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Abstract This paper intends to summarize the scientific production of Angelo Luongo on the occasion of his
SixtiethBirthday, focusing on hismain contributions in the field ofMechanics. The taskwill not be easy because
of the breadth of his scientific production, only apparently attributable to a restricted number of keywords. In
fact, even when the work seems purely algorithmic, speculation on the physical and mechanical aspects of the
problem is always present, providing new interpretations and innovative openings to a careful reader. Similarly,
also the works, which apparently seem to be high-level applications, always reserve methodological aspects
that are not negligible. The editorial choice to divide his papers through a small number of keywords is certainly
simplistic, but offers the possibility to better highlight all the connections among his variegated production.
The most original contributions of Angelo Luongo in the context of perturbation methods, linear and nonlinear
dynamics and control, elastic buckling and structural analysis, bifurcation and stability of non-conservative
systems, are discussed in detail. Finally, the Angelo Luongo’s central role in the creation and development of
activities of the international research center M&MoCS is pointed out.

Keywords Perturbation methods · Nonlinear dynamics · Bifurcation and stability · Structural modeling ·
Dynamics and control · Elastic buckling

1 Introduction

The scientific activity of ProfessorAngeloLuongo, in his first sixty years of life, has been characterized by some
very peculiar features: independence of thought, deep knowledge of specific mathematical tools, originality
of his results, deep physical understanding of considered problems, great variety of treated subjects. He also
deeply influenced even elder co-authors imposing his creative originality and far reaching vision of nonlinear
phenomena and their mathematical modeling. However, the most important contribution to mechanical science
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is the large number of scientists who have been formed, up to the present days, under his scientific guidance:
this will be his true legacy. A brief presentation of his intense academic activity and scientific vision is set out
in the ‘Appendix.’

This paper aims to highlight contributions of Angelo Luongo to Mechanics classifying his scientific work,
a task by no means easy. His entire production could be summarily described by a few keywords: Perturbation
Methods, Nonlinear Dynamics, Bifurcation and Stability, and Structural Modeling. Such a sorting, however,
is not entirely satisfactory since most of his papers do not relate to just one of these categories.

Also, a classification based on the theoretical/applicative contributions is not entirely suited. Indeed, even
when the algorithmic aspects constitute the main focus of the work, the physical speculation is never absent,
and vice versa. As a matter of fact, many of the most brilliant insights he had about implementation of new
perturbation methods were suggested by the need to respond to a mechanical problem. However, the opposite
is also true as will be discussed later.

Even the antithetic distinction between static/dynamic approaches does not apply to his papers. In an early
stageof his career, heworkedon elastic stability, but soonhe addressed toNonlinearDynamics and, successively
to the (Dynamic) Stability of Non-Conservative System. In this evolution, he merged the know-how of the
‘static perturbation analysis,’ well known in the 80’s to civil engineers, and the knowledge of perturbation
methods, well known to mechanical engineers in the same period, to build up a complex of (perturbation)
methods for the analysis of dynamic stability, which nowadays are alternative to the more popular Center
Manifold and Normal Form approach. In other words, he has built a bridge between two communities, the
‘static’ and the ‘dynamic’ ones, which until then had had very few exchanges, by taking advantage of the
relevant studies. Some emblematic papers deal with both the aspects, dynamics and buckling, to underline
their common roots in his mind.

Also, the division linear/nonlinear does not work in classifying his work. He often affirmed that the
perturbation methods (the fil rouge of his production) make no distinctions among them since, in that view,
nonlinearities play the same role than imperfections (ormodifications) play in linear systems. Thus, he exploited
a formal analogy between the perturbative equations for (linear) eigenvalue sensitivity and the (nonlinear)
bifurcation equations to implement new algorithms for these latter.

Due to all these considerations, the authors of this review article tried several ways to describe the papers by
Angelo Luongo, most of them unsatisfactory. Finally, they decided to come back to the first idea of keywords,
certainly simplistic but able to better highlight all the connections among his variegated production. Thus, the
review article dedicated to Professor Angelo Luongo is organized as follows. In Sect. 2 papers in which the
formulation of perturbation algorithms prevails are summarized. In Sect. 3 treatments relevant to linear and
nonlinear dynamics, as well as control, are illustrated. In Sect. 4 contributions mainly addressed to the field
of elastic buckling, structural modeling, and localization, both in statics and dynamics, are commented. In
Sect. 5 the largest set of papers dealing with bifurcation and stability of non-conservative systems is structured
in methodological and applicative treatments, depending on their prevailing context. A concluding section on
advances and perspectives of the researches inspired or coordinated by Angelo Luongo at the International
Centre M&MoCS ends the article.

Closing these introductory notes, we want to recall an anecdote that Angelo Luongo told to his student
several times, during seminars and lectures. At the begin of the 90’, he was attracted by defective (nil-potent)
matrices, since standard perturbation methods seemed to fail when applied to them. The research was exclu-
sively ‘curiosity driven,’ without any application in mind. One day, while he was working on this subject,
with his desk overwhelmed by handwritten calculations, a colleague of him (a well-known, world-renowned
scientist) asked: “Why are you interested in studying singular cases that you will never meet in your life?”.
He answered: “You cannot know now what you will need tomorrow.” Well, from then on, Angelo Luongo ex-
ploited the knowledge on defective matrices to successfully analyze several types of defective bifurcations (the
most likely to occur, in the field of non-conservative systems, when the codimension is larger than 1). Angelo
Luongo behaves consistently with the well-known idea of bifurcation theory, according to which singularities
of a system are important since they organize the dynamics of their neighborhood. Indeed, he represents a
singularity in our little scientific circle and, as his beloved singular systems, he has strongly influenced not
only his pupils but all the people who have been close to him in these years.

2 Perturbation methods

In a group of papers [1–8] some general techniques, relative to perturbation methods, have been considered
and revisited under the boost arising from various applications dealt with in the other papers.
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1. A perturbation technique based on series expansions of non-integer powers of the small parameter is devel-
oped for systematically computing the directional eigenderivatives of defective matrices [1], highlighting
the marked sensitivity of eigensolutions and explaining the mechanism for generating a complete system
of eigenvectors from an incomplete one. These pathological systems are discussed in [2], showing that
mechanical defective systems can really exist if non-conservative forces are taken into account; more-
over, their main characteristics mainly depend on the strength of non-conservative forces, and they are
represented not by isolated, special points but rather by curves or surfaces in the parameter space (i.e., one-
parameter or multi-parameter systems). Defective systems, however, represent exceptional cases. More
often systems having close eigenvalues are encountered (mistuned systems) instead of perfectly coincident
(tuned systems), originating cases of nearly defective systems if the associated eigenvectors make groups
of nearly parallel vectors. Standard methods for eigenvalue sensitivity analysis fail for such systems, as
discussed in [3]. To overcome the problem, one has first to find an ideal defective system close to the nearly
defective and then to start perturbation from the former. An algorithm for building up a suitable tuned
problem when the eigensolutions are nearly coincident in twos is developed in [3]. There, an interesting
geometric interpretation of singular perturbations is also given: they occur when themodification is tangent
to the locus of the defective systems in the space of parameters.

2. Perturbation approaches, such as the Lindstedt–Poincaré and Multiple Scale Methods (MSM), are gen-
eralized to deal with nonlinear autonomous discrete-time systems, paying particular attention to almost-
periodic and transient solutions [4]. The proposed methods make use of shift operator transformation laws
(that can be considered as the counterpart for discrete systems of the chain rules valid for continuous sys-
tems) which allow the derivation of perturbation equations in a systematic way. The discrete asymptotic
solutions tend to the asymptotic continuous ones when the time step tends to zero.

3. Significant advances in the analysis ofmulti-resonant systems by theMultiple Scale Analysis are proposed,
which result in various benefits in all subjects addressed, including applications. The study of codimension-
M bifurcations for finite-dimensional autonomous systems is summarized in [5] where eigenvalue sensitiv-
ity analysis is presented suggesting strategies for solving nonlinear bifurcation problems. Some algorithmic
aspects of MSM for both non-defective and defective bifurcations are pointed out leading to fundamental
rules concerning the reconstitution procedure. A geometrical approach to the problem of evaluating the
classes of motion in general multi-resonant systems is illustrated in [6]. It consists in the following two
steps: the set of the classes of motion admitted by each individual resonance (family) is first built up; then,
the interactions among families are studied recursively in pairs by applying simple rules generated by a
unique theorem. The method furnishes class diagrams which synthesize the coupling existing among the
amplitudes as well as their importance in motion description. Moreover, three types of perturbation have
been identified in the structure of variational equations governing the stability of steady solutions: in-class
perturbations, i.e. perturbation of amplitudes participating in the motion; non-resonant and resonant out-
of-class perturbations, i.e. perturbations of the amplitudes not directly participating in the motion or not
involved in resonance with the active amplitudes, respectively.

