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Abstract In this investigation, a computational analysis is conducted to study a magneto-thermoelastic prob-
lem for an isotropic perfectly conducting half-space medium. The medium is subjected to a periodic heat flow
in the presence of a continuous longitude magnetic field. Based on Moore–Gibson–Thompson equation, a
new generalized model has been investigated to address the considered problem. The introduced model can
be formulated by combining the Green–Naghdi Type III and Lord–Shulman models. Eringen’s non-local the-
ory has also been applied to demonstrate the effect of thermoelastic materials which depends on small scale.
Some special cases as well as previous thermoelasticity models are deduced from the presented approach. In
the domain of the Laplace transform, the system of equations is expressed and the problem is solved using
state space method. The converted physical expressions are numerically reversed by Zakian’s computational
algorithm. The analysis indicates the significant influence on field variables of non-local modulus and mag-
netic field with larger values. Moreover, with the established literature, the numerical results are satisfactorily
examined.
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E-mail: mohammad.malikan@pg.edu.pl
E-mail: victor.eremeev@pg.edu.pl; victor.eremeev@unica.it

V. A. Eremeyev
DICAAR, Università degli Studi di Cagliari, Via Marengo, 2, 09123 Cagliari, Italy

http://orcid.org/0000-0003-3363-7924
http://orcid.org/0000-0002-3852-5473
http://orcid.org/0000-0002-1959-1811
http://orcid.org/0000-0001-7356-2168
http://orcid.org/0000-0002-8128-3262
http://crossmark.crossref.org/dialog/?doi=10.1007/s00161-021-00998-1&domain=pdf


1068 A. E. Abouelregal et al.

Keywords Moore–Gibson–Thompson thermoelasticity · Zakian’s computational algorithm · Non-local
theory · Half-space · State space approach · Heat source

List of symbols

λ, μ Lame’s constants
K Thermal conductivity
αt Thermal expansion coefficient
I Identity tensor
γ = (3λ + 2μ)αt Coupling parameter
H Initial magnetic field
T0 Environmental temperature
J Current density
θ = T − T0 Temperature increment
u Displacement vector
T Absolute temperature
F Body force vector
CE Specific heat
Q Heat source
τ Non-local stress tensor
τ0 Relaxation time
σ Local stress tensor
h Induced magnetic field
ε Strain tensor
ρ Material density
|x ′ − x | Euclidean distance
E Induced electric field
α(|x ′ − x |) Non-local Kernel
oxyz Cartesian coordinate
τi j Local stress tensor
∇2 Laplacian operator
ξ = e0a/ l Non-local parameter
E Young’s modulus
a Internal characteristic length
t Time
l External characteristic length
μ0 Magnetic permeability
e0 Adjusting constant
σ0 Electric conductivity

1 Introduction

In-depth investigation on the mechanical and thermal interactions within a solid medium is of great interest
in various scientific fields. Modern aeronautical and astronautical engineering, high-energy particle acceler-
ating devices and different systems exploited in nuclear and industrial applications are only a few examples.
Consideration of second sound effect in general thermoelasticity models plays a significant role in analyzing
elastic body within a verity of scientific and technological fields. In contradiction with physical observation,
the infinite thermal propagation speed is predicted through conventional uncoupled theories. On the other hand,
general thermoelasticity theories overcome this flaw by supporting second sound phenomenon of heat wave
velocity. Biot [1] has made improvements in irreversible thermodynamic processes by implementing improved
thermoelastic methods.

By proposing the flux rate concept, Lord and Shulman [2] presented the general model of thermoelasticity.
By considering the hyperbolic form of the heat transfer equation, a final rate of thermal signaling is allowed
in the model. Another major generalization theory was proposed by Green and Lindsay in the field of coupled
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thermoelasticity [3]. They established temperature-dependent thermoelasticity based on two relaxation times.
Except for the heat conduction equation, all the coupled theories changed after the introduction of thementioned
model. Without utilizing Fourier’s law, some researchers developed a verity of extensive theories. A significant
number of studies have been thoroughly investigated with regard to the non-classical thermoelasticity [4–9].

Green and Naghdi presented a new generalized thermoelastic theory on the basis of Fourier’s law [10–12],
their theory was proposed in three separate models, the first and second theories are called GN-I and GN-II,
respectively, and the third one is called GN-III. Relying on higher-order time derivatives, Abouelregal [13–18]
did some investigation in order to alter the conventional Fourier’s law. In recent years, many researchers have
been attracted to examine the Moore–Gibson–Thompson equation (MGT) as well. This principle is derived
based on a cubic differential equation. The method is especially important in the fluid dynamic problems
[19]. Quintanilla [20] established a novel thermoelastic heat conduction model based on the Moore–Gibson–
Thompson theorem. Following the introduction of thermal relaxation time inGN-III, Quintanilla [20] proposed
the modification of heat equation. Since the beginning of Moore–Gibson–Thompson theory, the number of
research works aimed at investigating this theory has considerably increased [21–27]. By implementing the
mentioned theories, the mechanical behavior of several structures has been theoretically studied as well [28–
34].

