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Abstract
The present contribution derives a theoretical framework for constructing novel geometrical constraints in the context of 
density-based topology optimization. Principally, the predefined geometrical dimensionality is enforced locally on the 
components of the optimized structures. These constraints are defined using the principal values (singular values) from a 
singular value decomposition of points clouds represented by elemental centroids and the corresponding relative density 
design variables. The proposed approach is numerically implemented for demonstrating the designing of lattice or mem-
brane-like structures. Several numerical examples confirm the validity of the derived theoretical framework for geometric 
dimensionality control.

Keywords  Manufacturing constraints · Topology optimization · Geometric constraints · Gradient based structural 
optimization · Lattice designing · Additive manufacturing

1  Introduction

Highest possible design freedom is one of the main advan-
tages using nonparametric structural optimizations. How-
ever, enforcing geometric features of optimized designs is 
often a crucial point due to the lack of control over the geo-
metric features. To address this problem a new type of con-
straints is suggested for sensitivity based optimization dis-
ciplines as topology, shape, sizing and bead optimizations. 
These constraints are visually interpretable and their usage is 
intuitive. Only geometric information is applied for evaluat-
ing them. Theoretically, the proposed approach is not limited 
to specific structural nonparametric optimization disciplines, 
but is also valid, for example, for multiphysics optimization 

such as CFD, thermo-mechanical, electro-mechanical and 
fluid-structural, where the values from a singular value 
decomposition (SVD) of the design variables clouds can 
be determined and used to define additional constraints to 
enforce geometric features. However, the present work dem-
onstrates the capabilities of the suggested approach in the 
context of gradient based structural topology optimization 
of lattice-like structures.

Local dimensionality is explained in the following using 
a small illustrative example. Figure 1a introduces a very 
coarse finite element model of a simple cube clamped at 
the bottom corners and applied to a top load. The classic 
topology optimization minimizing the compliance sub-
jected to a volume constraint yields the design shown in 
Fig. 1b. Geometric properties of the optimized structure can 
be locally investigated considering vicinities (blue spheres 
shown at Fig. 1) with some predefined radius at certain loca-
tions depending on the design requirements. Relatively to 
the present radius the considered structural components are 
rather bulky and thick compared to the 3D space as shown 
in Fig. 1b.

Adding constraints for the SVD values to the optimiza-
tion problem enforce 1D lattice-like and 2D membrane-like 
structures  locally for the optimized results as shown in 
Fig. 2a and b, respectively. Again, the dimensionality assess-
ment is relative with respect to the predefined radius of the 
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considered vicinity. Note, the focus of the present work is 
on lattice-like structures. Strictly membrane-like structures 
will be addressed in future work.

Possible fields of application are shortly summarized in 
the following. The present method can be employed for a 
variety of real-world design applications. Avoiding bulky 
areas of the component with high material concentrations 
for indirectly controlling cooling or flow of the metallic 
porosity for casting produced components by enforcing 1D 
or 2D layouts. The orientations of structural components, 
for example, for ribs and lattice designing, can be enforced 
to ensure the feasibility of a molding process. Ensure the 
removeability of powder for a 3D printed design enforc-
ing 1D layouts. Ensure continuous fiber printing having no 
crossing fibers by enforcing 1D layout.

Competitive approaches exist for nonparametric opti-
mization methods (topology, shape, bead and sizing) 
enforcing geometric properties on the designs directly 
or indirectly to fulfill various manufacturing process 
requirements and/or geometric design principles and/or 
required visual effects. In the following these approaches 
will be outlined. Note, many other approaches exist being 

comparable to the outlined publications or a subset of 
these. However, none of these existing approaches for 
enforcing geometric properties on the designs for non-
parametric optimization are based upon constraining the 
values from a singular value decomposition (SVD) of the 
design variables.

Filter techniques and projection methods are also called 
regularization techniques. One of the most common is the 
density variable filter for topology optimization where the 
relative densities are the design variables being filtered, for 
example, Bendsøe and Sigmund (2004), Luo et al. (2019), 
Sigmund and Petersen (1998), Lazarov et al. (2016), Zhou 
et  al. (2015), Lazarov and Wang (2017) and references 
therein. The filter techniques and the projection methods can 
be combined for enforcing a length scale and thereby, ensur-
ing a manufacturable structure for member size require-
ments, for example, for casted manufactured structures, 
3D printed structures, milled structures, etc. Our present 
approach can also enforce member sizes through a radius 
but the present approach is fundamentally different.

Direct parametrization of design variables is addressed, 
for example, in Zhang et al. (2018), Leiva et al. (2004), Gers-
borg and Andreasen (2011) for obtaining feasible designs 

(a) FE-Model
(b) Classic topology opti-
mization

Fig. 1   Topology optimization minimizing compliance subject to a 
volume constraint. The content of this figure is: (a) FE-model and (b) 
classic topology optimization. No additional constraints for geomet-
ric dimensionality are applied. The structural components are rather 
bulky and thick within a given radius of a search vicinity [blue sphere 
in (b)]. (Color figure online)

(a) Locally enforced 2D
membrane structures

(b) Locally enforced 1D
lattice structures

Fig. 2   Topology optimization minimizing compliance subject to a 
volume constraint and constraints locally enforcing the dimension-
ality for the structural components. The content of this figure is: (a) 
locally enforced 2D membrane structures and (b) locally enforced 1D 
lattice structures
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for casted structures and plate manufactured structures. Our 
present method does not include any parametrization or 
mapping of the design variables, but it could be applied for 
obtaining feasible designs for plate manufactured structures. 
This will be addressed in future work.

Penalty functions and projection functions The authors in 
Langelaar (2017, 2019), Hoffarth et al. (2017) apply penalty 
functions to ensure geometric feasible designs for additive 
manufacturing (3D printing) and multiaxis machining. The 
work in Vatanabe et al. (2016) and Carstensen and Guest 
(2018) illustrates the ability of the projection schemes to 
efficiently apply geometric control for the optimization solu-
tions so the designs are geometrically feasible for manu-
facturing. The authors in Norato (2018) and Zhang et al. 
(2016), employ the geometry projection method to project 
an analytical description of a set of geometric primitives 
and fixed-thickness plates, respectively. This enforces the 
structural members to be super shapes or plates for manu-
facturability. Our present approach could also enforce plate-
like structures but is fundamentally different from penalty 
functions or projection functions.

Local volume constraints The authors in Wu et al. (2017, 
2018), Schmidt et al. (2019), Liu et al. (2021) apply local 
volume constraint approaches enforcing geometrically 
porous like structures. Such constraint can also be applied 
to mimic lattice-like structures in 2D and membrane-like 
structures in 3D. Our present approach can also enforce lat-
tice-like and membrane-like structures but is fundamentally 
different than the local volume constraint approaches.

