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Abstract This paper reports the results of a study into global and local conditions of uniqueness and the
criteria excluding the possibility of bifurcation of the equilibrium state for small strains. The conditions and
criteria are derived on the basis of an analysis of the problem of uniqueness of a solution involving the basic
incremental boundary problem of coupled generalized thermo-elasto-plasticity. This work forms a follow-up
of previous research (Śloderbach in Bifurcations criteria for equilibrium states in generalized thermoplasticity,
IFTR Reports, 1980, Arch Mech 3(35):337–349, 351–367, 1983), but contains a new derivation of global
and local criteria excluding a possibility of bifurcation of an equilibrium state regarding a comparison body
dependent on the admissible fields of stress rate. The thermal elasto-plastic coupling effects, non-associated
laws of plastic flow and influence of plastic strains on thermoplastic properties of a body were taken into
account in this work. Thus, the mathematical problem considered here is not a self-conjugated problem.

Keywords Bifurcation of the equilibrium state · Conditions and criteria of uniqueness · Boundary-value
problem · Generalized coupled thermo-elasto-plasticity · Comparison bodies

1 Introduction

The incremental boundary-value problem of generalized coupled thermoplasticity is formulated in this paper.
This is followed by an interpretation of the uniqueness conditions for the solution of that problem. The nec-
essary and sufficient local uniqueness conditions are deduced together with the global sufficient uniqueness
condition. A similar incremental boundary-value problem of coupled generalized thermoplasticity was inves-
tigated and discussed [1,3]. In this paper, necessary and sufficient local and global conditions of uniqueness
of solution of an incremental boundary-value problem of coupled generalized thermoplasticity for the case of
small displacements gradients (small strains) are derived. Uniqueness conditions for the generalized coupled
thermoplasticity [1–3] and suitable comparison bodies [1–7] are identified for this purpose. The derived local
and global uniqueness conditions are suitable necessary and sufficient conditions excluding occurrence of the
bifurcation of equilibrium state in coupled generalized thermoplasticity and for suitable comparison bodies
(also in isothermal loading processes).

Early papers by Mróz [8,9] defined local conditions of uniqueness for solving an incremental boundary
problem for the case of non-associated laws of plastic flow, for isothermal processes and small strains. A
similar local condition was obtained by Hueckel and Maier in [10,11]. In their analysis, the stability of the
material is defined bymeans of a conditionwhich states that the half of the product of the stress rate tensor needs
to be a positive value. The reported study was confined to the case of the isothermal theory of plasticity (with
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no thermomechanical couplings), the elastic–plastic coupling effects and non-associated laws of plastic flow
being preserved. The minimum principle (a principle of stability) for incremental, isothermal elasto-plasticity
with non-associated flow laws for small deformation was derived in a paper by Maier [12]. In [4,5] Mróz
and Raniecki derived local necessary and sufficient conditions of uniqueness in coupled thermoplasticity for
associated laws of plastic flow, without the elastic–plastic coupling effects and for small strains. The obtained
local conditions were not optimal (i.e. they were not minimal). The procedure of optimization was presented
in [1,3,13,14]. In Ref. [15], Raniecki and Sawczuk derived the equations of field and constitutive equations
for a body of coupled thermoplasticity with associated laws of plastic flow. In Ref. [16] they applied the
local conditions of uniqueness for considerations of the influence of selected thermomechanical couplings
on unstable behaviour of materials and selected machine components subjected to variable thermomechanical
fields. The studies into global conditions of uniqueness, stability and criteria of bifurcation for elasto-plastic
bodies for the case of large strains and the associated laws of plastic flow and isothermal processes were
presented by Hill, see for example [17–20]. Uniqueness conditions for the case of non-associated laws of
plastic flow and large strains were derived by Raniecki and Raniecki and Bruhns [13,14]. In these papers
[14,15], local and global conditionswere derivedwith regard to a comparison body depending on kinematically
admissible strain rate fields. In addition, local and global conditions of uniqueness for a comparison body
dependent on statically admissible stress rate fields for a case of non-isothermal processes, large strains and
non-associated laws of plastic flow were deduced in [21]. An attempt at the derivation of the local condition
of uniqueness for a certain non-compressible elasto-plastic comparison body and for case of large strains was
made in [22], but the study did not offer satisfactory results.

The current paper contains a summary and synthesis of this author’s papers and also includes the results
obtained by the earlier authors. This paper presents a closed set of uniqueness conditions and bifurcation
criteria in generalized coupled thermoplasticity [1–3] for the case of small deformations. The paper analyses
and includes a study regarding the influence of selected thermomechanical couplings on the uniqueness of the
solution of boundary problems. A discussion is included regarding non-associated laws of plastic flow, and
elastic and plastic behaviour (elastic–plastic coupling effects). Such a requirement poses a greater problem than
the ones stated previously. The problem is not a mathematical self-adjoint. In comparison with the results given
in [1,3], local and global conditions of uniqueness are identified with regard to a comparison body in relation to
the kinematically admissible stress rate fields. Thus, a set of conditions of uniqueness and bifurcation criteria
could be presented in a closed form. In contrast to the earlier papers focusing on uniqueness conditions and
bifurcations of equilibrium states [4–7], this paper deals with non-associated laws of plastic flow accounting for
elastic–plastic coupling effects and relations are established for a comparison body dependent on kinematically
admissible stress rate fields. In addition, influence of the chosen thermomechanical couplings and influence
of non-associated laws of plastic flow on some non-typical cases of behaviour of bodies under influence of
thermomechanical loadings provided by the theory are specified and described.

This paper demonstrates that the local uniqueness conditions for the generalized thermo-elasto-plastic
body and for the comparison bodies are the same. The methods of calculating the bifurcation state (using the
global sufficient uniqueness condition) for the case of comparison bodies are less complicated than for the
generalized thermo-elasto-plastic body, as there is a linear dependence between stress rate and strain rate, see
[1–7] and the discussion in Sects. 4.2.2 and 4.2.4 of this paper. Thus, the use of such comparison bodies seems
to be advisable.

In a generalized case, constitutive equations of coupled thermoplasticity take the form of non-associated
laws of plastic flow, even if Gyarmati’s [23] postulate is assumed (see [1–3]). They also include the effects
of thermomechanical coupling and take into account the elastic–plastic conjugation. It means that they can be
applied for the description with regard to not only metallic bodies, but also porous materials, sintered powders,
rocks and soils. The paper also contains a description of special cases of the local conditions of uniqueness for
more specific body models. In such less general models, constitutive functions occurring under conditions of
uniqueness can take simpler form.

The obtained conditions of uniqueness seem to be important from both mathematical and practical point
of view. They can offer a device useful in the estimation of critical loads. If the critical loads are exceeded,
bifurcation of the equilibrium state is possible [1–7].

The incremental boundary-value problem of coupled generalized thermo-elasto-plasticity is formulated
in this paper. In order to analyse the uniqueness of the boundary problem solution, it is assumed that a
thermodynamic state of the body at a given instant of plastic deformation is known. It is necessary to determine
rate fields of strain or stress as well as temperatures appropriately for set values of stress or strain rate and the
divergence of the vector of heat flux exchanged through the surface in the elementary area (see the problems
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b1 and b2 considered in this paper and also in [1,3]). Similar incremental boundary problems of coupled
thermo-elasto-plasticity for small and large deformations were tested and discussed in the literature, see e.g.
[1–9,13,14,21].

The issues of non-isothermal thermo-elasto-plasticity and isothermal elasto-plasticity with associated and
non-associated laws of plastic flow and with regard to large deformations were thoroughly described in the
recent 20 years, see e.g. [13,14,21,22,24–44]. The constitutive equations and plasticity conditions for isotropic
and anisotropic materials were analysed in these papers, and the methods of numerical calculations were
applied. In otherworks, e.g. [26–44], the problems regarding large thermal and elasto-plastic deformationswere
considered, appropriate measures to be applied for deformations, additivity of elastic and plastic deformations
were established, and problems regarding actual and relative configurationswere described. The topics of linear
and nonlinear kinematic and isotropic hardening were analysed in papers [30,35,39]. In addition, problems
regarding the stability and behaviour under thermomechanical and mechanical loading were analysed, see
e.g. [24,25,27,31,33,40,44]. The majority of papers describing large deformations in thermo-elasto-plasticity
apply the method of internal parameters in the frame of thermodynamics of non-reversible processes, for
example see [13,14,21,22,26,28,31,33,36,43,44].

1.1 Symbols and abbreviations

cε and cσ Specific heat capacity measured at constant elastic strain and stresses in
[1/(kgK)],

divq = ∂qi
∂xi

, xi Orthogonal Cartesian coordinates which express the initial location of the parti-
cle.

