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Abstract
Traditional tensegrity structures comprise isolated compression members lying inside a continuous network of tension
members. In this contribution, a simple numerical layout optimization formulation is presented and used to identify
the topologies of minimum volume tensegrity structures designed to carry external applied loads. Binary variables and
associated constraints are used to limit (usually to one) the number of compressive elements connecting a node. A
computationally efficient two-stage procedure employing mixed integer linear programming (MILP) is used to identify
structures capable of carrying both externally applied loads and the self-stresses present when these loads are removed.
Although tensegrity structures are often regarded as inherently ‘optimal’, the presence of additional constraints in the
optimization formulation means that they can never be more optimal than traditional, non-tensegrity, structures. The
proposed procedure is programmed in a MATLAB script (available for download) and a range of examples are used to
demonstrate the efficacy of the approach presented.

Keywords Layout optimization · Tensegrity structures · Mixed integer linear programming

1 Introduction

Tensegrity structures were pioneered by Fuller (1962) and
Snelson (1965), and according to their original definitions
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tensegrity structures are arrangements of pin-jointed mem-
bers with a maximum of one compression member (strut)
at each joint, with no such limitation on tension members
(cables). Fuller’s original aspiration was to use tensegrity
structures to form the ‘largest and strongest structure per
pound of structural material employed’, considering appli-
cations such as very large stadium roofs. This indicates that
tensegrity structures were considered to be highly struc-
turally efficient, something that will be explored here.

To date tensegrity structures have been used only occa-
sionally for real-world terrestrial structures, and then largely
for their architectural appeal, e.g. Kenneth Snelson’s Needle
Tower (Snelson 2014), the Messeturm in Rostock (Schlaich
2004) and the Kurilpa Bridge in Brisbane (Arup 2009).
Tensegrity structures have also been suggested for use in
space due to the fact that their form can readily be con-
trolled, aiding deployability (Tibert 2002; Furuya 1992).

Subsequent workers—after Fuller and Snelson—have
sought to provide more precise definitions of what constitu-
tes a viable tensegrity structure, bringing in additional consi-
derations, such as the requirement that there exist a state
of self-stress, or that there must exist infinitesimal mecha-
nisms, resisted by self-stress forces. For example, on the
basis of the latter, Obara et al. (2019) have suggested that
Snelson’s well-known X-shaped module (comprising two
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diagonal struts compressed via a cable ring, Snelson (1965))
should not be considered as a true tensegrity. However, it
should be borne in mind that when seeking to optimize a
given problem, the more considerations (or ‘constraints’)
that are included, the higher the objective function is likely to be.

Returning to Fuller’s original aspiration to realize strong
and light structural forms that serve a practical purpose,
here the aim will be to identify minimum volume tensegrity
structures carrying external applied loads. This contrasts
with studies where the aim is to find a tensegrity structure
that resembles a pre-determined shape, without considering
any external loads on the structure (e.g. Kanno 2013a, Liu
and Paulino 2019). Consideration of loads permits a simple
and intuitive optimization formulation to be developed,
where the goal is to minimize structural volume subject to
stress and basic tensegrity structure typology constraints.
Use of a simpler objective function may also lead to simpler
structures in the case of large-scale problems. It should
however be noted that when externally applied live loads are
involved, a state of self-stress will be required to maintain
the configuration of the tensegrity structure when the loads
are removed.

Optimization schemes have already been widely applied
to the design of tensegrity structures, either seeking to iden-
tify structural forms for a given set of element (i.e. bar and
cable) connectivities (e.g. Koohestani 2012; Cai and Feng
2015; Masic et al. 2006; Xu and Luo 2010) or as a tool
for determining optimal tensegrity configurations between
nodes (e.g. Gan et al. 2015; Kanno 2013b; Zhang and
Ohsaki 2007). Mathematical optimization methods applied
to such structures have included mixed integer linear
and non-linear programming (MILP/MILNP) (e.g. Kanno
2013b; Pandian and Ananthasuresh 2017; Liu and Paulino
2019), sequential quadratic programming (SQP) (e.g. Masic
et al. 2006) and also heuristic search methods such as
genetic algorithms (GA) (e.g. Koohestani 2012; Xu and Luo
2010; Gan et al. 2015). Common objectives of the optimiza-
tion have been (i) to minimize the volume of the structure;
(ii) to maximize structural stiffness; or (iii) combining these
goals to minimize the mass-to-stiffness ratio. Note
that when using optimization to identify new forms of
tensegrity structures without loads and supports, it can be
difficult to identify a suitable optimization objective (e.g.
Kanno (2013b) seeks to minimize the number of cables
in the structure; Liu and Paulino (2019) choose to max-
imize the sum of the forces in the structure; Koohestani
(2012) uses a parameter aimed at ensuring the stability of
the realized structure and convergence of the minimiza-
tion process). In addition, various practical issues have been
taken into account in optimization, e.g. controlling intersect-

ing members by Kanno (2013b), and member buckling by
Masic et al. (2006).