Heuristic methods The work in Strömberg (2010) applies 
a heuristic method updating the move limits in each opti-
mization iteration defined such that the draw constraints 
are satisfied. Thereby, no explicit constraint appears in the 
nested formulation except for the lower and upper limits on 
the design variables, but these move limits updates are fully 
heuristic. The work in Dienemann et al. (2017) applies a 
midsurface approach by calculating the average of the ele-
ment coordinates in the punch direction for achieving deep 
drawing manufactured structures. The implementation of 
this approach is more heuristic, as the movement of the 
mid surface at a constant wall thickness is not consistently 
included in the mathematical sensitivity calculation. This 
is seen by the increased number of optimization iterations. 
Both the methods in Strömberg (2010) and Dienemann et al. 
(2017) are partially mathematically inconsistent being heu-
ristic whereas our present approach is mathematically con-
sistent and could also enforce structures suitable for deep 
drawing, but the approach is fundamentally different to the 
heuristic methods.

Scope of the paper The structure of the present paper 
is as follows. In Sect. 2 the utilized structural optimiza-
tion framework is briefly outlined. The calculation and the 
interpretation of local geometric properties using SVD are 
explained in Sect. 3. Especially, the advantages and limita-
tions of the suggested approach are discussed. Section 4 
introduces SVD based constraints which can be used to 
control the geometric dimensionality of optimized struc-
tural components. The potential of the proposed approach 
is demonstrated in Sect. 5 on a number of 2D and 3D 
examples. The obtained numerical findings and potential 
next steps are summarized in Sect. 6.

2 � Topology optimization implementation 
and workflow

The aim of the present work is to examine the impact of 
constraints based on SVD of design variables clouds for 
the geometric features of optimized structures. Evaluating 
of these constraints requires processing of pure geometric 
information. Within this section, the utilized optimiza-
tion workflow is only outlined. Practically, the suggested 
geometric control is implemented in the optimization 
software SIMULIA Tosca Structure Dassault Systèmes 
(2021b) using mathematical programming for updating 
the design variables and the adjoint sensitivities imple-
mented in SIMULIA Abaqus Dassault Systèmes (2021a) 
for the structural finite element models. The direct solver 
in SIMULIA Abaqus is applied for solving the equilibrium 
R = 0 of the finite element model and the adjoint solu-
tion except for the numerical results shown in Sects. 5.2 
and 5.3 where the iterative algebraic multi-grid solver by 
SIMULIA Abaqus is applied. Note, that both the direct 
finite element solver and the iterative algebraic multi-grid 
solver can solve nonlinear structural modeling such as 
contacts, large deformations and constitutive nonlinear 
material models. However, here we show linear structural 
applications. Furthermore, all the present numerical topol-
ogy optimization results are generated using the so-called 
SIMP-model Bendsøe and Sigmund (2004) for the con-
stitutive material being proportional to a powerlaw of the 
relative elemental density 0.001 ≤ �e ≤ 1.0 . Thereby, the 
Young’s modulus Ee in a finite element e is interpolated 
using Ee = E�

p
e and where p = 3 is kept constant during 

the optimization iterations. The design variables vector � 
contains the relative densities of all structural elements in 
the design domain.

The numerical optimization results shown in Sects. 
5.1 and 5.2 have the following optimization framework of 
minimizing the compliance C (maximizing the stiffness) 
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for the given external loading P and the resulting displace-
ments U:

The total mass m(�) of the design domain is constrained to 
fulfill a certain weight target defined by the relative mate-
rial fraction f and mfull being the mass of the design domain 
having full material. A sensitivity filter is applied for regu-
larization introducing a length scale and for suppressing 
checkerboards, see Sigmund and Maute (2013), Sigmund 
and Petersen (1998). The radius of the sensitivity filter Rf  
for all present optimization results is 1.3 of the averaged 
element size of all elements specified in the design domain.

The examples shown in Sect. 5.3 have the mass as the 
design response to be minimized as objective function for 
a strength optimization. The constrained design response is 
the Von-Mises stress sv(�,U(�)) of the elemental integra-
tion points being applied as a single aggregated constraint 
A(sv(�,U(�))) as follows:

where sC is the stress constraint value. The stress design 
response sv(�,U(�)) in Eq. 2 is applied using a relaxation 
similar to Bruggi (2008), Holmberg et al. (2013). In addi-
tion, an aggregation function A(sv(�,U(�))) in the form of 

(1)

Minimize compliance:

C(U(�)) = PTU(�) ⟶

�∈ℝn
min

s.t.

structural equilibrium constraint:

R(�,U(�)) = K(�)U(�) − P =0,

relative mass constraint:

m(�) ≤ fmfull,

box constraints:

0.001 ≤ 𝜌e ≤ 1.0,

constraints on singular values:

s̄min(�) ≤ s̄∗
min

and/or

s̄mid(�) ≤ s̄∗
mid

.

(2)

Minimize mass: m(�)

s.t.

structural equilibrium constraint:

R(�,U(�)) = K(�)U(�) − P =0,

stress constraint:

A(sv(�,U(�))) ≤ sC,

box constraints:

0.001 ≤ 𝜌e ≤ 1.0,

constraints on singular values:

s̄min(�) ≤ s̄∗
min

and/or

s̄mid(�) ≤ s̄∗
mid

.

a p-norm approach is applied for the elemental stresses at 
integration points similar to Bruggi (2008), Holmberg et al. 
(2013), Verbart et al. (2015), París et al. (2008) avoiding 
having many design responses as the stress at each integra-
tion point is applied in the constraint.

3 � Calculation of local geometric properties 
of structural components using SVD

For the present approach, new measures are introduced as 
design responses for the topology optimization. These meas-
ures can either be applied in the objective function or as con-
straints to locally enforce certain geometric features of the 

(a) Structural component
in a given vicinity of a finite
element.

(b) Relative density field for
the design representation.

(c) Elemental centroids with
the corresponding relative
densities.

(d) Centroids coordinates
scaled by the corresponding
relative densities.

(e) Interpretation of the
singular values of the
considered points cloud.