D Dissipation of mechanical energy per unit time and volume [1,2,45,47],
E Young’s modulus,
F Law function of plastic flow determined in the variables state space {T , σ, K}

[1,2,46,47],
F1 Generalized law function of plastic flow determined in the thermodynamic force

space {T , σ, −Π , K} [1,2,46,47],
h Hardening function,
M and L Tensor of isothermal elastic moduli and tensor of elastic compliance, respec-

tively, M = (
L−1

)
σ=σ

(
Y T ε
K

), and 2(Mi jmnLmnrs)σ=σ
(
Y T ε
K

) = δisδ jr + δirδ js and

Mi jmn = Mmni j = Mjimn = Mi jnm ,
N Vector of pairs of tensors of the fourth and second order representing isothermal

variation of the state of stress due to internal processes accompanying plastic
deformation too in the state Y T ε

K
q Vector of the density of heat flow rate, [J/(m2s)],
T Thermodynamic temperature in [K],
T0 Reference temperature corresponding to the TRS—it may be, for example, the

ambient temperature,
∇T Gradient T (gradT ),
(TRS) Abbreviation for “thermodynamic reference state”, where T = T0, K = 0 (see

Greek symbols) and εe = 0,
ẋD Set of dissipative (mechanical) thermodynamic flows, ẋD = {ε̇p, q, K̇},
XD Set of dissipative (mechanical) thermodynamic forces, XD = {σ, −Π, 1

T ∇T },
Y Yield stress in uniaxial tension,
Y0 Initial yield stress, for εp = 0,
Y1 Yield stress in uniaxial tension as dependent on (π , κ , T ) ;
Y T ε
K = {T, εe, K } Variables of thermodynamic state,
and Y Tσ

K = {T, σ, K }
Y T ε

Π = {T, εe, Π}
and Y Tσ

Π = {T, σ , Π} Variables of thermodynamic state,
Z Vector of tensor pairs composed of the fourth and second order representing the

isothermal variation of elastic deformation due to the internal processes accom-
panying plastic deformation in state Y T σ

K , then Z ⇔ {Zmnkl; Zmn},
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Greek symbols

α Symmetric tensor of thermal expansion coefficients, such that αδi j = const,
δs Amount of entropy generated within a unit volume over a unit time and referred to a given material

particle,
ε Tensor of total deformations, ε = εe + εp,
εe and εp Tensor of small elastic and plastic deformations,
ep Deviatoric part of plastic deformation tensors εp, ep ≡ devεp,
K Pair of internal parameters K ⇔ {κ(M); κ(N )}M=1m,N=1 n ,
κ and κ Symmetric second-rank tensor and scalar internal parameter, respectively,
Λ Plasticity multiplier,
μ and λ Lamé elastic constants,
ν Poisson ratio,
Π Pair of internal thermodynamic forces associated with a pair of internal parameters K , Π ⇔

{π(M), π(N )}M=1m,N=1 n,

q Heat flux exchange with the neighbourhood per unit time across an unit area in [J/(m2s)],
ρ0 and ρ Body density in a thermodynamic reference state and in an actual one, respectively,
σ Cauchy stress tensor,
σ(i) Effective deviator of stress,
σ0 Yield stress value obtained in the uniaxial tension test for εp = 0,

Tensors will be printed in a bold typeface. The summation convention is assumed along with the following
detailed notation

AB ⇔ Ai j B j or Ai jkl Bkl (i, j, k, l,m, n, . . . = 1, 2, 3),

trA ⇔ Akk, tr(AB) ⇔ Ai j B ji ,

A : B ⇔ Ai Bi or Ai j Bi j ,

A ⊗ B ⇔ Ai B j or Ai j Bkl ,

1—identity tensor, δi j—Kronecker delta, 0—null tensor,

symA ⇒ 1

2
(Ai j + A ji ), devA = A − 1

3
(trA)1 − deviatoric part of tensor A,

Ai, j = ∂Ai

∂ x j
, where x j − coordinates of a material particle,

Ȧ = ∂A

∂ t
, where (t − time),

∂A
∂B

dB ⇒ ∂Ai j

∂Bkl
dBkl .

If Z denotes pairs of tensors of the fourth and the second order, then Z ⇔ {Zmnkl; Zmn}, and if M is the
tensor of the fourth order, then the operation MZ is a pair of tensors of the fourth and the second order defined
as follows

MZ ⇔ {Mi jmn Zmnkl; Mi jmn Zmn}.

If Π and K denote pairs of tensors of the second and the zeroth order, then the operation Π · K produces
a scalar, cf. [1,2,21,45,47]

Π · K = π : κ + πκ = πi jκi j + πκ.

If the function F is relative to Π and K , then F(Π) = F(π, π) and F(K ) = F(κ, κ).
The derivatives of function F with respect to a pair Π and K are defined as follows

∂F

∂Π
=

{
∂F

∂π
,
∂F

∂π

}
and

∂F

∂K
=

{
∂F

∂κ
,
∂F

∂κ

}
.
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The differentials of function F with respect to the pairs K and Π of tensors of the second and the zeroth
order produce the following form

∂F

∂Π
· dΠ =

{
∂F

∂πi j
dπi j ,

∂F

∂π
dπ

}
and

∂F

∂K
· dK =

{
∂F

∂κi j
dκi j ,

∂F

∂κ
dκ

}
.

The differential of function F with respect to the pair K of tensors of the second and the zeroth order,
produces a sum, cf. [1,2,45,47], such that

∂Π

∂K
dK ⇔

{
∂πi j

∂κkl
dκkl + ∂πi j

∂κ
dκ ; ∂π

∂κkl
dκkl + ∂π

∂κ
dκ

}
.

If α is a second order tensor, then the operation α ◦ (MZ) produces a pair of tensors of the second and the
zeroth order

α ◦ (MZ) ⇔ {
αi j Mi jmn Zmnkl ; αi j Mi jmn Zmn

}
.

If Z denotes pairs of tensors of the fourth and the second order and K is a pair of tensors of the second and
the zeroth order, then the operation Z ∗ K produces a pair of tensors of the second order such that [1,2,45,47]

Z ∗ K ⇔ {
Zi jmnκmn ; Zi jκ

}
.

2 Uniqueness solution of incremental problems for homogenous processes

2.1 Fundamental assumptions and equations

A homogeneous physical body of unitmass is being considered.When the thermodynamic state of each particle
of the body is the same at any moment of the process, the process is called homogeneous. In the case of such
processes, the quantity divq occurring in the equations for temperature should be understood as the rate of
global heat exchange between the physical body and the environment, and ρ0 as a reverse of the total volume
of the body.

Let us assume that the local thermodynamic state is described by the following parameters of state [1,2,7,
15,45]: εe—tensor of elastic strain, s—specific entropy (per unit mass),

κ(M)—the set of symmetric internal tensor parameters of second order (M = 1, . . . , n),
κ = κT, that is κi j = κ j i , κ

(N )—the set of internal scalar parameters (N = 1, . . . ,m).
Now the symbol K will denote the set of internal parameters in the formof a vector of pair K ⇔ {κ(M), κ(N ),

(M = 1, . . . , n) and (N = 1, . . . ,m), see a Greek symbols.
Differential of the internal energy depending on internal parameters of the state {s, εe, K } has a form

[1,2,7,15,45,47]

dU (s, εe, K ) = T ds + 1

ρ 0
σ : dεe + 1

ρ0
Π · dK . (2.1)

The local approach to the principle of conservation of energy is as follows [1,2,7,15]

U̇ = 1

ρ0
σ : ε̇ − 1

ρ0
divq. (2.2)

The equation of local entropy balance per unit volume of the body has the form [1,2,7,15,45]

ρ0ṡ = −div
( q
T

)
+ δs . (2.3)

The local formulation of the second law of thermodynamics is given by the inequality

δs ≥ 0. (2.4)

The entropy production can be evaluated by solving a set of three Eqs. (2.1)–(2.3) for
(
U̇ , ṡ and δs

)

T δs = D − 1

T
q :∇T, ∇T = grad T, (2.5)
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where D expresses dissipation of mechanical energy per unit time and volume

D = σ: ε̇p − Π · K̇ ≥ 0 (2.6)

and

ε̇ = ε̇e + ε̇p. (2.7)

The set of forces XD involved in (2.5), (2.6) is named as a set of dissipation forces or a set of thermodynamic
impulses and a set of thermodynamic flow rates ẋ D joined with the set of forces XD are the following

XD =
{
σ, −Π,

1

T
gradT

}
and ẋ D = {

ε̇p, K̇ , q
}
. (2.8)

2.1.1 Thermostatic identities and properties of an thermo-elasto-plastic body

The fundamental physical quantities describing the thermostatic properties of solids are defined as follows
[1,2,45,47]

cε

(
Y T ε
K

)
= T

∂s
(
Y T ε
K

)

∂T
= ∂U

(
Y T ε
K

)

∂T
, cσ = T

∂s
(
Y Tσ
K

)

∂T
, (2.9)

L
(
Y Tσ
K

)
= ∂εe

(
Y Tσ
K

)

∂σ
, M

(
Y T ε
K

)
= ∂σ

(
Y T ε
K

)

∂εe
, (2.10)

Z
(
Y Tσ
K

)
= ∂εe

(
Y Tσ
K

)

∂K
, R

(
Y Tσ

Π

)
= ∂εe

(
Y Tσ

Π

)

∂Π
, N

(
Y T ε
K

)
= ∂σ

(
Y T ε
K

)

∂K
, S

(
Y T ε

Π

)
= ∂σ

(
Y T ε

Π

)

∂Π
,

(2.11)

where

N = (
R−1)

Π=Π
(
Y T ε
K

) oraz Z = (
S−1)

Π=Π
(
Y Tσ
K

) , (2.12)

where Z is the vector of pairs of tensors of the fourth and second order representing the isothermal variation of
elastic deformation due to the internal processes accompanying plastic deformation in state Y Tσ

