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Abstract Tessellated continuummechanics is an approach for the representation of thermo-mechanical behav-
iour of porous media on tessellated continua. It involves the application of iteration function schemes using
affine contraction and expansion maps, respectively, for the creation of porous fractal materials and associated
tessellated continua. Highly complex geometries can be produced using a modest number of contraction map-
pings. The associated tessellations form the mesh in a numerical procedure. This paper tests the hypothesis that
thermal analysis of porous structures can be achieved using a discontinuous Galerkin finite element method
on a tessellation. Discontinuous behaviour is identified at a discontinuity network in a tessellation; its use is
shown to provide a good representation of the physics relating to cellular heat exchanger designs. Results for
different cellular designs (with corresponding tessellations) are contrasted against those obtained from direct
analysis and very high accuracy is observed.

Keywords Heat exchangers · Heat transfer · Transport theory · Porous fractals · Analytical solutions ·
Finite elements

1 Introduction

In the recently developed method of tessellated continuummechanics, physics defined on fractal porous media
is mapped to a corresponding continuum [1,2]. The classical Galerkin finite element method (GFEM) can
then be combined with tessellated continuummechanics to describe thermal physics in cellular structures. The
drawback with the Galerkin approach, however, is that discontinuous behaviour arising from the closing of the
pores during the mapping (which is pervasive on tessellations) cannot readily be accommodated. This paper
extends the work in references [1,2] by incorporating a network of lines/surfaces on a tessellation at which
discontinuous behaviour occurs. The discontinuities can be viewed as enforcing internal boundary conditions
where (say) heat fluxes on different parts of a pore’s surface are mapped to a single line. The new feature is
called a discontinuity network and is designed to capture more completely the physics on cellular materials.

Many natural materials possess hierarchical microstructures extending over length scales that cover many
orders of magnitude [3]. Those microstructures observed with geometric similarity over a range of scales are
denoted as self-similar [4]. Self-similar objects possessing interesting mathematical properties have received
the attention of researchers inmany fields includingmathematics, biology, chemistry and engineering. Analysis
of these types of structures falls under the heading of multi-scale modelling [5], where physical self-similarity
can in principle be used to describe scaling relationships connecting behaviours across a range of length scales.
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Of particular interest in this paper is the behaviour of self-similar porous structures subject to fluid-induced
thermal loading.

The performance of heat exchangers involving thermo-fluids and cellular materials is an area of practical
interest, designs of which can be found in everyday use for the cooling of printed circuit boards [6]. Self-similar
porous materials that maximise fluid–solid contact areas offer potentially very high rates of heat transfer. This,
when combined with high thermal conductivities and good enhancement of fluid mixing, may be exploited for
heat exchanger designs [7]. Examples of commercial heat exchangerswhich incorporate a complex geometrical
structure include miniature shell and tube heat designs [8]. Alternative configurations are honeycomb metallic
structures [9],metallic foams [10] and plate-fin designs [8]. These designs play an important part in applications
requiring high-density energy transfers, and growth in their use and application is expected [8]. Experimental
evidence showcasing the benefits of cellular designs can be found in reference [11].

The complex geometries involved in porous/cellular heat exchangers raise particular challenges for analy-
sis. These challenges include: the accurate representation of the geometry; the application of boundary con-
ditions; meshing problems that arise with large and thin sections; and any computational constraints imposed
by the large number of elements involved. The standard approach to the analysis of flow through porous
heat exchangers would typically not include a direct description of the geometry of the porous media (see
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Fig. 1 Pre-fractal and corresponding tessellated domains containing discontinuity networks for the Sierpinski gasket
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references [12–14]). Classical approaches founded on continuum equations, and involving coarse-grained
geometrical parameters such as porosity and permeability [15] provide limited accuracy. Recent alternatives
to these classical treatments include discrete techniques such as the lattice Boltzmann method (LBM), which
is particularly attractive for low Reynolds number flows involving complex boundary conditions [16]. An
example of pore-scale turbulent flow modelled using LBM is provided in [11], where four types of porous
structures are considered. Unfortunately, despite the LBM offering some advantages, it still suffers in a similar
manner to continuum approaches as a consequence of the complex geometries involved [17].

In order to represent better the types of complex geometries found in cellular material, the authors have
investigated the use of fractals [2,18], which arise in many other areas of science [19] and play a part in
describing a variety of behaviours in nonlinear systems [20]. Fractals can be constructed in a number of ways,
but a particularly attractive procedure is by application of a small number of affine contraction maps [2,20,21].
Although complex geometries can readily be represented using fractals, their subsequent use in practical
analysis is beset with difficulties. The principal concern is the lack of meaningful measures on the fractal,
where traditional notions of length, area and volume are undefined as a consequence of non-integer Hausdorff
fractal dimensions [22]. Consequently, traditional physical quantities such as fluxes (rates per unit area) and
densities (per unit volume) are likewise ill-defined. Attempts to overcome these difficulties can be found in
the literature [23,24]. One possible method to avoid the problem altogether is to use pre-fractals, which are
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Fig. 2 Pre-fractal and corresponding tessellated domains containing discontinuity networks for the Sierpinski carpet
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created with fractal construction procedures, but do not suffer from non-integer Hausdorff fractal dimensions.
A popular indirect approach is through the use of fractional derivatives [25,26] in the governing equations
describing the physics. An example is the fractional model considered in reference [27] for describing the flow
of two incompatible liquids through homogenous porous media. The drawback of approaches of this type is
that the governing equations are not directly derivable from the underlying physics. An alternative approach
is to consider transport equations in their integral (Euler) form. A variant of this approach is considered by
Tarasov [28,29] and underpins the fractional derivative approach outlined by Ostoja-Starzewski [30,31].

In this paper, the physics on the cellular material—whose geometry is represented by a pre-fractal—is
linked to the physics on a tessellation by means of a hole-fillmap. The map is identified as hole-filling because
when applied to a pre-fractal it has the effect of closing the holes within the porous pre-fractal structure. Hole-
fill maps can be constructed by means of function composition or by identifying corresponding elements in the
pre-fractal and tessellation. Function composition is more suitable for analysis, so focus is directed towards
the latter, which is preferred for the type of numerical work considered here.

A novel aspect of the work is the creation of a discontinuity network, which is a network of lines/surfaces
where discontinuous behaviour is possible. The discontinuity network is simultaneously created during the
formation of the fractal and associated tessellation, resulting in an elegant procedure controlled through a
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Fig. 3 Pre-fractal and corresponding tessellated domains containing discontinuity networks for a finger-like porous fractal
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relatively small number of maps. The physics on the tessellations/pre-fractals is represented using weighted
transport equations, which can be formulated directly without recourse to partial differential equations (PDEs).
This aspect is important particularly if fractals (rather than pre-fractals) are involved, as the governing PDE
in this latter case may not be obvious; indeed, it may not even be definable using traditional derivatives. The
paper as a whole investigates how the finite element method can be applied to a tessellated mesh (where tiles
double up as elements) incorporating a discontinuity network. A critical aspect of this work is that the physics
on the porous structure are represented exactly in the continuum. This facilitates very precise analysis and is
particularly important when high accuracy is required.

The procedures for construction of pre-fractals, tessellations and discontinuity networks for three classical
fractals are presented in Sect. 2. The transport theory linking the tessellated space with the physical space is
described in Sect. 3, with particular focus on heat transfer. This is followed by weighted transport equations
in Sect. 4, which can be formulated directly and lead immediately to the finite element method. The role a
discontinuity network plays in the finite element method is discussed. Transient and steady-state analytical
solutions are given in Sect. 5 on a simple dust fractal and contrasted with numerical predictions. The role
and importance of discontinuity networks are investigated in Sect. 6. In the absence of analytical results,
numerical predictions—both with and without a discontinuity network—are compared with results obtained
for a pre-fractal via the commercial package ABAQUS. The influence of different tessellation refinements
is investigated in Sect. 7, where an efficient procedure for tessellation refinement is examined. Section 8
examines the influence of alternative expansion maps and confirms that they do not influence the accuracy of
the numerical predictions.