Fig. 3   Evaluation of the relative density field of a 3D finite element 
model by Singular Value Decomposition (SVD) within a sphere hav-
ing a given radius. As a result the three singular values ( smin , smid , 
smax ) related to the three dimensions of the object and the correspond-
ing orientations/vectors (shown in green) are determined. The con-
tent of this figure is: (a) structural component in a given vicinity of a 
finite element, (b) relative density field for the design representation, 
(c) elemental centroids with the corresponding relative densities, (d) 
centroids coordinates scaled by the corresponding relative densities 
and (e) interpretation of the singular values of the considered points 
cloud. (Color figure online)
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optimized structures. Mathematically, the measures are based 
on singular values (or the corresponding vectors) of a matrix 
describing the design variables distribution within a given 
vicinity (for example, a sphere having a given radius). In the 
context of topology optimization then the distribution of the 
design variables (relative densities) around each finite element 
(a sphere with a given radius, see Fig. 3a) is evaluated using 
Singular Value Decomposition (SVD). The obtained singular 
values ( smax , smid and smin , see Fig. 3e) are related to three geo-
metrical dimensions of the geometric object described by the 
density field of the considered sphere. These measured values 
are used to construct the design responses for the structural 
optimization enforcing local geometric control.

3.1 � Singular values of a relative density field

In the following we assume that for a given finite element 
mesh with n finite elements that the corresponding centroid 
coordinates C ∈ ℝ

n×3 are defined as

and the relative densities � ∈ ℝ
n where 0.0 < 𝜌i ≤ 1.0 are 

given for each optimization iteration. For the evaluation 
of the geometric properties of the structural components 
(Fig. 3a), represented by the relative density field (Fig. 3b), 
in a given vicinity with the radius R around a finite element 
e ∈ {1, ..., n} then the m neighboring elements j ∈ {1, ...,m} 
and their centroids C̆ ∈ ℝ

m×3 (Fig. 3c), are determined by the 
following condition

The quantities Ce and Cj corresponds to the e-th and j-th 
lines of C . The corresponding relative densities are repre-
sented by 𝝆̆ ∈ ℝ

m . The data stored in C̆ must be centered 
around its mean before applying SVD as

Equation (5) corresponds to a shift of the global coordi-
nate system to the center of gravity for the considered 
points of a given cloud. The relative density values are now 
used to scale the shifted centroid coordinates stored in Ĉ as 
following

(3)C =

⎡⎢⎢⎣

x1 y1 z1
⋮ ⋮ ⋮

xn yn zn

⎤⎥⎥⎦

(4)
‖‖‖Ce − Cj

‖‖‖ ≤ R.

(5)Ĉj = C̆j −
1∑m

i=1
𝜌̆i

�
m�
i=1

x̆i𝜌̆i

m�
i=1

y̆i𝜌̆i

m�
i=1

z̆i𝜌̆i

�
.

(6)C̃ =

⎡⎢⎢⎣

x̂1𝜌̆1 ŷ1𝜌̆1 ẑ1𝜌̆1
⋮ ⋮ ⋮

x̂m𝜌̆m ŷm𝜌̆m ẑm𝜌̆m

⎤⎥⎥⎦
.

Centroid coordinates of elements representing solid mate-
rial ( ̆𝜌j = 1.0 ) are not changed by this operation. However, 
elements representing intermediate material or partial void 
( ̆𝜌j < 1.0 ) have their corresponding centroids moved in the 
direction of the center of gravity for the considered points in 
the cloud (Fig. 3d). The singular values 0 ≤smin ≤ smid ≤ smax 
for each vicinity are obtained through the SVD of the matrix 
C̃ as

These quantities represent the major local dimensions of the 
object described by the considered relative density field, see 
Fig. 3e. The corresponding right singular vectors vk (shown 
in green) represent the directions of the major dimensions 
and are orthogonal to each other. The orthonormal square 
matrix W ∈ ℝ

m×m contains the left singular vectors which 
are neither applied nor interpreted in the present work. Note, 
the Matrix W is part of the considered decomposition and is 
introduced for completeness. It is not necessary to calculate 
and to store this matrix as explained in Sect. 3.2. Afterwords 
we need to normalize the singular values sk by the largest 
singular value ŝmax of matrix Ĉ as the following

Thereby, the singular values are invariant with respect to the 
absolute size of the considered vicinity. Note, matrix Ĉ cor-
responds to matrix C̃ in which all the relative densities are 
set to 𝜌̆j = 1.0 representing the largest possible instance for 
the local structural component of a given design.

3.2 � Relation between singular values 
and eigenvalues

Numerous algorithms for the eigenvalue decomposition 
can be reused to perform the SVD calculation of the matrix 
C̃ ∈ ℝ

m×3 and especially, if they are already available in the 
applied finite element software environment. Therefore, we 
introduce the square matrix as

Then the decomposition of the matrix in Eq. (9)

(7)

C̃ = W

⎡
⎢⎢⎣

smax 0 0

0 smid 0

0 0 smin

⎤
⎥⎥⎦
VT ,

W ∈ ℝ
m×m, V =

�
vmax vmid vmin

�
,

vk ∈ ℝ
3 and k ∈ {min, mid, max}.

(8)s̄k =
sk

ŝmax
.

(9)Q = C̃
T
C̃ with Q ∈ ℝ

3×3.
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directly provides the singular vectors vk and the correspond-
ing singular values are obtained from the eigenvalues of the 
matrix Q as follows

(10)Q = V

⎡⎢⎢⎣

�max 0 0

0 �mid 0

0 0 �min

⎤⎥⎥⎦
VT ,

(11)sk =
√
�k.

Note, there is no need to calculate and to store the matrix W 
introduced in Eq. (7).

3.3 � Geometric interpretations of the singular 
values

Figures 4, 5, 6, 7 and 8 shows the normalized values s̄k for 
different exemplary structural layouts of the design vari-
ables (relative densities) in a finite elements setting for 
topology optimization. All the normalized singular values 
are equal to 1.0 for a fully solid sphere and are equal to 
0.0 for a void sphere as shown in Fig. 4. The singular val-
ues are between 0.0 and 1.0 for all other material layout 
configurations.

One of the singular values approaches zero when a fully 
solid 3D object transforms to a 2D object as shown in Fig. 5. 
In this case 2D means a shell, plate or membrane-like mate-
rial layout.

Two singular values approach zero when a 2D object is 
transforming to a 1D object as shown in Fig. 6. Beam, bar 
or lattice-like material layouts corresponds to 1D objects.

All singular values approach zero when a 1D object trans-
forms to an empty sphere (void) as shown in Fig. 7.