The layout of a tensegrity structure refers to the positions
of the nodes and the way these are connected by elements,
taking into account the types of element involved (i.e.
bar in compression or cable in tension). Although most
tensegrity optimization studies described in the literature
have involved optimizing structures with predefined node-
member connectivities, seeking to optimize nodal positions,
exceptions to this include the studies by Kanno (2013a) and
Kanno (2013b), who defines a ‘ground structure’ and seeks
to find the tensegrity structure with the minimum number of
cables/cable lengths, Ehara and Kanno (2010) and Pandian
and Ananthasuresh (2017), who use a two-step MILP
procedure whereby the number of bars are first maximized
and the number of cables are then minimized, and Xu
et al. (2018), who consider a variable ‘ground structure’
(which can be controlled by additional constraints) and seek
to minimize the number of cables and equalize element
lengths and force densities. However, most of the examples
considered by the aforementioned authors have been very
small-scale problems. For example, Masic et al. (2006)
considered 3D structures with up to 9 nodes, Xu et al. (2018)
structures up to 13 nodes and Kanno (2013b) structures up
to 16 nodes. Furthermore, the 13 node structure described
by Xu et al. (2018) required 30 min to solve and the
16 node structure described by Kanno (2013b) took more
than 18h to solve. Although Liu and Paulino (2019) have
recently shown that reasonably large tenegrity topology
optimization problems can be tackled via the use of MILP
at moderate CPU cost (e.g. a problem with a ground structure
comprising 4108 elements was solved in 706s), unlike in the
present contribution, they are concerned with free-standing
tensegrity structures, without loads or supports.

The aim of the current contribution is to describe a simple
problem formulation capable of solving practical problems,
involving applied loads and supports, in reasonable time
frames, making it suitable for use at the conceptual design
stage. In this context, the constraints imposed will be basic
tensegrity constraints, and not e.g. stability constraints that
have a significant impact on computational expense (e.g.
see Weldeyesus et al. 2019); however, the pre-stress stability
of the example problems considered will be checked in
a post-processing step. To achieve this, mixed integer
linear programming is used to solve a modified version
of the traditional numerical layout optimization (‘ground
structure’) problem. Section 2 describes the formulation
of the optimization problem and Section 3 presents three
tensegrity optimization examples followed by a design
application in Section 4.
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2 Formulations

2.1 Standard layout optimization formulation

The standard truss layout optimization process (Dorn et al.
1964; Gilbert M and Tyas A 2003; Pritchard et al. 2005)
involves a series of steps, as shown in Fig. 1a–d. Firstly the
design domain, load and support conditions (i.e. transla-
tional fixities of nodes) are specified (Fig. 1a); secondly,
nodes are generated inside the design domain (Fig. 1b) and
then potential member connections are created by intercon-
necting these nodes, forming a ‘ground structure’ (Fig. 1c);
finally, the optimal layout is identified by solving the under-
lying linear programming (LP) problem (Fig. 1d). The basic
single load case plastic layout optimization formulation can
be written as follows:

min
a,q

V = lTa (1a)

s.t. Bq = f (1b)

−σ−a ≤ q ≤ σ+a (1c)

a ≥ 0, (1d)

where V is the volume of the structure; l = [l1, l2, ..., lm]T

is a vector of member lengths with m denoting the number
of members, and a = [a1, a2, ..., am]T is a vector containing
the member cross-sectional areas. q = [q1, q2, ..., qm]T

is a vector containing the internal member forces, and
f = [f1x, f1y, f1z, f2x, f2y, f2z, ..., fnx, fny, fnz]T is a
vector containing the external forces applied on nodes, with
n denoting the number of nodes. Also, σ+ and σ− are
limiting tensile and compressive stresses respectively. B is
a 3n × m equilibrium matrix comprising direction cosines.
The optimization variables in Eq. (1) are member areas a
and internal forces q; therefore, Eq. (1) is a LP problem,
which can be solved efficiently using modern LP solvers.
Note that with the ‘ground structure’ layout optimization
formulation used in this paper, the ‘optimal’ solution
obtained will be the minimum volume structure for the
particular grid of nodes employed; as the number of nodes
are increased, this can be expected to approach the true
optimal solution for the problem. It should also be noted that
although the basic layout optimization procedure ensures
that the structure is in static equilibrium with the applied
loads, it does not ensure that the structure generated is
stable.

