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Abstract Dynamics of a Timoshenko beam under an influence of mechanical and thermal loadings is analysed
in this paper. Nonlinear geometrical terms and a nonuniform heat distribution are taken into account in the
considered model. The mathematical model is represented by a set of partial differential equations (PDEs)
which takes into account thermal and mechanical loadings. The problem is simplified to two PDEs and then
reduced to ordinary differential equations (ODEs) by means of the Galerkin method taking into account three
modes of a linear Timoshenko beam. Correctness of the analytical model is verified by a finite element method.
Then, the nonlinear model is studied numerically by a continuation method or by a direct numerical integration
of ODEs. An effect of the temperature distribution on the resonance near the first natural frequency and on
stability of the solutions is presented. The increase of mechanical loading results in hardening of the resonance
curve. Thermal loading may stabilise the beam dynamics when the temperature is decreased. The elevated
temperature may transit dynamics from regular to chaotic oscillations.

Keywords Timoshenko beam - Thermal loading - Nonlinear vibrations - Nonlinear resonances - Chaos

1 Introduction

The beams are fundamental structural elements commonly used in many branches of engineering. They are
often applied in order to model rotating blades, for example, blades of a helicopter rotor [1,2] or blades of
turbines. Recently, these structures are often made of modern materials e.g. composites which, in spite of the
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fact they are very light, are able to carry large loadings. From the other side, in certain dynamical conditions,
they can oscillate with large amplitudes. Moreover, in a real environment, the dynamical response may be
essentially changed e.g. by varied temperature. Therefore, for such structures, more adequate mathematical
models must be developed to understand better the structure dynamics and phenomena which may occur due
to mechanical and thermal loadings.

Linear and nonlinear vibrations of beams have been deeply investigated for many years. In books of Nayfeh
and Balachandran [3], Nayfeh and Pai [4], and recently Lacarbonara [5], large vibrations of structures with
a geometrical type of nonlinearity have been presented. In such structures stiffness, and consequently, the
resonance frequencies and mode shapes are amplitude dependent. The nonlinear vibrations theory has been
applied to Euler—Bernoulli model with a large nonlinear curvature and to shear deformable beam models
as well. The influence of the nonlinear terms on the bifurcation scenario and possible resonances has been
discussed. Structures made of isotropic or anisotropic materials, including composites, have been analysed by
mentioned above authors. Recently, Luongo and Zulli [6] published a book providing a complete guidance
to the modelling and applications of nonlinear beams and cables. Several models with different complexity,
including nonlinear models of elastic and visco-elastic, straight or curved, planar or nonplanar, shearable or
unshearable continuous structures, are presented there. The statics and dynamics of prestressed beams which
may arise, for example, from thermal loading have also been studied. The so-called general beam theory has
been presented in [7] and recently in [8].

The advanced composite beam theory has been presented in [9]. The beam models considered various
configurations of lamina with reinforced fibres orientation, closed or open cross-sectional shapes and anisotropy
of material. Apart from analytical approach, some authors use the classical FEM [10,11] and semi-analytical
methods [12,13] to study nonlinear dynamics of beams with complex geometry. The generalised beam theory
developed to investigate mechanics of composite thin-walled structures made of laminates with orthotropic
properties is presented in [14]. The fundamental equations based on the first-order beam theory and related
boundary conditions are derived, and the physical meaning of the obtained model is clarified. Recently, apart
from classical laminated composite beams or plates with straight reinforcing fibres, new composite structures
with curvilinear fibres are developed. The review of mechanical properties and modelling of such structures
are delivered in [15].

In many papers, the environmental conditions are neglected in the model. One of the essential environmental
factors which has to be taken into account is temperature which may vary in high ranges in real mechanical
or aerospace applications; therefore, its variations may affect substantially the structure response. Thermal
loadings introduce stresses due to thermal expansion, which lead to changes in the modal properties and
resonance zones.

The basis of thermo-elastic vibrations was published in books [16—18]. The importance of a heat transfer in
rods, beams, and plates was shown there by formulated theory of thermo-elasticity and practical applications,
as well. Problems of thermally induced vibrations or thermal buckling have been analysed in [19,20]. A
sandwich beam with a visco-elastic core has been analysed for buckling and vibration behaviours in thermal
environments, using the finite element method. Variation of natural frequencies and the loss factors with respect
to temperature have been investigated there. An analytical model for the vibration of horizontal self-weighted
and thermally stressed beams with geometrical nonlinearities has been presented in [21]. Results showed that
the thermal loads caused by climatic variations have a significant effect on the natural frequencies of slender
beams or cables. Under the self-weight, frequencies had a complex thermal behaviour which varied nonlinearly
and nonmonotically with respect to the temperature. The prebending phenomenon of thermally prestressed
beams affected essentially the vibration modes [22].

In fact, the thermal and stress—strain fields are coupled [18,23]. However, considering that a heat flow is
often much slower than related to elasticity mechanical loading, it is reasonable to assume that the temperature
distribution is independent of the deformation. This approach is widely used to model the thermo-elastic
behaviour of structures. In some cases in order to simplify the model, it is assumed that the structure gets the
elevated temperature. This approach has been used to model geometrically nonlinear vibrations of structures
[24-26].