2 Discontinuity network

Tessellated continuummechanics is foundedon the idea that physics described on apre-fractal Êk canbe exactly
represented on a tessellation T̂k at least down to the smallest element/domain considered. The construction
of Êk is achieved by the recursive application (k times) of a relatively small number of contraction maps
Si , referred to as an iteration function scheme [11]. The recursive procedure starting from an initial domain

Ê0 is described by Êk = ⋃
i Si

(
Êk−1

)
. One of the attractive aspects of the tessellated approach is that

the tessellation is created in a corresponding fashion starting from T̂0 = Ê0 with the recursive relationship

T̂k = ⋃
i Pi

(
T̂k−1

)
, where in this case Pi are affine expansion maps. By design, the number of tiles in the
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Fig. 4 Pre-fractals and tessellation for the Cantor dust. a Cantor dust. b Tessellations with discontinuity networks
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tessellation T̂k is exactly the same as the number of pre-fractal elements in Êk ; there is thus a one-to-one
correspondence between tiles and pre-fractal elements, achieved by using an identical number of expansion
and contraction maps. The one-to-one correspondence means that analysis results obtained on a tessellation
T̂k can be immediately lifted and returned to the corresponding pre-fractal Êk .

Typical tessellations for some classical fractals are depicted in Figs. 1, 2 and 3 with affine contraction and
tessellation maps provided in Appendices A–C. An aspect deduced on examination of Figs. 1, 2 and 3 is that
Ê0 (not shown in figures) is supplied with an initial tessellation. The initial domain Ê0 has six tiles for the
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2Ê

3Ê
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pre-fractals in Fig. 1 and eight for those in Figs. 2 and 3, and each tile is purposely triangular. The initial tiling
has two distinct functions: first it serves to form a piecewise linear hole-fill map and second it provides a means
to modify the number of tiles in T̂k for the purpose of numerical analysis.

The creation of pre-fractals and tessellations is achieved independently using bespoke iteration function
schemes involving the (non-unique) maps given in “Appendices A–C”. A hole-fill map—on application to
a pre-fractal—has the effect of closing holes and producing the corresponding tessellation. Although it is
possible to form a hole-fill map explicitly through composition of contraction and expansion maps (and their
inverses), there is littlemerit in so doing. The independent creation of pre-fractals and tilesmeans that triangular
elements in each domain are related. This relationship is shown explicitly in Figs. 1, 2 and 3 bymeans of arrows
connecting a selection of tiles in each domain. A hole-fill map for a tile is simply a linear relationship which
maps points from a pre-fractal element to a tile; the map is linear as a consequence of the triangular domains
involved.

Figures 1, 2 and 3 also highlight a discontinuity network D̂k in each tessellation T̂k . It is important to
appreciate that like T̂k and Êk a discontinuity network D̂k is created recursively and satisfies the relationship

D̂k = D̂1 ∪ ⋃
i Pi

(
D̂k−1

)
, k ≥ 2. Thus a network is formed by forming a union with D̂1 and images of the

previous network under the maps Pi . Examination of Figs. 1, 2 and 3 reveals that networks are associated with
hole edges in pre-fractals. The closing of holes has the effect of bringing together the edges which appear on
the discontinuity network in a tessellation. This makes clear why discontinuous behaviour is ubiquitous on any
tessellation—there is little expectation that temperature and heat transfer rates are identical on opposite edges
of a hole. The network D̂1 in T̂1, in Fig. 1 for example, is obtained from the boundary of T̂0 = Ê0, and the
network D̂2 in T̂2 includes D̂1 and the three expansion maps {P1, P2, P3} (see “Appendix A”) applied to D̂1,

i.e. D̂2 = D̂1∪P1
(
D̂1

)
∪P2

(
D̂1

)
∪P3

(
D̂1

)
. Similarly, the network D̂3 in T̂3 again includes D̂1 and the three

expansion maps {P1, P2, P3} applied to the network D̂2 in T̂2 (i.e. D̂3 = D̂1∪ P1
(
D̂2

)
∪ P2

(
D̂2

)
∪ P3

(
D̂2

)
).

It is thus apparent that creation of discontinuity networks parallels the recursive procedure for creation of a
tessellation.

3 Transport theory

The ability to match physics on pre-fractals and tessellation was established in reference [2]. The basic idea
is to describe the physics of interest in each domain on control volumes, which identify continuous spaces
through which matter can flow. Control volumes are employed because they are concerned with the description
of physics on a continuum (a continuous space) rather than on a discontinuous set. Thus, the difficulty posed by
fractal geometry can in principle be overcomewith physics described using traditionalmeasures. Underpinning
the approach adopted here is the continuum hypothesis (advanced by Cantor in 1878 [32]), which asserts that
any infinite set (in 1-D) forms a bijection with either the set of natural numbers or the set of real numbers.
The fact that the Cantor dust (for example) forms a bijection with the real line was proved by Cantor in 1883
[33]. The concept underpins the strategy adopted in this paper where pre-fractals (and in the limit, fractals)
are mapped to continuous tessellations.

Table 1 Heat transfer coefficient (HTC) for pre-fractal holes on Êk

k dholes (m) P̂ (m) ĥwats (W/m2 K)

1 0.17 2.67 574.6
2 0.17 2.67 574.6

0.02 2.22 46.9
3 0.17 2.67 574.6

0.02 2.22 46.9
2.62 × 10−3 2.07 3.7

4 0.17 2.67 574.6
0.02 2.22 46.9
2.62 × 10−3 2.07 3.7
0.30 × 10−3 2.02 0.3
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Consider two control volumes �s and �r , with �s located in the physical domain in which the cellular
material resides (represented by Êk); �r is located in the tessellated space. For clarity, attention is restricted
to heat transfer problems, although more complex physics is possible via the inclusion of additional transport
equations. The transport equations for transient heat transfer through stationary control volumes (the latter
again chosen for simplicity) are given by

d

dt

∫

�s

ρshsdVs = −
∫

�s

q̇
s
· d�s +

∫

�s

ρs Q̇sdVs, (1)
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Table 2 Temperature differences for Cantor dust: steady state measured on Êk

k Analytical versus
UoMFEC (coarse)

Analytical versus
UoMFEC (fine)

Analytical versus
ABAQUS-lifted (fine)

Analytical versus
ABAQUS-direct (fine)

D̄ 10−2 K D̄% 10−2 % D̄ 10−2 K D̄% 10−2 % D̄ 10−2 K D̄% 10−2 % D̄ 10−2 K D̄% 10−2 %

1 1.95 0.64 0.51 0.17 0.04 0.01 5.722 18.62
2 0.35 0.12 0.09 0.03 0 00 0 00 15.75 5.17
3 0.14 0.05 0.05 0.02 0 00 0 00 3.95 1.31
4 0.05 0.01 0.13 0.04 0 00 0 00 64.98 82.19
5 0.07 0.02 0.09 0.03 0 00 0 00 51.24 45.31
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and
d

dt

∫

�r

ρr hrdVr = −
∫

�r

q̇
r
· d�r +

∫

�r

ρr Q̇rdVr (2)

where h is the specific enthalpy, Q̇ is a heat source and the heat flux is defined as q̇ · n = ĥ (T − T∞) with ĥ
a heat transfer coefficient and T∞ is the bulk temperature of an external cooling/heating medium.

The differentials dVs and dVr are measures of volume on the two control volumes and are thus well
defined. The tessellation is continuous and dVr = dVtess, where dVtess is a volume measure on the tessellated
set. Defining dVfrac as a measure of volume on a pre-fractal, dV frac = μdVs , where μ is a support function
taking the value of zero or one. It follows from the discussion in Sect. 2, however, that hole-fill maps (being
a material map) relate dV frac to dVtess with a relationship of the form dV tess = |F| dV frac. This expression
happens to be valid for precisely the situation where dV r = dV tess and dV s = dV frac, and it follows that
dVr = |F| dV s . The interpretation placed on Eq. (1) therefore is that the integrands involved may not be
defined for points off the pre-fractal, which is in fact an interpretation typical to classic control volume theory.
In view of the continuous tessellation and the validity of the relationship dVr = |F| dV s almost everywhere
on the tessellation, any support function is removable, as it takes the value of one. Substitution of Nanson’s
identities [34] dVr = |F| dV s , d�r = |F| d�s · F−1, into Eq. (2), where Fi j = ∂xi/∂s j , d�s = nsd�s and
d�r = nrd�r , and where the hole-fill map is of the form x : s �→ x, gives

d

dt

∫

�s

ρr hr |F| dVs = −
∫

�s

|F|
(
F−1 · q̇

r

)
· d�s +

∫

�s

ρr |F| Q̇rdVs (3)

which can be compared with Eq. (1).