2.2 Ensuring discontinuous compression

For traditional tensegrity structures (or ‘class I’ tensegrity
structures according to Skelton and de Oliveira 2009), it is
required that no more than one compression member (i.e.
bar) meets at each joint. This discontinuity condition for
compression members is presented as a linear inequality by

Fig. 1 Steps in truss layout optimization: a specify design domain, loads
and supports; b discretize domain using nodes; c interconnect nodes
with potential truss members, forming a ‘ground structure’; d use
optimization to identify the optimal truss layout; e result with discon-
tinuous compression constraint; f result with self-stress load case
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Ehara and Kanno (2010), Kanno (2013b), Xu et al. (2018),
and Liu and Paulino (2019). The same approach is followed
in the current formulation.

For the j th node, the discontinuity constraint on comp-
ression members can be written as:
m∑

i=1

NC
ji ti ≤ 1, (2)

where, NC
ji is the connectivity coefficient of member i. This

is known in advance from the ‘ground structure’, obtained
using:

NC
ji =

{
1 if member i connects to joint j

0 otherwise
. (3)

And ti is a binary variable used to indicate whether member
i is in compression:

−tiδmax ≤ qi, (4)

where, δmax is a sufficiently large positive number. This
means that member i is not in compression if ti = 0.

In the standard layout optimization formulation, overlap-
ping collinear members (e.g. dashed lines in Fig. 2a) can be
removed from the ‘ground structure’ since they only intro-
duce linear dependant constraints in Eq. (1b), and will not
affect the solution. However, in this study, with additional
constraints (2) and (4), collinear members in a compres-
sive chain are now independent so overlapping members
should not be removed; otherwise, sub-optimal solutions
may be obtained. On the other hand, these constraints have
no effect on tensile members, which can still overlap a com-
pressive member, potentially leading to impractical designs
(e.g. Fig. 2b). To address this, the following constraint can
be added:

m∑

i=1

N
Q
kiqi + ti (δmax − δmin) ≤ δmax, (5)

where, N
Q
ki is the collinear member coefficient for members

i and k, which is obtained using:

N
Q
ki =

{
1 if member i overlaps member k collinearly

0 otherwise
,

(6)

and which can be established in advance of the optimization
from the ‘ground structure’ used. δmin is a sufficiently small

positive number. Note that constraint (5) does not restrict
collinear cables (i.e. tensile members), since these are
still practical. Thus, additional binary variables for tensile
members are not required, thereby keeping computational
costs as low as possible.

With the aforementioned constraints, problem (1) can be
extended to tensegrity structures as follows:

min
a,q,t

lTa (7a)

s.t. Bq = f (7b)

−σ−a ≤ q ≤ σ+a (7c)

NCt ≤ 1 (7d)

−δmaxt ≤ q (7e)

NQq + (δmax − δmin)t ≤ δmax (7f)

a ≥ 0 (7g)

ti ∈ {0, 1}, for i = 1, 2, .., m, (7h)

where, NQ and NC are coefficient matrices formed by
relevant coefficients in Eqs. (3) and (6), respectively. t =
[t1, ..., tm]T is a vector containing binary variables which
indicate whether compression members are active or not.
Problem (7) is an MILP problem, which can be solved using
highly developed commercial solvers; the Gurobi (2018)
solver is used in the present study.

A convenient way to determine parameters δmax and δmin

is to scale the maximum and minimum non-zero inter-
nal forces identified in a solution generated via standard lay-
out optimization (1). This is a computationally inexpensive
step, since this does not involve the constraint on discon-
tinuous compression members. Values of 100 and 0.01 are
used for δmax and δmin respectively in the present study.

The effect of imposing the discontinuous compression
constraint on the layout optimization example shown in
Fig. 1 is shown in Fig. 1e; i.e. three adjacent compression
members are replaced with a single long compression mem-
ber. A MATLAB script (available in the electronic supple-
mentary data) has been written to perform the optimization
studies described herein, optimizing either (1) or (7); brief
usage instructions are provided in Appendix A.

2.3 Imposing self-stress condition

The MILP layout optimization formulation (7) will iden-
tify an optimal structure for a given set of external loading
and support conditions. However, in the case of structures

Fig. 2 Chain of collinear members: a all members connecting four nodes H , I , J and K , with dashed lines indicating collinear members; b invalid
chain of compression (blue) and tension (red) members
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with live applied loading, when this is removed the structure
may not be capable of standing. For example, referring
to Fig. 1e, if the horizontally aligned tensile member is a
cable, unable to transmit compression, then once the load
is removed the structure will fold up. To address this kind
of issue, tensegrity structures are often self-stressed. It is
therefore useful to explore means by which self-stresses can
be introduced.