4. Relevant studies on the general structure of the amplitude modulation equations (AME), furnished by the
Multiple Scale Analysis or equivalent perturbation procedures, are carried out. An extensive analysis of
alternative forms of the AME, governing the asymptotic dynamics of multi-resonant systems, is presented
[7]. AMEs are derived under general simultaneous internal and external resonance conditions, using dif-
ferent representations for complex amplitudes; their effectiveness in analyzing periodic motions is proven.
The standard form for the Reduced AMEs (RAMEs) is deduced, although under restrictive conditions, by
using rotating bases and a mixed polar-Cartesian representation. Moreover, rules to construct the quali-
tative form of the AMEs to any desired order are discussed in [8]. Two families of terms are identified:
improper resonant terms (not associated at any resonance conditions) and proper resonant terms, which
can be subdivided into primary (of lower order) and secondary (of higher order) terms. Theorems are
proved to show that both improper and secondary resonant terms have no qualitative but only quantitative
effects on classes of motion. An algebraic algorithm is illustrated to determine the classes of motion, and
the concept of degree of constraint of a given resonance condition is introduced.

3 Dynamics and control

This section is devoted to frame the papers dealing with problems in linear, nonlinear dynamics and control,
for both discrete and continuous systems.
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3.1 Linear dynamics

Although his research focus is mainly devoted to nonlinear dynamics and its implications, contributions to
linear dynamics are not negligible. In the papers [9,10], a theme that will resurface often in the scientific
production of Angelo Luongo appears for the first time: the dynamical behavior of cables. In particular,
in [9] a finite-difference algorithm is introduced to analyze the natural frequencies and modal shapes of a
linear elastic cable with moving supports, highlighting the crucial role of the cable extensibility in the correct
caption of the the crossover phenomenon, which substantially appears as a matter of kinematic compatibility.
It is remarkable that the paper [10] deals with a critical review of a previous contribution in the field: some
important comments concerning the physical insight into free vibration of parabolic cables and their frequency
spectrum are provided highlighting his growing competence in this topic that will lead to some key papers on
cable nonlinear dynamics.

Some basic results regarding periodic structures are contained in [11–13]. In particular, general bi-coupled
periodic systems are dealt with by means of transfer matrices of single units [11]. A qualitative analysis carried
out on the invariants’ plane is proposed with an exhaustive description of the free wave propagation patterns.
It enables both to identify the stop, pass, and complex domains and to analytically derive the boundaries
of such regions, considering symmetric and unsymmetrical structures made up of beams resting on elastic
supports, with both distributed and lumped masses. Based on these results, aiming at reducing the transmitted
vibrations, a design of optimal piecewise periodic structures is proposed in [12]. The periodic cell properties and
arrangement are tailored to localize the response around the excitation source within any assigned frequency
range. The amount of vibration suppression along the periodic structure is controlled and can be described
through iso-attenuation curves representing the contour plot of the real part of the propagation constants.Despite
these advances, numerical difficulties to determine natural frequencies when solving the complex determinant
resulting from the wave vector approach may arise. The causes of such drawbacks are investigated in [13],
showing that numerical difficulties are due to the ill-posed mathematical problem in terms of complex waves
coming on the structure. According to this classic method, natural frequencies are found as real solutions of
complex characteristic equations, i.e. as a solution of a system of two equations in just one unknown. Aiming
to overcome such problems while retaining the advantages of the wave transfer matrix framework, a modified
version of the classic wave vector computational scheme is proposed dealing with real quantities only, thus
avoiding the described pathology.

3.2 Nonlinear dynamics

The nonlinear dynamics of elastic or suspended cables, shear indeformable beams, tethered satellite systems,
orbiting strings, chains of sliding beams and pendulums has been dealt with in the papers [14–27]. Very often
making use of perturbation methods on reduced systems of ordinary differential equations relevant to the
different structures involved in the papers, original contributions can be summarized in the following points.

1. Concerning sagged suspended cables, a two degree-of-freedom (DOF) nonlinear elasticmodel is proposed
to analyze the effects of nonlinearities on the free motion in absence of internal resonance [14] using the
multiple scale perturbation method. This model differs from those proposed hitherto for the presence of
quadratic nonlinearities together with cubic ones. The conditions under which extensional in-plane and
pendulum out-of-plane mono-frequent oscillations exist are examined as well as those for which effects
arise due to the nonlinear coupling. A milestone in the study of planar nonlinear free vibrations of sus-
pended cables is represented by [15], where nonlinear equations of motion of a heavy elastic cable about
a deformed static equilibrium configuration are developed through a Lagrangian description of the con-
tinuum problem in the context of dynamics of prestressed solids. After introducing consistent simplifying
assumptions (including the static condensation of the longitudinal displacement component), the partial
differential equations of planar motion are reduced to one ordinary equation via a Galerkin procedure,
pursuing an approximate solution through the Lindstedt–Poincaré method. Moreover, the possibility of
introducing a dimensionless form of the equations suitable to describe the nonlinear oscillations of a cable
in terms of a unique parameter characterizing its mechanical and geometrical properties, as it occurs in
linear dynamics, is analyzed. The discussion in [16] on large amplitude vibrations of cables states the
peculiar aspects of the nonlinear dynamic behavior of sagged cables compared to taut strings, because of
the curvature of the initial configuration which leads to quadratic nonlinearities.
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2. Regarding the behavior of compact and non-compact inextensional beams, [17] proposes a unified ap-
proach to study planar forced oscillations of shear indeformable beams for the two different cases of
movable and fixed support at one end, starting from an exact nonlinear model subsequently restricted
to third-order nonlinearities and reduced to one nonlinear differential equation. An internal constraint
is introduced for systematically eliminating the longitudinal displacement. With the background of this
case concerning a weak nonlinear behavior, strong nonlinear interactions among transversal and torsional
vibrations of non-compact beams are studied in [18]. The problem is accurately described by three equa-
tions in the two transversal displacements and torsion; they include the quadratic and cubic terms of
elastic interaction among flexural and torsional components but do not contain warping since its consis-
tent introduction is far from being straightforward in this kind of nonlinear beam models. A perturbation
solution highlights relevant parameters governing the phenomenon: when a resonance condition involving
quadratic nonlinearities is approached, even though onemotion component is assigned a zero initial value,
it is forced strongly in themotion and, in turn,modifies the laws of the remaining two. The nonlinear effects
of warping and torsional elongation are considered in [19], examining nonlinear three-dimensional oscil-
lations of beams in internal resonance conditions, with a cross-section having a symmetry axis. In some
particular situations, nonlinear warping and torsional elongation effects can produce deep modifications
in the dynamic behavior of the beam from both a quantitative and a qualitative viewpoint.

3. Research field on tethered satellite systems is inspired by the investigation of their free dynamics during the
station-keeping phase. Since out-of-plane oscillations are governed by equations uncoupled from in-plane
motion, [20] analyzes the in-plane motion where longitudinal and transversal displacements are coupled
bymeans of gyroscopic forces, leading to a nonstandard eigenvalue problem.New contributions arise from
the proposal of a more sophisticated model and the use of perturbation techniques in computing problem
eigensolutions. Reference [21] presents the equations of motion developed in a Taylor series up to the third
order, so as to obtain a set of equations that can be suitably solved by perturbation techniques. In this way,
it is possible to consider the modification of the frequency and of the oscillation shape with amplitude,
rarely taken into account in similar studies. This fact appears very important since a number of modes are
usually involved due to conditions of internal resonance of tethered systems. In particular, themodification
of frequency with amplitude, which would be negligible in a weakly nonlinear system, is, however,
appreciable since it is always associated with a modification in the shape of oscillation, due to internal
resonance conditions characterizing this orbiting systems. In [22], attention is focused on non-stationary
motions in conditions of simultaneous internal resonances. A two-mode model can give an approximate
description of oscillations in primary 1:2 resonance; richer models are needed to study more complex
motions, such as simultaneous internal resonance 2:4:1 and 1:2:1. With the aim of studying stability and
non-stationary motions arising from perturbed two-mode non-planar oscillations, a four-mode model is
developed in [23] since at least two modes are necessary to describe the perturbation of basic oscillations.
The stability of steady and periodic solutions is analyzed by introducing a Cartesian representation of
complex amplitudes; the stability of periodic motions is governed by a system of variational equations
with periodic coefficients.

4. An approximate explicit response probability density function of a simply supported beam under external
and axial impulsive random Poisson excitation is deduced [24]. The impulsive loading is a process having
Dirac delta occurrenceswith random intensity distributed in time according to Poisson’s law. The proposed
approach considers parametric excitation that is multiplicative in displacement since the integral term
appearing in the Kolmogorov–Feller equation offers a better opportunity to find approximate solutions.

5. The analytical determination of nonlinear transfer function and frequency–amplitude relationship for
chain of nonlinear beams resting on sliding supports has been determined in [25], in order to detect their
free and harmonically forced dynamical behavior, after exploitation of some periodicity conditions. To
determine the dynamic response of the system, the transfer-matrix approach is merged with the harmonic
balance method. In analogy to the linear case, the approach leads to an algebraic set of equations whose
dimensions are equal to the number of coupling degrees of freedom.