Thermo-mechanical, geometrically nonlinear vibrations of plates and beams, correspondingly, are pre-
sented in [27] and [28]. Authors demonstrated very reach nonlinear dynamics including, periodic, quasi-
periodic and chaotic oscillations. The proposed models have been tested experimentally as well. In [27],
temperature has been assumed as linearly distributed along a plate thickness, while in [28] has been uniformly
distributed.
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A thermo-mechanical model of a Timoshenko beam subjected to mechanical and thermal loadings, assum-
ing elevated ambient temperature has been proposed in [29]. The set of PDEs has been reduced to the one
degree of freedom nonlinear system with thermal components. It has been shown there that the elevated tem-
perature moves the resonance zones. The solutions of the reduced model have been obtained analytically by
the multiple timescale method. In order to detect different classes of the primary and secondary, internal or
external resonances the multimodal approach are required. The three-mode reduction of the beam’s model for
thermo-elastic vibration has been presented in [30]. Again, the temperature has been accepted to be uniformly
distributed along the beam length and thickness. It has been shown that for large vibrations, apart from the
shift of the resonance zones, the elevated temperature introduced instabilities in the solutions, resulting in
specific bifurcations and chaotic oscillations. The effect of temperature on selected internal resonances of a
homogenous aluminium beam and the shift of the resonance zones are presented also in [31].

The required dimension of the reduced model depends on the type of nonlinearities, external and thermal
loadings, boundary conditions, and the structural parameters. Quantitative analysis of various classes of res-
onances based on algebraic and geometrical methods is presented in papers [32,33]. The nature of possible
resonances is discussed in detail pointing the so-called proper and improper resonant terms, depending whether
they are or not associated with any resonances.

The temperature distribution plays also very important role in smart structures [34] as it has to be properly
taken into account in the applied control strategy.

The purpose of this paper was to study dynamic phenomena of a geometrically nonlinear Timoshenko beam
subjected to thermal and mechanical loadings [30]. In this case, however, the temperature is nonuniformly
distributed along the beam length and thickness. The assumed nonuniform temperature field results in the
initial thermal preloading and related the preset configuration. The assumed temperature distribution has a
fundamental meaning for obtained bifurcations, nonperiodic or chaotic oscillations which arise due to the
temperature variation.

2 Timoshenko beam with a heat distribution

The considered structure is a beam made of elastic composite material subjected to thermal and mechanical
loadings. The beam of length L, thickness %, and width b, and the reference coordinate system is presented in
Fig. 1. A coordinate set is fixed in the middle of the beam at its left edge (boundary).

Because of the limited applicability of the Euler—Bernoulli beam model, [35-38] the Timoshenkos beam
model which is close to the two-dimensional theory, for a case of practical importance is adopted in this
paper. Furthermore, the extended version of Timoshenko beam model has been assumed. The model accounts
the shear deformation, rotary inertia, and the geometrically nonlinear longitudinal displacements which are a
source of nonlinearity.

The extended mathematical model of the Timoshenko beam presented in Fig. 1 has been derived in paper
[23]

cp 0T 9*T  9’T  arETyoe

Ap 0f 0x2 + 972 A Ot

Fig. 1 Schematic beam model with indicated coordinates and dimensions
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where F' = bh is the area of the beam cross section, p material density, [ = bh3/ 12, T (x, z, t) is the current
temperature, Tj is the reference constant temperature, Ay is the thermal conductivity, and ¢, is the heat capacity
per unit volume. Variables u(x, t), w(x, t) are, respectively, the longitudinal and transverse displacements of
the beam, and ¥ (x, 7) is the rotation of the cross section to the longitudinal axis, p(x, t) is external mechanical
loading, and ¢ and ¢, represent assumed arbitrary linear damping. G and E are, respectively, shear and Young
modulus, and k is the shear correction factor. Functions x7(x, z, t) and yr(x, z, t) defined as:

h/2 h/2

XT = / T(x,z,t)zdz, yr = / T(x,z,t)dz, (2)

—h/2 —h/2

represent bending moment and longitudinal force which arise due to temperature changes.

In the studied model, we assume that a cross section is treated as a local rigid body and it remains plane
after deformation (the warping effect is neglected). According to the Timoshenko beam theory, the effect of
shear distortion and rotary inertia is taken into account [35]. Thus, motion of the beam cross section depends on
two independent variables transverse displacement w and the angle of the rotation of the cross section y. The
total angle of rotation is a sum of the angle of rotation of the cross section due to the bending moment and the
angle of distortion due to shear. The inertia of the rotation due to bending is also included in the Timoshenko
beam model, while the shear inertia is neglected in Eq. (I1¢). Furthermore, the influence of the longitudinal
inertia is neglected as well in Eq. (1b). This assumption is accepted for transverse vibrations of beams by many
authors [12,13,35,39]. We also assume that the material properties are independent of the temperature field,
i.e. temperature varies in a range which does not influence the material properties.

