normalized by introducing the non-dimensional transverse coordinate η = y/c in the following
form:

σx = σx (x, η)

|σ ∗
x | σy = σy(x, η)

|σ ∗
y | τxy = τxy(x, η)

|τ ∗
xy |

(81)

where the terms in the denominators of Eq. (81) denote the results from our theory evaluated at the respective
x-coordinate, where σ ∗

x is evaluated at the lower fiber, at η = −1, σ ∗
y is evaluated at the upper fiber, at η = 1,

and τ ∗
xy is taken at the common interface, in η = 0, respectively.

It turns out that the stress distributions derived from our theory are in full agreement with the FEA results for
case “E,” as this should be, since in this case the exterior solution does vanish, because boundary conditions do
coincide, see Eq. (76). For rigid constraints, case “R,” the FEA solution deviates from our analytical solution,
since boundary conditions are different, see Eq. (79), and case “R” thus takes into account end effects, which are
not covered in this work. It is seen from Fig. 8, however, that, in accordance with Saint-Venant’s principle, the
non-vanishing exterior solution, which represents the difference with respect to our analytic solution, decays
nicely here within a short distance away from the clamped ends, also in the present case of a comparatively
thick composite beam. At the clamped ends, the exterior solution obviously shows stress concentrations and a
jump-type behavior, which cannot bewell reflected by the FEA. That iswhywe have performed our comparison
for a cross section in the vicinity of the clamped end only, at x = −49L/100, see Fig. 8a.

7.2 Displacements

Cross-sectional deformations in axial and transverse direction are presented in Fig. 9. The deformations u and
v are normalized to

u = u(x, η)

|u∗| v = v(x, η)

|v∗| (82)
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(c)displacements at x = 0

u v uE vE uR vR

Fig. 9 Cross-sectional displacements in axial and transverse direction in non-dimensional form, see Eq. (82). The analytic results
are represented by the continuous lines, FEA results corresponding to the markers. The superscript “E” denotes elastic and
“R” rigid supporting constraints for the FEA model, see Eqs. (76) and (78) for the elastic case and Eq. (79) for the rigid case,
respectively

−0.5 −0.25 0 0.25 0.5
0

0.5

1

ξ

[−
]

(a) (b)deflection curve v(ξ, 0)

−0.5 −0.25 0 0.25 0.5

−1

0

1

ξ

[−
]

axial displacement u(ξ, 0)

theory 1stcolumn FEAE FEAR

Fig. 10 Transverse and axial displacements of the beam axis, at η = 0, by introducing the non-dimensional axial coordinate
ξ = x/L . The analytic results are represented by the continuous lines, FEA results corresponding to the markers. The superscript
“E” denotes elastic and “R” rigid supporting constraints for the FEAmodel, see Eqs. (76) and (78) for the elastic case and Eq. (79)
for the rigid case, respectively. Results following from considering the first column in Table 1 only are shown as red lines

where u∗ and v∗ denote the displacements, derived from our theory evaluated at the upper fiber at η = 1 and
at the respective x-coordinates. Analogous to the stress fields presented in Fig. 8, the analytical results are in
excellent agreement to the FEA results for case “E,” i.e., when elastic constraints are prescribed on the FEA
model. Near the clamped end, the analytical solution and the FEA-rigid solution “R” again deviate from the
analytic solution due to end effects. Away from the clamped end, see Fig. 9b, c, the transverse displacements
do coincide, and the shape of the axial displacements is similar to the FEA-rigid result “R,” but shifts are to
be observed.