(a) Solid (3D)


s̄max

s̄mid

s̄min



 =




1.0
1.0
1.0





(b) Intermediate

≥




s̄max

s̄mid

s̄min



 =




∗.∗
∗.∗
∗.∗


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(c) Void (0D)
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
s̄max

s̄mid

s̄min



 =




0.0
0.0
0.0





Fig. 4   Normalized singular values of relative density fields for solid 
(3D object representation) versus void (0D object representation) 
structural elements. The content of this figure is: (a) solid (3D), (b) 
intermediate and (c) void

(a) 3D


s̄max

s̄mid

s̄min


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(b) Intermediate
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(c) 2D
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
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
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0.96
0.12





Fig. 5   Normalized singular values of relative density fields for solid 
(3D object representation) transforming to a shell, plate or membrane 
material layout (2D object representation). The content of this figure 
is: (a) 3D, (b) Intermediate and (c) 2D
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(c) 1D
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Fig. 6   Normalized singular values of relative density fields for shell, 
plate or membrane layout (2D object representation) transforming to 
a beam, bar or lattice material layout (1D object representation). The 
content of this figure is: (a) 2D, (b) Intermediate and (c) 1D
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Fig. 7   Normalized singular values of relative density fields for beam, 
bar or lattice layout (1D object representation) transforming to a point 
or void material layout (0D object representation). The content of this 
figure is: (a) 1D, (b) intermediate and (c) 0D
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(b) 0D points
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(c) 2D bars


s̄max

s̄mid

s̄min



 =




1.0
1.0
1.0





Fig. 8   Normalized singular values all being 1.00 of relative density 
fields representing assemblies of 2D, 1D or 0D parts in a 3D space. 
The content of this figure is: (a) 1D bars, (b) 0D points and (c) 2D 
bars
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Consequently, the singular values as illustrated in Figs. 4, 
5, 6 and 7 can be used to formulate new types of constraints 
for controlling and enforcing geometric features of the opti-
mized structures. Such constraints will be introduced in the 
following sections.

3.4 � Limitations of the approach

Note, that the dimensionality of the geometric object calcu-
lated using singular values describes how much space the 
object has within a considered vicinity (sphere). Therefore, 
the size of the sphere must be properly chosen depending 
on the specific applications. Rather small spheres should be 
applied for locally controlling the structural dimensionality. 
Frequently, for practical applications using larger spheres 
can lead to misinterpretation of the structural dimensionality 
for the optimization algorithm. For example, an assembly of 
1D or 0D parts can be interpreted as a fully solid 3D object 
as shown in Fig. 8. However, as the numerical examples for 
the present work mainly apply spheres having relative small 
radius then this has not been observed as a critical issue for 
the present applications.

4 � Locally constraining the dimensionality 
of structural components

Singular values derived in the previous sections are now 
used to construct new types of design responses for topol-
ogy optimization. Constraints for local control of structural 
dimensionality are formulated using these design responses.

4.1 � Eliminating discontinuities for singular values

Similar to eigenfrequency optimizations, see for example 
Seyranian et al. (1994) and Seyranian (1987), where in case 
of multiple eigenvalues the corresponding modes, i.e. eigen-
vectors, can switch their order between the optimization 
iterations, the order of singular vectors can switch in case 
of multiple singular values. In both cases this behavior leads 
to discontinuities of design responses based on eigenvalues 
or on singular values, as the corresponding derivatives are 
directly depending on eigenvectors or on singular vectors, 
see for example Eq. (23). Therefore, singular values based 
design responses for a gradient based optimization algorithm 
require a smooth transition between the singular values. This 
is obtained using smooth approximations, see for example 
Kennedy and Hicken (2015), for the maximum and mini-
mum singular values as

The quantity r is used here to overcome numerical issues 
for high exponent values and is usually set to r = smax or to 
r = smin approximating the maximum or the minimum val-
ues, respectively.

4.2 � Design responses based upon singular values

For a given vicinity of a finite element i ∈ {1, ..., n} , we con-
sider the three following measures

The quantities s̄i
min

 and s̄i
mid

 describe locally the smallest and 
the second smallest dimensions of the structural element. 
These quantities are normalized by the maximum possible 
dimension of the considered vicinity and thereby, invariant 
with respect to the absolute vicinity size. The third quantity 
s̄i
mid2max

 is a relation between the second largest dimension 
and the largest dimension. Note, that s̄i

mid2max
 is per defini-

tion a relative quantity and does not directly contain ŝi
max

 . 
Assume that the design domain consists of all finite ele-
ments then the quantities s̄i

min
 and s̄i

mid
 are aggregated over 

all finite elements using smooth maximum approximations 
as these will be used to formulate less-equal constraints. The 
quantities s̄i

mid2max
 are aggregated using smooth minimum 

approximation as these will be used to formulate greater-
equal constraints. With q ∈ {min ,mid ,mid2max} then the 
three following design responses are introduced

(12)

ssmax =

∑3

k=1
ske

p(sk−r)

∑3

k=1
ep(sk−r)

where p = 6,

ssmin =

∑3

k=1
ske

p(sk−r)

∑3

k=1
ep(sk−r)

where p = −6,

and

ssmid =
��3

k=1
sk

�
− ssmax − ssmin.

(13)

s̄i
min

=
si
smin

ŝi
max

,

s̄i
mid

=
si
smid

ŝi
max

,

s̄i
mid2max

=
si
smid

si
smax

.

(14)

s̄q =

∑n

i=1
s̄i
q
e
ps̄i

q

∑n

i=1
e
ps̄i

q

where for the following equations:

n = total number of elements,

p = 6 for q = min or q = mid,

and p = −6 for q = min2max.
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Note, smooth maximum and minimum approximations are 
used here to obtain just three scalar design responses for the 
whole design domain. These design responses are applied 
in the following sections to formulate constraints for the 
optimization. Smooth approximations are more general com-
pared to the so-called p-norms, for example, negative and 
positive values can be approximated.

4.3 � Constraints for gradient based optimization

To locally control the dimensionality of structural elements 
the following constraints are constructed.

Locally enforce 1D or 2D structural elements by con-
straining the smallest dimension. Thereby, 3D fully solid 
material objects are eliminated within a given vicinity. This 
is obtained by applying the following constraint

where 0.0 < s̄∗
min

< 1.0 . This constraint causes the designs 
to be membrane or lattice-like structures as the constraint 
avoids bulky material concentrations. Thereby, the value 
s̄∗
min

 implicitly prescribes the maximal thickness of a lattice 
or a membrane member relatively to the diameter of the 
considered vicinity.