The model includes linear curvature defined as k = —% and large displacement field composed of
nonlinear mechanical and linear thermal loadings
Y u 1 fIw)?
= —z7— T-To)+—+=|— 3
¢ “ox +or 0)+8x+2(8x) )

The heat flow that acts on beam is much slower than the mechanical stress—strain variations. Therefore, we
can also assume that the temperature distribution is independent of the deformation. Thus, the thermal field
can be defined by a given function which represents a quasi-steady state of the conductivity equation Eq. (1a)
for assumed boundary conditions. This allows a reduction of the conductivity equation.

Considering mentioned above assumption [23,26,29,30], and then introducing the dimensionless coordi-
nates and coefficients, defined as:

w = w/L, dimensionless displacement of the beam expressed with respect to the beam’s length L, where
w is the displacement in physical units,

X =x/L, 7= z/L,dimensionless space coordinates where x, z are coordinates in physical units,

f = tc/L, dimensionless time, where ¢ = /E/p,

@, = wy L /c,—natural dimensionless frequencies, where w, is physical frequency in rad/s, n =1,2, 3.

we get the dimensionless equations of motion in the form:

0%u T

ax2:Gu+G"‘
EREV 3w W 9%y r
— — Y )-d— -—L =G
8x2+'6a(8x W) ar 912 !

2w 9 dw 9w
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Fig. 2 Temperature distribution, 3D plot (a); distributions along beam length (b) and thickness (c¢)

where @ = 12L2/h?, B = kG /E. Mechanical loading p = p(x, 1) is distributed along x axis, it is a function
of space and time, and d;, d; are the dimensionless coefficients of linear damping included in the model. In the
above notation, ‘tilde’ has been dropped for simplicity. The terms G,,, Gf , GlT, G%, GZT on the right sides
of Eq. (4) are defined as:

dw 92w dve 12L 9y
Gy=———"—, Gl =y )22, Gl =ary— 22,
WE Tx ax2 Tw T TG B E AT T
u 1 fow\?| 0w 3w
Gk=—|Z4+-(=) | . G =arfoy—s. 5
2 |:8x+2(8x) :| 0x2 2 =OTI0V 2 )
and
1/2 1/2
X0 =/ O(x,z,t)zdz, e =/ O(x,z,t)dz. (6)
-1/2 —1/2

Functions xg(x, z,t) and pp(x, z, t) represent additional bending moment and longitudinal force (dimen-
sionless) which arise due to the temperature changes. These functions depend on 8(x, z, t) which is the
dimensionless heat distribution in space, along beam length and thickness, and in time domain.

In contrast to papers [29,30] the distribution of temperature along x and z axis is not constant but assumed
by the function

0(z,x,t) =Osinmx (z-l—%) 7)

where O is temperature amplitude. It is accepted that the beam is in a temperature environment which imposes
a linear distribution along the thickness of the beam, a constant distribution along the width of the beam, and
sine distribution along the length. The temperature distribution in 3D plot and 2D cross sections is presented
in Fig. 2.

The assumed temperature function may represent, for example, a heat source located above the middle of
the beam. Then, the left and right boundaries of the beam are “cold” (blue colour) and in the middle, the beam
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is “hot”. We may say that at x = 0, x = L and z = —h/2, the beam is heat insulated. The distribution along
the thickness is linear with a “hot” upper and “cold” bottom wall. The function 6 is a difference between the
current and the initial temperature.

After integration, from (6), we obtain the components xg, s

e . e . @)
= —sInmx, = —sinmTx. 8
X0 2 Vo )

and consequently, terms related to thermal expansion
T b4
G, =ar TOQE COSTTX,

T L
G| = aTTOQT COSTTX,
1 3w
Gl = —arTH® sinrx —-. 9
2 2 T10 8)(2 ( )
Note that GlT term has to be rescaled considering both dimensionless coordinates in x and z directions.
Denoting G = G, + G, the longitudinal displacement can be found from the first equation of the set

“4)

du _ g +/x GA(8)de,
dx 0
u(x) =x[1<+ / G;‘(s)ds} -~ / EGA(E)de (10)
0 0

Detailed calculations of the integrals and constant K are presented in “Appendix A”. Having defined the
constant K, we get

L L raw\? 1 1 . 92w
Gz(x,t)z— /O (E) dé¢ — TyOor (;—ESIHTC.X) W (11

Now the model can be simplified to two partial differential equations (PDEs) which have the dimensionless

form:
2 2
v w+ﬂa(2—f—l//)—dz%——a Y—qf

9 x2 ot 9t?
Pw Y ow 9w
(5 %) a5~ s =rrolvor “2)

As we can see the left side of the equations describe classical Timoshenko beam model, while on the right
side, there are additional terms due to geometric nonlinearity, thermal and external loadings.