K . Physically,
it means a change of the Young’s modulus caused by plastic deformations. N is the vector of pairs of tensors
of the fourth and second order representing isothermal variation of the state of stress due to internal processes
accompanying plastic deformation too in the state Y T ε

K .
The quantities (2.9)–(2.12) are not independent. They satisfy the set of the following identities resulting

from the existence of thermodynamic potentials, see e.g. [1,2,7,15,45,47])

M = (L−1)σ=σ
(
Y T ε
K

), (2.13)

2
(
Mi jmnLmnrs

)
σ=σ

(
Y T ε
K

) = δisδ jr + δirδ js oraz Mi jmn = Mmni j = Mjimn = Mi jnm, (2.14)

cσ =
(
cε + T

ρ0
α : Mα

)

ε=ε
(
Y Tσ
K

) and

α
(
Y Tσ
K

)
= ∂εe

∂T
,
1

ρ0

∂Π
(
Y sε
K

)

∂s
= ∂T

(
Y sε
K

)

∂K
, (2.15)

∂s
(
Y T ε
K

)

∂εe
= − 1

ρ0

∂σ
(
Y T ε
K

)

∂T
= 1

ρ0
(Mα)σ=σ

(
Y T ε
K

) , −ρ0
∂s

(
Y T ε
K

)

∂K
= ∂Π

(
Y T ε
K

)

∂T
, (2.16)

∂s
(
Y Tσ
K

)

∂σ
= 1

ρ0
α, αi j = α j i ,

∂εe
(
Y Tσ
K

)

∂T
= ρ0

∂s
(
Y Tσ
K

)

∂σ
and

−ρ0
∂s

(
Y Tσ
K

)

∂K
= ∂Π

(
Y Tσ
K

)

∂T
. (2.17)
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If the thermodynamic potentials being not expressed in an additive form but in the most general form
[1,2,45,47] we have the following additional identities of thermostatic couplings, which will be used in a
further part of the paper

{−LN = −L
(
Y Tσ
K

)
N

(
Y T ε
K

) = Z,

−MZ = −M
(
Y T ε
K

)
Z

(
Y Tσ
K

) = N,
. (2.18)

N = N
(
Y T ε
K

)
= ∂σ

(
Y T ε
K

)

∂K
= ∂Π

(
Y T ε
K

)

∂εe
and Z = Z

(
Y Tσ
K

)
= ∂εe

(
Y Tσ
K

)

∂K
= −∂Π

(
Y Tσ
K

)

∂σ
, (2.19)

and

∂s
(
Y Tσ
K

)

∂K
= ∂s

(
Y T ε
K

)

∂K
+ 1

ρ0
α ◦ (MZ) , (2.20)

∂Π
(
Y Tσ
K

)

∂T
= ∂Π

(
Y T ε
K

)

∂T
− α ◦ (MZ) . (2.21)

The relations (2.18), (2.20) and (2.21) are complex identities and are sometimes called thermodynamic
identities of the second order. Physical interpretation is applied with regard to the identities expressing ther-
mostatic couplings (2.19). A variation in internal forces Π due to the acting elastic strain results in the process
of material hardening (softening), and variation in internal forces as a result of stress is connected with the
variation in the elasticity modulus as a result of variability in internal parameters, see (2.19) and (2.11)3.

The important thermostatic properties of thermo-elasto-plastic materials can be discussed by assuming
consecutively that (Y T ε

K , Y Tσ
K ) form a set of independent state parameters and evaluating the increments in the

dependent parameters (cf. [1,2,45] and the formulae (2.9)–(2.21)]). Thus, we obtain the following expressions
[1,2,46,47]

{
T ds

(
Y T ε
K

) = γ1cεdT + γ̄6
T
ρ0

αM :dεe − γ̄8
T
ρ0

∂Π
∂T · dK ,

T ds
(
Y Tσ
K

) = γ1cσdT + γ7
T
ρ0

α : dσ − γ̄8
T
ρ0

∂Π
∂T · dK ,

(2.22)

{
dεe

(
Y Tσ
K

) = γ4αdT + γ2Ldσ + γ̄9ZdK,

dσ = γ̄2Mdεe − γ5MαdṪ + γ̄10NK̇ .
(2.23)

Eliminating ṡ from the Eqs. (2.3), (2.22)1 and making use of the Eqs. (2.9)–(2.12) and (2.23)1 yields two
equations for the temperature and stress rates [1,2,46,47].

{
ρ0cε Ṫ = γ0D − γ̄6Tα: Mε̇e + γ̄8T

∂Π
∂T · K̇ + q0,

σ̇ = γ̄2Mε̇e − γ5ṪMα + γ̄10NK̇ .
(2.24)

Eliminating ṡ from the Eqs. (2.3), (2.22)2 and making use of the Eqs. (2.9)–(2.12) and (2.23)2 yields two
equations for the temperature rate and of elastic strain rate [1,2,46,47].

{
ρ0cσ Ṫ = γ0D − γ7Tα: σ̇ + γ̄8T

∂Π
∂T · K̇ + q0,

ε̇e = γ2Lσ̇ + γ4αṪ + γ̄9ZK̇ .
(2.25)

Closed system of thermostatic couplings in the area of thermo-elasto-plastic interactions is presented in
Fig. 1. A similar but incomplete (not closed) schemes of couplings are presented in papers [1,6,15]

The diagram shows 15 possible coupled connections between two independent parameters of state. Par-
ticular types of thermodynamic, thermomechanical and mechanical (elastic–plastic) couplings are denoted
as the Greek letter γ with a suitable subscript or with subscript and dash. It was assumed that couplings
with the upward (vertical or at an angle) and horizontal (to the right) arrows were expressed by the symbol
γi (i = 1, 2, . . . , 15) (with no dash). The couplings with downward arrows (vertical or at an angle) and horizon-
tal (to the left) arrowswere denoted by the symbol with subscript and dash γ̄i (i = 1, 2, . . . , 15). Dimensionless
coefficients γi and γ̄i have no physical meaning. The ideas presented in, see e.g. [1–7,15,16,45–47] and others,
have been introduced for simplification of interpretation of different terms of effects of couplings occurring
in the equations. They can be also useful for some simplifications in general constitutive equations. They are
a kind of numbers which take a value 1 (when any of the effects of couplings shown in Fig. 1 is taken into
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Fig. 1 Closed diagram of couplings occurring in thermomechanics of elastic–plastic bodies

account) or zero when any of effects of couplings shown in Fig. 1 is neglected. For example, when γ4 = 0
is substituted, thermal expansion is neglected, if γ11 = 0, a change of internal forces caused by a change of
elastic strains is neglected, when γ̄6 = 0, heat of elastic deformations is not taken into account, and in the case
of γ̄9 = 0, influence of internal changes on elastic strains is omitted. If we are concentrated only on internal
changes in the material caused by plastic strains and occurring as plastic hardening, i.e. the effects denoted
by numbers 9–12 in Fig. 1, they can be also called the effects of elastic–plastic coupling [1,2,10,11,45–47].
Symbol γ0 shows including dissipation heat which is not a thermostatic thermal effect, and it is not specified
in the diagram in Fig. 1.

Theoretically, there are 30 physical kinds of thermodynamic, thermomechanical and mechanical (elastic–
plastic) couplings. Not all of them, however, have their physical interpretation and physical explanation, and
not all of them have been observed. They are a result of assumption of a general (non-additive) form for
thermodynamic potentials and formal derivation of total differentials for the chosen dependent parameters of
state, depending on the assumed systems of independent parameters of state [1,2,45,47].

Let us observe that the elastic strain rate involved in (2.25)2 can be written as follows [1,2,46,47]

ε̇e = ε̇eI + ε̇eI I , (2.26)
{

ε̇eI = γ2Lσ̇ + γ4αṪ ,

ε̇eI I = γ̄9ZK̇ ,
(2.27)

where ε̇eI is termed the “uncoupled” part of the elastic strain rate, and ε̇eI I is the “coupled” part of the elastic
strain rate connected with the internal processes accompanying the plastic strain. Such a separation of the
tensor ε̇e into two parts was adopted and interpreted for the case of isothermal processes in papers [10,11] and
for non-isothermal processes in [1,2,45,47].

2.1.2 Rate equations: plastic flow equations

Equations of plastic flow are the following

ε̇p = Λ
∂F1
∂σ

, K̇ = Λb(σ, −Π, T, K ) = Λb or −K̇ = Λ
∂F1
∂Π

, (2.28)

if F1 = 0 and Λ ≥ 0,

ε̇p = 0, K̇ = 0, if: F1 < 0 or F1 = 0 and Λ < 0, (2.29)

where b—function describing evolution for internal parameters K̇ .
Here, F1 = F1(σ, −Π, T, K ) is a generalized function of plastic flow determined in the space of thermo-

dynamic forces Xd = {σ, −Π} such that (F1 = 0) determines the flow area in this space. The expression
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for an equation of evolution for the vector of pairs K̇ in form of (2.28)2 is a result of application of idea of
the preparation space [1,2,45,47,48]. Using additional experimental data, in that space we can determine the
equations of evolution for internal parameters K or dissipation forces Π and determine their initial value.