Table 3 Temperature differences for Cantor dust: transient solution

x = 0.25 on T̂k and k = 1 x = 0.125 on T̂k and k = 2 x = 0.0625 on T̂k and k = 3

D̄ (K) D̄% (%) D̄ (K) D̄% (%) D̄ (K) D̄% (%)

Analytical versus
UoMFEC (coarse)
on Êk

16.17 43.99 10.60 13.71 2.99 3.31

Analytical versus
UoMFEC (fine) on
Êk

6.05 24.02 4.31 8.47 1.26 2.03

Analytical versus
ABAQUS-lifted
(fine) on Êk

0.29 1.94 0.68 2.59 0.66 1.43

Analytical versus
ABAQUS-direct
(fine) on Êk

1.83 6.41 0.84 2.41 0.68 1.44

Table 4 Heat transfer coefficients for the Sierpinski carpet heat exchanger on Êk

k dholes (m) P̂ (m) ĥwats (W/m2 K)

1 0.33 1.33 12,735.0
2 0.33 1.33 12,735.0

0.11 0.44 1460.1
3 0.33 1.33 12,735.0

0.11 0.44 1460.1
0.04 0.15 167.4

4 0.33 1.33 12,735.0
0.11 0.44 1460.1
0.04 0.15 167.4
0.01 0.05 19.2

5 0.33 1.33 12,735.0
0.11 0.44 1460.1
0.04 0.15 167.4
0.01 0.05 19.2
0.41 × 10−2 0.02 2.2
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Recognising that amass-conservingmap satisfiesρrdVr = ρsdVs , it follows thatmatching physics between
the tessellated continuum and physical spaces is achieved with ρr = |F|−1 ρs , hr = hs , Q̇r = Q̇s and
q̇
r

= |F|−1 F · q̇
s
. The convective heat transfer boundary condition can be provided in the form of

q̇
r
· d�r = ĥr (Tr − T∞) d�r = |F|−1

(
F · q̇

s

)
· (|F| d�s · F−1) = ĥs (Ts − T∞) d�s, (4)

which is satisfied for Tr = Ts and ĥrd�r = ĥsd�s giving ∇sTs = FT · ∇r Tr , and (in view of the identity
q̇
r

= |F|−1 F · q̇
s
) leads to q̇

r
= −K r · ∇r Tr . The relationship of thermal conductivity between tessellation

and pre-fractal is
K r = |F|−1 FK sFT (5)

where K r is the associated orthotropic conductivity tensor on the tessellated domain and K s is the isotropic
conductivity on the pre-fractal.

4 The finite element with discontinuity networks

In the absence of a governing partial differential equation, the finite element method can be applied directly to
a transport equation via the inclusion of a weighting function [35]; such an approach applied to Eq. (1) gives

d

dt

∫

�s

WsρshsdVs = −
∫

�s

Wsq̇s · d�s +
∫

�s

∇sWs · q̇
s
dVs +

∫

�s

Wsρs Q̇sdVs, (6)

where Ws is a weighting function which is assumed continuous at least up to the first derivative.

Fig. 8 Contour temperatures (UoMFEC) with and without a discontinuity network (DN). i On T̂3 without DN. ii On Ê3 without
DN. iii On T̂3 with DN. iv On Ê3 with DN
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The weighted transport equation for Eq. (2) is similar and takes the form

d

dt

∫

�r

Wrρr hrdVr = −
∫

�r

Wr q̇r · d�r +
∫

�r

∇rWr · q̇
r
dVr +

∫

�r

Wrρr Q̇rdVr . (7)

Substitution into Eq. (7) of the relationships established in Sect. 3 (i.e. ρr = |F|−1 ρs , hr = hs , Q̇r = Q̇s ,
q̇
r

= |F|−1 F · q̇
s
and ∇s ≡ F−T · ∇r along with Nanson’s identities) gives

d

dt

∫

�s

WrρshsdVs = −
∫

�s

Wr q̇s · d�s +
∫

�s

∇sWr · F−1F · q̇
s
dVs +

∫

�s

Wr Q̇sdVs (8)

which matches Eq. (6) on setting Wr = Ws .
The finite element method describing the physics on a tessellation T̂k (and hence Êk) is obtained by setting

Wr = Ws = Ni to give

d

dt

∫

�e
r

Niρr hrdVr = −
∫

�e
r

Ni q̇r · d�r −
∫

�e
r

∇r Ni · K r · ∇r TrdVr +
∫

�e
r

Niρr Q̇rdVr (9)

Fig. 9 Contour temperature plots for Ê3 using ABAQUS-direct. i Mesh on Ê3 with 8 elements per pre-fractal element. ii
Temperature contours on Ê3 with 8 elements per pre-fractal element. iii Temperature contours on Ê3 with 152 elements per
pre-fractal element
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where Ni is a shape function and �e
r is a tile in T̂k ; the tiles by choice double up as elements in the proposed

numerical procedure.
Three-noded triangular elements are used in the analysis of a tessellation, which reflects the restriction

imposed by the retention of linear hole-fill maps. Those elements that share no edges with a discontinuity
network are continuous in both Wr and Tr and are consistent with a standard Galerkin finite element method.
For elements connected by an edge on a discontinuity network, continuity cannot be assumed. Each element in
this case is subject to a mapped convective boundary condition from the associated hole in the corresponding
pre-fractal in accordance with Eq. (4).

Table 5 Temperature differences on Êk : influence of discontinuity network

k 1 2 3

No discontinuity network
Coarse mesh
D̄ (K) 3.17 3.27 4.69
D̄% (%) 0.86 0.91 1.34

Fine mesh
D̄ (K) 5.13 3.30 5.09
D̄% (%) 1.23 0.91 1.44

With discontinuity network
Coarse mesh
D̄ (K) 3.17 0.55 0.09
D̄% (%) 0.86 0.16 0.03

Fine mesh
D̄ (K) 5.13 0.67 0.47
D̄% (%) 1.23 0.19 0.13
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3Ê

3Ê
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Fig. 10 Temperature plots along x = y for pre-fractals Êk using UoMFEC and ABAQUS-direct

Table 6 Maximum temperature difference at D̂k for the Sierpinski carpet

k 1 2 3

Tdiff (K) 0 30.26 26.04
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4.1 Numerical solution methods

The proposed finite element approach has been programmed into MATLAB at the University of Manchester
(UoM). The code incorporates a facility for the creation of tessellations that double up as meshes along with
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2Ê

2Ê

2Ê

3Ê
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discontinuity networks for the purpose of numerical analysis with the UoM finite element code (termed here
UoMFEC).

The commercial finite element package ABAQUS (version 6.13) has also been used for the purpose of
confirming the validity of the theory. The methods proposed in the preceding sections do not directly analyse
the pre-fractals but rather their tessellations. The ABAQUS code is able to analyse directly the pre-fractal
and thus provide benchmark solutions. The elements selected for the analysis with ABAQUS are also linear
three-noded elements.

It should be appreciated that the proposed work is aimed at very precise analysis on a continuum and takes
advantage of the manner in which tessellations and pre-fractals are generated. The process is efficient in this
regard involving recursive processes; tessellations, pre-fractals and discontinuity networks are all produced
recursively. It is recognised, however, that the use of a tessellation, which is recursively produced, as a mesh,
does place a constraint on the possible distribution of elements forming themesh. This can possibly result in too
few elements being located in regions of greatest need or equally too many in regions where there is no need.

Prior to testing out the full numerical theory on realistic fractals, however (as depicted in Figs. 1, 2, 3), it
is of interest to test out the ideas initially on a relatively simple fractal on which analytical solutions can be
developed.

5 Exact solutions on Cantor dusts

This section is concerned with the development of the analytical solution on the Cantor dust in one dimension,
with internal heat source and convection boundary conditions. The exact solution is compared with the finite
element method developed in the earlier sections. The governing partial differential equation arising from the
heat transport Eq. (2) is of the form

ρr
∂hr
∂t

= divr (K r · ∇r Tr ) + Q̇0 (10)

where Q̇0 is a heat source loading density on tiles in any tessellation.