3 Modal reduction

The model of a beam has been reduced from PDEs to ordinary differential equations (ODEs) by means of
Galerkin’s orthogonalisation method. The generalised displacements vector is assumed in a series of a product
of the quasi-normal modes (shape functions) wy, (x), ¥, (x) and generalised, time-dependent coordinates g, (¢):

Ny

w(x, 1) = D wa(x)gn(t)

n=1
Ny

Y1) = D Yn(x)gn(t) (13)

n=1
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Ny is a number of assumed modes. According to the Galerkin’s procedure, the quasi-normal modes should
satisfy geometrical and dynamical (natural) boundary conditions. For the needs of the reduction procedure,
we take linear modes of a simply supported beam (SS — SS). The eigenvalues and eigenmodes have been
presented in detail in the papers [29,30]. Considering that w,, and 1, are solutions of the eigenvalue problem,
we substitute (13) into (12). Then, multiplying (12a) by ¥, and (12b) by w,,, summing up both equations,
integrating over the beam length and invoking the orthogonality condition, we get

Gn (1) + 28,04 (1) + @3 gn (1)
1 1 1 1

=/p(x,t)wn(x)dx —/GlT(x)wn(x)dx —/G%(x,z)wn(x)dx—/G{(x,t)wn(x)dx (14)
0 0 0 0

In the above equations, w,, is the n-th natural frequency of the linear undamped Timoshenko beam and &, is a
modal damping coefficient. Note that proportional modal damping has been accepted in the considered model.
Details of the applied Galerkin procedure are presented in “Appendix B”.

In order to have comparison with the results presented in [30], we consider the first three modes of the
expansion, i.e. Ny = 3. Because the main analysis will be performed around the main resonance zone near
the first natural frequency and the thermal and mechanical loadings are distributed according to this natural
mode, the influence of higher modes is hardly observed. The three-mode reduction is a good approximation
in this case. A set of three nonlinear ODEs of motion takes the form:

g1 + 2510141 + 0} 1 4+ C1a1143 + C1.1220193 + C1.123919205 + C1.1339195
+ Cri2giq2 + Cra3aias + CloAT 4+ C{ ATqy = pysin 21

G2 + 26042 + @3 @2 + C2.0243 + C22119247 + C2,123G19293 + C2.233243
+ Co12q193 + C2023q3q3 + C AT g = pasin 2t
§3 + 2530343 + 03 q3 + C3.33305 + C3.31193q7 + C3.123919203 + C3.320435
+ C3,1339195 + C32339295 + C3 ATq3 = p3sin Q21 (15)

The values of coefficients of Eq. (15) are reported in “Appendix C” for a case of a symmetric cross-ply laminated
composite beam. The parameters p1, p2, p3, §2 are, respectively, amplitudes and frequency of external loading,
and AT = Ty® is the temperature difference.

4 Numerical data and FEM model verification

Numerical calculations have been carried out for data presented in “Appendix C” for a symmetric cross-ply
laminated 20 layers composite beam. In order to validate correctness of the theoretical analysis, a 3D beam
model in FE Abaqus package was prepared. The FE model consisted of thermally coupled 8-node C3DST
quadratic brick elements with the full integration and hourglassing control. The mesh convergence study
was performed having in target reaching as small deviation of the eigenfrequencies, as possible, taking into
account the prospective temperature field application, what demanded model simplicity due to its appropriate
computational efficiency. The 3D beam’s end faces were restrained against warping, in order to keep the model
as similar as possible to the simple 1D one. All the simulations were performed within a geometrically linear
regime. The eigenfrequencies and modes of the beam having dimensions 500 x 5 x 5 mm and material data as
reported in “Appendix C” were obtained for the first three modes and then compared with theoretical analysis.
The results are presented in Table 1.

As we may see in Table 1, the frequencies obtained theoretically from the reduces model are in a good
agreement with the FE method. The first three FE eigenmodes without any temperature influence are shown
in Table 1, as well.

Then, the space temperature distribution as presented in Fig. 2 has been introduced into FEM by the
following function: T'(x,z) = 10sin(wrx)(z + 0.5), where x and z were nondimensional space variables
defined in the beams local coordinate system as x = X/L and z = Z/h. The calculated deflection of the
beams middle point due to the thermal expansion under the above given field was 0.656 mm (Fig. 3). The
thermal deflection of the equivalent analytical model after rescaling was 0.639 mm. Again both models were
in a good agreement. We may recall that the assumed temperature distribution may correspond to a heat source
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Table 1 Comparison of natural frequencies from FEM and theoretical model for AT =0

Frequency FEM model (Hz) Analytical model
(Hz)
o) 41.08 40.98 = =
> 164.22 163.85 N—
f’:"*\x\

w3 369.20 368.36 \_ \_

- 0.656

0.437
e (N\

N

Fig. 3 Beam deflection for assumed temperature distribution and AT = 10

placed above the beam. In such a case, heat is nonuniformly distributed along the beam length and thickness.
This distribution caused thermal deflection (buckling) of the beam in the direction of the heat source. Next, the
eigenfrequencies for the 3D model were found providing that the beam was still exposed to the temperature
field. The results showed a slight decrease of eigenfrequencies as the beam was heated. Namely, the first three
frequencies were 38.70, 156.30, and 361.41 Hz, respectively. This result also confirmed those obtained from
the analytical model. Moreover, to check the correctness of the reduced analytical model, also static tests under
mechanical loading were performed. As regards the dynamical case of FEM, due to very long computation
time, the numerical simulations were performed only for one selected dynamical loading with frequency equal
to the first natural frequency of the model. Again the result was in accordance with the model described by
Eq. (15). The FEM was useful for the validation of the analytical approach, however, was not effective for a
study of complex nonlinear phenomena of the considered thermo-mechanical structure. Therefore, in next part
for complex dynamics, only the analytical model is studied in detail for small and large vibrations amplitude
and parameters varied in a wide range.