If Π or K is replaced by a suitable equation of state [1,2,46,47], then we will obtain the plastic flow
function and suitable flow conditions F in the stress space, written as

F(σ, K , T ) = F1(σ, −Π, K , T ) |Π=Π(σ,K ,T ),

or

F̄(σ, −Π, T ) = F1(σ, −Π, K , T ) |K=K (σ,Π,T ) . (2.30)

The factor Λ in (2.28) can be eliminated by making use of the “association condition” [1,2,7,15,46,47].

Ḟ1 = Ḟ = 0 if F1 = F = 0 as:
∂F

∂σ
:σ̇ + ∂F

∂T
Ṫ − Λh = 0 then: Λ =

(
∂F

∂σ
:σ̇ + ∂F

∂T
Ṫ

)
1

h
, (2.31)

where

h = − ∂F

∂K
· b. (2.32)

is what is termed the strain-hardening function.
By assuming the classical condition for plastic loading (ε̇p 
= 0), if and only if ∂F

∂σ : σ̇ + ∂F
∂T Ṫ ≥ 0, we find,

by virtue of (2.31)2, that h ≥ 0. Equation (2.28)1 can be expressed in the form

ε̇p =
{
1

h

∂F1
∂σ

(
∂F

∂σ
: σ̇ + ∂F

∂T
Ṫ

)
if F = 0 and

∂F

∂σ
: σ̇ + ∂F

∂T
Ṫ ≥ 0, (2.33)

and ε̇p = 0 if F < 0 or if F = 0 and ∂F
∂σ : σ̇ + ∂F

∂T T < 0,
where, by virtue of (2.30)1

∂F

∂σ
= ∂F1

∂σ
+ ∂F1

∂Π
∗ ∂Π

∂σ
. (2.34)

Using the Gyarmati postulate, then −K̇ = Λ∂F1
∂Π

and b = ∂F1
∂Π

, cf. [1,2,46,47]. Making use of (2.34), (2.19)2,
we find

Λ
∂F

∂σ
= ε̇p + ∂εe

∂K
∗ K̇ . (2.35)

On substituting (2.26) into (2.35), we find

Λ
∂F

∂σ
= ε̇p + ε̇eI I . (2.36)

2.1.3 Uniqueness solution of incremental boundary-value problem

Let us assume that the thermodynamic state of the body at a certainmoment t0 of a homogenousprocess is known
and such that the condition F1 = F = 0 is satisfied. The following incremental problems can be formulated
for such a type of processes. Satisfying the set of field and constitutive equations of (cf. [1,3,4,7,15,21,47]),
we must find, for the time t0, for the problems (a1, a2, b1, b2) the values

a1. (ε̇ and q0) assuming that σ̇ (t0) and Ṫ (t0) are prescribed,

a2. (σ̇ and q0) assuming that ε̇ (t0) and Ṫ (t0) are prescribed,

b1.
(
ε̇ and Ṫ

)
assuming that σ̇ (t0) and q0 (t0) are prescribed,

b2.
(
σ̇ and Ṫ

)
assuming that ε̇ (t0) and q0 (t0) are prescribed,

where q0 = −divq.
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It is easy to see that if a solution of the problems (a1) and (a2) is to be unique, it is necessary that the following
respective conditions known from the isothermal theory of plasticity should be satisfied [1,3,4,7,13,14,16,47]

h > 0 and h + gp: MFσ > 0, (2.37)

where

gp = F1,σ + γ̄9Z ∗ b, (2.38)

h is the isothermal strain-hardening function obtained in [1,2,7], Fσ = ∂F
∂σ and F1,σ = ∂F1

∂σ ,
b is the function describing evolution of internal parameters K̇ [1,2,46,47].
For the problems (a1) and (a2), conditions (2.37) are also sufficient. However, that two solutions of the

problems (b1) and (b2) may exist, even if the inequalities (2.37) are satisfied. The necessary uniqueness
conditions for the problems (b1) and ( b2) have the following forms [1,3,7,16,47]:

Problem b1

h1 = h − mσFT > 0. (2.39)

Problem b2

H = h + gp: MFσ − 1

p
(mσ + γ̄6ξgp: MFσ)(FT − γ5α: MFσ) > 0, (2.40)

where

mσ = 1

ρ0cσ

[

γ0 (σ: Fσ − Π · b) − γ3T

(
∂Π

(
Y Tσ
K

)

∂T
· b

)]

, (2.41)

ξ = 1 − p

M2
α

= T

ρ0cσ
, p = cε

cσ
, M2

α = α: Mα. (2.42)

In the case of associated laws of plastic flow (F1,σ = Fσ), the quantity (mσ = m) was analysed in Refs.
[1,3,4,6,7,16,21,47] when all the elastic–plastic coupling effects being rejected (γ9 = γ̄9 = γ10 = γ̄10 =
γ11 = γ̄11 = γ12 = γ̄12 = 0). By analysing the cyclic isothermal process in the space of stresses, authors of
works [1,3,6,7,16,21,47] have appointed on base of account that for the majority of materials (in particular
for metallic materials) mσ is in general positive

mσ > 0. (2.43)

The inequalities (2.39) and (2.40) are a generalization of the uniqueness conditions appropriately derived
by Mróz, Raniecki and Sawczuk, see [4,6,7,16] for the case of associated flow laws and without a elastic–
plastic coupling effects. This generalization consists in the non-associated laws of plastic flow being taken
into account as well as the influence of plastic deformations on the thermoelastic properties of the body. The
conditions obtained in Refs. [4,6,7,16] can also be obtained from Eqs. (2.37) and (2.38) by rejecting all the
effects of elastic–plastic coupling (γ9 = γ̄9 = γ10 = γ̄10 = γ11 = γ̄11 = γ12 = γ̄12 = 0) and assuming
associated laws of plastic flow (F1,σ = Fσ).

Condition (2.40) should be interpreted as a limitation for the functions occurring in the group of constitutive
equations. If (H = 0), from the theory of thermo-elasto-plasticity it results that an instantaneous change of
stresses and temperature is possible when the body element is not being deformed (ε̇ = 0) and it does not
exchange heat with the environment (q0 = 0). It means theoretically that if (H = 0 and ε̇ = 0, q0 = 0 then
σ̇ 
= 0 and Ṫ 
= 0). However, such phenomena do not take place in real physical bodies [1].

If (h1 = 0), then in an adiabatic process (q0 = 0) the body behaves similarly as the perfectly plastic
body (i.e. there is no hardening). This means that momentary adiabatic plastic flow (ε̇p 
= 0) is possible under
constant stresses (σ̇ = 0). Such a phenomenon can occur in the range of large deformations; therefore, for
small deformations we assume that constitutive functions satisfy the condition stated in (2.39).

It is worthwhile to observe that in the case of metallic materials the satisfaction of the condition (2.39)
implies, in general, fulfilment of the condition (2.40) (cf. [1,3,4,6,7,16,21,47])

Let us assume that the conditions (2.39) and (2.40) are both satisfied. The solutions of the incremental
problems (b1) and (b2) can be expressed in the following forms:
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Problem b1

ε̇ = Laσ̇ + j

h1
K̄σ̇ + j

h1
qFT

[(
F1,σ + γ̄9Z ∗ b

) + γ4mσ α
] − γ4qα, (2.44a)

Ṫ = −γ̄7ξα : σ̇ + jmσ

h1

[
(Fσ − γ̄7ξFTα) :σ̇ − FT q

] + q, (2.44b)

ε̇p = j

h1

[
(Fσ − γ̄7ξFTα) :σ̇ − FT q

]
Fσ, (2.44c)

ε̇e = L:σ̇ + γ4Ṫα + j

h1

[
(Fσ − γ̄7ξFTα) :σ̇ − FT q

]
(γ̄9Z ∗ b) , (2.44d)

where

K̄ = [(
F1,σ + γ̄9Z ∗ b

) + γ4mσα
] ⊗ (Fσ − γ̄7ξFTα) . (2.45a)

La = L − γ4γ̄7ξ (α ⊗ α) , q = 1

ρ0cσ
divq. (2.45b)

j =
{
1 if F = 0 and (Fσ − γ̄7ξFTα) :σ̇ − FT q ≥ 0,
0 if F = 0 or F = 0 and (Fσ − γ̄7ξFTα) :σ̇ − FT q < 0. (2.45c)

� = j

h1

[
(Fσ − γ̄7ξFTα) : σ̇ − FT q

]
. (2.46)

The symbol La denotes the tensor of adiabatic elasticity. Let us observe that the second right-hand term of
(2.44a) is not equal to the plastic strain rate, but may be considered as representing the adiabatic plastic
strain rate. The tensor K̄ is asymmetric, K̄i jmn 
= K̄mni j . A lack of symmetry is caused by not only thermal
expansion accompanying power dissipation of the plastic strain and a change of the yield point together with
increase of temperature resulting from the piezoelectric effect, but also effects of elastic–plastic coupling
and assumption of non-associated laws of plastic flow. It makes difficult a proof of the theorem concerning
uniqueness of solution of the incremental boundary-value problem in the case of heterogeneous processes and
in a consequence formulation of suitable criteria of bifurcation.