The size-dependentmechanical behavior ofmicro/nanostructures is somewhat controversial for the applica-
bility of traditional continuum theory. The classical continuum theory cannot capture the impact of small scale,
and therefore, the mechanical behavior of micro/nanostructures cannot be appropriately predicted. Therefore,
non-classical continuum theories have been generalized to include the features ofmicro- and nanomaterials, for
instance, the strain gradient theory [35,36], classical couple stress model, non-local elasticity and the modified
couple stress theories [37,38].

For miniaturized structures, the size-dependent non-local theory of elasticity should be considered to study
the nanomechanical behaviors of such structures like elastic wave dispersion, composite wave propagation,
dislocation dynamics, mechanical fractures, surface voltage fluids, etc. In order to deal with the structural
problems in small-scale dimensions, Eringen introduced the theory of non-local continuummechanics in 1972
[39–43]. In recent years, the non-local models were developed to receive increased coverage for the nanoscale
systems.

The theories of a non-local elasticity state that the stress at any arbitrary point depends on the strain at other
points, whereas the classical continuum mechanics suggests that the stress at a certain location is only related
to the strain at that specific local point. In this model, the equilibrium law includes the non-local field residues,
and such residues are associated with the constitutive equations in which the stabilization and thermodynamic
restriction requirements are balanced. Constituent equations and non-local residues work with gradients of
deformation and movements of all body points. Centered on the non-local thermoelasticity theory, Inan and
Eringen [44] studied the thermoelastic wave propagation in plates. Wang and Dhaliwal [45] implemented the
non-local generalized thermoelasticity energy and showed the presence of a unique solution for the initial and
boundary value problems.

Abouelregal and Mohammed [46] introduced a non-local Bernoulli–Euler model and analyzed the ther-
moelastic interactions in nanoscale beams, using the couple stress and the generalized thermoelasticity models.
The theories of Euler–Bernoulli and themodified couple stress have led to discussion byAbouelregal andMarin
[47] on non-local nanobeams. The thermal conductivity of the nanoscale beams is also supposed to depend on
the temperature changes. Abouelregal [16] introduced a new differential equation system which describes the
theory of non-local thermoelasticity with higher derivatives and dual-phase delays. To achieve the proposed
theory, he used the Eringen’s non-local elasticity and the Taylor expansion methodology of higher-order time
derivatives.

The non-local continuum theory expressed by Koutsoumaris et al. [48], either in integral or differential
forms, is commonly utilized for describing the size dependency in micro- and nanoscale structures. Liew et al.
[49] literary studied the recent works related to the application of non-local elasticity theory for modeling and
simulation of graphene sheets. Rajneesh et al. [50] conducted a temporary study on the phase-lagged non-local
thermoelastic thick micro-stretches. The non-local theory promotes the solutions for different problems and
systems [51–58].

In recent days, more attention has been focused on the analysis of magneto-thermoelasticity problems
dealing with the interaction between the magnetic field and the thermomechanical behavior of isotropic and
anisotropicmaterials. Plasma physics is the area inwhich this theory has excellent examples in nuclear reactors,
high power and high-energy gradients, and in also more applications in geophysics.
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With extensive applications such as automotive, nuclear, electronic, military and smart materials and
structures, the usage of electromagnetic and magneto-thermoelectric materials has been rapidly enriched [43].

As far as we know, there is hardly an effort to analyze the non-local fractures of the preheated materials,
which is extremely important for the handling and/ormanufacturing of advancedmaterials, because thematerial
adjacent to the surface approaches to its melting temperature. In these cases, the theoretical model of non-local
effect and fractional order incorporating the amended Fourier law is necessary to establish the thermoelastic
responses of micro/nanoscale structures. This paper presents a thermoelastic investigation of a half-space
medium based on the Eringen’s non-local theory. The studied method demonstrates the temporary non-local
thermal stresses in a half-space elastic body. The considered medium is periodically heated and subjected to an
external magnetic field. The system of coupled thermoelastic equations is formulated and solved by employing
the Laplace transformmethod. In order to obtain the numerical results for temperature gradients, displacement
and non-local stresses in the medium, a numerical Laplace inversion approach using Zakian algorithm [59–61]
is then performed. The changes in temperature, displacement and distribution of stresses are explored along
the axial direction. Finally, the effects of heat source strength, non-local parameter and the magnet field are
considered and discussed.

2 Non-local MGTE thermoelasticity

The Fourier’s law has been modified by including the relaxation time parameter in the heat flux vector �q as
follows: (

1+τ0
∂

∂t

)
�q(�x, t) = −K �∇θ(�x, t), (1)

where K refers to the thermal conductivity, θ corresponds to the temperature variation, τ0 indicates the positive
time lag (relaxation time), and �x is position vector. Based on GN-III model, the enhanced Fourier’s law is
expressed as [11]:

�q(�x, t) = −
[
K �∇θ(�x, t)+K ∗ �∇ϑ(�x, t)

]
(2)

where K ∗ is related to the material properties corresponding to the conductivity rate. ϑ stands for the thermal
displacement, and ϑ̇ = θ . Furthermore, the GN-I model is accessible when K ∗= 0; similarly, the GN-II model
can be obtained by considering K= 0.