Table 7 Transient temperature differences on Êk : influence of discontinuity network

Point 1 and 2 in Fig. 2 k No discontinuity network With discontinuity network

D̄ (K) D̄% (%) D̄ (K) D̄% (%)

(0, 0) 1 1.88 0.43 1.88 0.43
2 4.54 1.23 0.52 0.14
3 7.67 2.14 0.60 0.17( 1

3 , 1
3

)
1 1.64 0.50 1.64 0.50
2 0.19 0.06 0.10 0.03
3 0.41 0.13 0.02 0.01

Table 8 Heat transfer coefficients for the finger-like fractal heat exchanger on Êk

k dholes (m) P̂ (m) ĥwats (W/m2 K)

1 0.33 1.33 12,735.0
2 0.30 2.00 15,344.0

0.11 0.44 1460.0
3 0.24 2.67 15,145.0

0.10 0.67 1759.0
0.04 0.15 167.0

4 0.20 3.33 14,360.0
0.08 0.89 1736.0
0.03 0.22 202.0
0.01 0.05 19.0

5 0.17 4.00 13,551.0
0.07 1.11 1646.0
0.03 0.30 199.0
0.01 0.07 23.0
0.41 × 10−2 0.02 2.0
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5.1 Pre-fractal and tessellation construction

The pre-fractals Êk for the Cantor dust and corresponding tessellations T̂k with highlighted discontinuity
networks (appearing as discontinuous points) are shown in Fig. 4. The contraction maps that produce Êk in
Fig. 4 are

S1 (x) = x

3
and S2 (x) = 2�0 + x

3
(11)

along with the expansion maps for T̂k are

P1 (x) = x

2
and P2 (x) = �0 + x

2
(12)

with the original set Ê0 = [0, �0] used for both maps.
The expansion maps are not unique although those shown in Eq. (12) are a natural choice, producing tiles

of equal size. When viewed as a mesh it is evident the maps in Eq. (12) provide the coarsest mesh possible
originating from only one element on Ê0. Mesh refinement is possible and one approach is to supply an initial
mesh to Ê0, where, for example, setting Ê0 = [0, �0/2]

⋃
[�0/2, �0] provides the two-element refinement in

Fig. 5a, b. Equivalently, composition of the expansion maps can be used where, for example,

Fig. 12 Contour temperatures (UoMFEC) with and without a discontinuity network (DN). i Temperature contours on T̂3 without
DN. ii Temperature contours on Ê3 without DN. iii Temperature contours on T̂3 with DN. iv Temperature contours on Ê3 with
DN
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P1 ◦ P1 (x) = x

4
, P1 ◦ P2 (x) = �0 + x

4
, P2 ◦ P1 (x) = 2�0 + x

4
and P2 ◦ P2 (x) = 3�0 + x

4
(13)

which, when applied Ê0 produces four elements on T̂1 in Fig. 5c, d).
Examples of refined tessellations and corresponding pre-fractals are shown in Fig. 5. Observe also the

discontinuity network D̂k highlighted at particular points in the tessellations, which correspond to pre-fractal
holes. The correspondence of elements means it is relatively straightforward to stipulate an hole-fill map
between Êk and T̂k ;

xk (s) = x (i)
k + x (i+1)

k − x (i)
k

s(i+1)
k − s(i)

k

(
s − s(i)

k

)
, (14)

where s ∈
[
s(i)
k , s(i+1)

k

]
and it is assumed here that nodes are enumerated from left to right, so that s(i+1)

k −s(i)
k =

�k if x
(i+1)
k �= x (i)

k , with �k being the length of an element in Êk [1]. For this relatively simple case, the hole-fill
map can be written in terms of a support function μk as [1]

(i) (ii)

(iii) 
Fig. 13 Contour temperature plots for Ê3 using ABAQUS-direct. i Mesh on Ê3 with eight elements per pre-fractal element. ii
Temperature contours on Ê3 with eight elements per pre-fractal element. iii Temperature contours on Ê3 with 152 elements per
pre-fractal element
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xk (s) =
(
3

2

)k s∫

0

μk (r) dr =
(

�k

�0

)D1−1 s∫

0

μk (r) dr , (15)

where D1 is the Hausdorff fractal dimension (see Ref. [36] for derivation).
The relationship between material on pre-fractals and tessellations is readily obtained with knowledge of

the hole-fill map (Eq. (15)). Conservation of mass on Êk and T̂k gives ρr = |F |−1 ρs =
(
�k�

−1
0

)1−D1
ρs with

scalar Ks and Kr related byKr = |F |−1 FKs FT=
(
�k�

−1
0

)D1−1
Ks . Note that in view of the fact that �k is

constant for each element of the kth pre-fractal, the density ρr and thermal conductivity Kr are homogenous
for the corresponding tessellation.

Table 9 Temperature differences on Êk : influence of discontinuity network

k 1 2 3

No discontinuity network
Coarse mesh
D̄ (K) 2.25 7.11 5.09
D̄% (%) 0.66 2.14 1.57

Fine mesh
D̄ (K) 3.64 8.50 7.05
D̄% (%) 1.09 2.54 2.12

With discontinuity network
Coarse mesh
D̄ (K) 2.24 0.69 0.12
D̄% (%) 0.65 0.22 0.04

Fine mesh
D̄ (K) 3.28 1.71 2.15
D̄% (%) 0.98 0.51 0.62
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3Ê

3Ê
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5.2 Analytical solution for a 1-D Cantor dust model

In view of the ultimate objective to describe the behaviour of cellular heat exchangers, it is fitting to assume
that coolant flows in a normal direction through the voids in the pre-fractals for the Cantor dust depicted in

Table 10 Maximum temperature difference at D̂k for the finger fractal

k 1 2 3

Tdiff (K) 0 33.72 24.65
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Figs. 4 and 5. A uniform heat source is applied to each pre-fractal element, defined to ensure that the total
rate of energy supplied is constant on Êk (and consequently on T̂k). The loading appears as a constant value
of Q̇0 in Eq. (10) as a consequence of the total volume remaining constant on a tessellation. At nodes in the
discontinuity network, cooling is set as a boundary condition for each adjoining element and is of the form
q̇r = ĥx (Tr − Twat), where Twat is the bulk coolant temperature and ĥx is a heat transfer coefficient associated
with a pre-fractal hole. In this case, Eq. (4) gives q̇r = q̇s , i.e. the cooling experienced at a pre-fractal hole
is also experienced at the discontinuity network. External surfaces are exposed to a heat flux of the form
q̇0 = ĥ0 (Tr − T∞), where T∞ is the ambient temperature of the surrounding medium and ĥ0 is the associated
heat transfer coefficient. To arrive at an analytical solution on the tessellated structure requires the union of
solutions obtained on individual tiles in the tessellation.

5.2.1 Steady-state solution for a 1-D Cantor dust

According to Eq. (10), the governing equation on T̂k is

KrT
′′
r + Q̇0 − 2ĥ0

w
(Tr − T∞) = 0, (16)

where w is the width of the bar and is part of an additional term to capture convective heat transfer from the
top and bottom faces of the bar.

The form the solution takes on a tile can be assumed to be Tr = Tcf + Tsource, where the complementary
function is of the form Tcf (x) = a cosh(αx) + b sinh(αx) and satisfies KrT ′′

cf − 2ĥ0w−1Tcf = 0 with

α =
(
2ĥ0/wKr

) 1
2
, andwherea andb are integration constants. The temperatureTsource takes the formTsource =

T∞ +2−1ĥ−1
0 wQ̇0 (on assumption ĥ0 is nonzero) and satisfies KrT ′′

source + Q̇0 −2ĥ0w−1 (Tsource − T∞) = 0,
which is readily verified on substitution. The solution is

Tr (x) = ai cosh (α (x − xi )) + bi sinh (α (x − xi )) + Tsource (17)

where ai and bi are determined by two boundary conditions ĥi
(
T x=xi
r − T i

wat

) = −Kr (∂Tr/∂x)x=xi and

ĥi+1

(
T x=xi+1
r − T i+1

wat

)
= Kr (∂Tr/∂x)x=xi+1

, which applies at the edges of a tile.