6. The detection of analytical expressions for nonlinear free-vibration frequencies andmode shapes in case of
a breathing-cracked beam, modeled as a two DOF system, is dealt with in [26] proposing a modification of
the classical Lindstedt–Poincaré method, able to tackle non-smooth piecewise linear systems. Differently
for the classic approach, valid for smooth systems, the complementary solution of the passive coordinate
equations must be taken into account in order to satisfy continuity and periodicity of motion; accordingly,
both passive and active frequencies contribute to the motion although they are incommensurable.
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7. The characterization of the dynamics of a pendulum with periodically varying length, in terms of steady
dynamics and limit cycles, as well as non-regular and chaotic motions, is studied in [27]. Unfairly little
studied in the literature, this example exhibits a variety of types of behavior and can be naturally treated as
a model of swing. Comparisons with the pendulum having oscillating support and fixed length show the
distinctive dynamical features of pendulum with periodically varying length such as high-speed regular
rotations and absence of second instability domain.

3.3 Control

In the series of papers [28–35] interesting results about control of oscillations for many different systems can
be found: tethered satellite systems, aeroelastic oscillators and tuned mass dampers, double pendulum, and
nonlinear energy sinks.

1. Tethered orbiting systems are characterized by weak nonlinearities; notwithstanding their nonlinear dy-
namics offer interesting points to be investigated due to internal resonance conditions, which may produce
unstable oscillations. In fact, the system exhibits quadratic nonlinearities, and the frequencies of flexible
modes are almost in integer ratio. Reference [28] proposes the use of the longitudinal force as a control
parameter in order to reduce the primary and secondary instability regions occurring in the presence of
internal resonances. Since the displacement component in the orbit plane is always present in the motion
due to nonlinear coupling, the control force can be considered as a function of in-plane displacements
only, also when a prevailing out-of-plane oscillation occurs. Reference [29] points out that a linear ve-
locity feedback does not produce damping but modifies the nonlinear terms only with satisfactory effects
on the stability regions; on the other hand, a quadratic velocity feedback produces cubic damping terms
able to suppress oscillations and to eliminate the primary mechanism of energy transfer from in-plane and
out-of-plane motion.

2. About aeroelastic oscillators and tuned mass dampers, the control of a single DOF system under aerody-
namic forces inducing galloping is dealt with [30] considering the flow-structure interaction as the only
source of nonlinearity. Critical conditions for occurrence of simpleHopf bifurcation aswell as non-resonant
and 1:1 resonant double Hopf bifurcations are detected. It is shown that the effectiveness of tuned mass
dampers persists even in the post-critical range. For the same model, deep unfolding of the post-critical
dynamics for the most cumbersome case, namely the 1:1 resonant double Hopf bifurcation, is provided in
[31]. The entire post-critical scenario in the bifurcation parameter space is analyzed highlighting the limits
of validity of the equivalent single DOF concept. It is shown that, if the control parameters maximize the
critical wind velocity, then the limit cycle amplitude also reaches a minimum; therefore, the optimal tuned
mass damper retains its peculiarities in the nonlinear range too. Moreover, since all the control parame-
ters are determined by the required optimal conditions, no other conditions are available to improve the
post-critical performance. Thus, a suitable nonlinearity could be introduced in the system to reduce wind
effects after the critical condition. A preliminary study of the effectiveness of a nonlinear cubic damping
in tuned mass dampers on the bifurcation scenario of a simple aeroelastic oscillator is explored in [32],
pointing out the existence of a better nonlinear tuned mass damper in a region sufficiently far from the
optimal linear case.

3. In [33], the challenging problem of the stabilization of the upright statically unstable position of a double
pendulum is pursued through a parametric excitation, focusing the interest in the obtaining of both lower
and upper bounds of the stability regions in the plane of parameters. Non-straightforward perturbation
algorithms have been implemented with a proper ordering of the parameters and a proper use of integer or
fractional power expansions. In particular, a non-standard application of the MSM is illustrated for the 1:1
resonant case, requiring fractional powers and accounting for the ‘arbitrary constants’ generally omitted
in regular cases.

4. Recently, the problem of passive control of vibrations has been enriched by very peculiar systems, namely
the Nonlinear Energy Sinks (NES). NES generally are one DOF oscillators provided with a smaller mass
than that of the main structure to be controlled, attached to it by means of a dashpot, which induces small
linear damping, as well as an essentially nonlinear spring, which is their distinctive feature. In fact, the
essentially nonlinear spring causes lack of linear stiffness in the NES and, on the one hand, allows them to
get in resonance with the main structure in a wide spectrum of frequencies, then providing to these devices
a greater potentiality than tunedmass dampers; on the other hand, the corresponding nonlinearizable nature
of such kind of systems makes the use of standard perturbation methods a difficult task. In particular, it
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was stated in [36], where a NES was applied to a single DOFmain oscillator that ‘for this type of problem,
the standard analytical techniques from nonlinear dynamics (such as the MSM and the standard method of
averaging) are not directly applicable, and an alternative approach must be followed.’ Fascinated by this
challenging problem, Angelo Luongo introduced an innovative way of alternate application of both MSM
and harmonic balance for nonlinear systems coupled with NES, giving rise to the so-called Multiple Scale
Harmonic BalanceMethod. It has been first applied to an internally non-resonant multi-DOF system, under
harmonic, 1:1 resonant, external force [34]; then, it has been exploited for a two DOF airfoil under wind
effect inducing galloping oscillations [35]. Very recently, the method has been extended to continuous
structures in direct approach, i.e. applying it to the partial differential equations of an infinite-dimensional
system, namely an internally non-resonant string [37].

4 Elastic buckling and structural analysis

Immediately after the first studies on cable dynamics, the elastic buckling represents the beginning of his
activities on stability issues that are recently bringing fruitful and innovative results even in the context of
structural analysis; moreover, starting from buckling researches, significant advances in understanding the
localization phenomena in both static and dynamic fields have been made.

4.1 Elastic buckling

This group of papers, [38–42], developed in the first decade of his scientific activity, reflects the growing
originality of the topics and provides the basis of some ideas spread throughout the subsequent activities. In
particular:

1. The interaction of simultaneous buckling modes on the post-buckling behavior of uniformly compressed
channels, simply supported at their ends, is investigated [38] on the basis of the general Koiter theory of
elastic stability, considering the column as a plate assemblage. The total potential energy is hence written
up to third-order terms in order to investigate asymmetric buckling phenomena. The displacement field is
described following the classic Vlasov theory where the assumption of rigid cross-sections is removed.
A non-traditional finite strip technique is developed through an automatic (and innovative, for the time)
procedure of algebraic manipulation. The previous analysis is related to a single interaction between two
buckling modes and has been extended in [39] where it is assumed that two or more buckling modes can
interact simultaneously, taking into account the initial imperfection effect and analyzing simply supported
stiffened angle sections and channels. A simple approximate procedure for solving nonlinear equations
related to the evaluation of bifurcated paths is suggested. In the same context, the effect of boundary
conditions on multiple interactive buckling in compressed thin-walled members is analyzed [40] pointing
out that, under suitable simplifying assumptions, the governing nonlinear equations can be replaced by a
linear eigenvalue problems independent of geometric andmechanical properties of the beam, and depending
on boundary conditions only. Moreover, the occurrence of a cluster of local buckling modes leads to local
deformations concentrated in one or more narrow bands of the beam axis, called ‘localization of the
buckling patterns.’

2. A significant contribution to the understanding of the nonlinear interaction between several bucklingmodes
in nearly symmetric systems is provided [41], focusing the interest on a perturbation method capable
of correctly describing the nonlinear equilibrium paths of perfect and imperfect structures. The method
considers the actual system as a perturbation of a properly chosen symmetric one, and does not exhibit the
drawbacks of the classic Budiansky’s approach where all nonlinearities appear at the same level.

3. Interactive buckling of an elastically restrained truss structure is investigated by proposing an improved
version of the Byskov-Hutchinson perturbation analysis [42], which permits avoidance of the iterative
procedure related to the load value. The interesting structure under investigation consists of two horizontal
beams connected by rigid diagonals, whose out-of-plane displacements are prevented by a continuous
distribution of linear springs. When the beams are compressed, three buckling modes, an overall and
two local ones, may occur nearly simultaneously and interact in the post-critical range. This model, that
Angelo Luongo refined by analyzing localization phenomena (see ahead, Sect. 4.3), inspired other authors
in literature, e.g., [43], who referred to it as the ‘Luongo’s model.’
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4.2 Structural modeling

The papers [44–52] are specifically devoted to modeling problems of structural interest; the main original
results are summarized in the following.

1. A nonlinear one-dimensionalmodel of a thin-walled beamwith generic, non-symmetric open cross-section
is developed as an internally constrained three-dimensional continuum [44], subject to axial and shear un-
deformability. Thanks to cross-section constraints, the warping is expressed in terms of displacements
of the shear center by extending the Vlasov theory to the nonlinear field; in particular, the in-plane dis-
placements, which arise as a second-order effect of the out-of-plane classic warping, have been accounted
for.

2. A consistent model of a linear, curved, prestressed, no-shear, elastic cable-beam, loaded by wind forces,
is formulated [45]. The incremental equilibrium equations around the prestressed state are derived, in
which shear forces are condensed. The equations of motion are then greatly simplified by estimating the
order of magnitude of all their terms, under the hypotheses of small sag-to-span ratio, order-1 aspect ratio
of the (compact) section, characteristic section radius much smaller than length (slender cable), small
transversal-to-longitudinal and transversal-to-torsional wave velocity ratios. The model is reformulated
in the nonlinear range and nonlinear; reduced equations are derived along the same lines in [46]. These
equations are a particular, asymptotic case of more complete models which, besides being composed of
very complex equations, suffer of some numerical problems related to the existence of boundary layers,
caused by the smallness of the flexural terms (nearly singular equations). Simple discrete nonlinear systems
are then derived from the continuous model via standard Galerkin procedures.