The balancing equation of energy is written by:

ρCE
∂θ

∂t
+ T0

∂

∂t

(
βi j ei j

)= −qi,i + Q (3)

where

2ei j = u j,i + ui, j (4)

in which CE shows the specific heat under the constant strain,αkl symbolizes the components of the tensor of
linear thermal expansion, βi j = ci jklαkl are coefficients related to the thermal coupling, Q corresponds to the
heat source, and ρ indicates the material’s density.

The model described in Eq. (2) has similar issue as for conventional Fourier’s theorem, forecasting the
infinite spread of thermal wave propagation. Introducing the relaxation time τ0 in theGN-IIImodel, Quintanilla
[26] proposed the modified equation of heat conduction. The mentioned equation can be expressed as [20]

(
1+τ0

∂

∂t

)
�q(�x, t) = −

[
K �∇θ(�x, t)+K ∗ �∇ϑ(�x, t)

]
(5)

Conduction equation in linear formation can be achieved by combining Eqs. (3) and (5). The MGTE model is
a combination of Lord–Shulman theory [10] and the third version of Green–Naghdi model [20,30]

(
1+τ0

∂

∂t

)[
∂

∂t

(
ρCE

∂θ

∂t

)
+ T0

∂2

∂t2
(
βi j ei j

) − ∂Q

∂t

]
= ∂

∂t
[∇. (K∇θ)] + ∂

∂t

[∇.
(
K ∗∇ϑ

)]
(6)
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Stress tensor is based on the stress at all points of the body according to the Eringen’s non-local theory of
elasticity [39–41]. The basic equation for elastic and homogeneous materials on the basis of non-local theory
in the absence of body forces can be defined as:

τ (x) =
∫
V

K
(∣∣∣x′ − x

∣∣∣ , ξ)
σ (x) dV (x ′) (7)

ε
(
x ′) = 1

2

(
∇u

(
x ′)+∇(uT

(
x ′))) (8)

σ
(
x ′) = λ

(
div u

(
x ′)) I+2με

(
x ′) − γ θ

(
x ′) I (9)

The non-local kernel K
(∣∣∣x′ − x

∣∣∣) describes the correlation of stress at point x on the stress in x′-point of the
elastic body. Also, ξ relies on the material constant (e0a/ l). The parameter a denotes the lattice parameter
(granular distance, internal characteristic length and length of C–C bonds), and l indicates the crack length
(external characteristic length), while e0 stands for the constant length for each specific material.

By employing the Eringen’s assumptions, the differential form of the non-local stress tensor τ can be
expressed as (

1−ξ2∇2) τ = σ (10)

Equation (10) considers the small-size effects for the physiomechanical behavior of nanostructures. It should
be noticed that if the internal length-scale parameter a is ignored, ξ = e0a/ l is equal to zero, and then, the
constitutive relation of classical elasticity theory can be obtained from Eq. (10).

The linear momentum equilibrium leads to the following equation of motion:

∇·τ + F = ρü, (11)

By adopting Eqs. (10) and (11), the invariant form of the non-local equation of motion can be derived as
follows:

∇·σ + (
1−ξ2∇2)F = ρ

(
1−ξ2∇2) ü. (12)

In terms of temperature and displacements, the governing equations are achieved by:

(λ + μ)∇ (∇u) + μ∇2u − γ∇θ + (
1−ξ2∇2)F = ρ

(
1−ξ2∇2) ü. (13)

The Maxwell’s electromagnetic field equations for a homogenous thermoelastic conducting body are defined
as [62]

J= ∇×h, ∇×E= −μ0
∂h
∂t , J = σ0

(
E + μ0

(
∂u
∂t �H

))
,

h= ∇× (u�H) , ∇·h= 0,
(14)

3 Formulation of the problem

Under the influence of a periodically varying heat source spread out over the plane surface along the x-direction,
an infinitely isotropic solid initially at the temperature T0 is considered here (see Fig. 1). The one-dimensional
disturbance of the medium is also taken into consideration. Hence, the displacement vector u can be defined
in the following form:

ux = u (x, t) , uy = uz= 0. (15)

The impact of the longitudinal magnetic field with a constant strength is presumed to act perpendicular to the
z-axis, i.e., H = (0,Hx , 0). The Lorentz force can be derived by using the Maxwell’s equations as F =J�H;
therefore, the equation of motion leads to:

F = (
fx , fy, fz

)= −σ0μ0H
2
x

(
∂u
∂t

, 0, 0

)
. (16)

For the one-dimensional case, the constitutive relation (10) becomes(
1−ξ2

∂2

∂x2

)
τxx = (λ+2μ)

∂u
∂x

− γ θ. (17)
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Using Eqs. (16) and (17), the equation of motion (13) can be reformed as follows:

(λ+2μ)
∂2u

∂x2
− γ

∂θ

∂x
− σ0μ0H

2
x

(
1−ξ2

∂2

∂x2

)
∂u

∂t
= ρ

(
1−ξ2

∂2

∂x2

)
∂2u

∂t2
. (18)