The deflection cure v(ξ, 0) of the axis and the axial cross-sectional mid-span displacement u(ξ, 0) are
presented in Fig. 10 by introducing the non-dimensional axial coordinate ξ = x/L . The entities are normalized
to

u = u(x, 0)

|u∗∗| v = v(x, 0)

|v∗∗| (83)

with u∗∗ = u(1/4, 0) = 0.00086 mm and v∗∗ = v(0, 0) = 0.033 mm as the analytical results for the
displacements at ξ = 0 and η = 0 exemplarily. Likewise to the latter results, the FEA results for case “E”
are in agreement with the analytic solution. This also holds for the deflection curve of the “R” solution.
Additionally, the results obtained from the first column in Table 1 are shown in Fig. 10. A deviation to our
analytic solution of 37% can be observed for the deflection at the mid-span ξ = 0.
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8 Conclusion

In the present contribution, analytic plane stress linear elasticity results for two-layer composite rectangular
beams of infinite axial extension have been obtained, in extension and in analogy to Boley’s successive
approximation procedure, see Boley and Tolins [7] for the single-layer case. To the best knowledge of the
present authors, our results for the two-layer beam have not been published elsewhere in the open literature so
far. Although results have turned out to be quite complex, a compact notation has allowed us presenting them
in a form analogous to the one stated by Boley and Tolins [7] for the single-layer beam, see Table 1, which
contains Case I of [7] as a special case. Our two-layer formulation automatically satisfies the stress continuity
conditions at the interface of the two layers. In order to enable this, we above have started from successive
approximation results for appropriate load cases that are applied to the single layer separately and that are put
together properly. Eventually enforcing displacement continuity at the interface between the two layers, we
have succeeded to derive results for the composite beam that exactly do satisfy the equilibrium field equations,
the stress continuity conditions at the interface and the stress boundary conditions at the upper and lower edges
of the beam.Moreover, our compact notation allows considering more than the three successive steps that were
considered in [7], see Eqs. (60)–(62) and Eqs. (74) and (75) for stress functions and displacements, respectively.
In extension of previous successive approximation formulations from the literature, it is thus possible to obtain
complete solutions for beams for imposed loadings of an arbitrary polynomial order, meaning that the solutions
do satisfy exactly the stress boundary conditions at the upper and lower edges of the composite beam, the stress
transition conditions at the interface of the two layers, as well as the equilibrium relations within the layers.
When the number of steps needed for the respective polynomial order of the imposed load is taken into account,
the displacement continuity relations at the interface as well as the linear constitutive relations within the two
layers are also satisfied exactly by our results. However, Boley’s successive approximation procedure is known
to converge rather fast. Boley and Tolins [7] restricted their presentation on single-layer beams to three steps.
We have presented corresponding three-step results for the two-layer beam in more detail in the Boley-type
Table 1. Entries for specific ratios between the elastic parameters and between the thicknesses of the layers
have also been given, for the sake of subsequent comparison to finite element computations. Interior solutions
for beams of finite length have been derived in a straightforward manner. Particularly, we have presented
corresponding analytic results for a comparatively thick clamped–clamped beam under the action of a linearly
varying applied load, for which Table 1 is sufficient. As can be seen from Figs. 8, 9 and 10, the results of
our proposed method agree well with the results of the finite element solutions. As far as the present authors
can see, there are nevertheless two main advantages of the proposed analytical formulation: First, from a
theory point of view, the method allows a comparison of the present semi-exact results for displacements and
stresses with the assumptions of numerous refined beam theories that have been developed in literature, the
basic Bernoulli–Euler theory being contained directly in the first column of Table 1, as mentioned above. For
analogies between the Bernoulli–Euler theory and some refined beam theories, see, e.g., Irschik [13]. Table 1
allows to relate the appropriateness of assumptions of refined theories to the polynomial order of the loading.
Moreover, from the point of engineering practice, formulations of the present type allow to perform parametric
symbolic computations in the design process of composite beams. It is hoped that our results will serve as
further benchmark solutions for performing comparisons to higher-order theories for composite rectangular
beams, and that our above discussion on some mathematical aspects of Boley’s successive approximation
procedure, such as on the shifting process, will stimulate extensions of this method to more advanced topics,
such as non-isotropic and non-homogeneous layers, or non-rigid interfaces.
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Appendix A