5 Analysis of nonlinear dynamical phenomena under mechanical and thermal loading

The proposed analytical model (15) allows parametric study of the considered structure. In this paper, we
concentrate on structure dynamics near the first resonance zone, i.e. we assume that the excitation frequency
£2 is close to the first natural frequency ;. Therefore, in (15), we substitute p; = 0, p3 = 0. Amplitude
and frequency of external loading are varied in order to demonstrate essential bifurcation points or nonlinear
phenomena around this resonance zone.

Let us consider first that thermal loading is excluded. We assume that AT = 0. In such a case, we obtain
classical resonance curves due to mechanical loading, only. The resonance curves are computed from Eq.
(15) by continuation method [40]. The curves are plotted for temperature AT = 0 and three selected levels
of excitation p; = 1077, p1 = 1079, pr = 5 X 107, The increased amplitude of mechanical excitation
results in large oscillations exhibiting stiffening phenomenon. The oscillations are periodic and symmetric
with respect to the zero equilibrium position. The resonance curves are presented in Fig. 4a. Now we introduce
small thermal loading imposing temperature difference AT = 10 and with the assumed distribution given by
(7). The introduced additional thermal loading is observable by a slight shift of the resonance curves into a
lower frequency direction. The time histories of oscillations are slightly shifted from the centre (zero position)
into positive direction. This result is in a good agreement with FE model presented in Sect. 4. Furthermore, due
to increased temperature, additional small picks near frequency 2 =~ 0.01 — 0.015, for the largest resonance



Regular and chaotic oscillations 727

0.09

0.08p 0.08f

0.071

0.06F 0.06}

0.05F

q1max

0.041

q1max

0.04r
0.031
0.02 0.021

0.01r

0.01 0.02 0.03 0.04 0.05 0.00 0.01 0.02 0.03 0.04 0.05

Fig. 4 Resonance curves near the first resonance zone for selected amplitudes of excitation p; = 1x 1077, p; = 1x107°, p; =
5x107%aAT =0,b AT =10
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Fig. 5 Resonance curves near the first resonance zone for AT = 50, AT =0, AT = —50 and excitation p; = 1 x 107°

curve (Fig. 4b), occur. Those picks correspond to the secondary resonances which appear only if the system is
nonlinear and both mechanical and thermal loading are large enough to exhibit this phenomenon.

In order to show the thermal loading influence, we consider larger temperature difference AT = 50, AT =
0, AT = —50. In this case, the difference in the resonance curves caused by the influence of thermal loading is
clearly visible. We see that for AT = 50, the resonance curve is shifted to the lower frequencies and amplitudes
are moved up (Fig. 5), comparing to the neutral curve for AT = 0. The negative temperature AT = —50
caused a shift of the curve into higher frequencies and a shift of amplitudes below zero.

To present the temperature influence, we have selected and fixed excitation frequency near the first natural
mode £2 = 0.029. The three levels of excitation amplitude are considered: p; = 1 x 1077, p; = 1 x 1076
and p; =5x 1070, In the case of lowest level of excitation, the beam shows almost linear behaviour, while for
two other cases strong nonlinearity is demonstrated (see curves in Fig. 6). The curve for the lowest mechanical
loading is almost linear (black curve) with only two small picks on the curve. The elevated temperature increases
the level of amplitude. When oscillations due to mechanical loading are large (curves red and green), then
thermal loading changes (disturbers) the curve course. In the intervals: AT € (75, 100) for p; = 1 x 10~
and AT € (100, 125) for p; =5 x 10_6, a decrease of amplitude is observed.

Of course for large oscillations and additional thermal loading, we may expect specific bifurcation scenarios.
As we mentioned earlier, the force acts with the frequency close to the first natural frequency £2 ~ w;. We start
possible bifurcation analysis due to mechanical loading by imposing AT = 0, fixed frequency 2 = 0.029,
and increasing amplitude of external force p; treated as a bifurcation parameter (Fig. 7a). We notice that in
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Fig. 6 Influence of thermal loading near the first resonance zone; amplitude against temperature A7 for amplitudes of excitation
pr=1x 1077, pr=1x 1079, pr=5x 1076 and fixed frequency 2 = 0.029
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Fig. 7 Bifurcation diagram versus amplitude of mechanical loading p; for 2 = 0.029, AT = 0; a full curve, b a zoom of the
zone z