5.2.2 Steady-state validation tests

The analytical solution is compared with results from ABAQUS and UoMFEC. The material properties for
the Cantor dust material (copper) are: thermal conductivity Ks = 400W/mK, density ρ = 8930 kg/m3 and
specific heat capacity cp = 385 J/kgK. The dimensions for the bar are taken to be: edge length l0 = 1m and
width w = 1 m. The ambient temperature of the surrounding medium is taken to be T∞ = 323K, with the
heat transfer coefficient ĥ0 = 200W/m2 K. A uniform heat-loading rate Q̇0 = 400W/m3 is applied to the bar
as an internal heat source to account for thermal loading. The required heat transfer coefficients ĥwats for the
pre-fractal holes are determined using an empirical relationship obtained on combination of the Dittus–Boelter
and the Darcy–Weisbach equations [37], which provides

ĥwats =
(

0.0535
k0.67 Â0.8ρ0.457c0.33p

μ0.584L0.457

)

�p0.457
(
dholes

)0.371
(18)

Table 11 Transient temperature differences on Êk : influence of discontinuity network

Point 1 and 2 in Fig. 3 k No discontinuity network With discontinuity network

D̄ (K) D̄% (%) D̄ (K) D̄% (%)

(0, 0) 1 0.82 0.23 1.03 0.28
2 25.88 7.53 3.49 0.98
3 49.67 14.51 17.44 4.85

(0.5, 0.5) 1 5.84 1.81 3.96 1.23
2 1.06 0.35 1.03 0.34
3 0.22 0.07 0.22 0.07
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where dholes = 4 Â/P̂ is the hydraulic diameter, Â is cross-sectional area, P̂ is the wetted perimeter (in this
case the perimeter of the cooling channel), k is the thermal conductivity of the bulk fluid, μ is the viscosity, ρ
is the density and cp is the specific heat capacity at constant pressure.

For water flowing through the hole at temperature Twat = 293K, with pipe length L = 1m and pressure
drop �p = 50 kPa, the heat transfer coefficient ĥwats with different sizes of dholes on pre-fractals for the dust is
calculated using Eq. (18) and given in Table 1.

Temperature plots on pre-fractals Êk for the analytical solution, for solutions fromUoMFECwith different
initial meshes on Ê0 and solutions from the commercial packageABAQUS are depicted in Fig. 6, with different
values of k. The pre-fractal temperatures from the analytical solution and from UoMFEC are mapped from
temperatures obtained on the corresponding tessellated structure T̂k . To obtain similar results from ABAQUS,
two options are available for the Cantor dust: (i) indirect temperature determination via a tessellation with
results lifted to the corresponding pre-fractal and (i.e. a procedure similar to that used by UoMFEC and termed
ABAQUS-lifted) and (ii) temperatures obtained directly on the pre-fractal (termedABAQUS-direct). Although
not an issue for the Cantor dust (but certainly so for more complex fractals), the use of ABAQUS for the two
approaches has particular drawbacks: with ABAQUS-lifted, complex orthotropic material properties for the
tessellation have to be determined and input as a separate exercise; with ABAQUS-direct, complex geometries
have to be loaded into the software.

The various approaches are tested on the pre-fractals and tessellation depicted in Fig. 5, where temperatures
lifted from tessellations are of principal interest. The results are provided in Fig. 6 and Table 2which, in general,
establish the credibility of the tessellation strategy via the high accuracy returned. The averages D̄ and D̄%
given in Table 2 are obtained with the relationships

D̄ = 1

n

n∑

i=1

∣
∣
∣T

(a)
i − T (b)

i

∣
∣
∣ (19)

and

D̄% = 2 × 100

n

n∑

i=1

∣
∣
∣
∣
∣

T (a)
i − T (b)

i

T (a)
i + T (b)

i

∣
∣
∣
∣
∣

(20)

where superscripts (a) and (b) distinguish the methods (analytical solution, UoMFEC, ABAQUS-lifted and
ABAQUS-direct) and n is the number of the data points.

Examination of Table 2 reveals relatively small errors, with the largest of these for ABAQUS-direct (i.e.
for ABAQUS applied directly to the pre-fractals); this is a consequence of a modelling error arising from the
approximate enforcement of continuity on a disconnected set.

Table 12 Heat transfer coefficients for the Sierpinski gasket heat exchanger on Êk

k dholes (m) P̂ (m) ĥwats (W/m2 K)

1 0.29 1.50 11,823.4
2 0.29 1.50 11,823.4

0.14 0.75 5249.4
3 0.29 1.50 11,823.4

0.14 0.75 5249.4
0.07 0.38 2330.6

4 0.29 1.50 11,823.4
0.14 0.75 5249.4
0.07 0.38 2330.6
0.04 0.19 1034.8

5 0.29 1.50 11,823.4
0.14 0.75 5249.4
0.07 0.38 2330.6
0.04 0.19 1034.8
0.02 0.09 459.4
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5.2.3 Transient solution for a 1-D Cantor dust

The transient equation on the tessellated construction T̂k with a discontinuity network for each tile is given by

ρr cr
∂Tr
∂t

= Kr
∂2Tr
∂x2

+ Q̇0 − 2ĥ0
w

(Tr − T∞) (21)

(i) (ii) 

(iii) (iv) 

(v) (vi) 
Fig. 17 Contour temperatures (UoMFEC) on T̂3 and Ê3 with different meshes. i Contours on continuum with six tiles on Ê0.
ii Contours on corresponding pre-fractal with six tiles on Ê0. iii Contours on continuum with 18 tiles on Ê0. iv Contours on
corresponding pre-fractal with 18 tiles on Ê0. v Contours on continuum with 162 tiles on Ê0. vi Contours on corresponding
pre-fractal with 162 tiles on Ê0
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(i) (ii) 

(iii) (vi) 

(v) (iv) 

(iiv) 
Fig. 18 ABAQUS-direct temperature plots on Ê3 directly for various meshes. i Mesh on Ê3 with six tiles per pre-fractal element.
ii Contour temperature on Ê3 with six tiles per pre-fractal element. iii Mesh on Ê3 with 16 tiles per pre-fractal element. iv Contour
temperature on Ê3 with 16 tiles per pre-fractal element. v Mesh Ê3 with 150 tiles per pre-fractal element. vi Contour temperature
Ê3 with 150 tiles per pre-fractal element. vii Contour temperature Ê3 with 1536 tiles per pre-fractal element
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in which it is assumed that steady-state temperatures are attained instantaneously at holes in pre-fractals with
very high heat transfer coefficients. This assumption is an approximation but allows for an analytical solution
of the form Tr (x, t) = –T (x, t)+–S (x), where –S (x) is the steady-state solution of Eq. (17) and –T (x, t) satisfies

ρr cr
∂–T

∂t
= Kr

∂2–T

∂x2
− 2ĥ0

w
–T (22)

which, on assumption that –T (x, t) = X (x) τ (t) presents as

ρr cr
Kr

τ̇

τ
+ 2ĥ0

wKr
= X ′′

X
= −ω2. (23)

This equation provides solutions with the transient part

τ (t) = exp(−β(ω2 + α2)t) (24)

where β = Kr/ρr cr and α =
(
2ĥ0/wKr

) 1
2
.

The tile considered here is
[
xi , xi+1

]
, so it is convenient to set the spatial part of the solution to

X (x) = Ai cos (ω (x − xi )) + Bi sin (ω (x − xi )) . (25)

To satisfy the specific temperatures as end conditions for each element, it is necessary for Ai = 0 and
ωn = 2knπ/�0, with Bi unspecified, where use is made of the tile length lk = �0/2k . It follows that solution
on the interval

[
xi , xi+1

]
is

T i
r (x, t) = –S (x) +

∞∑

n=1

Bi
n sin (ωn (x − xi )) exp(−β(ω2 + α2)t) (26)

where in the limit t → ∞ the temperature T i
r (x, t) → –S(x), i.e. steady-state conditions are obtained after a

sufficient period of time.
For convenience, the initial condition along the bar is set to zero, i.e. T (x, 0) = 0, which means on[

xi , xi+1
]
the Fourier solution is required to satisfy

∞∑

n=1

Bi
n sin (ωn (x − xi )) = − —S (x) (27)

which is a Fourier sine series representation of −–S(x) on the interval
[
xi , xi+1

]
, where Bi

n are obtained from
the Euler formulae

Bi
n = − 2

lk

xi+1∫

xi

–S (x) sin (ωn (x − xi )) .dx (28)

The complete solution is obtained on joining solutions on tiles
[
xi , xi+1

]
with

⋃
i

[
xi , xi+1

] = [0, �0].