Locally enforce 1D structural elements by simultaneously 
constraining the smallest and the second smallest dimen-
sions. Thereby, 2D and 3D objects are eliminated within a 
given vicinity. Hence, we apply the following constraints

where 0.0 < s̄∗
min

< 1.0 and s̄∗
min

< s̄∗
mid

< 1.0 . These con-
straints cause the designs to be lattice-like structures and 
avoid bulky material concentrations and membrane-like 
structures. The value s̄∗

mid
 implicitly prescribes the maximal 

width of lattice members relatively to the diameter of the 
considered vicinity and controls the curvature. If this value 
is chosen too small the optimizer will not be able to generate 
joints between 1D components. Sometimes such behavior 
is intended, for example, for avoiding fiber crossing in a 
composite optimization. Increasing the value s̄∗

mid
 allow the 

curvature of the structural components to be increased.
Locally enforce 2D structural elements by constraining 

the smallest dimension and the relation between the sec-
ond largest and the largest dimensions. Thereby, 1D and 3D 
objects are eliminated. This is obtained by applying the fol-
lowing constraints

where 0.0 ≤ s̄∗
min

≤ 1.0 and 0.5 ≤ s̄∗
mid2max

≤ 1.0 . These con-
straints cause the designs to be membrane-like structures 
and to avoid bulky material concentrations and lattice-like 

(15)s̄min ≤ s̄∗
min

(16)s̄min ≤ s̄∗
min

and s̄mid ≤ s̄∗
mid

(17)s̄min ≤ s̄∗
min

and s̄mid2max ≥ s̄∗
mid2max

structures. Again the value s̄∗
min

 implicitly prescribes the 
maximal thickness of the membrane components and the 
value s̄∗

mid2max
 controls the dimensional proportions normal 

to the thickness direction. The value s̄∗
min

 also implicitly con-
trols the curvature of membrane components. Smaller values 
lead to plane and large values for curved structures.

4.4 � Relations between relative material fraction 
and geometric parameters

Figures 3, 4, 5, 6, 7 and 8 illustrates that the relative mate-
rial fraction fs of the sphere having the radius R is partially 
related to the geometric control imposed by constraining the 
singular values of the decomposition (SVD) for the design 
variables inside the sphere. The following guidelines for lat-
tice are applied in the present numerical applications in 3D:

Lattice design—Figs. 6 and 7 shows certain typical 
lattice structures obtained constraining the singular val-
ues s̄min and s̄mid to be less than sudden values. Assuming 
that s̄ = s̄min = s̄mid and that the volume Vlattice of the lat-
tice member is much smaller than the volume of sphere 
Vsphere =

4

3
�R3 then the volume of the lattice is given by 

Vlattice = 𝜋(Rs̄)22R . Thereby, the relative material fraction 
in the sphere is fs = Vlattice∕Vsphere =

3

2
s̄2.

Minimum and maximum length scales - As specified in 
Sect. 2 a sensitivity filter is used for ensuring the optimi-
zation formulations in Eqs. (1) and (2) to be well-posed. 
Usually, a filter is introduced for avoiding the so-called 
checkerboards and secondly, to introduce a length scale 
Sigmund and Maute (2013), Sigmund and Petersen (1998). 
In the present approach s̄∗

min
 and the radius R introduces a 

maximum length scale

for one of the directions. Therefore, the optimization setup 
is ill-posed when the filter radius Rf  is larger than lmax∕2 . 
Hence, the length scale for one of the directions has a lower 
bound being the doubled filter radius

and an upper bound to be lmax . Note, that other methods 
introducing a minimum length scale would also be feasible 
as long as the introduced length scale is lower than lmax.

4.5 � Sensitivity analysis of SVD design responses

The derivatives of the design responses s̄q introduced in 
Eq. (14) with respect to the relative densities �e must be 
determined for gradient based optimization. The deriva-
tion of the corresponding sensitivity relations is based 

(18)lmax = s̄∗
min

2R

(19)lmin = 2Rf using lmin
!

< lmax
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upon multiple applications of the chain rule to calculate 
the derivatives 𝜕s̄q

𝜕𝜌e
 as pure geometric quantities. In this sec-

tion, the required partial derivatives are derived.
Derivatives of aggregated design responses with respect 

to dimensionality measures defined in Eqs. (13) and (14) 
yield

Derivatives of dimensionality measures with respect to 
smoothed singular values ssmin , ssmid and ssmax defined in Eq. 
(12) yield

Derivatives of smoothed singular values with respect to sin-
gular values smin , smid and smax defined in Eq. (11) yield

Derivatives of singular values with respect to relative densi-
ties 𝜌̆j are obtained as following

Relations between the quantities �e and 𝜌̆j can be described 
by boolean operators. The corresponding derivatives are 
straight forward and are not outlined here.

(20)
𝜕s̄q

𝜕s̄i
q

=
(1 + (s̄i

q
− s̄q)p)e

ps̄i
q

∑n

j
eps̄

j
q

(21)

𝜕s̄i
min

𝜕ssmin
=

1

ŝi
max

,
𝜕s̄i

min

𝜕ssmid
= 0,

𝜕s̄i
min

𝜕ssmax
= 0,

𝜕s̄i
mid

𝜕ssmin
= 0,

𝜕s̄i
mid

𝜕ssmid
=

1

ŝi
max

,
𝜕s̄i

mid

𝜕ssmax
= 0

𝜕s̄i
mid2max

𝜕ssmin
= 0,

𝜕s̄i
mid2max

𝜕ssmid
=

1

si
smax

𝜕s̄i
mid2max

𝜕ssmax
= −

si
smid

(si
smax

)2
.

(22)

�ssmin

�sk
= (1 + p(sk − smin))e

psk−r

(∑
k

epsk−r

)−1

,

�ssmax

�sk
= (1 + p(sk − smax))e

psk−r

(∑
k

epsk−r

)−1

,

�ssmid

�sk
=
∑
k

(
�sk

��

)
−

�smax

��
−

�smin

��

(23)

𝜕sk

𝜕𝜌̆j
=

1

2
√
𝜆k

𝜕𝜆k

𝜕𝜌̆j
,

𝜕𝜆k

𝜕𝜌̆j
= vT

k

𝜕(C̃
T
C̃)

𝜕𝜌̆j
vk.