3. Innovative approaches are proposed for the cross-sectional analysis in the context of the classicGeneralized
Beam Theory (GBT), which requires a two-step evaluation procedure, consisting of an initial choice of
the vector basis and its successive orthogonalization; they are applicable to generic cross-sections, i.e.
open, partially closed and closed ones. The novelty relies in formulating the problem in the spirit of
Kantorovich’s semi-variational method, evaluating the in-plane deformation modes as the eigenfunctions
of a positive-semi-definite auxiliary problem [47]. This latter is chosen as the free dynamic analysis of
an unconstrained planar frame, representing the cross-section of the structural member; warping is then
evaluated from the post-processing of these in-plane modes, thus reversing the strategy of the classic GBT
procedure. Thereafter, a newmethod identifying a set of conventionalmodes in a single-step cross-sectional
analysis, for any type of cross-section, is proposed [48]. The algorithm differs from that of the classic GBT,
and it is based on the definition of a new quadratic functional, whose steady condition leads to a simple
eigenvalue problem: in this way, it directly generates the sought orthogonal basis that can be found using
a finite-element approach. A new ‘complete dynamic approach’ is presented in [49], able to evaluate the
whole set of conventional and non-conventional modes. This innovative method, referred to as GBT-D, is
based on the formulation of two distinct eigenvalue problems, relevant to a segment of thin-walled beam
of unitary length, namely (i) a Planar Eigenvalue Problem, governing the in-plane free oscillations of the
segment, behaving as an extensible planar frame, and (ii) a Warping Eigenvalue Problem, governing the
out-of-plane free oscillation of the segment, behaving as a purely shear beam.Both eigenvalue problems are
differential in origin and can be transformed in an algebraic problem applying a suitable discretization to
the cross-section middle line. In summary, the basis obtained in this study is formed by: (a) conventional
modes (which include in-plane and out-of-plane components); (b) extensional modes (being of purely
planar type); and (c) shear modes (being of purely warping type).

4. An asymptotically exact method for static and dynamic analysis of geometrically nonlinear planar frames
is described [50], based on the integration of nonlinear equations of inextensible and shear indeformable
beams via a perturbation method, under the simplifying assumption that masses are lumped at the beam
ends. Goal of this procedure is the numerical evaluation of series expansion coefficients, which describe
the response in terms of a control parameter: this is achieved by solving few linear problems (typically
three) instead of a large number of nonlinear problems, as required by commonly used iterative methods.

5. A constitutive model for the planar interface of a soft body sliding on a rigid surface is formulated [51],
accounting for stick-slip phenomena (caused by friction) and for wear (caused by abrasion). It has been
developed in the framework of Damage Mechanics, by introducing gap, isotropic hardening and wear as
internal variables of phenomenological type, through the formal analogy between abrasion of a soft body
and ductile damage of an elastic-plastic material. Four different sub-models can be further deduced, of
no-wearable or wearable type, both with linear or nonlinear isotropic hardening.
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6. A nonlinearmodel of viscoelastic balloon, interposed between a couple ofmoving rigid bodies, is proposed
[52], modeling the pneumatic structure as a thin, infinitely long cylindrical membrane, prestressed by an
internal pressure. The planar problem is addressed with the objectives of formulating a sufficiently simple
model, able to give insights the physics of the phenomenon via analytical or semi-analytical solutions,
to account for viscoelastic properties of the material, and to consider both the possible flattening and
indentation of the balloon, as sequential stages.

4.3 Localization in statics and dynamics

Systems that exhibit a great number of nearly simultaneous modes are characterized by buckling patterns
in the post-critical range that strongly depend on the load intensity. The deformation can localize in one or
more regions of limited size, in contrast to the periodic character of critical modes, giving rise to the so-called
localization; it has been addressed in static and dynamic field. The static phenomenon of localization due
to interactive buckling problems is first analyzed in [53], with the help of a specific model (the ‘Luongo’s
model,’ a 3D beam system consisting of two elastic beams connected by bars which are perfectly rigid in-
plane and infinitely flexible out-of-plane; the beams are compressed and continuously restrained by elastic
springs orthogonal to their plane). This paper demonstrates that, as in the dynamic field, the localization
mechanism for local buckling calls for satisfaction of two requisites: (i) the system should have a high modal
density, and (ii) it should present a ‘structural irregularity’ in a broad sense (i.e., a variable geometric stiffness
due to the effect of primary bifurcation). Going to analyze localization phenomena in dynamic problems,
longitudinal free oscillations of a beam with small axial rigidity, continuously restrained by imperfect elastic
springs, are studied in [54], taking into account small imperfections in the spring stiffness in order to obtain the
localization of the modal shapes. Systems with single localized defects are first considered, providing physical
insights and pointing out that the phenomenon is governed by a turning point mathematical problem. Periodic
or nearly periodic imperfections are then analyzed by applying the Floquet theory and, finally, non-periodic
imperfections are numerically treated. The asymptoticWKBmethod proves to be an efficient tool for evaluating
the localized eigenfunctions and the associated eigenvalues. The localization phenomenon in linear continuous
one-dimensional systems is considered in [55] both in dynamics and buckling. A general perturbation method
is developed which generalizes the classic WKBmethod. It is applied to analyze structures governed by nearly
defective systemmatrices, so their characteristic exponents are highly sensitive to imperfections. Fundamental
concepts about localization are introduced, and similarities between dynamics and buckling localization are
highlighted. In particular, strong localization of the normal modes is due to turning points in which purely
imaginary characteristic exponents assume a nonzero real part; in contrast, if turning points do not occur, only
weak localization can exist.

5 Bifurcation and stability of non-conservative systems

This is perhaps the most articulated field of activity in which he put to good use many of the experiences gained
in previous researches and can be divided into some papers most aimed at methodological issues and some
other most devoted to structural applications.

5.1 Methods

This section is devoted to briefly resume the key aspects of a class of papers devoted to the development of
perturbation methods targeted to the study of bifurcation and stability problems in non-conservative systems.
In particular, the topics that can be recognized in these papers concern the investigation of: (a) divergence-
Hopf bifurcation [56–58], (b) double-zero and multiple-zero bifurcations [59,60], (c) simple Hopf bifurca-
tion [61], multiple (non-defective) Hopf bifurcation [62,63] and multiple (defective) Hopf bifurcation, [64],
(d) theoretical and technical [65,66], and algorithmic [67] aspects in perturbation methods.

Concerning the item (a), the novel focal points are the followings.

1. In [56] the MSM is adapted to study the post-critical behavior of general non-conservative symmetric
systems, possibly affected by imperfections, for which divergence and Hopf bifurcations interact. The
main contribution given by the procedure illustrated here regards the effectiveness of theMSMwith respect
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to the computational burden related to the application of the center manifold reduction. In particular, the
paper highlights how it is possible to obtain closed-form expressions for the coefficients of the bifurcation
equations of a general system (having two control and one imperfection parameters) in terms of the
coefficients of the original system. Finally, the method is applied to a two DOF rigid bar subjected to
axial load (Augusti’s model) and transversal flow in order to address in detail the critical and post-critical
scenarios, for both the perfect and imperfect systems, whose solution is obtained as a perturbation of the
perfect system solution.

2. A unified perturbation approach, based on the MSM, is discussed in [57]. This paper gives a key to
the understanding of the interactions among static and/or dynamic bifurcations of nonlinear structures.
Moreover, a general perturbation algorithm, devoted to the study of multi-parameter, finite-dimensional
autonomous system, simultaneously undergoing divergence and two Hopf bifurcations, of non-resonant or
resonant type, is built up through the same steps of the static perturbation method; but, differently from this
latter, more parameters (not just the load) are considered simultaneously, in order to exhaustively describe
the system behavior around the critical point. The method furnishes the bifurcation equations governing
the time evolution of amplitudes and phases of the critical interacting modes. The peculiar aspects of
dynamical problems compared with static ones are as follows: (i) the amplitudes depend on time; (ii)
several time scales are introduced; and (iii) the solvability and bifurcation equations are differential,
instead of algebraic. Finally, due to the non-conservativeness of the systems here presented, two sets of
right and left eigenvectors are needed by the procedure.

3. In [58], a nonstandard application of the MSM, devoted to analyze the transition from codimension-3
(double-zero/Hopf) to codimension-2 (single-zero/Hopf) bifurcations, occurring in a two DOF, is pre-
sented. The bifurcation equations of the system, here obtained, lead to a four-dimensional dynamical
system, consisting of a first-order complex equation (as in the Hopf bifurcation) and a second-order real
equation (as in the Takens–Bogdanov bifurcation), coupled by mixed terms; it is shown that this sys-
tem can be reduced to a three-dimensional system, coherently with the codimension of the problem. The
method possesses some crucial aspects, namely: (i) fractional power expansions, both for state-variables
and time, are used due to the presence of a not-semi-simple double-zero eigenvalue, although the purely
imaginary eigenvalues are non-defective; (ii) high-order arbitrary amplitudes are introduced in order to
avoid inconsistent results and loss of some terms in the bifurcation equations; and (iii) the reconstitution
procedure is not straightforward, since it requires the use of the Schwarz conditions, or, alternatively, ad
hoc combinations of the solvability conditions.