The generalized MGTE heat equation will be stated in the following form [20,30]

(
1+τ0

∂

∂t

) [
ρCE

∂2θ

∂t2
+ γ T0

∂2

∂t2

(
∂u

∂x

)
− ∂Q

∂t

]
=

(
K

∂

∂t
+ K ∗

)
∂2θ

∂x2
. (19)

The following non-dimensional variables are introduced

{
x

′
, u

′} = c0ω0 {x, u} ,
{
t
′
, τ ′

0

}
= c20ω0 {t, τ0} , ξ

′ = c20ω
2
0ξ,

θ
′ = θ

T0
, σ

′
x = σx

μ
, Q

′ = Q
KT0c20ω

2
0
, c20 = (λ+2μ)

ρ
, ω0 = ρCE

K ,
(20)

The parameter c0 indicates the velocity propagation of the isothermal elastic wave. The governing equations
(17)–(19) take the following form after using the above-mentioned non-dimensional variables (removing the
primes)

(
1−ξ2

∂2

∂x2

)
τxx = β2 ∂u

∂x
− bθ, (21)

(
1−ξ2

∂2

∂x2

)
∂2u

∂t2
= ∂2u

∂x2
− b

β2

∂θ

∂x
−ε

(
1−ξ2

∂2

∂x2

)
∂u

∂t
, (22)

(
1+τ0

∂

∂t

) [
∂θ

∂t
+ g

∂

∂t

(
∂u

∂x

)
− Q

]
=

(
∂

∂t
+ K ∗

0

)
∂4θ

∂x4
, (23)

where

β2 = (λ + 2μ)

μ
, b = γ T0

μ
, ε = σ0μ0H2

x

ρc20ω0
, g= γ

ρCE
,K ∗

0= K ∗

Kc20ω0
. (24)

To further study the problem, governing Eqs. (21)–(23) should be solved and the distributions of displacement
(u), temperature (θ) and non-local thermal stress (τxx ) must be determined within the medium. The following
initial conditions are assumed to deal with the current problem:

θ (x, 0) = ∂θ(x, 0)

∂t
= 0 =u (x, 0) = ∂u(x, 0)

∂t
(25)

u (x,t)→ 0 , θ (x,t)→ 0 as x → ∞ (26)

Fig. 1 Schematic of the half-space under the influence of external magnetic field and periodical heat source
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Due to the periodic heat source Q(x, t) of constant intensity Q0, the surface x= 0 of the half-space is heated.
The following non-dimensional form is assumed for the heat source [63]

Q(x, t) =
{
Q0δ (x) sin (π t/t0) , 0 ≤ t ≤ t0
0, t > t0

(27)

in which the parameter t0 is constant and the function δ (x) denotes the Dirac’s delta function.

4 Solution in the Laplace transform domain

By utilizing the Laplace transform approach, the transforming Eqs. (24)–(26) are described by the relationship:

f̄ (x, t) =
∫ ∞

0
f (x, t) e−stdt, (28)

and then, using the initial conditions (25) yields:
(
1−ξ2 d2

dx2

)
τ̄xx = dū

dx − θ̄ (29)

(
s + K ∗

0

) d2 θ̄
dx2

= s (1 + sτ0)

[
sθ̄+sε dū

dx − π t0Q0
π2+s2t20

δ (x)

]

s2
(
1−ξ2 d2

dx2

)
ū = d2ū

dx2
− dθ̄

dx − sg
(
1−ξ2 d2

dx2

)
ū

(30)

The differential equations presented in Eq. (30) can be rewritten in the matrix–vector form by [64,65]:

dV(x, s)

dx
= A (s)V (x, s) + f (x, s) , (31)

with

V (x, s) =

⎛
⎜⎜⎜⎝

θ̄
ū
dθ̄
dx
dū
dx

⎞
⎟⎟⎟⎠ , A (s) =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1
α4 0 0 α5

0 α2
α1

α3
α1

0

⎞
⎟⎟⎠ , f (x, s) =

⎛
⎜⎝

0
0

−α6δ (x)
0

⎞
⎟⎠ , (32)

and
α1= 1+sξ2 (s + g) , α2 = s (s + g) , α4 = s2(1+sτ0)

(s+K ∗
0 )

,

α5 = s2ε(1+sτ0)
(s+K ∗

0 )
, α6 = π t0Q0s(1+sτ0)(

π2+s2t20
)
(s+K ∗

0 )
.