4.6 � Computational costs for SVDs

As explained in previous sections then the suggested con-
straints are based on SVDs of point clouds scaled by densi-
ties around each finite element in the model. The number 
of points is directly dependent on radius R for the consid-
ered vicinities similar to standard filter techniques known 
in the context of topology optimization. Therefore, this 
has no influence on the numerical costs for evaluating the 
constraint values as only the eigenvalue decomposition of 
matrix Q ∈ ℝ

3×3 is performed, see Sect. 3.2, in each optimi-
zation iteration for each finite element. However, perform-
ing the sensitivity analysis, Eq. (23) must be evaluated for 
each design variable in the considered vicinities causing 

(a) FE-model

(b) f ≤ 60%, C = 27.2

(c)
s̄min ≤ 0.6, f ≤ 60%,

C = 37.7, R = 6

Fig. 9   a Rectangular 2D design domain discretized by a 400 × 200 
uniform grid. b Classic stiffness topology optimization using a mate-
rial volume fraction f = 60% . c As the classic topology optimization 
in (b) but including the proposed constraint defined in Eq. (15). The 
lowest singular value s̄min is constraint to be less or equal to 0.6 using 
a radius R = 6 equivalent to 6 finite elements, see the white circle in 
the figure for reference
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matrix-vector-multiplications. The number of these opera-
tions is directly dependent on the radius R as the number of 
design variables in the considered vicinities is proportional 
to R3 . That means that from numerical costs point of view, 
the suggested approach is efficient for rather smaller radii 
R. For the considered examples in the following section 
R < 10Rf  is applied.

5 � Examples

5.1 � A 2D cantilever beam

A simple 2D example is applied in the following for dem-
onstrating the characteristics of the proposed approach 
compared to the classical topology optimization. Figure 9a 
shows a rectangular 2D design domain discretized by a 
400 × 200 uniform grid using fully integrated four-node 
plain stress elements in SIMULIA Abaqus (CP4S) having 
the dimensions 1 × 1 . An elastic material is applied having 
a Poisson ratio of 0.3. The left edge of the design domain is 
fully clamped and an external force is applied to the mid-
point at the right edge. Figure 9b shows the result of the 
classic topology optimization using a material volume frac-
tion of f = 60%.

Figure 9c shows the result additionally applying the pro-
posed constraint defined in Eq. (15) constraining the lowest 
singular value s̄min ≤ 0.6 using a radius R = 6 equivalent to 
6 finite elements. The optimization iteration history is shown 
in Fig. 10 for the optimization result shown in Fig. 9c. It 
can be observed that the number of optimization iterations 
is 73 when applying the additional constraint for the lowest 
singular value. The number of optimization iterations of the 
design in Fig. 9b is 55. Hence, the optimization convergence 
iterations are barely impacted by the additional constraint for 
the lowest singular value s̄min which is also observed for the 
other numerical experiments.

Figure 12 shows the optimization results when constrain-
ing the lowest singular value s̄min to be 0.60, 0.50 and 0.40 
for a radius of the included design variables for the decom-
position (SVD) being R = 6 and R = 12 , respectively. Note, 
that the optimizations in Fig. 12 have no volume constraint 
applied. One sees that the obtained maximal member sizes 
are given by lmax = s̄∗

min
2R as explained in Sect. 4.4. How-

ever, small members appear and the radius of the sensitivity 
filter gives the minimum member size lmin = 2Rf .

Using the present geometric dimensionality control we 
yield lattice-like designs for 2D, see Fig. 12, being rea-
sonable similar to the results obtained using local volume 
constraint approaches for 2D design domains in Wu et al. 
(2017, 2018) and Schmidt et al. (2019). However, the pre-
sent approach seems to have an advantage over the local 
volume constraint approaches. The lattice members obtained 

using  the local volume constraints typically suffer from 
reducing sizes when approaching intersections and junc-
tions assembling the lattices. However, the results obtained 
using the present approach seem not to have that drawback.

(a) Objective function: Compliance

(b) Constraint: Relative mass of 60%

(c)
Constraint: Lowest singular value

s̄min less than 0.60

Fig. 10   Optimization iteration convergence history for a minimizing 
the compliance subject to a b relative mass constraint of 60% and to 
the c present approach constraining the lowest singular value s̄min to 
be less than 0.60 for a Radius R = 6
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The numerical experiments show that the obtained 
results are less responsive to the choice of the penalty p 
in Eq. 14 than the local volume constraint, see for exam-
ple Schmidt et al. (2019). Figure 11 shows the smallest 
singular value for a 2D model. Figure 11a shows it for a 
straight lattice and Fig. 11b, c show two joints for a lattice 

structure. Figure b shows that the geometric dimensional-
ity is only enforced in one direction and the optimization 
algorithm can generate an unsymmetrical joint fulfilling 
the constraint. Secondly, Fig. 11c shows a joint violat-
ing a constraint value for s̄minR . One sees that the relative 
violating value is always 

√
2s̄min ≤ s̄⋆

min
 or s̄min ≤ s̄⋆

min
∕
√
2 

independently upon the constraint value s̄⋆
min

 and the 
R parameter and thereby, the relative violating magni-
tude is independent upon the choice of the penalty p in 
Eq. 14. These two theoretical observations support the 

(a) (b) (c)

Fig. 11   Smallest singular value for a a straight 2D lattice bar and for 
two lattice joints where b fulfills the geometric dimensionality con-
straint using an unsymmetrical joint and c violates the same by 

√
2.

(a)
s̄min ≤ 0.60, C = 37.6,

f = 62.8%, R = 6
(b)

s̄min ≤ 0.50, C = 46.6,

f = 53.3%, R = 6

(c)
s̄min ≤ 0.40, C = 65.5,

f = 43.2%, R = 6
(d)

s̄min ≤ 0.60, C = 35.5,

f = 61.5%, R = 12

(e)
s̄min ≤ 0.50, C = 43.8,

f = 50.9%, R = 12
(f)

s̄min ≤ 0.40, C = 58.2,

f = 40.9%, R = 12

Fig. 12   The lowest singular value is constraint a–c by s̄∗
min

 which 
decreases from 0.6 to 0.4 using a radius of R = 6 equivalent to 6 finite 
elements, see the white circle in the figures for reference. Thereby, 
the member sizes are decreased yielding an increase in compliance 
C as well as lower relative material volume f. The structures d–f are 
optimized using the same set up but applying a larger radius. Com-
parison of optimized a–c to d–e structures shows that increasing the 
radius R causes larger member sizes having larger distances between 
them which results in higher stiffness but also less mass. Note, that 
no symmetry is enforced but the solutions are still prominently sym-
metrical

(a)
no volume constraint,

f = 62.8%, C = 37.6 (b) f ≤ 60%, C = 37.7

(c) f ≤ 50%, C = 39.8 (d) f ≤ 40%, C = 46.4

Fig. 13   All designs are optimized constraining the lowest singular 
value s̄min to be less or equal to 0.6 using a radius R = 6 , see the white 
circle in the figures for reference. In a no volume constraint is applied 
whereas in b–d a volume constraint decreasing from 60 to 40% is 
considered

(a)
no volume constraint,

f = 61.5%, C = 35.5 (b) f ≤ 60%, C = 35.6

(c) f ≤ 50%, C = 37.1 (d) f ≤ 40%, C = 42.5

Fig. 14   All designs are optimized constraining the lowest singu-
lar value s̄min to be less or equal to 0.6 using a radius R = 12 , see 
the white circle in the figures. In a no volume constraint is applied 
whereas in b–d a volume constraint decreasing from 60 to 40% is 
considered
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numerical observations in comparison to the local vol-
ume constraints.