The equations for the thermodynamic flow rates can also be expressed in terms of σ̇ and q , They have the
form

K̇ = j

h1

[
(Fσ − γ̄7ξFTα) : σ̇ − FT q

]
b

(
Xd ,Y T

K

)
. (2.47)

Taking into considerations the Gyarmati postulate and the resulting condition (cf. [1,3,47]), the relation (2.47)
takes the form

− K̇ = j

h1

[
(Fσ − γ̄7ξFTα) : σ̇ − FT q

] ∂F1
(
Xd , Y T

K

)

∂Π
. (2.48)

Problem b2
The alternative constitutive equations, corresponding to Eqs. (2.44)–(2.46), have the forms

σ̇ = Maε̇ + γ4q

p
Mα − j1

H
K̃ε̇ − j1q

pH
(γ5α: MFσ − FT ) (ϕ̃Mα + BN) , (2.49a)

Ṫ = 1

p
(γ̄7ξα: MFσ + q) + j1

pH
(mσ + γ̄6ξgp: MFσ)

[
B: ε̇ + q

p
(γ5α: MFσ − FT )

]
, (2.49b)

ε̇p = j

H

[
B: ε̇ + q

p
(γ5α: MFσ − FT )

]
F1,σ, (2.49c)

where

j1 =

⎧
⎪⎨

⎪⎩

1 if F = 0 and B: ε̇ + q

p
(γ5α: MFσ − FT ) ≥ 0, (2.50a)

0 if F < 0 or F = 0 and B: ε̇ + q

p
(γ5α: MFσ − FT ) < 0. (2.50b)
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and

Ma = M + γ5γ̄6

p
ξ (Mα) ⊗ (Mα) , BN = B − NZ, −LN = −L

(
Y Tσ
K

)
N

(
Y T ε
K

)
= Z,

where

L
(
Y Tσ
K

)
= ∂εe

(
Y Tσ
K

)

∂σ
, N

(
Y T ε
K

)
= ∂σ

(
Y T ε
K

)

∂K
, Z

(
Y Tσ
K

)
= ∂εe

(
Y Tσ
K

)

∂K
,

and B = MFσ + γ̄6
ξ
p (γ5α: MFσ − FT ) , K̃ = [

ϕ̃Mα − NZ
] ⊗ B + B ⊗ B.

The following additional quantities are involved in the tensor K̃:

ϕ̃ = γ5
mσ

p
+ γ̄6

ξ

p
FT − γ̄6γ̄10

ξ

p

{
α : [

N ∗ (
γ3b + γ5F1,Π

)]}
, (2.51)

NZ = γ̄10N ∗ b + γ12N ∗ F1,Π = N ∗ (
γ̄10b + γ12F1,Π

)
, (2.52)

where F1,Π = ∂F
∂Π

.
Symbol Ma denotes the tensor of adiabatic moduli of elasticity. Similarly to the former case, the tensor

interrelating the stress rate and strain rate is asymmetric because K̃i jmn 
= K̃mni j .
Let us observe that, if the conditions (2.39) and (2.40) are both satisfied, Eq. (2.49) are equivalent Eq. (2.44).

They can be obtained by solving Eq. (2.44a) for σ̇ and substituting the result into Eqs. (2.44b) and (2.44c).
Though Eq. (2.44) can be obtained by solving Eq. (2.49a) for ε̇ and substituting the result into Eqs. (2.49b) and
(2.15)3. Thus, conditions (2.39) and (2.40) are often called conditions of reciprocal reversibility of constitutive
equations in relation to ε̇ and σ̇.

If all the thermodynamic coupling effects in the Eqs. (2.3)–(2.48) and (2.49)–(2.50) are rejected
(γ1 = γ3 = γ̄6 = γ̄7 = γ̄9 = γ̄10 = γ12 = 0) and if

(
F1,σ = Fσ

)
, those equations will constitute two equiva-

lent set of fundamental equations of the theory of thermal stresses in an elastic–plastic body. Then (q = Ṫ ) or
(−divq = ρ0cσ Ṫ ) and (p = 1).

3 Formulation of the incremental boundary-value problem

If the condition (2.39) is satisfied, the set of Eqs. (2.44)–(2.48) is equivalent to the fundamental set of
Eqs. (2.49)–(2.50) together with the relevant evolution equations of internal parameters K̇ , when H > 0.
The set of those equations, together with the law of heat conduction, with the equation of motion and the
kinematic relations

divσ̇ + ρ0ḃm = ρ0v̇ and 2εi, j = vi, j + v j,i , (3.1)

where v is the vector of velocity of particles, bm is the body force, constitutes a set of fundamental field
equations of generalized coupled thermo-elasto-plasticity. Together with the boundary conditions and the
initial conditions, it may be used as a basis for analysis of many problems of generalized coupled thermo-
elasto-plasticity, both static and dynamic [1,3,6,7,47,48].

The following static incremental boundary-value problem can be formulated [1,3,4,7,16,47].
Let the body occupy, at a time t0, a region D in space. Let us denote by D̄ the closure of D and by the

symbol S—the boundary of D̄. S is the closure of the sum of non-intersecting regular open surfaces Sv and
St . Let the thermodynamic state of the body

{T, σ, K } (3.2)

and the rate of body forces ḃm be known, at a time t0 and at every point x of the closure D̄. It is assumed that
the functions (3.2) satisfy the condition F ≤ 0. It is also assumed that the values of the surface forces ṫ0 and
the velocities of material points v0 are known at time t0 over the parts Sv and St of the boundary, that is

{
σ̇n = ṫ0 for x ∈ St ,
v = v0 for x ∈ Sv,

(3.3)
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where n is a unit vector normal to S, directed towards the outside of D[1,3,4,7,16,47]. Our task is to find
the set of functions (σ̇, ε̇, v) defined in D̄ and the function Ṫ defined in D, which satisfy, in the region D,
Eqs. (2.37)–(2.40) and (3.1), expression q = 1

ρ0cσ
divq and the rate equations of equilibrium

divσ̇ + ρ0ḃm = 0. (3.4)

Let us observe that, knowing the functions (3.2), we can determine q at every point of the region D, directly
from the q = ϕq

(∇T, Y T
K

)
, where ∇T = gradT and Y T

K = {T, K }, by differentiating T and q with respect
to the coordinate variables xi , where i = 1, 2, 3.

In the coupled generalized thermo-elasto-plasticity, the formulated incremental boundary problem plays
the same role as a suitable boundary incremental problem in isothermal theory of plasticity. Namely, if its
solution is ambiguous, then a solution of a general problem where the history of variation of surface forces,
velocity and temperature on the surface of the considered body are given is ambiguous, too [1,4,6,7,16,47].

4 Discussion of uniqueness conditions

Tests of uniqueness of the solution of the incremental boundary problempresented in Sect. 3 belongs to themost
important problems shown in this paper. Such tests and the obtained results can be the basis for formulation
of two criteria allowing to estimate the critical thermodynamic state after exceeding of which bifurcation of
the equilibrium state is possible. These criteria are also two sufficient conditions (local and global condition)
of uniqueness of solution of the incremental boundary-value problem.

The local condition can be easily applied in practice because it is directly expressed by constitutive functions
and material constants. However, it gives less accurate estimations of the critical state. The global condition
gives better estimations of critical states, but its application is more difficult because it requires searching
kinematically acceptable velocity fields for which the functional J (see point 4.2) reaches zero.

Derivation of both conditions uses methods presented in the previous papers [1,3–5,7,13,14,47].

4.1 Local uniqueness condition

The following theorem is proved in author’s papers [1,3,47]

Theorem 1 If the inequality

h1 = h − mσFT >
1

2

[√
(g : Mag)

(
F̄σ : MaF̄σ

) − g : MaF̄σ

]
= h∗

1, (4.1)

where

g = (
F1,σ + γ̄9Z ∗ b + γ4mσα

)
and F̄σ = (Fσ − γ̄7ξFTα) , (4.2)

is satisfied at every point of the plastic portion of the body Dp = {x: F = 0}, there can exist only one set
of functions

{
σ̇, ε̇, Ṫ

}
of class C1at least, which is a solution of the incremental boundary-value problem of

generalized coupled thermoplasticity, which was formulated in Sect. 3.

The inequality (4.1) is the sufficient local uniqueness condition. Each thermodynamic state, for which the
condition (4.1) is satisfied, is secure against bifurcation. Since in the course of a deformation process of the
body the value of the strain-hardening function (the modulus) decreases, in general, therefore the value of h∗

1
may be treated as an upper estimation of the unknown critical value h corresponding to the critical state.

Some particular cases of the expression (4.1) have already been mentioned in the literature. A similar
condition was obtained in [10,11] in their analysis of the stability of material defined as a condition of half the
product of the stress rate tensor and the strain rate tensor being positive. Their study was confined to the case of
the isothermal theory of plasticity (with no thermomechanical couplings), the elastic plastic coupling effects
and non-associated laws of plastic flow being preserved. An expression of this type was also obtained in [1,3–
5,7,13,14,21,47] for the case of isothermal uncoupled and non-isothermal coupled theory of thermoplasticity
with a non-associated law of plastic flow.
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4.2 The global uniqueness condition

4.2.1 Global condition for a thermo-elasto-plastic body dependent on kinematically admissible strain rate
fields

Let us assume that there exist two sets of functions
{
σ̇, ε̇, Ṫ , v

}
and

{
σ̇∗, ε̇∗, Ṫ ∗, v

∗}
which are solutions

of the incremental boundary-value problem of generalized coupled thermoplasticity, which was formulated in
Sect. 3. Then, the following equality must be satisfied

Λ∗ =
∫

D

(
σ̇ − σ̇∗): (

ε̇ − ε̇∗) dV = 0. (4.3)

due to the fact that both solutions satisfy the same boundary conditions (3.3), in the case of Gauss–Ostrogradski
theorem.