Table 13 Temperature errors on the Sierpinski gasket pre-fractals along y = 0 on Êk

k No. of tiles on Ê0 Average difference comparing with ABAQUS-direct

UoMFEC ABAQUS-direct with coarse mesh With coarse mesh With fine mesh

D̄ (K) D̄% (%) D̄ (K) D̄% (%)

1 6 6 2.28 0.60 5.58 1.38
18 16 2.07 0.53 1.82 0.45

162 150 0.44 0.12 0.26 0.07
2 6 6 0.79 0.23 1.76 0.53

18 16 0.58 0.17 0.76 0.23
162 150 0.13 0.04 0.38 0.12

3 6 6 0.37 0.11 1.45 0.45
18 16 0.29 0.09 1.20 0.37

162 150 0.26 0.08 0.71 0.22
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5.2.4 Transient validation tests

Transient results from the analytical solution are compared with results from UoMFEC and ABAQUS. The
assumption adopted in Sect. 5.2.3—that temperatures in cooling channels immediately attain steady-state
temperatures—makes the analytical solution approximate. The same meshes employed for the steady-state
case are also employed for the transient analysis. Transient temperature plots for selected points on Êk are

(i)
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Fig. 19 Temperature plots along x = 0 on Êk with different meshes using UoMFEC and ABAQUS-direct. i Temperature plots
along x = 0 on Ê1. ii Temperature plots along x = 0 on Ê3
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presented in Fig. 7, with average differences provided in Table 3; averages are again obtained using Eqs. (18)
and (19).

Errors in results from UoMFEC and ABAQUS on the tessellations T̂k and pre-fractals Êk are larger with
lower values of k but reduce significantly as k increases. This trend is apparent on examination of Fig. 7 and
Table 3. Increasing the value of k has the effect of increasing the number of elements involved, which appears
to override deleterious effects coming from an increase in geometric complexity.

6 The importance of discontinuity networks

The results provided in reference [2] were performed without the use of a discontinuity network, which meant
that temperature and heat transfer discontinuities could not be accommodated. It is of interest therefore to
investigate the influence of discontinuity networks on the accuracy of predictions on realistic pre-fractals. In
the absence of a network, cooling can be achieved along the edge of tiles by application of an appropriate heat
sink as described in reference [2].

For the results presented in this section, the material selected for the heat exchangers is copper as used
in Sect. 4 and the types of exchanger designs considered are limited to prismatic designs with cross sections
represented by pre-fractals. The heat transfer coefficient ĥair associated with flowing air with temperature
Tair = 323K around the pre-fractals is taken to be 100W/m2 K. Each pre-fractal has water flowing through the
voids in order to match typical working conditions pertaining to heat exchangers and is subjected to a uniform
heat loading with internal heat source Q̇0 = 500 kW/m3.

6.1 Thermal analysis of a Sierpinski carpet heat exchanger

The Sierpinski carpet is selected to represent a closed-pore cellular material for the heat exchanger. The con-
traction and expansion maps for the pre-fractals and corresponding tessellations are provided in “Appendix B”.
It is assumed that the water coolant flows through the voids in the pre-fractal depicted in Fig. 2 with temperature
Twat = 293K. The heat transfer coefficients ĥwats for each hole in the pre-fractals (with different hole sizes and
hydraulic diameters dholes ) are given in Table 4. Note that heat transfer coefficients in Table 4 are transferred
to the corresponding edges in a tessellation but first must be scaled to satisfy Eq. (6).

Two different meshes are defined in ABAQUS as follows: (i) one is a coarse mesh with exactly the same
number of tiles as used in UoMFEC and (ii) the other is a sufficiently fine mesh to provide a converged result.
Temperature distributions obtained with UoMFEC on tessellation T̂3 with and without discontinuity networks,
and with results subsequently mapped to pre-fractal Ê3 are depicted in Fig. 8. Similarly, results obtained
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directly on Ê3 are obtained using ABAQUS (on two meshes) which are presented in Fig. 9. To provide a
quantitate basis of comparison, the average errors (using the converged ABAQUS solution as a benchmark)
are calculated using Eqs. (18) and (19) along the diagonal line x = y on Êk . These errors are given in Table 5,
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A tessellated continuum approach to thermal analysis 173

Table 14 Average transient temperature differences at points (see Fig. 1) on Êk

k No. of tiles on Ê0 Average difference comparing with ABAQUS (fine)

UoMFEC ABAQUS-direct with coarse mesh Point (0.5, 0) Point (0.5, 0.433)

D̄ (K) D̄% (%) D̄ (K) D̄% (%)

1 6 6 3.25 1.07 1.32 0.42
18 16 0.74 0.24 1.26 0.41

162 150 0.33 0.11 0.15 0.05
2 6 6 1.91 0.64 0.42 0.14

18 16 0.73 0.24 0.43 0.14
162 150 0.14 0.05 0.20 0.07

3 6 6 0.88 0.29 0.45 0.15
18 16 0.33 0.11 0.08 0.03

162 150 0.08 0.03 0.01 0.24 × 10−2
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and corresponding temperature distributions are presented in Fig. 10. It can be seen that errors increase with
an increase in k for the tessellated approach without discontinuity networks as a consequence of the unrealistic
enforcement of continuity at cooling channel holes. Although in this case reasonable accuracy is obtained in
the absence of a discontinuity network, higher accuracy is achieved with its inclusion.

Continuity assumptions are enforced on tessellations without discontinuity networks, which is equivalent
to temperatures and heat transfer rates on opposite sides of pre-fractal holes having identical values. This lack
of realism gives rise to problem-dependentmodelling errors. It is of interest, however, to quantify themaximum
temperature difference Tdiff at a discontinuity network D̂k to provide a direct indication of the significance of
this aspect; Tdiff is formally defined to be

Tdiff = max
x∈D̂k

∣
∣T+ (x) − T− (x)

∣
∣ (29)

where T+ − T− is the jump in temperature across the discontinuity network D̂k .
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In the case of the Sierpinski carpet heat exchanger, the values for Tdiff are presented in Table 6. The
magnitude is significant on D̂3 and D̂2 but zero on D̂1 as a consequence of symmetric boundary conditions
and the one symmetrically located hole.

Transient temperature plots mapped on Êk for the different points shown in Fig. 2 are provided in Fig. 11
for UoMFEC on two tessellations, which are compared with convergent ABAQUS-direct results (ABAQUS
applied directly to the pre-fractals with fine mesh). In addition, average differences calculated by Eqs. (19) and
(20) are given in Table 7 at two points in Êk . Similar to the steady-state solution, the discontinuity network has
little impact on transient results on Ê1. However, the influence of the network becomes obvious with increase
in k, where its inclusion provides greater accuracy. Errors tend to be greatest at or close to boundaries of holes,
and an increase in k provides a greater number of holes.

6.2 Finger-like fractal

It is of interest to investigate the open-pore structure depicted in Fig. 3 to represent a cellular heat exchanger.
The open-pore structure is assumed to be placed in a close-fitting container to enforce the flow of coolant
through the structure. The contraction and expansion maps for the pre-fractals and corresponding tessellations
shown in Fig. 3 are provided in “AppendixC”. The heat transfer coefficients ĥwats associatedwith each hydraulic
diameter dholes in the pre-fractals are given in Table 8. Examination of Fig. 3 and Table 8 highlights a peculiar
feature with higher heat transfer coefficients appearing at smaller holes on different tessellations. This is an
unfortunate consequence of the rather irregular wetted perimeter used in the calculation for the hydraulic
diameter.

Temperature distributions for the finger-like porous fractal are provided Figs. 12 and 13. Equations (19) and
(20) are again used to determine the average errors (contrasted against the benchmark converged ABAQUS-
direct results) along the diagonal line x = y on Êk . The temperature differences are presented in Table 9 with

(i) (ii) (iii) 

(iv) (v) (vi) 
Fig. 24 Principal thermal conductivity ratio (Kr/Ks) distribution for Vicsek fractal with hole-fill map formed with expansion
map (a). i Contours on T̂1. ii Contours on T̂2. iii Contours on T̂3. iv Graph on T̂1. v Graph on T̂2. vi Graph on T̂3
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corresponding temperature plots in Fig. 14. It is evident on examination in Table 9 and Fig. 14 that greater
accuracy is achieved with the inclusion of a discontinuity network. Errors are observed to be particularly large
for the continuous Galerkin approach at extreme corners and remain high despite higher values of k. Large
error at the corners is an indication that insufficient elements are being placed there, which is a constraint
imposed by tiles doubling up as elements with tessellations being created recursively.

Equation (29) is again employed to quantify the extent of the temperature differences on D̂k for the finger
fractal with the results given in Table 10. The results are similar to the results obtained for the Sierpinski
gasket (see Table 6) with non-trivial differences on D̂3 and D̂2 but zero on D̂1 because of symmetric boundary
conditions and the location of the (in this case) four holes.