(33)

The solutions for ū (x) and θ̄ (x) can be interpreted by using the eigenvalue approach discussed in [64,65].
Applying the eigenvalue approach to the system (31) under the regular condition (29) results in:

ū (x, s) = α6
(
e−k2x − e−k1x

)
2

(
k21 − k22

) (34)

θ̄ (x, s) =
α6

(
k1

(
α2 − α1k22

)
e
−k2x − k2

(
α2 − α1k21

)
e−k1x

)
2k1k2

(
k21 − k22

) (35)

The parameters k21 and k21 indicate the roots of the following equation with positive real parts:

k4 − m1k
2 + m2= 0, (36)

where the coefficients m1 and m2 satisfy the equations

m1 = α4 + α2

α1
+ α5

α1
,m2 = α2α4

α1
(37)
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Table 1 Parameters αi and Ki for N= 5 [66]:

j Material properties Value

1 12.83767675 + 666063445i −36902.08210 + 196990.4257i
2 2 12.22613209 + 5.012718792i 61277.02524 −95408.62551i
3 3 10.93430308 + 8.409673116i −28916.56288 + 18169.18531i
4 4 8.776434715 + 11.92185389i 4655.361138 −1.901528642i
5 5 5.225453361 + 15.72952905i −118.7414011 −141.3036911i

Substituting from Eqs. (37) and (38) into (32), the non-local stress τ̄xx is described by:

τ̄xx (x, s) = α6k1e−k1x

2
(
k21−k22

)(
1−ξ2k21

) − α6k2e−k2x

2
(
k21−k22

)(
1−ξ2k22

)+
α6k2

(
α2−α1k21

)
e−k1x

2k1k2
(
k21−k22

)(
1−ξ2k21

) − α6k1
(
α2−α1k22

)
e
−k2x

2k1k2
(
k21−k22

)(
1−ξ2k22

) (38)

The solution of the strain ē (x, s) can be expressed as:

ē (x, s) = dū (x, s)

dx
= α6

(
k1e−k1x − k2e−k2x

)
2

(
k21 − k22

) (39)

An empirical reversal of a Laplace domain solution is almost difficult to achieve, and therefore, a numerical
reversal approach is required. Several computational algorithms in the literature can be exploited to carry out
the inversion of Laplace transform. Each approach has its own application and can be utilized for a specific
purpose. The Zakian approximation technique [59–61] is employed here to obtain the numerical results and
evaluate the variables in time domain.

5 Zakian’s method

The obtained solution for the physical fields described in (37), (38), (41) and (42) is transformed into theLaplace
domain using the techniques of numerical inversion in the physical domain. Zakian’s technique considers the
time domain with the following infinite number of evaluations using the weighted domain function [59–61]:

f (x, t) = 2

t

N∑
i=1

Re
{
Ki F̄

(αi

t

)}
(40)

One of the most important features of the introducedmethod is that it can be easily used and applied in different
problems. The conjugate pairs may be real or complex in the formula Ki and αi . The parameter N indicates
the number of assumed terms which means the truncation from the endless sequence and can be optimized or
selected in accordance with the considered area. Table 1 includes the constants Ki and αi for N= 5. Only one
free parameter N can be specified.

6 Special cases

We can study various theories on the introduced system of equations and the considered model.

6.1 Generalized theories of thermoelasticity

Calculations for the generalized models of thermoelasticity are performed by assuming ξ= 0.

• The coupled thermoelasticity theory (CTE) can be obtained by setting τ0 = K = K ∗ = 0.
• The generalized theory of thermoelasticity with relaxation time (LS) can be achieved when τ0> 0 and
taking K ∗ = 0.
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• The generalized Green–Naghdi theory of type II (GN-II) can obtained by assuming τ0= 0 and putting
K= 0.

• The generalizedGreen–Naghdi theory of type III (GN-III) is accessible by adopting τ0= 0 and K , K ∗ > 0.
• The generalized Moore–Gibson–Thompson thermoelasticity (MGTE) is available when τ0, K , K ∗ > 0.

6.2 Non-local theories of thermoelasticity

The computations for the non-local models of thermoelasticity are performed when ξ> 0.

• The non-local classical theory of thermoelasticity (NCTE) can be obtained by setting τ0 = K = K ∗ = 0.
• The non-local generalized thermoelasticity theory with relaxation time (NLS) can be obtained when τ0> 0
and taking into account K ∗ = 0.

• The non-local generalized Green–Naghdi theory of type II (NGN-II) is available by assuming τ0= 0 and
putting K= 0.

• The non-local generalized Green–Naghdi theory of type III (NGN-III) is valid by assuming τ0= 0 and
putting K , K ∗ > 0.

• The non-local Moore–Gibson–Thompson thermoelasticity (NMGTE) is accessible when τ0, K , K ∗ > 0.

7 Numerical results

Numerical results are now presented to explain the variation of displacement u, temperature θ , the strain e and
the non-local thermal stress τxx as well as discussed on the obtained results. In order to find the solutions for
physical field in space-time areas, we must apply a technique of inversion approximation (40) proposed by
Zakian [16,48] to equations (34), (35), (38) and (39), respectively. For all numerical calculations, Mathematica
programming Language is employed. Thematerial domain is also defined as copper for numerical calculations.
The mechanical and thermoelastic physical parameters corresponding to the mentioned material are given by
[67].

K = 386Wm−1K−1, CE = 384.56 J/kgK, αt = 1.78 × 10−5 K−1,

E = 128GPa, T0 = 293K, ρ = 8954 kgm−3, σ0 = 10−9/36πFm−1,

t = 0.2 s, μ0 = 4π × 10−7Hm−1, Hx = 10−7/4πAm−1, ν = 0.36.