fact, an increase of mechanical loading increases oscillations amplitude; however, about p; = 9 x 107 the
stable solution looses its stability (red dashed line) and a new stable branch arises, there is a bifurcation point in
which a new stable branch arises. This new branch, arising from the branch point (B P), makes a loop around
unstable solutions (till about p; = 5 x 10~ ) and returns to B P. The solutions around B P are presented in
zoom in (Fig. 7b). Time histories for characteristic values of p; before and after B P exhibit qualitative changes
in the beam’s response. In Fig. 8a, we see harmonic oscillations for p; = 5 x 1073, before the bifurcation
point. After B P point, the solution for p; = 1.1 x 10™#, laying on the new stable branch, changes qualitatively.
Nevertheless, it is still periodic, but composed of more harmonics (Fig. 8b). For p; = 1.2 x 1074, two periodic
solutions exist: for lower and upper branch. They are presented, respectively, in Fig. 8c, d. All the mentioned
solutions have a period corresponding to the excitation period. After B P point, the solution is still periodic,
but it is not furthermore just a single harmonic.

We may expect that if thermal loading is imposed, then the bifurcation scenario may be changed and the
selected bifurcation points may be hidden or transformed into new. Let us consider that the temperature drops
down. In Fig. 9a, for AT = —20 in fact, the bifurcation point B P vanished and there is a small loop on the
curve instead. The tendency is similar for AT = —50 (Fig. 9b). The unstable part of the solution (dashed line)
is observed but for very large amplitude of excitation.

The dynamics changes essentially if the temperature elevates. The bifurcation scenario in this case is
shown in Fig. 10 for relatively high temperature AT = 50, in order to expose qualitative changes. First of
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Fig. 10 Bifurcation diagrams versus amplitude of mechanical loading p; near the first resonance zone (a) for temperature
AT = 50 and fixed frequency §2 = 0.029, zoom of the zone z; (b) and z (¢)

all, the bifurcation point observable for AT = 0 disappeared. The course of the curve is smooth in this point,
and therefore, there is no branch point B P visible in Fig. 7. Around p; = 1 x 10%, the curve is smooth.
Numerical tests show that the B P exists only if AT = 0. Small variation in the temperature, positive or
negative, eliminates the branch point B P. Detailed analysis of the bifurcation diagram Fig. 10 shows that for
low amplitude of mechanical loading, the increased temperature makes a fold of the curve, and an narrow
unstable part occurs. This is presented as zoom z; in Fig. 10b. Then, for relatively low mechanical loading
about p; = 3 x 1073, the main branch becomes unstable and a new branch arises. But in this case, the new
solutions start from period doubling bifurcation points P D and P D; (see zoom z3 in Fig. 10c). The period
doubling bifurcations are obtained by computing Floquet multiplier [40] starting from the initially computed
orbit of period 7', and then varying the bifurcation parameter, the solution of period 27 has been obtained.
The time history corresponding to the period doubling branch is presented in Fig. 11b. This is period 27
solution comparing with those before P D; (Fig. 11a) or after P D, (Fig. 11c) bifurcation points. Another
period doubling P D3 visible in Fig. 10a arises around parameter p; = 2.2 x 10%, then following new branch
we get torus bifurcation 7 Ry, after which we return to period doubling P D4 and then to torus 7 Ry. We may

expect that in those intervals, the system response is complex.
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Fig. 11 Time histories for selected values of mechanical loading p; and fixed temperature AT = 50 and frequency £2 = 0.029,
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p1r=2.5x 1073 (e), p1=2.8x 1073 (f),—corresponding to zone P D3-T R; in Fig. 10

Application of analytical methods is another option in order to find the bifurcation points. But this requires
an application of an analytical method to get the ’slow flow’ equations. Then, on the basis of nonlinear algebraic
problem, we can find bifurcation points (see eg. [32,33]). However, due to additional assumptions, the method
has also limitations. Therefore, we have decided to detect bifurcation points dealing directly with ODEs.

Of course, the continuation approach does not guarantee detection of all possible dynamical behaviour
scenarios. Therefore, apart from the continuation method, a direct integration of the ODEs model has been
applied for a large number of configuration parameters.

The computations have been repeated starting from different initial conditions. The reduced three degrees
of freedom model result in 6D phase space which complicates the search of possible attractors. Thus, the
computations have been limited varying the initial condition only for the first coordinate i.e. g1 and equalling
the rest to zero. The transient response has been discarded, and then, the solution has been plotted using
stroboscopic projection, based on excitation frequency. The example of bifurcation scenario computed for
AT = 50, seven selected initial conditions and p treated as the bifurcation parameter is shown in Fig. 12. Apart
from solutions obtained by a continuation method, we may observe much reacher dynamics represented by
sequences of period doubling bifurcations. Around p; = 3 x 10™%, there is a cascade of period doubling leading
to chaotic oscillations. This phenomenon is a result of both mechanical loading and increased nonuniformly
distributed temperature.