Figures 13 and 14 show the effect of adding a global 
volume constraint to the optimization formulation. Gener-
ally, one sees that the classic volume constraint for topology 
optimization works well when also constraining the lowest 

singular value. The material volumes of the designs shown 
in Figs. 13a and 14a optimized without material volume con-
straints are just slightly higher than the constraining value of 
the lowest singular value s̄min . However, these designs have 
some intermediate densities for the low strain energy density 
areas of the design domain. Figures 13b and 14b show that 
by adding a volume constraint similar to the constraint value 
of the lowest singular value then these intermediate densities 
are removed.

Figures 13 and 14 show the results applying the constraint 
proposed in Eq. (15). We yield designs having satisfying 
solid∖void representations in a fairly low number of optimi-
zation iterations and most important, objective function val-
ues of the compliance being almost similar to the objective 
values optimized without the volume constraints. Therefore, 
the present results as well as additional numerical experi-
ments indicate that for obtaining solid∖void 2D optimization 
solutions then one should apply a volume constraint being 
the same or lower than the constraint for the lowest singular 
value.

5.2 � Bone infill design

The present section addresses the possibility of generating 
a lattice infill structure and membrane infill structures for 

R=2.5

R=4.0

Distributed 
loads

Clamped

Cut view

Fig. 15   Discretized femur model consisting of 1,090,793 hexahedral 
elements. The model is fully clamped at the bottom and two sets of 
distributed forces are applied at the top. The elements at the outer 
surface are not part of the design domain. Radii of 2.5 and 4.0 are 
applied for  evaluating the  geometric dimensionality control con-
straints

(a)

C = 0.83

not constrained:

s̄min = 0.97

not constrained:

s̄mid = 0.98

.

(b)

C = 1.10

constrained:

s̄min ≤ 0.50

not constrained:

s̄mid = 0.78

R = 2.5

(c)

C = 1.05

constrained:

s̄min ≤ 0.50

not constrained:

s̄mid = 0.78

R = 4.0

(d)

C = 1.32

constrained:

s̄min ≤ 0.50

constrained:

s̄mid ≤ 0.60

R = 2.5

(e)

C = 1.27

constrained:

s̄min ≤ 0.50

constrained:

s̄mid ≤ 0.60

R = 4.0

Fig. 16   Topology optimized infills for a femur using a relative mate-
rial mass fraction of 0.50. The outer surface is not part of the design 
domain. a Classic stiffness optimization subject to a mass constraint. 

Topology optimization obtaining membrane infills (b, c) and lattice 
infills (d, e) by constraining the singular values
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a femur, respectively. The femur finite element model, see 
Fig. 15, consists of 1,090,793 hexahedral elements (C3D8) 
each having the size 1 × 1 × 1 yielding 3,420,603 DOFs. The 
corresponding system of equations is solved using an itera-
tive algebraic multi-grid solver, Dassault Systèmes (2021a). 
An elastic material is applied having a Poisson ratio of 0.3. 
The 3D femur model is fully clamped at the bottom and two 
sets of distributed forces are applied at the top. The ele-
ments at the outer surface are not part of the design domain. 
Figure 16a shows the standard topology optimization result 
maximizing the stiffness subject to a relative volume con-
straint of 0.50 but no additional constraints. The same 
relative volume constraint value is applied for the follow-
ing numerical experiments, see Fig. 16b–e, but additional 
constraints are added for the s̄min and s̄mid , respectively. The 
constraining singular values s̄min and s̄mid are estimated to 
be around 0.58 using the lattice approximation for f = 0.50 
outlined in Sect. 4.4.

Only the first singular value s̄min is constrained to be 0.50 
for the optimization results shown for R = 2.5 in Fig. 16b 
and for R = 4.0 in Fig. 16c, respectively. These results con-
sist mainly of membrane components having the thickness 
2Rs̄min as infill for the femur which is expected as membrane 
components are stiffer than lattice structures, see Sigmund 
et al. (2016). In addition, the obtained components are rather 
similar to the prior results presented in Schmidt et al. (2019), 
Wu et al. (2017, 2018) using local volume constraint also 
yielding membrane-like structures for the infill of the femur. 
Thus, the present membrane designs obtained using a single 
constraint for the first singular value s̄min and the previous 
reported designs in Schmidt et al. (2019), Wu et al. (2017, 
2018) using a local volume constraint would not be feasible 
for having blood diffusing through the structure transporting 
the nutrition as well as being infeasible for many Additive 
Manufacturing processes based upon powder as the powder 
would be trapped inside the design after printing.

Subsequently, we constraint both the first singular value 
s̄min to be 0.50 and the second singular value s̄mid to be 0.60 
for enforcing a design having lattice infill components as 
shown in Fig. 16d and e, respectively. The optimized struc-
tures now have distinct lattice components as infill compared 
to the membrane infill results in Fig. 16b and c. However, the 
membrane infill structures have around 20% higher stiffness 
than the lattice infill structures for both a radius of R = 2.5 
and R = 4.0 , respectively.

Consequently, the present geometric dimensionality con-
trol allows us to both obtain membrane designs similar to 
solutions obtained using local volume constraint but also 

most important to obtain designs being true lattice designs 
having open cell structures. Thereby, open lattice cell struc-
tures feasible for Additive Manufacturing (getting the pow-
der out after manufacturing) as well as allowing another 
media to flow through the optimized structures are achieved.

5.3 � Strength optimization of a 3D cantilever beam

The present section addresses strength optimization of a 3D 
cantilever beam by minimizing the mass subject to a stress 
constraint of sC = 70 N/mm2 as defined in Eq. (2). An elas-
tic material is applied with a Young modulus of 210, 000 
N/mm2 and a Poisson ratio of 0.3, respectively. Figure 17 
shows the dimensions of the cantilever beam being fully 
clamped at one end of the beam and applied to a load of 
800 N at the reference node of the distributed coupling. All 
stresses of the elements being attached to the distributed 
coupling are excluded for the stress constraint in Eq. (2) 
for avoiding stress singularities. The 3D cantilever beam 
mesh consists of 2,172,846 higher order tetrahedron ele-
ments (C3D10HS) for improved bending results, see Das-
sault Systèmes (2021a), yielding 9,282,066 DOFs. The cor-
responding system of equations is solved using the iterative 
algebraic multi-grid solver, Dassault Systèmes (2021a). The 
present element uses a unique 11-point integration scheme, 
providing a superior stress visualization with coarse meshes 
as it avoids errors due to the extrapolation of stress compo-
nents from the integration points to the nodes.