For different values of the non-local parameter ξ , heat source intensity and magnetic field Hx , the numerical
calculations of the field variables have been made. The findings are graphically analyzed at various locations
through Figs. 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 and13, with an average range of 0–10. Results show that the field
variables, e.g., u, θ , e, and the non-local distribution of thermal stress (τxx ) depend not only on the time t and
the space coordinate x but also on the strength of the heat source Q0, the relaxation time τ0, the non-local
parameter ξ , the material parameter K ∗ and of course the magnetic field Hx . Discussion on the numerical
results and the illustrative examples are divided into three sections.

7.1 The effect of non-local parameter

In order to accurately design the small-scale devices, it is vital to have the adequate understanding of non-
classical behavior of such systems. In the last few years, great attentions have been focused on the static and
dynamic behavior of nanoscale structures. This subsection aims at investigating the bending, vibration and
wave propagation of nanostructures along the lines of the theory of non-local elasticity.

Our findings are presented in the form of figures to study the effect of non-local parameter ξ on the
temperature, displacement, strain and the non-local thermal stress (Figs. 2, 3, 4, 5). It is noted that by assuming
ξ= 0, the classical models of thermoelasticity are adopted, while the non-local theories of elasticity and
thermoelasticity are indicated by some assigned values (ξ= 0.1, 0.3). In this case, the values τ0= 0.02,
Q0= 1 and ε= 1 have been taken into account. Figures 2, 3, 4 and 5 indicate the significant impact of the
parameter ξ on different fields of the current problem.

Figure 2 exhibits the displacement difference u against position x for different values of ξ . From this
figure, it is observed that the displacement magnitude first increases with distance very quickly, reaches the
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Fig. 2 The variation of the displacement u with ξ

Fig. 3 The variation of the temperature θ with ξ

Fig. 4 The variation of the non-local stress τxx with non-local parameter ξ
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Fig. 5 The variation of the strain e with non-local parameter ξ

Fig. 6 Field variable θ for different non-local thermoelasticity theories

maximum value and then decays to zero for x≥ 3. The graph 2 also depicts the negative displacement values
due to the fact that the heat source changes periodically over the time (a short time active sinus pulse). It is also
concluded that the point of displacement decreases with the value of parameter ξ and the effect of parameter
ξ is considerable in the interval 0 ≤x≤ 2.

The variation of the temperature θ against the distance x is shown in Fig. 3 to examine the impact of ξ on
the temperature in the context of MGTE theorem. Figure 3 reveals that the values of temperature distribution
θ increase with an increase in the parameter ξ in the ranges 0 ≤x≤ 0.3 and 0.8 ≤x≤ 1.2, reduce in the range
of 0.3 ≤x≤ 0.8 and then finally become nearly stationary as x > 2.4. This is due to the fact that with the short
period of time, the heat source varies periodically as demonstrated in [65–69].
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Fig. 7 Displacement u for different non-local thermoelasticity theories

Fig. 8 The non-local stress τxx for different non-local thermoelasticity theories

Figure 4 indicates the change of non-local stress increment τxx with respect to the distance x . The non-local
stress value for ξ= 0.0, 0.1, 0.3 is adversely affected, and as the parameter ξ decreases, the stress magnitude
increases. The influence of the existence of heat sources distributed throughout the plane region x= 0 will
imply these types of activity in all field variables. Stress and displacement fields are observed to be compressive
first and then begin to decay in size and finally approach to zero in all cases. The maximum stress τxx is close
to the boundary of the half-space, and τxx is highly affected by the values of parameter ξ , as indicated in [69]
and shown in Fig. 4.

Figure 5 presents the strain variation e for different values of the parameter ξ versus distance x . This figure
illustrates that the strain e decreases as the distance is increased and eventually approaches to zero. It is noted
from the figure that the strain increases with increasing the parameter ξ in some periods and decreases in the
remaining periods. This may be because of the periodically changes of heat source over time.

From the results and previous discussion, it is found that the microscale effect is not apparent for structures
with dimensions in the order of microns, while it can be noticeable in nanoscale dimensions which is consistent
with the observations ofWang and Liew [70]. Also, when the stress at the source of a nanoscale heating problem
is determined, the non-local behavior is a key factor which cannot be ignored [16,48–50]. According to this
new non-local theory, we must define a new classification for all materials in accordance with the elastic non-
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Fig. 9 The strain e for different non-local thermoelasticity theories

Fig. 10 The displacement u under the effect of applied magnetic field

Fig. 11 The temperature θ under the effect of applied magnetic field
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Fig. 12 The non-local stress τxx under the effect of applied magnetic field

Fig. 13 The strain e under the influence of applied magnetic field

locality parameter ξ . The field variables often disappear with large x values which is the basic characteristic
of generalized thermoelasticity. This emphasizes that the thermally disrupted area is for a certain moment
limited. The proposed theory has now been validated physically. It is worth mentioning that the heat waves
propagate at infinite spreading rates in the coupled theory, rather than a finite rate in the generalized context.
In the coupled theory, the solution immediately fills the entire medium and therefore is not zero for any small
value of time (although it may be very small). However, the solution obtained with the general thermoelasticity
equations shows the conduct of wave propagation at limited rates.