Table 2 Load case qu

1 2 3

ϕ
(
2y3

c3
− 3y2

c2

)
Mqu −

(
y5

5c3
− y4

2c2
+ 2y3

5c − y2

10

)
M (2)

qu

(
y7

140c3
− y6

40c2
+ y5

25c − y4

60 − 47y3c
2100 + 71y2c2

4200

)
M (4)

qu

Eu(x, 0) − 6
c2

∫
Mqudx 1

5M
′
qu

71c2
2100M

(3)
qu

Ev(x, 0) − 12
c3

∫∫
Mqudx2 12

5c Mqu
47c
350M

(2)
qu

Table 3 Load case σu

1 2 3

ϕ
(
2y3

c3
− 3y2

c2
+ 1

)
Mσu −

(
y5

5c3
− y4

2c2
+ 2y3

5c − y2

10

)
M (2)

σu

(
y7

140c3
− y6

40c2
+ y5

25c − 7y4

120 + 32y3c
525 − 13y2c2

525

)
M (4)

σu

Eu(x, 0) − 6
c2

∫
Mσudx

( 1
5 − ν

)
M ′

σu − 26c2
525 M (3)

σu

Ev(x, 0) − 12
c3

∫∫
Mσudx2 12

5c Mσu − 64c
175M

(2)
σu

Table 4 Load case τuM

1 2 3

ϕ
(
2y3

c3
− 3y2

c2
+ y

c

)
Mτu −

(
y5

5c3
− y4

2c2
+ 2y3

5c − y2

10

)
M (2)

τu

(
y7

140c3
− y6

40c2
+ 19y5

600c − y4

60 + 11y3c

4200
+ y2c2

4200

)
M (4)

τu

Eu(x, 0) − 6
c2

∫
Mτudx 1

5M
′
τu

c2
2100M

(3)
τu

Ev(x, 0) − 12
c3

∫∫
Mτudx2

( 2
5c − ν

c

)
Mτu − 11c

700M
(2)
τu

Table 5 Load case τuP

1 2 3

ϕ
(
y2

2c − y
2

)
Pτu −

(
y4

12c − y3

6 + y2c
12

)
P(2)

τu

(
y6

240c − y5

80 + y4c
72 − y3c2

144
+ y2c3

720

)
P(4)

τu

Eu(x, 0) 1
c

∫
Pτudx − c

6 P
′
τu

c3
360 P

(3)
τu

Ev(x, 0) 0 ν
2 Pτu

c2
24 P

(2)
τu

Table 6 Load case σl , cl = βc

1 2 3

ϕ

(
2y3

c3l
+ 3y2

c2l
− 1

)
Mσ l −

(
y5

5c3l
+ y4

2c2l
+ 2y3

5cl
+ y2

10

)
M (2)

σ l

(
y7

140c3l
+ y6

40c2l
+ y5

25cl
+ 7y4

120 + 32cl y3

525 + 13c2l y
2

525

)
M (4)

σ l

αEu(x, 0) 6
c2l

∫
Mσ ldx

(
γ ν − 1

5

)
M ′

σ l
26c2l
525 M (3)

σ l

αEv(x, 0) − 12
c3l

∫∫
Mσ ldx2 12

5cl
Mσ l − 64cl

175 M
(2)
σ l
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Table 7 Load case τlM , cl = βc

1 2 3

ϕ

(
2y3

c3l
+ 3y2

c2l
+ y

cl

)
Mτ l −

(
y5

5c3l
+ y4

2c2l
+ 2y3

5cl
+ y2

10

)
M (2)

τ l

(
y7

140c3l
+ y6

40c2l
+ 19y5

600cl
+ y4

60 + 11cl y3

4200 − c2l y
2

4200

)
M (4)

τ l

αEu(x, 0) 6
c2l

∫
Mτ ldx − 1

5M
′
τu − c2l

2100M
(3)
τ l

αEv(x, 0) − 12
c3l

∫∫
Mτ ldx2

( 2
5 − γ ν

) Mτ l

cl
− 11cl

700 M
(2)
τ l

Table 8 Load case τl P , cl = βc

1 2 3

ϕ
(

y2

2cl
+ y

2

)
Pτ l −

(
y4

12cl
+ y3

6 + cl y2

12

)
P(2)