The chaotic attractor plotted for AT = 50 and p; = 3 x 10~# is presented in Fig. 13a. To prove that
this chaotic behaviour results from both thermal and mechanical loading together, we computed a bifurcation
diagram starting from chaotic attractor and then decreasing temperature, which is now treated as a bifurcation
parameter. The final interval of the computations is shown in Fig. 13b. Starting from AT = 47 and varying
temperature to AT = 45, we demonstrate transition from chaos to the regular triple point attractor.

6 Conclusions and final remarks

The dynamic behaviour of a geometrically nonlinear Timoshenko beam model under a nonuniformly distributed
temperature and mechanical loadings is presented in the paper. The nonlinear model described by PDEs has
been transformed to ODEs by the application of eigenmodes of linear Timoshenko beam. The correctness of
the proposed reduced three-mode model has been verified by the FE method. A good agreement has been
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Fig. 13 Chaotic attractor (a) for DT = 50 and bifurcation diagrams (b) versus thermal loading AT and fixed mechanical loading
pr=3x 1074, 2 = 0.029; bifurcation integrations started from the chaotic attractor

obtained for static tests under mechanical and as well as thermal loadings. Moreover, the eigenvalues from FE
and analytical approach were consistent. Then, the detailed analysis of dynamics has been carried out near the
first resonance zone considering an influence, either thermal or mechanical loadings. On the basis of analytical
solutions, it has been shown that the system exhibited stiffening effect in the resonance curves for relatively
large amplitude of excitation. The thermal loading, which has been nonuniformly distributed along the beam
thickness and length, has a particular importance. The increase of the temperature difference AT leads to beam
buckling, observed by a shift of the vibration centre. If the temperature difference is large, then the shift is
essential, and furthermore, it affects the beam’s natural frequencies. The nonlinear nature of thermal loading
has been observed when mechanical loading increased. For large oscillations, thermal loading demonstrates
nonlinear course (Fig. 6). Decreased temperature (having negative values) reduced bifurcation scenario and
stabilised the solutions (Fig. 9). The increase of thermal loading, however, introduces additional instabilities,
also for low mechanical loadings, leading to system’s complex dynamics. The temperature distribution affects
essentially beam response. If both thermal and mechanical loadings are large enough, then the period doubling
and torus bifurcations occur which transit the beam into the chaotic oscillation region. The chaotic attractor
located close to the bifurcation point can be suppressed, and then, the system moves to regular periodic
oscillations, by a small decrease of temperature (Fig. 13). Varying temperature, we may switch the system
between chaotic or regular attractors. It has been demonstrated in the paper that the level of thermal loading,
as well as, its distribution must be considered as an important factor in real structural dynamics.
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A Appendix: Integrals for longitudinal displacement with heat distribution

Denoting G;? =G, + G,{ , the longitudinal displacement can be found from the first equation of the set (4).

We find the integrals
1 (dw)?
Gy ©)ds =~ 5 (—)
/o 9§

dw 9w TH®
/ EGA(E)dE = / U0 W ge 07O () | cosmx + o sinwx) (A2)
0& 0§ 0E2 2
The above integrals can be computed in further steps by using the normal modes expansion for w(x, t)
displacement. Constant K we can find from the boundary conditions of the studied particular problem. For a
SS — S§ beam considered in this paper, the boundary conditions are u(0) = u(1) = 0 which yields

+ ETo@ozT sin 7T x (A.1)

and

1 1
u<1>=[1<+ / G;‘@)dé}— / EGA(E)dE = 0 (A3)
0 0

and then we find

1 1 1
K = —/0 G (©)ds +/0 £GA(6)ds =/O (€~ 1) G ©)ds
1 1
- /0 € — 1) Gu(®)dt + /O € — 1) G (6)dt (A4)
The second integral in Eq. (A.4) we can calculate easily considering the assumed heat transfer (Fig. 2)
! To®ar
/ E—-1)GE)dE = ——— (A.5)
0 s
Taking into account the G,,, GT definitions, the first integral in Eq. (A.4) can be written in the form
dw 97w ow 82w
—1)G,¢)dE = ——d A.6
/(s ) Gu(§)ds = /fagagz +/Oa$agzs (A.6)
For a symmetrically loaded beam
1 1
dw 02 1 (ow)?
/ Pl %= ()| =0 (A7)
& 02 2 \ 0&
0 0
and
1 2 2 1 2
ow 0w 1 Jw ow
5——2d§ = — (—) —/ (—) d& (A.8)
0 8%‘ 3%‘ 2 ox =1 0 85

thus, we obtain the final form for the constant K

1 {(awy l(aw>2 ] ToOar
K=—L| (2 _/ WY g | - 00T (A.9)
2 [ \ox ), Jo o 7
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The function G% (x, 1) we may express as
GL(x,1) = — K—i—/xGA(é)dE—l-l w)?*| 2w (A.10)
2T 0o " 2 \ dx 0x2 ’