Let us denote by J the integrand in the expression (4.3), which depends on (ε̇ and ε̇∗), for an elastic–plastic
body, as follows

J
(
ε̇, ε̇∗, j1, j∗1

) = [
σ̇ (ε̇) − σ̇

(
ε̇∗)] : �ε̇, (4.4)

where �ε̇ = ε̇ − ε̇∗ and σ̇∗ = σ̇
(
ε̇∗),

and j1 = j1 (ε̇) and j∗1 = j1
(
ε̇∗) are defined by the Eqs. (2.50a) and (2.50b).

The quantities (ε̇ and ε̇∗) and (σ̇∗ and ε̇∗) are interrelated by Eq. (2.49a), which can be rewritten in a
more compact form as follows

σ̇ = M1ε̇ − M1d1 − j1
H1

g∗ [
F̄∗

σ : (ε̇ − d1) + Z1
]
, (4.5)

where
{

g∗ ≡ M1g = ϕ̃ (Mα) − NZ + B, and F̄∗
σ ≡ M1F̄σ = B,

d1 = γ5qα, M1 ≡ Ma, Z1 ≡ −qFT , H1 ≡ H.
(4.6)

Since the expression (4.3) with zero at the right side provides existence of two sets of functions
{
σ̇, ε̇, Ṫ , v

}

and
{
σ̇∗, ε̇∗, Ṫ ∗, v∗}, which are a solution of the formulated incremental boundary-value problem, so pos-

itivity of the expression (4.3), i.e. Λ∗ > 0 [1,3,6,7,13,14,21,47] and (4.4) will be a condition excluding
occurrence of the bifurcation state. Inequality Λ∗ > 0 is a sufficient global condition of uniqueness and a
global criterion excluding occurrence of the bifurcation state.

4.2.2 Global condition for a comparison body dependent on kinematically admissible strain rate fields

Let us introduce the following function J ’, depending on (ε̇ and ε̇∗)

J ′ (ε̇, ε̇∗) = �ε̇: M1�ε̇ − 1

4x2H

[(
g∗ + x2F̄∗

σ

) : �ε̇
]2

, (4.7)

where x2 is a scalar quantity.
The expression J ′ is a comparison body function and represents a one-parameter family of expressions of

J ′, with respect to the parameter x2.
The idea of reference body in coupled thermoplasticity was introduced in the papers by Mróz, Raniecki

and Brunhs [4–7,13,14] and also in the author’s papers [1,3,21,22,47].
The functions J and J ′depend in addition to the variables (ε̇ and ε̇∗) on the thermodynamic state of the

body (3.2).
As it results from comparison of the expression (4.7) and (4.4), it presents a certain linear depen-

dence between (�σ̇ and �ε̇). Differentiating J ′ in relation to �ε̇, we obtain a linear dependence between
�σ̇ and �ε̇, which does not occur in expression (4.4), because these dependences are nonlinear.
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Lemma 1 It will be shown that if the same thermodynamic state is prescribed for J and J ’, then for each pair
(ε̇ and ε̇∗) the following inequality holds

J
(
ε̇, ε̇∗, j1, j∗1

) − J ′ (ε̇, ε̇∗) ≥ 0. (4.8)

Let us introduce the following notations for the function J
(
ε̇, ε̇∗, j1, j∗1

)
:

⎧
⎪⎨

⎪⎩

J1(ε̇, ε̇∗, 1, 1) if j1(ε̇) = 1 and j1(ε̇
∗) = 1,

J2(ε̇, ε̇∗, 1, 0) if j1(ε̇) = 1 and j1(ε̇
∗) = 0,

J3(ε̇, ε̇∗, 0, 1) if j1(ε̇) = 0 and j1(ε̇
∗) = 1,

J4(ε̇, ε̇∗, 0, 0) if j1(ε̇) = 0 and j1(ε̇
∗) = 0.

(4.9)

Then, by evaluating the difference (4.8) for all the possible four cases (4.9), we obtain, by virtue of (4.4)
and (4.5) and (4.7), that

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(
J1 − J ′) H = 1

4x2
(
νg − x2ν f

)2 ≥ 0,
(
J2 − J ′) H = −x2AεA∗

ε + [
x A∗

ε − 1
2x

(
νg − x2ν f

)]2 ≥ 0,
because Aε ≥ 0 and A∗

ε < 0,
(
J3 − J ′) H = −x2AεA∗

ε + [
x Aε + 1

2x

(
νg − x2ν f

)]2 ≥ 0,
because Aε < 0 and A∗

ε ≥ 0,
(
J4 − J ′) H = [

xν f + 1
2x

(
νg − x2ν f

)]2 ≥ 0,

(4.10)

where
{

νg = g2 : �ε̇, ν f = F̄∗
σ : �ε̇,

Aε = F̄∗
σ : (ε̇ − d1) + Z1, A∗

ε = F̄∗
σ : (

ε̇∗ − d1
) + Z1.

(4.11)

It follows that the inequality (4.8) is valid.
Using the expression (4.3), inequalities (4.8) and (4.10), we can formulate the following sufficient condition

of uniqueness of a solution of the incremental boundary problem for the comparison body which is a stronger
(safer) criterion excluding occurrence of the bifurcation state.

Theorem 2 Let us now formulate a sufficient global uniqueness criterion (that is a criterion which excludes
bifurcation). Let H > 0 at every point x ∈ Dp, in this part, where plastic deformations are occurring, i.e.
where Dp = {x: F = 0}. If for every nonzero kinematically admissible and integrable velocity field v, which
vanishes over the part Sv of the surface, the inequality

∫

D

J ′
1(v)dV −

∫

Dp

J ′
2(v)dV > 0, (4.12)

is satisfied, there exists only one pair
{
σ̇, Ṫ

}
constituting a solution of the incremental boundary-value problem

in generalized coupled thermoplasticity. This criterion can easily be demonstrated.

Proof The integrands in (4.12) are

J ′
1 (ε̇) = ε̇: M1ε̇ and J ′

2 (ε̇) = 1

4x2H

[(
g∗ + x2F̄∗

σ

) : ε̇
]
. (4.13)

The validity of the sufficient global uniqueness criterion (4.12), being a safer criterion excluding the state
of bifurcation, follows directly from the inequalities Λ∗ > 0 and (4.8) and (4.10).

The integral condition (4.12) is, in particular form, of essential practical importance. If for a prescribed state
{T, σ, K } it is impossible to find such a field v that the sum of integrals at the left-hand side of the expression
(4.12) is zero, we are assured that this state is secure against bifurcation.

The idea of deriving such criterionwas conceived as early as in Hill’s works [17–20] for elastic–plastic bod-
ies under large strain, for the isothermal incremental boundary-value problem. For the incremental boundary-
value problem in coupled thermoplasticity in the case of associated laws of plastic flow and for small deforma-
tions such criterion has been derived byMróz and Raniecki [4–7], for the case of non-associated laws of plastic
flow by Śloderbach [1,3,47] and for large deformations by Raniecki and Bruhns [13,14] and Śloderbach and
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Pajak [21]. Another sufficient global uniqueness criterion for incremental problems of isothermal plasticity of
elastic–plastic bodies with non-associated laws of plastic flow has been given by Hueckel and Maier [10–12].
In paper [12] the author introduced an idea of two-point asymmetric scalar function linearly dependent on the
Green function for a linearly elastic body. Application of the criterion in practice is difficult because the Green
function for bodies of an arbitrary shape is usually unknown.

It is shown in [1,3,13,14,47] that the sufficient local uniqueness condition following from the requirement
that the intergrand J ′ should be definite positive is the same as for an generalized thermo-elasto-plastic body
Eqs. (2.44a) and (2.49a) or (4.5) provided that the parameter x2 takes its optimum form

x20 =
(

g∗ : L1g∗

F̄∗
σ : L1F̄∗

σ

) 1
2

. (4.14)

A procedure for obtaining the optimum parameter x20 is also discussed in [1,3,13,14,47].
For the parameter x20 , the sufficient local uniqueness condition becomes the optimum (strongest) condition

for the entire one-parameter family of sufficient uniqueness conditions. Now, by substituting the optimum
value of the parameter (4.14) into the expressions (4.7) and (4.12) we shall obtain the optimum (strongest)
integrand which will be denoted by the symbol J ′

0 and optimum form of the bifurcation criterion,

J ′
0 = ε̇ : M1ε̇ − 1

4H1

[
(
F̄σ: M1F̄σ

) 1
2 g: M1ε̇ + (g: M1g)

1
2 F̄σ: M1ε̇

]2

(
F̄σ: M1F̄σ

) 1
2 (g: M1g)

1
2

, (4.15)

and

∫

D

(ε̇ : M1ε̇)dV − 1

4

∫

Dp

[
(
F̄σ : M1F̄σ

) 1
2 g: M1ε̇ + (g: M1g)

1
2 F̄σ : M1ε̇

]2

H1
(
F̄σ : M1F̄σ

) 1
2 (g: M1g)

1
2

dV > 0. (4.16)

4.2.3 Global condition for a thermo-elasto-plastic body depending on statically admissible stress rate fields

Now, let the symbol I mean the integrand from the expression (4.3) dependent on (σ̇ and σ̇∗) for a thermo-
elasto-plastic body in the following way