Using the points illustrated in Fig. 3 on Êk , transient temperatures are depicted in Fig. 15, obtained both
from T̂k (UoMFEC) and directly obtained with ABAQUS-direct with fine mesh. The average differences
calculated by Eqs. (19) and (20) are provided in Table 11. The importance of including a discontinuity network
is clear on examination of the results, with maximum errors appearing at corners. The temperatures produced
by the continuous Galerkin method close to the corners are higher than those with a discontinuity network.

Comparing errors produced on the closed-pore structure (Sierpinski carpet) against the open-pore structure
(finger-like fractal) reveals the latter structure’s relative sensitivity to the inclusion of a discontinuity network.

(i) (ii) (iii) 

(iv) (v) (vi) 
Fig. 25 Principal thermal conductivity ratio (Kr/Ks) distribution for Vicsek fractal with hole-fill map formed with expansion
map (b). i Contours on T̂1. ii Contours on T̂2. iii Contours on T̂3. iv Graph on T̂1. v Graph on T̂2. vi Graph on T̂3

Table 15 Heat transfer coefficients for the Vicsek fractal heat exchanger on Êk

k dholes (m) P̂ (m) ĥwats (W/m2 K)

1 0.33 1.33 12,735.0
2 0.31 2.22 17,675.8
3 0.25 3.26 18,953.1
4 0.19 4.84 18,141.7
5 0.13 7.42 16,327.6
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This is not unexpected, since enforcing continuity between points separated across holes is difficult to justify
and is unrepresentative for open-pore constructions of the type depicted in Fig. 3.

7 The influence of mesh

It is apparent from the results in previous sections that UoMFEC provides improved accuracy in its mapped
results when compared with results obtained from ABAQUS applied directly to pre-fractals. A feature of
the tessellated approach, however, is that the tessellated mesh used in any analysis is related to the initial
tessellation on Ê0; it is thus of interest to investigate the influence the initial tessellation has on the accuracy
of predicted results.

Consider again the Sierpinski gasket with an initial tessellation of 6 elements on T̂0 = Ê0. Re-examination
of Fig. 1 reveals tessellations on T̂1, T̂2 and T̂3 consisting of 18 = 3× 6, 54 = 32 × 6 and 162 = 33 × 6 tiles.
The tile numbers arise from the number of maps involved (i.e. 3) and the initial number of tiles (i.e. 6). Each of
these tessellations is produced by the expansion maps provided in “Appendix A”. These tessellations could all
in principle be used as alternative initial tessellations on Ê0. The expansion maps now associated with these
initial tessellations on T̂0 = Ê0 are obtained by function compositions of the maps in “Appendix A”, but there
is no requirement to formulate these explicitly because all tessellations can be produced from the original set
of maps. This aspect is demonstrated in Fig. 16, which shows tessellations produced solely from the maps in
“Appendix A”, without recourse to composite functions. The different initial tessellations on T̂1 and Ê1 in Fig.

(i) (ii) 

(i) (ii) 
Fig. 26 Contour temperatures (UoMFEC) on T̂3 and Ê3 with hole-fill maps constructed with different expansion maps. i Contour
temperatures on T̂3 with expansion map (a). ii Contour temperatures on Ê3 with expansion map (a). i Contour temperatures on
T̂3 with expansion map (b). ii Contour temperatures on Ê3 with expansion map (b)
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16 are obtained from different initial tessellations on Ê0, themselves formed from a tessellation consisting of
six tiles. Thermal analysis performed on the Sierpinski carpet in Sect. 5 is repeated but on the gasket with an
internal heat loading Q̇tot = 300kW/m3 and cooling-channel heat transfer coefficients given in Table 12, for
the various hydraulic diameters involved.

Temperature distributions on T̂3 mapped to Ê3 as determined by UoMFEC are shown in Fig. 17. These
are compared with results from ABAQUS-direct applied directly to Ê3 for a similar numbers of elements as
presented in Fig. 18. All the temperatures from UoMFEC (all UoMFEC results are lifted from the tessellation)
provide very close agreement with ABAQUS-direct results, providing further confidence in the tessellation
method and discontinuity networks. The average errors determined using Eqs. (19) and (20) on the edge y = 0
are given in Table 13. The results correspond to temperatures presented in Fig. 19.

The average error (contrasting UoMFEC against a convergent ABAQUS-direct solution) obtained using
Eq. (19) is recorded to give an indication on how error reduces with mesh refinement. Mesh refinement is
achieved through the increasing the number of tiles on the original set Ê0. The recorded errors on Êk are
depicted in Fig. 20, where convergent behaviour is observed.

Transient temperature profiles are shown in Fig. 21 along with average differences given in Table 14. Both
steady-state and transient results confirm that accuracy improves with tessellated mesh refinement.

Fig. 27 Contour temperature plots (ABAQUS-direct) on Ê3 directly for various meshes. i Mesh on Ê3 with eight elements per
pre-fractal element. ii Contour temperatures on Ê3 with eight elements per pre-fractal element. iii Contour temperatures on Ê3
with 152 elements per pre-fractal element
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8 The influence of different hole-fill maps

One of the features of the tessellated approach is the non-uniqueness of the sub-expansion maps Pi j in the
formation of on an expansion map Pi . This variability is reflected in changes in the tessellation on T̂1 and
changes in Pi change the hole-fill map x : s �→ x and influence the precise manner in which holes are closed.
Recall that hole-fill maps relate points s on a pre-fractal to points x in a tessellation. Any temperature T (x, t)
calculated on a tessellation is related to a temperature on a pre-fractal through the hole-fill map x : s �→ x, i.e.
T (s, t) = T (x (s) , t). Predictions on a pre-fractal are required to be invariant with respect to the non-unique
choice of hole-fill map x : s �→ x. The explicit form the hole-fill map takes for a fixed set of contraction
maps Si depends on the choice of expansion maps Pi . It is of interest therefore to demonstrate explicitly the
invariance of predictions for two significantly different hole-fill maps. It is also of interest to examine the effect
distorted tiles have on the accuracy of predictions. These aspects are examined on pre-fractals for the classic
Vicsek fractal, on tessellations formed with two distinct hole-fill maps.

8.1 Pre-fractal and tessellation construction

The Vicsek fractal is a non-product fractal, constructed by the recursive application of the affine contraction
maps shown in Table 23, “Appendix D”. Pre-fractals and two corresponding tessellations are shown in Figs.
22 and 23. These are formed from an initial tessellation on Ê0 consisting of eight-triangular tiles and are
produced with expansion maps defined in Tables 24 and 25. The arrows depicted in Figs. 22 and 23 illustrate
for a selection of triangles the effect of the two mappings.

Thermal conductivity contours using Eq. (5) for point-wise maximum thermal conductivities are shown in
Figs. 24 and 25. Examination of the two figures reveals significant differences in the distributions; it should be
appreciated that differences in the tessellated space can be expected but of principal concern is the retention
of isotropy in the physical space.

8.2 Thermal analysis of a Vicsek fractal heat exchanger

The open-poreVicsek structure is assumed to be placed in a close-fitting container to enforce the flowof coolant
through the structure. Consider then water coolant flowing through the voids shown in Figs. 22 and 23; the
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heat exchanger is manufactured from the same copper material used in Sect. 5 with the exact same surrounding
conditions. A uniform heat loading of Q̇tot = 500 kW/m3 is applied on each pre-fractal as an internal heat
source. The cooling-channel heat transfer coefficients ĥwats are provided in Table 15 for the hydraulic diameters
met on the Vicsek fractal.

Temperature distributions on pre-fractal Ê3 and corresponding tessellation T̂3 determined by UoMFEC
from the two different tessellation maps are shown in Fig. 26. These can compared against results obtained
with ABAQUS-direct for two meshes as depicted in Fig. 27. Examination of Fig. 26 reveals stark differences
in temperatures on the tessellation, yet almost identical results in the physical space. This result provides good
evidence that the manner in which tessellations are created does not affect the final outcome as seen on pre-
fractals in the physical space. To quantify the results more precisely, temperature distributions along y = 0.5
are shown in Fig. 28 for both ABAQUS-direct and UoMFEC. It is clear that the two sets of tessellations return
high accuracy. The errors calculated via Eqs. (19) and (20) are also given in Table 16 and also confirm high
accuracy.

Transient plots for Point 1 in Fig. 22 with coordinates (0.5, 0.5) on Êk are depicted in Fig. 29 along with
the average differences calculated by Eq. (19) and (20) in Table 17. The results provided further evidence that
different hole-fill maps have little impact on results viewed in the physical space.