B Appendix: Galerkin Reduction

The model represented by PDEs has been reduced to ODEs by means of Galerkin’s orthogonalisation method.
The generalised displacements vector is assumed in a series of a product of the quasi-normal modes (shape
functions) w, (x), ¥, (x) and generalised, time-dependent coordinates g, () as presented in Eq. (13). We
assume Ny as a number of taken modes. Substituting (13) into (12), we get

Nf dzw dw Nf Nf )
;[ dx2 —i—ozﬂ( P )] Cln(t)—dznz_;l//nqn(t)—nz_;l/;nqn(,)=G1

d*wy,
/32[ - :|‘In(t)_dlzwn‘h(t)_anQn(I)—_P+Gz +Gj (B.1)

n=1

where GT is defined by (9b) and

To®ar Ny d*w
T n
G, = sinx Zq,, 2
n=1
le Nf f
dw, dw; 1 d2w

Gk=—1|- g —Lds — Ty —— = A B.2
2 /n—1j§—1qn dE qj dE & —ToOar - smﬂx Eqn (B.2)

o n=lj=

According to the Galerkin’s procedure, the quasi-normal modes should satisfy geometrical and dynamical
(natural) boundary conditions. For the reduction needs, we take linear modes of a §§ — S§ beam. The eigen-
values and eigenmodes have been presented in details in the papers [29] and [30]. Considering that w,, and v,
are solutions of the eigenvalue problem, we obtain:

Ny Ny Ny

> —opnan(t) —dr D Vdn() = D Yan(t) = G{

n=1 n=1 n=1

Ny Ny Ny

D —opwngn() —di D wadn(t) = D waija(t) = —p + G5 + G} (B.3)
n=1 n=1 n=1

Multiplying (B.3a) by ,, and (B.3b) by w,,, then summing up both equations, we have

Ny Ny

Zw Wmrn + wpwy] gn (1) + Z(dﬂ//nwm + diwywp) gn(t)

n=1
Ny

+ D WV + W] Gn(0) = =Y GT +wn (p - G5 - GF) (B4)
n
Then, integrating (B.4) over the beam length, invoking the orthogonality condition [30],

1 forn=m

1
/(mel/fn + wpwy)dx = | 0 forn #m (B.5)
0
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and assuming proportional damping, the equations are transformed into the form:

Gn (1) + 28,00 (1) + @2 gn (1)
1 1 1 1

=/p(x,t)w,,(x)dx —/GlT(x)wn(x)dx —/Gé(x,t)wn(x)dx—/GzT(x,r)wn(x)dx (B.6)
0 0 0 0

where w, is the n-th natural frequency of the linear undamped Timoshenko beam and &, is a modal damping
coefficient.

C Appendix: Coefficients of a reduced three modal beam with heat distribution

The considered structure is a symmetric cross-ply laminated beam of length L = 0.5m composed of 20
orthotropic layers, each 0.25 mm thick. The two layers located above and under the neutral surface have
0 — 90 orientation with respect to x-axis. The whole beam sequence of layers (plies) is [(0/90)8/0]s. Material
characteristics of the single ply are as follows:

Young’s moduli: £y = 56 GPa, E; = 16 GPa,

Poisson’s ratio: v = 0.269,

thermal expansion coefficient: a7 = 13.2 x 1070 K1,

mass density p = 2,052kg/m’.

These characteristics correspond to a glass-epoxy composite material.
The effective Young modulus has been computed considering layers having £ with orientation 0 degrees
and layers having E, with orientation 90 degrees. Using the simple summation formulae:

N; N
Ass =53 GO — D) =S GI®

k=1 k=1
b 00 1) 1< *) b
D=— E( )(Z( )7 Z( _1);)’ ar = — o

where N; = 20, we obtain the equations of composite Timoshenko beam in the form:

2
9 (D%)-i-ksAss(aa—lj—w)—Rla y =0

Cax \Uax 312

w0 [ (v e _
S R T R e

(C.2)

To obtain E, ¢ in the usual form of the Timoshenko beam, the coefficient D is divided by % Z,I(V; 1 (z(k)3 — &1’ ).
The effective Young modulus of the beam is £,y = 41.92 GPa, with natural frequencies of the beam

w1 = 40.9835Hz, w; = 163.852 Hz, w3 = 368.362 Hz (C.3)
Dimensionless natural frequencies take values
w1 = 0.0285, wr = 0.1139, w3 = 0.256 (C4)

and coefficients
a=120,000 B=0.328342

mode 1

Ciann = 0412607, Cy11p = 3.42356, Cy.12 = 0.443852, Cy 103 = 3.5799, s
Ciizs = 0451153, C1 113 =0, €Iy =—139705 x 107, ¢ = -3381687 x 1076 (&)

mode 2
Cr222 = 0477462, Cz,120 = 3.6828, (2223 =3.85098, (211 = 0.443852, (C.6)

Cor3 =0, Cayzs = 0485317, CI =—4.1059 x 10~ :

mode 3

C3333 = 0493301, C3.33 = 3.91434, C3.133 = 0, 3113 = 0451153, cn

C3,123 = 3.74339, C3 203 = 0.485317, CT = —4.17345 x 107°
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