I
(
σ̇, σ̇∗, j, j∗

) = [
ε̇ (σ̇) − ε̇

(
σ̇∗)] : �σ̇, (4.17)

where �σ̇ = σ̇ − σ̇∗, σ̇∗ = σ̇
(
ε̇∗) also j = j

(
σ̂
)

and j∗ = j
(
σ̂

∗).
Like in Sect. 4.2.1, functions j and j∗ take the value 1—for the active plastic deformation, or 0—for the

elastic loading or plastic unloading.
At present σ̇∗ and ε̇∗ are connected with a suitable constitutive equation, see [1,3,46] written as

ε̇ = L1σ̇ + j

h1
g

[
F̄σσ̇ + z1

] + d1, (4.18)

where
{

g = (
F1,σ + γ̄9ξZ ∗ b + γ 4mσ α

)
, d1 = γ 4qα,

Z1 = −qFT, L1 ≡ La, M1 ≡ Ma.
(4.19)

Like in the case of kinematically admissible strain rate field, the expression (4.3) with the sign zero at
the right side allows for existence of two sets of functions

{
σ̇, ε̇, Ṫ , v

}
and

{
σ̇∗, ε̇∗, Ṫ ∗, v∗}, being a

solution of the formulated incremental boundary problem. Thus, the positive definition of the expression (4.3)
is a condition excluding occurrence of the bifurcation state, i.e. Λ∗ > 0 [1,3,6,7,13,14,21,47]. The positive
definition of the expression (4.17) is a result of the positive definition of (4.13), too. In this case, the inequality
(4.13) is a sufficient global condition of uniqueness of solution of the incremental boundary problem for a
reference body and a global criterion excluding occurrence of the bifurcation state for a case of kinematically
admissible stress rate fields.
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4.2.4 Global condition for a comparison body dependent on statically admissible stress rate fields

The function I ′ dependent on σ̂ and σ̂
∗ is introduced in the following way

I ′ (σ̇, σ̇∗) = �σ̇ : L1�σ̇ − 1

4y2h1

[(
g − y2F̄σ

) : �σ̇
]2

, (4.20)

where y2 is a scalar parameter.
The above expression expresses a one-parameter series of expressions I ′ related to the parameter y2 . The

functions I and I ′ depend not only on independent variables σ̇ and σ̇∗, but on the thermodynamic state as well
(3.2).

In coupled generalized thermo-elasto-plasticity, an idea of the reference body dependent on statically
acceptable stress rate fields was introduced in the author’s papers [21,22,47]. As in the case of kinematically
admissible strain rate fields, from comparison of the expression (4.20) with (4.17) it appears that it is a certain
linear dependence between (�σ̇ and �ε̇). Differentiating I ′ in relations to �σ̇, we obtain a certain linear
dependence between �ε̇ and �σ̇, which does not occur in the expression (4.17), because in Eq. (4.17) those
dependences are not linear.

Lemma 2 Let us demonstrate that under a given thermodynamic state, the same for IandI ′, the following
inequality is true for each pair

{
σ̇ and σ̇∗} and each combination j and j∗

I
(
σ̇, σ̇∗, j, j∗

) − I ′ (σ̇, σ̇∗, j, j∗
) ≥ 0. (4.21)

The following notations are introduced for the function I
(
σ̇, σ̇∗, j, j∗

)
as

⎧
⎪⎪⎨

⎪⎪⎩

I1 = I
(
σ̇, σ̇∗, 1, 1

)
when j (σ̇) = 1 and j

(
σ̇∗) = 1,

I2 = I
(
σ̇, σ̇∗, 1, 0

)
when j (σ̇) = 1 and j

(
σ̇∗) = 0,

I3 = I
(
σ̇, σ̇∗, 0, 1

)
when j (σ̇) = 0 and j

(
σ̇∗) = 1,

I4 = I
(
σ̇, σ̇∗, 0, 0

)
when j (σ̇) = 0 and j

(
σ̇∗) = 0.

(4.22)

From the expressions (4.22), we obtain

⎧
⎪⎪⎨

⎪⎪⎩

I1 = �σ̇ : L1�σ̇ + 1
h1

γgγ f ,

I2 = �σ̇ : L1�σ̇ + 1
h1

γg Aσ,

I3 = �σ̇ : L1�σ̇ + 1
h1

γg A∗
σ,

I4 = �σ̇ : L1�σ̇.

(4.23)

Next, calculating the difference (4.21) for all the possible above four cases from the expressions (4.17), (4.20)
and (4.22), we obtain

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
I1 − I ′) h1 = 1

4y2
(
γg + y2γ f

)2 ≥ 0,
(
I2 − I ′) h1 = −y2Aσ A∗

σ + [
yA∗

σ + 1
2

(
γg + y2γ f

)]2 ≥ 0,
because Aσ ≥ 0 and A∗

σ < 0,

(I3 − I ′) h1 = −y2Aσ A∗
σ + [

yAσ − 1
2

(
γg + y2γ f

)]2 ≥ 0,
because Aσ < 0 and A∗

σ ≥ 0,
(
I4 − I ′) h1 = [

yγ f − 1
2

(
γg + y2γ f

)]2 ≥ 0,

(4.24)

where γg = g: �σ̇ and γ f = F̄σ:�σ̇ and γ f = Aσ − A∗
σ and also

Aσ = F̄σ : σ̇ + z1 and A∗
σ = F̄σ : σ̇∗ + z1. (4.25)

From the set of inequalities (4.24), it appears that the inequality (4.21) is true.
Using the inequality Λ∗ > 0, see the expression (4.3), and the inequalities (4.21) and (4.24), we can

formulate (like in the item 4.2.2) the following sufficient condition of uniqueness of a solution of the incremental
boundary-value problem for the reference body dependent on statically admissible stress rate fields, which is
a safer criterion excluding occurrence of the bifurcation state.
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Theorem 3 Let us assume h1 > 0 in each point of the body x ∈ DP in its part where plastic deformations
take place, i.e. where DP = {x: F = 0}. If for each statically admissible stress velocity field σ̇ (or the field of
stress rate difference �σ̇), which disappears on a surface part (a body boundary) St, the following inequality
is satisfied

∫

D

I ′
1 (σ̇) dV −

∫

DP

I ′
2 (σ̇) dV > 0, (4.26)

then only one pair
{
ε̇, Ṫ

}
being a solution of the incremental boundary problem of coupled generalized

thermoplasticity can exist. It is easy to prove that the above introduced criterion is true, like in the case of
kinematically acceptable strain rate fields.

Proof Integrands occurring in the expression (4.26) have the following form

I ′
1 (σ̇) = σ̇: L1σ̇ and I ′

2 = − 1

4y2h1

[(
g − y2F̄σ

) : σ̇
]2

, (4.27)

Truth of the above condition of uniqueness for a reference body being a safer criterion excluding bifurcation
results directly from satisfying the inequality Λ∗ > 0 [see the expression (4.3)] and the inequalities (4.21) and
(4.24).

The integral condition (4.26) presented in this form is very important from a practical point of view.Namely,
if for a given thermodynamical state {T, σ, K} it is not possible to find such statically admissible stress velocity
field σ̇, for which a sum of integrals occurring at the left side of the expression is equal to zero, then we must
be sure that such a state is safe from the point of view of possibility of bifurcation state occurrence.

In Ref. [21] for the case of large deformations and in [47] for the case of small deformations, it is shown that
the sufficient local condition of uniqueness resulting from the requirement of a positively defined integrand I ’
is the same as for a case of a thermo-elasto-plastic body (2.44a) and (4.18) when the parameter y2 takes the
following optimum form

y20 =
(

g: M1g

F̄σ : M1F̄σ

) 1
2

. (4.28)

For the parameter y20 , the local condition of uniqueness becomes the optimum (safest) condition from all the
set of conditions. Substituting a value of (4.28) into the expressions (4.20) and (4.26), we obtain the optimum
element of integration I ′

0 and the optimum form of the bifurcation criterion as

I ′
0 = σ̇: L1σ̇ − 1

4h1

[
(
F̄σ : M1F̄σ

) 1
2 g : σ̇ − (g : M1g)

1
2 F̄σ : σ̇

]2

(
F̄σ : M1F̄σ

) 1
2 (g : M1g)

1
2

, (4.29)

and

∫

D

(σ̇ : L1σ̇)dV − 1

4

∫

Dp

[
(
F̄σ : M1F̄σ

) 1
2 g : σ̇ − (g : M1g)

1
2 F̄σ : σ̇

]2

h1
(
F̄σ : M1F̄σ

) 1
2 (g : M1g)

1
2

dV > 0. (4.30)

Now we can state that in the case of the comparison body expressed by Eqs. (4.7), (4.13) or as J1 (4.8)1
dependent on kinematically admissible strain rate fields at the boundary transition

(
g∗ = F̄∗

σ

)
and (x2 = 1),

we obtain a body of coupled generalized thermoplasticity determined by (4.5). From the expressions (4.20) or
(4.27) for the reference body dependent on statically acceptable stress velocity fields, it appears that substituting
at the boundary (g = F̄σ) and the value (y2 = 1) we obtain the expression I4 like for the thermoelastic body.
Thus, reference bodies are not obtained by their mutual inversion like in the case of a thermo-elasto-plastic
bodies; they are independently derived so as to satisfy the inequalities (4.8), (4.10) and (4.12) for a body
dependent on kinematically acceptable strain fields and inequalities (4.21), (4.24) and (4.26) for the reference
body dependent on statically acceptable stress velocity fields.
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5 Local uniqueness conditions for special cases of bodies

In the constitutive equations of coupled generalized thermoplasticity (2.24) and (2.26) and in the comparison
bodies as well in derived local conditions o uniqueness, see expression (4.1) the functions g, F̄σ, Ma and mσ ,
occur. Their forms will be different in the case of less general models of bodies. In such cases, the functions
will be simpler.