Table 16 Average temperature errors on Vicsek fractal along y = 0.5 on


Ek

k 1 2 3

Results with hole-fill map formed with expansion map (a) in Table 24
Coarse mesh
D̄ (K) 2.54 0.49 0.10
D̄% (%) 0.73 0.16 0.03

Fine mesh
D̄ (K) 4.03 0.70 0.13
D̄% (%) 1.16 0.23 0.05

Results with hole-fill map formed with expansion map (b) in Table 25
Coarse mesh
D̄ (K) 2.54 0.49 0.10
D̄% (%) 0.73 0.16 0.03

Fine mesh
D̄ (K) 4.03 0.70 0.13
D̄% (%) 1.16 0.23 0.05
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Table 17 Transient temperature differences at point (0.5, 0.5) on Vicsek pre-fractals

k 1 2 3

Hole-fill map formed with expansion map (a) in Table 24
Coarse mesh
D̄ (K) 0.75 0.06 0.06
D̄% (%) 0.21 0.02 0.02

Fine mesh
D̄ (K) 2.14 0.84 0.17
D̄% (%) 0.60 0.27 0.06

Hole-fill map formed with expansion map (b) in Table 25
Coarse mesh
D̄ (K) 1.09 0.06 0.06
D̄% (%) 0.30 0.02 0.02

Fine mesh
D̄ (K) 1.80 0.84 0.17
D̄% (%) 0.50 0.27 0.06

It is worth noting that highly skewed tiles also have little impact on the accuracy of the results with the
tessellated approach. This is expected because changes in thermal conductivities compensate to provide an
analysiswhich is akin to doing calculationswith the regularmeshes appearing on the correspondingpre-fractals.

9 Conclusions

This paper tests the hypothesis that heat transfer analysis on porous media for cellular heat exchangers can be
performed on a tessellation with new form of tessellated continuummechanics using the finite element method.
Thermal analysis of a relatively complex structures replicated by pre-fractals is demonstrated on corresponding
tessellations incorporating discontinuity networks. In establishing the tessellated finite element approach for
heat transfer on tessellations with discontinuity networks, the following conclusions can be drawn:

• Temperatures on tessellated structures have been shown to return the temperatures on pre-fractals in support
of the contention that heat transfer analysis on pre-fractals can be achieved through analysis on tessellations
with high accuracy.

• The accuracy of the tessellated approach with the finite element method can be significantly improved by
incorporating discontinuity networks in tessellations.

• The use of highly skewed tiles and alternative expansion maps has little impact on the accuracy of the
procedure.

• Increased accuracy can be obtained by refining the initial tessellation on the initial domain T̂0 = Ê0, which
can be achieved very efficiently through multiple application of affine expansion maps.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate
if changes were made.

Appendix A: Maps for the Sierpinski gasket

The Sierpinski gasket is an example of a non-product fractal set and is constructed by the recursive application
of the following three affine contraction maps:

S1 (x, y) =
( x

2
,
y

2

)
, S2 (x, y) =

(
�0

2
+ x

2
,
y

2

)

and S3 (x, y) =
(

�0

4
+ x

2
,

√
3�0
4

+ y

2

)

, (28)

where each Si maps a triangular domain into a smaller triangular as deduced on inspection of Fig. 1.
The initial six tiles on the triangular domain Ê0 provide a means to define the expansion maps for the con-
struction of T̂k . Each expansion map consists of a number of sub-maps with a number equal to the number of
initial tiles on Ê0 (6 in this case). Explicitly, the expansion maps for the Sierpinski are illustrated in Table 18.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Table 18 Expansion maps for Sierpinski
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2
√
3
,
2y
3

)
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√
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3x
4 − y

4
√
3
, x
4
√
3

+ 5y
12

)
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√
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√
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Appendix B: Maps for the Sierpinski carpet

The Sierpinski carpet is a non-product fractal set constructed by the eight affine contraction maps in Table 19.
Each contraction map, maps a rectangular domain into a smaller rectangular domain as deduced on inspection
of Fig. 2. The initial number of tiles on Ê0 in Fig. 2 is 6, which means that the eight expansion maps will each
consist of six sub-maps although some are identical. The expansion maps satisfy P1 = S1, P3 = S3, P6 = S6
and P8 = S8 with the remaining maps defined in Table 20 but limited to distinctive sub-maps.

Table 19 Contraction maps for Sierpinski carpet

S1 (x, y) = ( x
3 ,

y
3

)
S2 (x, y) =

(
�0
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y
3

)

S3 (x, y) =
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y
3
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(
x
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3

)
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2�0
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(
x
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3 + y
3

)

S7 (x, y) =
(

�0
3 + x

3 , 2�0
3 + y

3

)
S8 (x, y) =

(
2�0
3 + x

3 , 2�0
3 + y

3

)
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Table 20 Expansion maps for Sierpinski carpet
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Appendix C: Maps for the finger-like fractal

The finger-like fractal is constructed by the five affine contraction maps in Table 21; the associated expansion
maps are defined in Table 22.

Table 21 Contraction maps for finger-like fractal
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y
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Table 22 Expansion maps for finger-like fractal

P1 (x, y) P11 (x, y) = ( x
2 − y

4 + 1
8 ,

y
4 + 1

8

)
If 2y ≥ 1 and y ≤ x

P22 (x, y) = ( x
4 + 1

8 , − x
4 + y

2 + 1
8

)
If 2x ≥ 1 and y ≥ x

P13 (x, y) = ( x
2 ,

y
2

)
Otherwise

P2 (x, y) P21 (x, y) = ( x
2 − y

4 + 3
8 ,

y
4 + 3

8

)
If 2y ≤ 1 and y ≥ xOR 2y ≥ 1 and y ≤ −x + 1

P22 (x, y) = ( x
4 + 3

8 , − x
4 + y

2 + 3
8

)
If 2x ≤ 1 and y ≤ xOR 2x ≥ 1 and y ≥ x

P23 (x, y) = ( x
4 + 3

8 , x
4 + y

2 + 1
8

)
If 2x ≥ 1 and y ≤ −x + 1OR2x ≤ 1 and y ≥ −x + 1

P24 (x, y) = ( x
2 + y

4 + 1
8 ,

y
4 + 3

8

)
If 2y ≤ 1 and y ≥ −x + 1OR 2y ≥ 1 and y ≤ −x + 1

P3 (x, y) P31 (x, y) =
(
x
4 + 5

8 , x
4 + y

2 − 1
8

)
If 2x ≤ 1 and y ≥ −x + 1

P32 (x, y) = ( x
2 + y

4 + 3
8 ,

y
4 + 1

8

)
If 2y ≥ 1 and y ≤ −x + 1

P33 (x, y) = ( x
2 + 1

2 ,
y
2

)
Otherwise

P4 (x, y) P41 (x, y) = ( x
4 + 1

8 , x
4 + y

2 + 3
8

)
If 2x ≤ 1 and y ≤ x

P42 (x, y) =
(
x
2 + y

4 − 1
8 ,

y
4 + 5

8

)
If 2y ≤ 1 and y ≥ −x + 1

P43 (x, y) = ( x
2 ,

y
2 + 1

2

)
Otherwise

P5 (x, y) P51 (x, y) =
(
x
2 − y

4 + 5
8 ,

y
4 + 5

8

)
If 2y ≤ 1 and y ≥ x

P52 (x, y) =
(
x
4 + 5

8 , − x
4 + y

2 + 5
8

)
If 2x ≤ 1 and y ≤ x

P53 (x, y) = ( x
2 + 1

2 ,
y
2 + 1

2

)
Otherwise



184 C. Jiang et al.

Appendix D: Maps for the Vicsek fractal

The Vicsek fractal is constructed by the five affine contraction maps in Table 23.

Table 23 Contraction maps for Vicsek fractal

S1 (x, y) =
(
x
3 , �0

3 + y
3

)
S2 (x, y) =

(
�0
3 + x

3 , �0
3 + y

3

)
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y
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(
2�0
3 + x
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3
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S5 (x, y) =
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�0
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3 , 2�0
3 + y

3

)

Two sets of expansion maps termed (a) and (b) are defined in Tables 24 and 25, respectively. The effect of
these maps is shown visually in Figs. 22 and 23, where disparate tessellations are displayed.

Table 24 Expansion maps (a) for Vicsek fractal
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Table 25 Expansion maps (b) for Vicsek fractal
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