Figure 18 shows the optimized results having constraints 
imposing geometric control except from the design in 

R=2.5

Load

Clamped

50 mm

50 mm

150 mm

Fig. 17   Discretized beam model consisting of 2,172,846 second order 
tetrahedral elements. The model is fully clamped on the left side and 
loaded at a reference node of a distributed coupling on the right side. 
The radius of R = 2.5 is set for the applied geometric dimensionality 
control constraints
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Fig. 18a which has no geometric dimensionality constraints. 
The designs in Fig. 18b, c have a geometric constraint for 
s̄min to be less than 0.3 for a radius of R = 2.5 so no struc-
tural members of the optimized designs can have a thickness 
larger than 1.5. We want to enforce a design dominated by 
membrane members for the design in Fig. 18b. Furthermore, 
we want to enforce a design consisting of lattice members for 
the design in Fig. 18c. The constraining values for s̄min and 
s̄mid are estimated to be around 0.28 using the lattice approxi-
mation outlined in Sect. 4.4. Hence, we apply a radius of 
R = 2.5 for both s̄min and s̄mid constraints which have to be 
less than 0.3 and 0.4, respectively.

The design having no geometric constraints shown in 
Fig. 18a has a mass of 8% . Whereas the design in Fig. 18b 
constrained by the lowest singular value s̄min has a mass of 
10.1% . The present design is mainly a full membrane solu-
tion except close to the loading point where a few lattice 
members are present. Therefore, the optimization in Fig. 18c 
constrained by the lowest singular value s̄min and the second 

singular value s̄mid has a mass of 11.3% . Thereby, we have 
a numerical evidence that membrane structures are not just 
ideal for stiffness designs but also for strength designs. The 
lattice design in Fig. 18c is suboptimally for strength design-
ing as the mass is increased by 40% compared to the design 
in Fig. 18a.

Figure 19 shows the optimization convergence history for 
the three designs in Fig. 18. It is interesting to observe when 
only constraining the lowest singular value s̄min ≤ 0.3 then 
the constraint is not active by the end of optimization, see 
Fig. 19c. That means that membrane structure is suboptimal. 
The constraint just pushes the design in the corresponding 
direction at the beginning of optimization. Note, the num-
ber of optimization iterations is reduced using geometric 
dimensionality constraints. We also recognize in Fig. 19b 
that the highest objective function value is obtained applying 
both dimensionality constraints on s̄min and on s̄mid which is 
expected as the design space is most restricted. In Fig. 19d 
the value of s̄mid is tracked also for the cases where it was 

(a)

f = 0.080

not constrained:

s̄min = 0.35

not constrained:

s̄mid = 0.54

.

(b)

f = 0.101

constrained:

s̄min = 0.20 ≤ 0.30

not constrained:

s̄mid = 0.66

R = 2.5

(c)

f = 0.113

constrained:

s̄min = 0.22 ≤ 0.30

constrained:

s̄mid = 0.40 ≤ 40

R = 2.5

Fig. 18   Strength optimization results for the beam in Fig.  17 where 
the mass is minimized subject to a stress constraint. a Design 
obtained without geometric dimensionality constraint. b Design using 
geometric control constraining smin so no structural members can have 

a thickness larger than 1.5. c Design obtained applying an additional 
constraint for smid consisting entirely of lattice members with a maxi-
mum cross section thickness of 1.5 and width of 2.0, respectively
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not constrained being considerably higher than the value for 
the constrained case.

6 � Conclusion

We present a new method for geometric dimensionality con-
trol in topology optimization based upon constraining the 
singular values of the decomposition (SVD) of the design 
variables in a given radius. The present approach has the 
following advantages:

–	 Numerical examples demonstrate that it is possible to 
obtain solid void optimization results applying a volume 
constraint being the same or lower than the constraint for 
the lowest singular value.

–	 The optimization performance concerning the num-
ber of optimization iterations for the present geometric 
dimensionality control is hardly influenced by the present 
approach constraining the singular values for the decom-
position (SVD) of the design variables.

–	 Using the present geometric dimensionality control the 
designs for 2D are similar to the results obtained using 
local volume constraint approaches. The advantages 
of the present approach for geometric dimensionality 
control is that we for 3D can enforce either lattice-like 
structures or membrane dominated structures. Previous 
approaches do not allow for these associated considera-
tions in the optimization formulation.

–	 As expected the numerical experiments show that the 
membrane structures have the best structural perfor-
mance for both stiffness and strength compared to the 
lattice designs. In addition, the numerical experiments 
show that there is often a very low deficit in the struc-
tural performance when enforcing membrane structures 
comparing to the designs optimized having no constraints 
for the geometric dimensionality control.

(a) Relative mass

(b) Maximum stress in N/mm2

(c) Lowest singular value s̄min

(d) Singular value s̄mid

Fig. 19   Optimization convergence history for the three designs in 
Fig. 18 where the relative mass is minimized subject to a stress con-
straint A(sv) ≤ sC = 70 N/mm2. The designs in Fig.  18b, c where 
obtained applying a constraint s̄min ≤ 0.3 and for the design in 
Fig. 18c an additional constraint s̄mid ≤ 0.4 was applied. The content 
of this figure is: (a) relative mass, (b) maximum stress, (c) lowest sin-
gular value and (d) midle singular value

▸
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–	 Lattice designs for 3D structures might not be optimal 
for stiffness and strength. However, the open lattice cell 
structures might be desirable for Additive Manufactured 
(AM) designs with respect to removing the powder after 
manufacturing as well as allowing another media to flow 
through the optimized structures, for example, for cool-
ing.

–	 Previous approaches did not allow for enforcing lattices 
in continuum topology optimization and at the same con-
trol their dimensionality by the radii for the singular val-
ues of the decomposition (SVD) of the design variables 
and as well as the constrain values.

For the present contribution, we focus on the generation 
of lattice-like structures but also recognized the possibil-
ity obtaining membrane dominated structures. In the future 
work we will also consider the generation of pure mem-
brane-like or shell structures using the constraint proposed 
in Eq. (17) as this is a permanently asked feature in context 
of industrial applications.
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