Concerning the item (b), the main results can be resumed as below.

1. In [59] different asymptotic techniques, based on perturbations both of the eigenvalue problem and of
the characteristic equation, are developed in order to perform the sensitivity analysis of the double-zero
eigenvalue and to built up the linear stability diagrams for a general multi-parameter nonconservative
system. The analysis sheds light (1) on the existence of a generic (nonsingular) case, for which the
double-zero eigenvalue manifests itself at the intersection of a divergence and a Hopf manifold in the
parameter space, and (2) on the existence of a non-generic (singular) case for which different bifurcation
mechanisms can manifest themselves, such as the double divergence, the double divergence Hopf, and the
degenerate Hopf. Moreover, a second-degree equation, uniformly valid around the critical point, is found,
thus permitting (i) to capture the essential aspects of the bifurcations’ mechanisms, and (ii) to clarify the
geometrical meaning of the unfolding parameters, discussed in the literature for the Takens–Bogdanov
bifurcation.

2. Multiple-zero bifurcation of a general multi-parameter dynamical system is discussed in [60], which
represents an original and important contribution, since its core consists in the exploration of the analogies
between sensitivity and bifurcation analysis in defective systems. A MSM algorithm, based on the use of
timescaleswith suitable fractional powers of the perturbationparameter, is developed for a general system in
order to obtain the bifurcation equation. The crucial aspect of the algorithm concerns the application of the
reconstitution method, which leads to an ordinary differential equation in a unique unknown amplitude,
of order equal to the algebraic multiplicity of the zero eigenvalue; this equation, which asymptotically
governs the dynamics around the bifurcation, can be seen as a generalization of the Bogdanov–Arnold
normal form equation. Finally, by applying the developed algorithm, the nonlinear behavior around the
bifurcation of a mechanical system is discussed.

With regard to item (c), the principal achievements can be summarized as detailed in the following.
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1. Nonlinear interaction phenomena among gallopingmodes of slender structures having narrow band spectra
are discussed in [61]. These structures, for which combination resonance phenomena occur, are modeled
as nearly periodic systems consisting of weakly coupled beams. By applying the MSM, a system of
nonlinear differential equations in the amplitudes and phases of the interactive modes is derived for an
n-elements chain. Moreover, numerical results relevant to a two-beam system are presented, also in the
case of small imperfections causing asymmetry of the structure. The impressive findings given by this
paper are as follows: (i) for the perfect system, the existence of monomodal steady-state (unmodulated)
solutions involving the two components of the motion; (ii) for the asymmetric system, the existence of a
bimodal solution only; (iii) for critical values of wind velocities, the appearance of stable limit cycles as
a result of a Hopf bifurcation.

2. In [62] a two-time version of the Lindstedt–Poincaré Method and the MSM is developed to analyze non-
resonant double Hopf bifurcations of a general two-parameter dynamical system. The crucial findings
of the paper are as follows: (1) the MSM furnishes amplitude and phase modulation equations identical
to normal form equations well known in the literature; (2) the Lindstedt–Poincaré Method can also be
considered if only steady-state solutions have to be found; (3) both the methods can be applied to any
order to improve the approximation; moreover, they furnish closed-form expressions for the coefficients
that could be directly used in applications. It is important to remark that the developedmethods are attractive
since: (i) they are systematic and consistent; (ii) they are notably aimed to the analysis of large dimensional
systems; and (iii) they can be easily extended to analyze higher codimension bifurcation problems, also in
the presence of resonance conditions.

3. The paper [63] deals with the study of the post-critical behavior of a generalN-dimensional system around
a 1:2 or 1:3 resonant double Hopf bifurcation. To this end, the MSM is employed in order to obtain, in
closed form, the bifurcation equations in terms of the derivatives of the original vector field evaluated at
the bifurcation point. The relevant aspects can be resumed in: (i) by truncating the analysis at the third-
order in both the 1:3 and 1:2 cases, first- or second-order bifurcation equations are obtained; (ii) a mixed
polar-Cartesian representation for the amplitudes is used in the paper, in order to obtain a set of three
bifurcation equations in standard normal form, in contrast to the usual polar representation which instead
leads, in the presented case, to nonstandard form equations; (iii) a self-excited two DOF system is studied,
and bifurcation diagrams are built up to give a full representation of the codimension-3 bifurcation.

4. An algorithmbased on theMSM, inspired by a formal analogywith the sensitivity analysis of eigenvalues of
nilpotentmatrices, has been developed in [64], in order to analyze 1:1 resonantmultipleHopf bifurcations in
autonomous discrete dynamical systems.When parameters are quasi-statically varied, an arbitrary number
of critical eigenvalues simultaneously crosses the imaginary axis. The Jacobian matrix is defective at the
bifurcation point so that: (1) only one proper eigenvector exists at the critical point and, as a consequence,
the eigenspace must be completed by generalized eigenvectors; and (2) the procedure calls for the use
of fractional powers expansions of both state-variables and time, as opposed to integer power expansions
used for non-defective bifurcations. The method is specialized for a 1:1 resonant double Hopf bifurcation,
and a step-by-step algorithm is presented to evaluate the coefficients of the relevant three real first-order
bifurcation equations.

With respect to item (d), the peculiar aspects are resumed in the following.

1. In the paper [65] an exhaustive review, concerning both theoretical and technical aspects of the bifurcation
analysis in general, finite-dimensional, autonomous, nonlinear dynamical systems, is addressed. Due to
its particular features, dealing with several problems in bifurcation analysis, this paper regards several
concepts and methods discussed in this Section; in particular, it is remarkable to notice: (1) the basic
concepts of perturbation analysis: (2) low codimension bifurcations in sample systems; (3) mechanical
and geometrical aspects in the bifurcation phenomena; (4) sensitivity analysis of the eigenvalues in non-
defective and defective cases; (5) integer and fractional power series expansions and reconstitution method
in the sensitivity analysis; (6) the MSM for the analysis of multiple bifurcations; (7) the MSM in the case
of non-defective and resonant bifurcations; (8) the MSM in the presence of defective bifurcations; and (9)
the reconstitution method in the MSM.

2. Paper [66] concerns higher-orderMSMs for general multi-parameter mechanical systems. Some important
theoretical and technical issues are discussed here, namely: (1) the definition of the codimension of the
problem in general systems excited either externally or parametrically; (2) the role of parameters in the
perturbation analysis; (3) the number of solvability conditions obtained at each step of the perturbation al-
gorithm; (4) the concept of reduced dynamical system; (5) the critical discussion of four classes ofmethods,
based on the consistency or inconsistency of the approach, and on the completeness or incompleteness
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of the terms retained in the analysis, which are followed in the literature in dealing with reconstituted
amplitude equations; and (6) the study of three examples, concerning a static codimension-1 bifurcation
problem, a simultaneous dynamic bifurcation/external resonance problem with codimension-2 and a free
oscillation problem.

3. A numerical perturbation method, based on the sensitivity analysis of eigenvalues, is developed in [67].
The paper focuses on the development of an algorithm able to build up the linear stability diagrams of
multi-parameter dynamical systems. It is important to remark that the algorithm developed here is general
and, to illustrative purposes only, is applied in the case of codimension-2 bifurcations. Some important
issues are remarkable, namely: (1) the algorithm is based on the finding of the codimension-2 bifurcation
point and on the building up of the branches emanating from this point; (2) the perturbation method
proposed reverses the usual approach, according to which one first looks for codimension-1 bifurcation
loci and, then, follows them by checking, at each step, if a codimension-2 point is encountered; (3) the
algorithm is able to furnish the critical combinations of parameters causing multiple bifurcations of static,
dynamical, or mixed types.

5.2 Applications

The important developments on perturbation methods described in the previous section, specifically addressed
to non-conservative systems, have led to numerous applications in subjects of great importance for structural
engineering such as cables, tower buildings, and beams.

5.2.1 Cables

The common denominator of the papers in this sub-section, [68–74], is the presence of aeroelastic action which
leads to problems of fluid-structure interaction known as galloping, usually treated within the quasi-steady
approach in the dynamics of iced cables.

Dealing with section models in a linear field, a perturbation method to analytically evaluate the eigenso-
lutions of a two DOF coupled translational galloping for any frequency ratio has been developed in [68]. By
introducing the invariants of the total and aerodynamic damping matrices, the eigenvalues can be obtained in
a simple and expressive form: the conditions of incipient instability are analyzed in the plane of the aerody-
namic damping matrix invariants, where each point is representative of a family of cross-sections with given
aerodynamic characteristics. It is noteworthy to observe that Hopf bifurcations can occur as simple bifurca-
tions (classic mono-modal galloping), quasi-simultaneous bifurcations (quasi-bimodal galloping), and double
bifurcations (bimodal galloping).