7.2 Comparison of different thermoelasticity models

In this subsection, it is aimed to clarify the current thermoelastic non-local theory based on the MGTE heat
transfer model. The non-dimensional field variables against the space variable x are studied for different
thermoelasticity theories, while the non-local parameter ξ is assumed to be fixed (ξ = 0.1). The comparisons
between the changes in the considered fields under the theories of non-local thermoelasticity (NCTE, NLS,
NGN-II, NGN-III models and NMGTE) are depicted in Figs. 6, 7, 8 and9 and presented in Tables 2, 3, 4 and
5. The tables can be used for comparative studies for future researches and practical studies.
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Table 2 The temperature θ against distance x

x NCTE NLS NGN-II NGN-III NMGTE

0.0 0.913099 0.546272 0.471496 0.712558 0.49124
0.5 0.464366 0.339959 0.309865 0.395407 0.318432
1.0 0.0726438 0.0449211 0.0403095 0.0553329 0.0423645
1.5 0.0326925 0.0190259 0.0164673 0.0246476 0.016466
2.0 0.0136876 0.00956508 0.00864791 0.011342 0.0088852
2.5 0.00298238 0.00189095 0.00169282 0.00232006 0.0017586
3.0 0.00115897 0.000708719 0.000622444 0.000894157 0.000629663
3.5 0.000436966 0.000296909 0.000267179 0.000356188 0.000274229
4.0 0.000112863 7.22195E–05 6.45E–05 8.85542E–05 0.00006661
4.5 4.05916E–05 2.54472E–05 2.25E–05 3.16869E–05 2.29003E–05
5.5 1.44099E–05 9.61E–06 8.62E–06 0.000011618 8.84E–06

Table 3 Field variable u against distance x

x NCTE NLS NGN-II NGN-III NMGTE

0.0 0 0 0 0 0
0.5 −0.171014 −0.113854 −0.0935007 −0.157913 −0.0976409
1.0 −0.0540906 −0.0531456 −0.0520725 −0.0536953 −0.0546321
1.5 −0.0137213 −0.019453 −0.0209205 −0.0155647 −0.020463
2.0 −0.00397472 −0.00767204 −0.00821823 −0.00470507 −0.00728732
2.5 −0.00137457 −0.00378378 −0.00427237 −0.0015657 −0.00402967
3.0 −0.00046814 −0.00199585 −0.00263436 −0.00054170 −0.00265626
3.5 −0.00014580 −0.000991854 −0.00155047 −0.00018394 −0.00154523
4.0 −4.3216E–05 −0.000461038 −8.2600E–04 −6.0461E–05 −0.000777992
4.5 −1.2900E–05 −0.000208825 −4.1300E–04 −1.9489E–05 −0.000364552
5.5 −3.9700E–06 −9.58772E–05 −2.0500E–04 −6.2725E–06 −0.00017627

Table 4 The non-local stress τxx against distance x

x CTE LS GN-II GN-III MGTE

0.0 −0.408868 −0.155985 −0.145709 −0.333855 −0.214435
0.5 −0.184129 −0.0988131 −0.0623638 −0.184029 −0.0578964
1.0 −0.0976559 −0.123225 −0.126269 −0.0831271 −0.13072
1.5 −0.00191019 −0.0641543 −0.0828664 −0.0327721 −0.0890927
2.0 −0.00140958 −0.022701 −0.0332923 −0.0062077 −0.0300153
2.5 −0.00109538 −0.00748039 −0.0107562 −0.00129558 −0.00763243
3.0 −0.00049598 −0.00339493 −0.00475315 −0.00052566 −0.00395257
3.5 −0.00011148 −0.00189069 −0.00310482 −0.00019944 −0.00314844
4.0 −1.8570E–05 −0.000998984 −0.00200886 −6.6049E–05 −0.002033
4.5 −7.1008E–06 −0.000476063 −1.1300E–03 −1.9381E–05 −0.00105175
5.5 −2.2116E–06 −0.000213832 −0.000564072 −5.4503E–06 −0.000473434

In all thermoelastic fields, the time changes all the field variables noticeably. In addition, the extracted
numerical results justify the significant influence of coefficients’ changes on the fields. In contradiction to the
coupled and uncoupled theories, results show a limited wave group velocity in both results.

It is evident from the results that τ0 and K ∗ both cause the significant change in the distribution of field
quantity. NCTE as coupled theorem and NLS, NGNII, NGNIII and MGTE as non-local generalized theories
lead to the same outcomes in the approximation of the half-space surface, due to the dominance of the boundary
conditions in that region. On the other hand, within the medium, the solution is substantially different.