τ l

(
y6

240cl
+ y5

80 + cl y4

72 + c2l y
3

144 + c3l y
2

720

)
P(4)

τ l

αEu(x, 0) 1
cl

∫
Pτ ldx − cl

6 P
′
τ l

c3l
360 P

(3)
τ l

αEv(x, 0) 0 − γ ν
2 Pτ l − c2l

24 P
(2)
τ l

Appendix B

Table 9 Upper layer coefficients ki j and k̄1 j

k1 j k2 j k3 j k̄1 j

0 (a0 − 1)λ a2λ a4λ –
1 −b0λ −b2λ −b4λ –

2 (2b0 − 3a0) λ
( 1
10a0− 2

15b0−3a2+2b2
)
λ

(
1
24 − 13

525a0 + 2
1575b0 + 1

10a2 − 2b2
15 − 3a4 + 2b4

)
λ (2b1 − 3a1)λ

3 1
6

(− 2
5a0+ 11

30b0+2a2 − b2
)
λ − ( 1

12 − 32
525a0 + 13

1575b0 + 2
5a2 − 11

30b2 − 2a4 + b4
)
λ (2a1 − b1)λ

4 0 − 1
6 k12 − 1

24 k10 − 1
6 k22 0

5 0 − 1
60 − 1

120 k11 − 1
10 k23 0

6 0 0 1
120 k12 0

7 0 0 1
1680 0

λ = 1+α2β4+4αβ3+6αβ2+4αβ
12(1+αβ)

α = El
E β = cl

c

Table 10 Lower layer coefficients gi j and ḡ1 j

g1 j g2 j g3 j ḡ1 j

0 k10 k20 k30 −
1 k11 k21 k31 −
2 αk12 αk22 − 1

2 (α − γ ) νk10 αk32 − 1
2 (α − γ ) νk20 αk̄12

3 1
6α αk23 + 1

6

[
(α − γ )(2 + ν)

]
k11 αk33 + 1

6

[
(α − γ )(2 + ν)

]
k21 αk̄13

4 0 − 1
6αk12 − 1

24 k10 − 1
6 g22 0

5 0 − 1
60α − 1

120 k11 − 1
10 g23 0

6 0 0 1
120αk12 0

7 0 0 1
1680α 0

λ = 1+α2β4+4αβ3+6αβ2+4αβ
12(1+αβ)

α = El
E γ = ν

νl
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Appendix C

Table 11 Upper layer coefficients for a two-layer composite beam with α = 4, β = 1, γ = 3

k1 j k2 j k3 j k̄1 j

0 −11

15

7ν + 144

2190

−47390ν2 + 247394ν + 4082515

67145400
−

1 −4

5

37ν − 94

1095

2
(
1995ν2 − 17857ν − 185862

)
8393175

−

2
3

20
−676ν + 735

8760

313320ν2 + 612864ν − 15834017

268581600

1

6

3
1

6

11(8ν + 29)

2190

−25144ν2 − 283472ν + 106269

26858160

1

20

4 0 − 1

40

676ν + 2341

52560
0

5 0 − 1

60
−88ν + 173

21900
0

6 0 0
1

800
0

7 0 0
1

1680
0

Table 12 Lower layer coefficients for a two-layer composite beam with α = 4, β = 1, γ = 3

g1 j g2 j g3 j ḡ1 j

0 −11

15

7ν + 144

2190

−47390ν2 + 247394ν + 4082515

67145400
−

1 −4

5

37ν − 94

1095

2
(
1995ν2 − 17857ν − 185862

)
8393175

−

2
3

5

127ν − 735

2190

206010ν2 − 1594656ν − 15834017

67145400

2

3

3
2

3

37ν − 94

1095

12670ν2 − 152656ν − 470139

6714540

1

5

4 0 − 1

10

2273 − 254ν

26280
0

5 0 − 1

15

311 − 30ν

10950
0

6 0 0
1

200
0

7 0 0
1

420
0
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