In [69] the nonlinear response of a flexible elastic suspended sagged cable in internal resonance conditions
is presented: it is assumed to be at the first “cross-over” point so that its linear frequencies are almost in a
2:1 ratio. Wind forces, acting perpendicular to the plane of the cable, are directly applied to the cable in the
normal and bi-normal direction neglecting the effect of its flexibility. In order to analyze coupling phenomena
between in-plane and out-of-plane motions, a simple two DOF model is derived via the Galerkin procedure,
by considering one modal shape in each plane. Due to mean wind forces, the cable undergoes a static rotation
and the equilibrium is set on a inclined plane: this fact produces a modification of aerodynamic forces making
galloping a bounded phenomenon, which occurs in a limited range of wind velocities starting from the critical
one (differently fromwhat is usually reported in literature). A bifurcation analysis of the amplitude equilibrium
path reveals a variegated post-critical behavior, with the presence of both mono-modal (in-plane) and bimodal
(two-components) galloping oscillations. A purely planar motion never occurs due to both steady-state forcing
terms and nonlinearities. Therefore, geometric nonlinearity modeling is crucial for a proper description of the
aeroelastic phenomenon.

Reference [70] makes a step forward, offering a more accurate and simpler description of the equilibrium
configuration of the elastic sagged cable, and developing a perturbation approach in the continuous field of
the partial derivative nonlinear equations of motion, thus avoiding the introduction of a discrete model. The
equations of motion around the equilibrium position are formally identical to the cable equations subject
to the sole self-weight except for the use of a fictitious gravity force depending on the mean wind speed.
Concerning the solution, when the MSM is directly applied to partial differential equations, it takes into
account the contribution of passive modes too, which arise through the origin of secondary modes; these
modes are responsible in turns for the spatial alteration of oscillation shapes that are induced by nonlinearities.
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With the objective of analyzing some particular cases highlighted by the scenario of the critical conditions
deduced from the linear section model (in particular, the double Hopf bifurcation), the nonlinear post-critical
behavior of single taut strings in 1:1 primary internal resonance can be dealt with [71]. By applying theGalerkin
method and using the first in-plane and out-of-plane eigenfunction of the linearized problem, a discrete two
DOF model is obtained where the mechanical quadratic nonlinearities are absent due to the hypothesis of taut
string. The local post-critical behavior is analyzed solving the equations of motion around the bifurcation point.
Using the MSM, nearly resonant and non-resonant amplitude equations are drawn in which the existence and
stability of coupled, two-mode solutions deserves special attention.

The nonlinear model of cable-beam, described in Sect. 4.2, is used in [72,73] to investigate the nonlinear
galloping behavior of a suspended cable under internal resonance conditions comparing analytical and numeri-
cal approaches. In particular, a cable close to the first crossover point is considered: its first symmetric in-plane
mode is in internal resonance of 1:1 type with the first antisymmetric in-plane and out-of-plane modes, and
of 2:1 type with the first symmetric out-of-plane mode. The problem is tackled in three different ways. First,
the nonlinear integro-partial differential equations are spatially discretized by the finite-difference method and
numerically integrated in time. Then, a standard Galerkin method is applied to obtain a few DOF discrete
model, whose solutions are drawn both numerically, through direct integrations of equations, and analytically,
by using the MSM. Comparisons on a sample case study point out the importance of an extensive analysis
of critical conditions and of the internal resonance conditions. In particular, the classic galloping mode of the
technical literature (first symmetric in-plane mode) actually becomes unstable for the simultaneous unstabi-
lization of the antisymmetric planar mode, in resonance with it. The three different methods turn out to be
complementary for understanding the phenomenon and show a good agreement, from both qualitative and
quantitative points of view. The analytical approach seems particularly important to investigate some condi-
tions which are difficult to interpret with sole numerical tools (for instance, unstable regions in fixed-point
branches, with slight variations in amplitude). The use of a multimodal approach (like the finite-difference
technique) leads to small, quantitative differences with the Galerkin method if the active modes are properly
chosen.

Large amplitude vibrations may occur on cables caused by parametric excitation due to small periodic
movements of the supported structures. Reference [74] makes a remarkable attempt to study the interaction
among three excitation sources (external, parametric, and self-excitation) on a reduced two DOF nonlinear
model, able to describe the dynamic behavior of an inclined cable belonging to a cable-stayed bridge. The
model of the cable is able to twist, and a sinusoidal vertical motion of given amplitude and frequency is
imposed on the lower end, simulating the traffic on the deck. A uniform wind flow, blowing under a yaw angle
with respect to the plane of the static configuration of the cable, is also applied; moreover, the presence of
a fixed rivulet, breaking the cross-section symmetry, is accounted for. The motion equations are discretized
via the Galerkin method, by assuming one in-plane and one out-of-plane modes. The two resulting second-
order, non-homogeneous, time-periodic, ordinary differential equations are coupled, containing quadratic and
cubic nonlinearities, both in displacements and velocities. Internal resonance between the two selected modes
and external resonance between the forcing and natural frequencies are accounted for. It is shown that, when
the motion of the support is small, the galloping is perturbed and islands of non-trivial periodic motions of
large amplitude exist, also for velocities smaller than the critical one. When the motion of the support is large,
remarkable out-of-plane oscillations occur in no-wind case. Quite surprisingly, such oscillations are drastically
reduced in the presence of wind, due to the combined effect of the two sources of excitation. Moreover, the
existence of quasi-periodic motions and homoclinic bifurcations has been ascertained.

5.2.2 Tower buildings

Wind can induce troublesome and unsafe vibrations in slender structures. In this context, structural modeling
and dynamical behavior analysis play a crucial role for design purposes. In particular, in [75] the tower is a linear
elastic multistory shear-type frame, modeled through a corresponding homogeneous scheme of continuous
shear cantilever, and then reduced to a one DOF system via a Galerkin projection. The structure has been
considered under the effect of wind, whose turbulent component is modeled explicitly as a bi-harmonic force
giving rise to both parametric and external excitations. This paper has the great merit of clarifying the way in
which turbulence can modify the curves of galloping.When the turbulence produces external excitation only, it
works as an imperfection, slightly modifying the galloping (perfect) solution, which acts as a backbone for the
perturbed (imperfect) states. When the turbulence produces parametric excitation only, the classic galloping
curve splits and translates in opposite directions. When the turbulence produces both external and parametric
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excitations, new branches occur, descending from loops of the existing ones; periodic solutions are also found
causing quasi-periodic oscillations for the tower. In the same framework, a system constituted by two towers,
linked by a nonlinear viscous device at the tip, has been considered [76]. The towers were assumed of different
stiffness characteristics, leading to an internally non-resonant system, but with the same critical condition
to induce galloping. In this way, when the sole steady part of the wind is applied, the classic unfolding of
a non-resonant double Hopf bifurcation is found. The presence of the turbulence, which still works as an
imperfection of the system, induces an even more cumbersome dynamics involving periodic, quasi-periodic,
mono-modal, and bi-modal solutions.

5.2.3 Beams

In this Section, some results, concerning the papers [77–84], which are devoted to apply on beam models the
perturbation methods discussed above, are briefly synthesized.

1. In a group of three papers, namely [77–79], the MSM is applied to a one-dimensional continuous can-
tilevered planar beam, equipped with a lumped viscoelastic device and loaded by a follower force. It has
been shown that the beam model here addressed can be considered as a paradigmatic system undergoing
all the low codimension bifurcations of mechanical interest. In particular, in [77] the nonlinear, integro-
differential equations of motion are derived expanded up to cubic terms, and, moreover, they are rearranged
in an operator form by incorporating the mechanical boundary conditions. The linear stability analysis of
the beam is studied, thus highlighting the existence of a rich scenario which reveals divergence, Hopf, and
double-zero bifurcations. For these latter, a multiple scale analysis, able to underline the effectiveness of
the MSM in obtaining reduced-order models of infinite-dimensional systems, is developed, and prelimi-
nary numerical results are illustrated for the double-zero bifurcation. In [78] the main steps of the multiple
scale analysis, detailed in [77], are resumed in a more problem-oriented form; moreover, a deep numerical
investigation, which leads to several new results, concerning both the linear stability and the post-critical
scenario around the three different bifurcation points, is developed. Finally, a deeper parametric analysis,
performed in [79], revealed a richer bifurcation scenario, thus includingHopf-divergence and both resonant
and non-resonant double Hopf, not discovered in the two previous papers. Then, the bifurcation diagrams,
illustrating the system behavior around these critical points of the parameter space, are discussed.

2. References [80] and [81] deal with the stability and the bifurcation of a cantilevered elastic beam (the
so-called generalized Beck’s column), modeled as a nonlinear Cosserat rod having rectangular cross-
section, under the action of a follower tangential force and a bending conservative couple at the free end.
In [80], nonlinear, partial integro-differential equations of motion have been derived expanded up to cubic
terms in the transversal displacement and torsional angle of the beam. The linear stability analysis of the
trivial equilibrium, which reveals the existence of buckling, simple Hopf, and double-zero bifurcation,
is developed, and the spectral properties and critical modes of these three instability mechanisms are
derived and discussed. In [81], the post-critical behavior of the beam is deeply analyzed investigating the
system behavior around bifurcations in the parameter space. In particular, the bifurcation equations for
simple buckling (divergence), simple Hopf and double-zero (Takens–Bogdanov) bifurcations are derived
by means of the MSM. As main results, it has been found that buckling is of supercritical type, while the
simple Hopf bifurcation is of supercritical type far from the double-zero and of subcritical type close to
this point, thus entailing that the interaction between the two instability forms leads to an erosion of the
mechanical properties of the system.