Thedifference between two theoriesNGN-III andNMGTE is presented inTable 2 andFig. 6. Themagnitude
of temperature θ in NGN-III is shown to be larger than NMGTE. Furthermore, both NLS and NMGTEmodels
indicate the same results. Distributions and especially temperature changes are significantly different inNGN-II
fromother generalized theories. NGN-III theory in comparisonwithNGN-IImodelwith low energy dissipation
value shows substantially different results. The presence of relaxation time inNLS andNMGTE theories results
in a gradual temperature decay.
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Table 5 The strain e against distance x

x CTE LS GN-II GN-III MGTE

0.0 0.154293 0.0985745 0.0811364 0.129721 0.0864024
0.5 0.0353649 0.049002 0.0493561 0.0494183 0.0549301
1.0 0.0121599 0.0198227 0.0217495 0.0178378 0.0218605
1.5 0.00561491 0.00810607 0.0082742 0.00663544 0.00675295
2.0 0.00242289 0.00421452 0.00380838 0.00268781 0.00298421
2.5 0.000895646 0.00263724 0.00255834 0.0011538 0.00245018
3.0 0.000238747 0.0016596 0.00194611 0.000499064 0.00206128
3.5 5.90576E–05 0.000973708 0.00137519 0.000211311 0.00145486
4.0 2.87545E–05 0.000533152 0.000871106 8.71337E–05 0.000875979
4.5 1.18972E–05 0.000280434 0.000505564 3.52647E–05 0.000469975
5.5 4.32000E–06 0.000146736 0.000280442 1.41755E–05 0.000241428

The results of NGN-IIII show similar outcomes compared to conventional NCTE. This is completely
consistent with the observation ofQuintanilla [26] that claimed heat does not dissipate fast through themedium.
For viscous mediums, the non-local models NMGTE and NLS follow a similar pattern in the distribution
of temperature variation and studied physical variables. Except for the slight difference in the values, both
mentioned theories are homologous in behavior. By increasing distance, the results are very similar which is
in line with the results of generalized thermoelasticity theorems. We can also notice from Figs. 6,7, 8 that all
physical fields in the case of NCTE model are more affected than that of the all other non-local models.

7.3 The influence of magnetic field

Figures 10, 11, 12 and 13, in the third category, demonstrate the variety of fields studied when α= 0.75 and
ξ= 0.1 with three assigned values of the magnetic field. The parameter ε = σ 0μ0H2

x /(ρc20ω0) represents the
magnitude of the magnetic field spread over the surface in the direction perpendicular to the x-axis. We will
take into account three values of the parameter ε, the first indicates zero magnetic field (ε = 0), and the two
other values emphasize the presence of magnetic field (ε = 1, 5). The figures show an important influence on
the u, θ , e and the non-local thermal stress τxx due to the magnetic field.

In Fig. 10, any rise in the value of parameter ε induces a decrease in the displacement amounts, which is
very noticeable in the curves’ peaks. The magnetic field is therefore able to humidify the thermal expansion
of the medium. The findings are similar as described in [64]. It can be observed from Fig. 11 that the applied
magnetic field has a little influence on the variations of temperature distribution. The temperature changes and
slightly increases with the increase in the primary magnetic field. It is the same behavior that many materials
and minerals take, and it has been proven in many studies as reported in [71,72].

Figure 12 shows that the rise in parameter ε increases the value of the non-local stress field τxx , which
is considerable at the start and peak points of the curves. Non-local stress begins with negative values, then
increases to their peak and gradually decreases to zero values when the distance x increases. As a result of
the fluctuating behavior of the strain e, similar to the previous cases, it is noted from Fig. 13 that the strain
increases in some intervals by increasing the magnetic field and decreases in other intervals.

8 Conclusion

The main aim of this work was to implement a new size-dependent thermoelastic model based on the non-
local elasticity theory. Moreover, a modified Moore–Gibson–Thompson thermoelastic heat transfer model for
heat conduction was introduced. The classical theory of elasticity, the constituent relationships and motion
equation have been refined by taking into account the size effect and the commonly adopted models containing
the non-local theory proposed by Eringen. The non-local elasticity theories were developed well and used in
elastic and thermoelastic solids for the problems of the wave distribution.

In analyzing the propagation of transient waves and vibrations in an infinite thermoelastic materials, the
one-dimensional form of the new theory was applied in the presence of a periodic heat sources spread out
in the plane region. The techniques of Laplace transform and state space approach were utilized to achieve
the closed-form solution for the field variables in the transform domain. In the field of space-time, Zakian’s
algorithm allows the computational reflections of the studied physical parameters. In some cases, the numerical
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results were displayed graphically and validated. It can be inferred from the discussion and findings that the
non-local parameter has a significant influence on the variation of the considered fields. The influence of
magnetic field on the system variables was also very important. For the large values of the distance variable,
which is the principal feature of non-local thermoelasticity, the fields studied in this new model vanish. This
implies that for a certain moment, the thermally disturbed area is attached.

As expected, escalading distance causes the distribution of all physical fields to march to zero, which also
indicates the limited group velocity of heat waves. The results discussed in this paper will be useful for the
researchers who are working on novel materials and those working on the advancement of thermoelasticity.
Finally, our findings can be considered as a theoretical basis for nanoscale structural design, especially for
those subjected to varying heat sources.
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