Case 1 The associated laws of plastic flow, when F1,Π = 0, then F1(T, σ, K ) = F(T, σ, K ).

In such a case, the functions g, F̄σ and mσ take the following forms:

g = (Fσ + Zd + mσ α) , F̄σ = (Fσ − ξFTα) , (5.1)

where mσ = 1
ρ0cσ

[
(σ : Fσ − Π · d) − T

(
∂Π(T,σ,K )

∂T · d
)]

.

Function M(a) is the same as in Sect. 2.
Here, the generalized function of plastic flow F1(plastic potential) does not depend on a vector of internal

pairs of dissipation forces Π , which are dependent on the stress state (see [1,3,21,45–47]). Moreover, all the
effects of the thermomechanical couplings and effects of the elastic–plastic couplings are kept.

Case 2 The case not including effect of the elastic plastic coupling. Then

g = (
F1,σ + mσ α

)
, F̄σ = (Fσ − ξFTα) , (5.2)

where mσ = 1
ρ0cσ

[
(σ : F1,σ − Π · d) − T

(
∂Π(T,σ,K )

∂T · d
)]

,

and the function M(a) remains the same as previously.

In this case, also all the effects of thermomechanical couplings and the non-associated laws of plastic flow are
still valid. A model of such a body can be useful, for example for analysis of adiabatic and non-isothermal
processes of location of plastic strains and non-isothermal, adiabatic or quasi-adiabatic processes of plas-
tic deformation and forming of metals. Such local adiabatic instabilities can occur during some machining
processes, for example while milling or turning, and they cause vibrations and irregularities of the machined
surface or other negative effects.

Case 3 The associated laws of plastic flow with no effect of elastic–plastic coupling. Then

F1,σ = Fσ, g = (
F1,σ + mσ α

)
, F̄σ = (Fσ − ξFTα) , (5.3)

where mσ = 1
ρ0cσ

[
(σ : Fσ − Π · d) − T

(
∂Π(T,σ,K )

∂T · d
)]

.

The same result described by the constitutive functions (5.3) can be also obtained according to the Gyarmati
postulate, see [1,2,21,47]. In this case, we have the model of coupled thermoplasticity considered by Mróz
and Raniecki [4,5], Raniecki and Sawczuk [15,16].

Case 4 The case of constitutive approximate equations.

This case of constitutive approximate functions of conjugate thermoplasticity was considered in [1,6,7,21,47],
where

F1,σ = Fσ, g = Fσ, F̄σ = Fσ, M(a) = M, (5.4)

and mσ = 1
ρ0cσ

[
(σ : Fσ − Π · d) − T

(
∂Π(T,σ,K )

∂T · d
)]

.

Here, from analysis of expressions (2.39), (2.40) and (4.6) it appears that h1 > 0 and H1 = h + Fσ :
MFσ > 0.

These expressions are obtained for the same assumptions as those formulated in case 3. Moreover, the
piezocaloric effect ( ξFTα = 0) and thermal expansion caused by dissipation heat and heat of internal changes
(see [1,4–7,16,47]) are neglected.

Case 5 Isothermal theory of plasticity concerning non-associated plastic flow with elastic–plastic coupling
and with no thermal coupling. Then

F̄σ = Fσ, g = (
F1,σ + Zd

)
, M(a) = M, mσ = 0 and h1 = h. (5.5)
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Such a model of the elastic–plastic body is often applied for description of porous materials, sinters, rocks and
soils [10–12]. In this model, influence of plastic strains on elastic properties of the body is included.

Case 6 Isothermal theory of plasticity concerning the non-associated law of plastic flow without the effect of
elastic–plastic coupling and without the effects of thermal couplings. Then

g = Fσ, F̄σ = Fσ, M(a) = M, mσ = 0 and h1 = h. (5.6)

Conditions of uniqueness for this model were studied byMróz [8,9]. In Ref. [9]Mróz also derived the sufficient
local condition of uniqueness for compressible and isotropic elastic–plastic bodies.

The presented chosen cases of elastic–plastic bodies and the corresponding global and local conditions of
uniqueness of a solution of the incremental boundary problem are not all possible models of bodies resulting
from the generalized model of coupled thermoplasticity derived in [1–3,21,45–47]. The presented cases of
body models 1÷ 6 are more or less similar to standard models of elastic–plastic bodies, discussed previously
in the literature.

6 Conclusions

1. In the paper, the necessary and sufficient conditions of uniqueness of solution of the formulated incremental
boundary problem of coupled generalized thermoplasticity for small gradients of displacements (small
strains) were derived. Global sufficient conditions and also local sufficient conditions (more safe for
small strains) were derived. Conditions of uniqueness for the generalized thermoplastic body [1–3,21,45–
47] and for suitable comparison bodies [1,3–7,13,14,21,47] were determined. The derived conditions
of uniqueness (global and local) are suitable necessary and sufficient criteria excluding bifurcation of
equilibrium states of coupled generalized thermoplasticity, also in isothermal loading processes. It was also
shown that the local conditions of uniqueness for the generalized thermoplastic bodies and the comparison
bodies have the same form. Thus, introduction of such comparison bodies seems to be proper. But the
global conditions of uniqueness and the global criteria of bifurcation have different forms.

2. The set papers, see e.g. [1,3–9,13,14,16,47], are concerningproblemsof solutionuniqueness of equilibrium
states and bifurcations criteria. In this paper, however, a new global criterion was formulated for the derived
comparison body dependent on statically permissible fields of stress rate. Thus, this paper is continuation
of the previous author’s papers [1–3,21,47]. The conditions of uniqueness and bifurcation criteria derived
in the previous papers [1,3] concerned a comparison body derived for generalized coupled thermoplasticity
depending on kinematically admissible strain rate fields.

3. We can assume that in the areas of the plastically deformed body where the conditions of uniqueness or the
bifurcation criteria are exceeded, submicro- or microconcentrations of strains can occur. Microcracks and
microlocalizations of strains are possible; then they become macrolocalizations while further developing
and nucleation occurs, leading to a crack in the material. Influence of such concentrators can be especially
important under variable mechanical and thermomechanical loadings, or creep, so connected with fatigue
strength or material cracking [7,10,11,16,24,25,33,44,47].

4. In the case of the comparison body, the integrand J ’ (4.7), dependent on kinematically permissible strain
rate field, while boundary transition

(
g∗ = F̄∗

σ

)
and (x2 = 1) passes into the integrand J1, like in the case

of the elastic–plastic body in coupled thermoplasticity with associated laws of plastic flow, expressed by
(4.9). From the expression for I ′ (4.20) for the comparison body dependent on statically admissible rate
fields of stresses, it results that introducing (g = F̄σ) and (y2 = 1) we obtain the expression I4(4.23), like
for the thermoelastic body. The reference bodies are not obtained by their mutual mathematical inversion
(like in the case of thermo-elasto-plastic bodies), but they are independently derived so as to satisfy suitable
inequalities (4.8), (4.10), (4.12) and (4.21), (4.24), (4.26).

5. In a generalized case, constitutive equations of coupled thermoplasticity are of the character of non-
associated laws of plastic flow, and even in the case of assumption of Gyarmati postulate, see [1,2,46,47],
they include effects of thermomechanical couplings and include a phenomenon of elastic–plastic coupling.
It means that they can be applied for a description of not only plastic metallic, brittle and semi-brittle
materials, but porous materials, sintered powders, rocks, soils, concretes and other materials as well [10–
12,47]. Under processes of plastic deformation and plastic strain localization, unstability can occur inmany
processes of plastic working, both stationary and non-stationary, cold, hot and heated.
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6. In the paper, only general expressions were derived for constitutive functions of coupled generalized
thermoplasticity. They occur in both necessary and sufficient global and local conditions of uniqueness
of solution of the formulated incremental boundary-value problem. During further investigations, the
constitutive functions of coupled generalized thermoplasticity should be specified within mechanics of
continuous media according to experimental results.

7. In the paper, it is assumed that gradients of displacements and strain rates are small. For simplicity purposes,
it is assumed that all the mathematical operations and all the description are realized in the Cartesian
coordinate system. In some last years, many papers describing some chosen kinds of thermomechanical
couplings including large deformations were published, see e.g. [21–44].

8. The future tests concerning uniqueness of the solutions of incremental boundary problems can be realized
also for viscoplastic materials. Hence, for the case of non-associated laws of plastic flow, the generalized
function of plastic flow F1 (plastic potential) should be replaced by the dynamic function of flow dependent
on F1, see [48–50]. In the case of the associated laws of plastic flow (then F1 = F and F1,σ = Fσ), the
function of plastic flow F should be replaced by the dynamic function dependent on F . This problem
remains open to further research.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate
if changes were made.
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