3. In [82] and [83], the mechanical behavior of a non-conservative nonlinear beam, undergoing divergence,
Hopf and double-zero bifurcations, is discussed. The beam model analyzed in these papers is remarkably
different with respect to previous ones, since it consists of a cantilevered viscoelastic beam, externally
damped and loaded at the tip by follower and dead forces, simultaneously. Preliminary results, concerning
both the linear stability and the post-critical behavior around the double-zero bifurcation point, are dis-
cussed, in a short form, in [82]. Instead, the derivation of the equations of motion, the study of the stability
of the linearized beam, the detailed multiple scale algorithm and a deep analysis in nonlinear regime,
can be found in [83]. These papers show that both the linear and the nonlinear scenarios are strongly
influenced by damping, since: (a) the position of the double-zero point and the angle of attack between
the incident, divergence and Hopf bifurcation loci depend on the damping coefficients, and the property
of the undamped system is recovered only for evanescent external damping, thus revealing new aspects of
the ‘destabilization paradox’; (b) the nonlinear scenario, around the double-zero, is strongly affected by
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the external damping since the static bifurcation is supercritical when it is small, but becomes subcritical
when it is large.

4. The problem of Nicolai concerning the dynamic stability of a continuous elastic cantilevered rod, having
different principal moments of inertia and loaded by an axial compressive force and a twisting tangential
torque, is addressed in [84]. New governing equations and boundary conditions, which take into account
also for the pre-twisting of the rod due to the torque, are derived. The stability region in the three-
dimensional space of parameters, namely the axial load, the tangential torque and the ratio of principal
moments of inertia, is found via a perturbation analysis; moreover, the singular point on the stability
boundary at the critical Euler force is recognized and investigated in detail. Finally, the stability region in
the case of an elliptic cross-section is found numerically, and it is shown that the numerical results agree
with the analytical formulas of the asymptotic analysis.

6 New advances and research perspectives

The scientific personality of Professor Angelo Luongo is characterized by a tireless push to creativity. Despite
the very difficult moment that the Italian Academia is experiencing, he managed to lead a group of scientific
researchers toward relevant results in both theoretical and appliedmechanics. The brilliant achievements which
he got as a research leader and guidance assume even greater importance in the perspective of the enormous
difficulties which he faced. However, he stubbornly pursued originality and has been very demanding to his
pupils and co-workers managing, until this was possible, to get their best out of them.

Angelo Luongo is a Maestro and a true Professor: he has fully dedicated his life to the advancement of
science, in the field in which he cultivated his competences. In order to promote international links between
researchers on mathematical modeling for engineering, a topic of fundamental importance in both science
and technology, he is staunchly committed to found an International Research Centre on Mathematics and
Mechanics of Complex Systems—M&MoCS (theM&MoCS center is described in the website: http://memocs.
univaq.it/?lang=en). In this center, scientists from all over the world cooperate in order to find and develop new
research streams, and to push younger scientists to contribute to the advancement of science. In the following,
we sketch some of the research projects which are animated by professor Luongo in the framework of the
activities of the M&MoCS Centre.

6.1 Dynamic behavior, instabilities and wrinkling in (non)linear complex microstructured systems

A paradigmatic example of complex mechanical system, constituted at a smaller scale by underlying mi-
crostructures, is given by fiber reinforcements: they play a crucial role in the modern technology of composite
materials whose importance in (aeronautical) engineering cannot be underestimated. In these reinforcements,
woven or nonwoven long fibers are connected one to the others by means of complex geometrical patterns.
Each of these fibers is subjected to bending deformation, and, therefore, a non-negligible amount of defor-
mation energy may be stored in this form. Second-gradient continuum models have been proposed in order
to effectively predict the biaxial test for rectangular specimen constituted by some particular fiber reinforce-
ments (see [85]). Also relevant is wrinkling phenomena which are observed in static deformation tests, to be
associated with clear phenomena of loss of stability. Some models of these fabrics involve the introduction of
suitable microscopic networks of structural elements interconnected via various kind of constraints. In other
words, the microstructure of the fabric is modeled by means of networks of (Euler or Timoshenko) beams
(e.g., [86]): the macroscopic behavior of the fabric is being determined by means of suitable homogenization
procedures. These procedures may also produce continuous models (see, e.g., [87,88]) where the microscopic
microstructure is accounted for through constitutive anisotropy or constrained kinematics. Another relevant
example is given by solids with interconnected pores, saturated, or partially saturated by compressible fluids
(see, e.g., [89–92]).

All macroscopic (continuous) models to be used in this context must belong to the class of generalized
continua (see, e.g., [93–96]). The main problem to be confronted when modeling with continua fabrics having
a complex microstructure consists in the determination of macroscopic constitutive equations in terms of
the microscopic mechanical and geometrical features of considered mechanical systems. This problem is
usually heuristically approached bymeans of some perturbation techniques, by considering ‘small’ perturbative
parameters (see, e.g., [97,98]): when the form of the perturbative series for all involved fields is suitably

http://memocs.univaq.it/?lang=en
http://memocs.univaq.it/?lang=en
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assumed, one gets well-grounded conjectures for the macroscopic continuum model to be used. Only in a
subsequent step, mathematically rigorous results (as those presented in [99,100]) can be proven. Therefore,
the heuristic ‘art of perturbative expansion,’ in which Angelo Luongo is a recognized master in all the world,
can be an important guide toward mathematical discovery.

A project to be developed in the framework of the activity of M&MoCS, under the coordination and
guidance of Professor Angelo Luongo, consists in the application of perturbation techniques to the study of
beam networks exhibiting a complex geometry and high contrast in mechanical properties in order to supply
those conjectural ‘target’ continuum theories for which, more likely, homogenization results could be proven.
In addition to possible perturbation approaches, numerical methods play a relevant role both for the study of
obtained macroscopic models and also to determine, via homogenization techniques, the correct macroscopic
constitutive equations. Therefore, in order to investigate the dynamic behavior (see, e.g., [92,101]), or the
onset of instabilities (some of which can determine wrinkling, see, e.g., [102]), one has to be able to formulate
suitably effective numerical codes (see, e.g., [103–109] developed in similar context). These codes will either
be able to effectively solve problems involving higher space derivatives of kinematic fields, or to supply the
solution of prototype problems on periodicity cells (see, e.g., [113,114]). It has to be remarked that one of
the most relevant phenomenon occurring in the considered microstructures consists in the concentration of
compression (or traction) of strain or stress along preferential curves: in this context, it will be useful to consider
the studies presented in [85] or in [110].

Along this research line, a notable effort has been recently undertaken at M&MoCS to investigate novel
models of “cellular solids”, particularly Aluminum Foam Structures (AFS). The AFS are fascinating and
innovative engineering materials for primary applications in sustainable lightweight transportation (automo-
tive, aeronautical, aerospace, and maritime), but also they offer appealing possibilities to create “smart” and
customizable structural platforms that can incorporate electronics and nanotechnologies (e.g., sensing, com-
munication, and damage healing). However, the behavior and damage tolerance of AFS components depend
on (mesoscale and micro-scale) wrinkling phenomena of their randomly textured thin-walls members, that
needs to be accounted for in the effective macroscale continuum model, which eludes simplistic modeling and
demands complex numerical models. Joining AFS components by welding (see preliminary experimental ob-
servations in [111,112]) is also a modeling challenges for AFS-based structures which need to be schematized
as effective continua filled with discontinuous materials interfaces in order to capture their correct static and
dynamic response.

6.2 Bifurcation phenomena in remodeling and growth of reconstructed tissues

Recently, an increasing attention has been attracted by phenomena which govern the growth of living tissues
and, in particular, the reconstructed bones (see, e.g., [115,116]). These phenomena have a relevant mechanical
content, and it seems that they can be described by means of suitable mathematical models having a similar
structure as those used in disparate fields, for instance, in plasticity. However, in the considered phenomena,
a bio-mechanical signal triggers the biological response of the tissue, thus inducing, when appropriate, an
increase in the mechanical stiffness of the tissue itself.

Remodeling and reconstruction are intrinsically evolutionary processes whose development is determined,
in a critical way, by many parameters. In a recent workshop held at the M&MoCS center, concerning the
critical role of applied external load, Prof. Luongo recognized as a double Hopf bifurcation the phenomenon
which has been observed in bone tissue reconstruction. When this load is under a given threshold (see, e.g.,
[117–119]), then the reconstruction process cannot be completed, and there is a cavity formation; in other
cases, either the bone is completely reconstructed (and the scaffold material is totally removed, which is the
most desirable possibility), or the bioresorbable material remains trapped inside the reconstructed bone, which
makes the final tissue weaker than what is desired. We expect that a careful study of the strongly nonlinear
evolution equations which govern the proposed models by using MSM may supply a guidance to interesting
engineering optimization problems.

6.3 Control and stability in innovative systems

The deep knowledge of Prof. Luongo on perturbation methods can be very fruitfully applied in the field of
vibration and energy control. We have already talked about the fact that Angelo Luongo was the first to propose
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an analytical solution for nonlinear systems coupled with NES (Sect. 3.3), contradicting the impossibility of
finding a perturbation solution asserted by most scientists. The basic concept of ‘structural modification’ is the
following: starting from a structure having a specific function (master structure), one has to add to it a secondary
one (slave structure) in order to (i) do not modify the required design functions of the master structure, and
(ii) to direct mechanical energy in the slave structure, where it is dissipated or somehow used, in a useful, or
at least non-harmful, way. Systems capable of improve the performance of (master) structural modes through
targeted energy transfer (e.g., [120,121]) or energy sharing mechanism (e.g., [122–124]) have had convincing
applications. The considered slave structures have been considered to be nonlinear or also intrinsically linear
with results in vibration control which seem to be promising in both cases.

In the more general class of multi-physics metamaterials, one can consider piezoelectro-mechanical struc-
tures as a kind of modified structure. In these cases, the slave structure is given by the electrical waveguides
coupled to structural elements via suitably interconnected arrays of piezoelectric actuators (see, e.g., [125]).
The effectiveness of such devises as vibration controllers has been proven both theoretically and experimen-
tally (e.g., [126–128]). However, the issue of the stability efficiency of such devices under nonconservative
positional forces has been recently highlighted by Prof. Luongo, and needs to be investigated and ascertained.
The papers [129,130] present some preliminary results concerning this innovative aspect.

It has to be remarked that modifying a structure, a material or a mechanical system in order to optimize
some of their performances could have a detrimental effect in their behavior when other different features are
considered. A remarkable example is represented by scale effects on materials properties in nanotechnology,
where the mechanical (elastic and inelastic) properties of nanomaterials, such as nanowires and nanoparticles,
change dramatically from bulk properties used in conventional structural engineering, and typically scale
with component size according to power laws. Starting with the fundamental framework reported in literature
(e.g., [131–133]), Professor Luongo championed a project awarded by the Italian Ministry of Education,
Universities and Research (MIUR) to investigate the strengthening and stiffening mechanical size effects
in zinc-oxide nanowires (which become stronger and stiffer than bulk) and their functional implications on
piezoelectric performance and buckling resistance of innovative nanopiezogenerators for energy harvesting
[134,135]. To achieve these goals, this ongoing project at M&MoCS pursues a multi-disciplinary approach
encompassing advanced nanoscale experiments with complex continuummulti-physics modeling to yield new
design principles for the engineering of piezoelectric MicroElectroMechanical and NanoElectroMechanical
Systems at large.

6.4 Localization problems in solids and structures

The issue of localization has received significant attention from the research activity of Prof. Luongo, as evi-
denced by the papers [52–55] described in the previous Sects. 4.2 and 4.3. This problem is very relevant in solid
and structural mechanics, and the phenomenon of deformation and/or stress concentration in relatively narrow
parts of deformable bodies has been observed in various interesting situations. Its mathematical description
represents an important challenge for mathematical physics. Relatively few results in this subject are available
in the literature: This is mainly due to the fact that a comprehensive conceptual framework able to encompass
such complex phenomena is still being constructed by developing so-called theories of generalized continua.
The mathematical structure of this problem is similar to the so-called ‘Free Moving Boundary Problems.’ A
region in the reference configuration must be found where deformation or stress undergoes very sharp varia-
tions, experiencing relatively high gradients. The possibility of describing a whole and large range of physical
states of considered deformable bodies by means of a unique constitutive equation is essential if one wants
to establish a mathematical model which is able to forecast the localization of the aforementioned regions.
In this context, the general framework can be found in the papers [95,96]: perturbation techniques able to
determine boundary layers by means of inner and outer expansions are needed to perform qualitative studies
on this phenomenon.

In particular, the issue of the propagation of sharp interfaces and fronts in continua and structures is of
great interest to many scientists belonging to the center M&MoCS, and it has been the subject of numerous
meetings chaired by Prof. Luongo thanks to its expertize in localization problems. For instance, quasi-static or
dynamic non-material interfaces are able to model the martensitic type phase transitions in solids such as shape
memory alloys (see, e.g., [136–138]), where one can find solutions of mono-dimensional problems. Motivated
by experimental observations of phase transitions in thin-walled structures (see, e.g., [139–141]), the behavior
of thin-walled structural elements made of materials undergoing phase transitions within the nonlinear shell



524 G. Piccardo et al.

theory was considered in [142–145]. Unlike to three-dimensional models of elasticity and plasticity of solids
with phase interfacial zones (e.g., [146–148]), the bi-dimensional models based on the shell and plate theory
are supplying a powerful tool for decreasing the computational effort needed to design complex thin structures
undergoing phase transitions. Another example of sharp interfaces is represented by the strain localization
phenomena observed in cellular materials such as polymer and metal foams (see, e.g., [149–153]). For both
phase interfaces and strain localization phenomena, the crucial point is the proper formulation of a kinetic
equation describing the propagation of the interface. The kinetic relation links the driving force acting on a
phase interface with its velocity. Various forms of kinetic equations are extensively discussed in the literature
(see, e.g., [136,137,144,145,154,155]): they can be considered as an additional constitutive relation that is
necessary for the complete description of the interface motion. There are two possibilities to introduce a kinetic
relation: from “first principles” considering discrete systems and its continual counterparts (e.g., [153–155]),
or using a phenomenological approach which postulates kinetic equations as additional constitutive relations
consistent with the thermodynamics (e.g., [136,137,145]).

In this general framework, problems related with action of a moving load or moving mass along strings,
beams, and other structures can be placed, even if their mathematical description does not require the presence
of kinetic equations as additional constitutive relations. Recently, as part of M&MoCS activities, a research
attempt on this topic has been started under the supervision of Prof. Luongo focusing, in particular, on the
mechanics ofmovingmasses and loads along deformable strings.Although a huge literature has been developed
in the field, many open problems seem to wait for a solution. We refer to [156] for an overview of some
of them. Here, we limit ourselves to report some aspect of the involved phenomena which need to be more
preciselymodeled andmore deeply understood: (i) the role of geometric nonlinearities in the string deformation,
especially in the vicinity of the endpoint of the considered string, (ii) the effect of deformability of the constraints
limiting the kinematics of the deformable string, (iii) the effect of the finite dimensions of the moving mass,
and (iv) the role of material nonlinearities in the behavior of the deformable string. All these effects need to
be investigated by means of perturbation methods such as MSM in order to get a quantitative and qualitative
analysis of their relative relevance.
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Appendix

Presentation of the Plenary Lecture ‘On the Use of the Multiple Scales Method in Solving Difficult Bifurcation
Problems’ held by Professor Angelo Luongo at the 4th Canadian Conference on Nonlinear Solid Mechanics
(CanCNSM2013), Thursday July 25th, 2013, Montreal, QC, Canada (read by Professor Francesco dell’Isola).

‘It is a privilege to be called to present to this audience Professor Angelo Luongo. It could be easy to limit
my presentation to a list of numbers: papers published, papers reviewed in Mathematical Reviews (because,
you know, even if he pretends to be an ‘applied engineer’ actually Angelo, by definition, is a mathematician
as he authored more than 20 papers reviewed in Math Rev). I could continue by counting his papers listed in
Scopus or in the Web of Science or in Google Scholar, and by counting citations which his papers obtained. I
could also count the years in which he served as Pro Rettore Vicario (Vice-President) of L’Aquila University, as
Department Head or as Director of Research Centers. I could also list a huge amount of research grants obtained
by different sources. But this compulsive, obsessive disease which obliges us to count instead of judging is
leading us tomiss the true scientific content of considered papers and, in this case, the true scientific personality
which we want to highlight. Of course, to formulate opinions is risky; to explicitly state that somebody is not
or, on the contrary, actually is creative implies an engagement which is personal and is involving the risk of
being wrong.’

‘After having known him well I dare to say that Angelo Luongo indeed is an original and creative mathe-
matician and mechanician. He introduced in Italy the perturbative methods needed to study elastic buckling
and non-conservative problems. He applied them in an independent and novel way to a variety of problems.
His opinion in the field is authoritative, and he is the leading personality in the field in Italy, if not in the whole
World. He formed many younger scientist and deeply influenced (and scientifically supported) many elder
ones. He is a gifted manager: as a department head and pro-rector, he showed his integrity and honesty by
always favoring the interest of the academic institution to his own; in particular, he never sacrificed the interest
of the institution with actions aimed to be re-elected or to be elected to a higher office. He is a true academician
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(un vero Professore); he never accepted any commercial or professional involvement and dedicated all his
forces to serve his vision of progress of science and knowledge. He is the person who strongly wanted the
creation of the International Research Center M&MoCSwhich is editing a Journal, is organizing or sponsoring
qualified conferences like this one and, more important, is supporting really talented young researchers.’

‘I believe that he also is an outstanding teacher and I am sure youwill gain some deeper insight intomultiple
scale methods and their application to bifurcation problems by hearing his lecture. In conclusion—this is my
own personal opinion—Angelo Luongo is a beautiful example of scholar dedicated to the progress of science
as those monks who, by copying ancient and precious books, allowed the wonderful Renaissance of knowledge
after Middle Age.’
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