2.3.1 Inclusion of a self-stress load case

An additional self-stress load case can be included in the
formulation by adding further constraints and variables to
Eq. (7) as follows:

Bsqs = 0 (8a)

−σ−a ≤ qs ≤ σ+a (8b)

−qs − δmaxt ≤ 0 (8c)

qs − rq + δmax(t − 1) ≤ 0, (8d)

where, Bs is an equilibrium matrix of size dependent on
the presence or otherwise of external supports in the self-
stress load case; qs is a vector of member internal force
variables for the self-stress load case. Constraints (8a) and
(8b) are equilibrium and stress constraints under the self-
stress load case, respectively. Constraint (8d) defines the
minimum level of self-stress, calculated as a proportion
of the compressive force in each strut in the main load
case, with parameter r specifying the desired self-stress
ratio. Also, constraint (8c) ensures that only the active
compressive members (i.e. ti = 1) from the first load case
are considered when computing self-stress. These load cases
are now used together; Eqs. (7) and (8) can be combined to
give:

min
a,q,t

lTa (9a)

s.t. Bq = f (9b)

Bsqs = 0 (9c)

−σ−a ≤ q ≤ σ+a (9d)

−σ−a ≤ qs ≤ σ+a (9e)

NCt ≤ 1 (9f)

−δmaxt ≤ q (9g)

−qs − δmaxt ≤ 0 (9h)

qs − rq + δmax(t − 1) ≤ 0 (9i)

NQq + (δmax − δmin)t ≤ δmax (9j)

a ≥ 0 (9k)

ti ∈ {0, 1}, for i = 1, 2, .., m (9l)

Applying problem formulation (9) to the layout optimiza-
tion problem shown in Fig. 1 now results in the structure
shown in Fig. 1f; i.e. a more complex structure is generated

that is both capable of carrying the applied load, and will
not fold down when the external live load is removed.

2.3.2 Post-processing approach

Although a self-stress state can be achieved by explicitly
adding a self-stress load case, as described in the preceding
section, the associated computational cost is likely to be
significant, adversely impacting the scale of problems that
can be tackled. A simple and efficient post-processing step
is therefore also proposed as follows.

Instead of using (9), once problem (7) has been solved,
active compression members (and their internal forces)
can be used as inputs to an additional post-processing
optimization step that seeks to identify the set of additional
tension cables required to provide a viable state of self-
stress; in this step, all that is necessary is to set appropriate
bounds on existing force and area variables, and to then
solve problem (1) with external loads removed, and also
supports removed if required:

min
a,q

V = lTa (10a)

s.t. Bsqs = 0 (10b)

−σ−a ≤ qs ≤ σ+a (10c)

qs
i ≤ rq0

i , for i ∈ C (10d)

qs
i ≥ 0, for i ∈ T (10e)

a ≥ a0, (10f)

where, q0
i is the internal force in member i identified

after solving (7), and a0 is a vector containing member
areas obtained previously. C and T are sets containing
compressive and tensile members, respectively. Compared
with the approach described in Section 2.3.1, the post-
processing step only involves solving (10), which is an
LP problem; therefore, the associated computational cost is
negligible.

3 Numerical examples

Here a number of numerical examples are presented to
demonstrate the efficacy of the methods described. Firstly,
2D problems are used to compare the tensegrity structures
with (near-) optimum truss layouts; then 3D tensegrity
structures are considered, now taking into account the
self-stress state. All examples were run using a PC with
an Intel(R) Core(TM) i7-4800MQ processor with 16.0GB
of RAM, running Microsoft Windows 10 and MATLAB
R2015a. In the figures, compression members (i.e. bars)
are indicated in blue and tension members (i.e. cables) in
red. Member line thicknesses are taken to be proportional
to member cross-sectional area, where tension members
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are assumed to have solid circular cross sections and
compression members to have circular hollow cross sections
with a ratio of internal radius to outer radius of 0.94,
corresponding to typical CHS (Circular Hollow Section)
sections used in practice. Also, the yield stress has been set
to σ+ = σ− = σ , unless specified otherwise.

3.1 Half-wheel example (2D)

The problem of the most efficient structure to carry a
midspan point load P between two simple supports located
a distance L apart is first considered. A rectangular design
domain of width L and sufficient height above the supports
leads to the well-known half-wheel solution when tensegrity
constraints are not present.

The optimization was initially carried out using nodes
laid out in a Cartesian grid comprising 9 × 6 nodes.
Then, with a view to obtaining improved solutions, the
optimization was carried out using nodes laid out in a 2D
polar coordinate system, with angular increments of π/15
and radial increments of L/8. However, in this case, it was
observed that only nodes at a radial distance of L/2 from
the loaded point were utilized. Thus, an optimization was
carried out with ground structure nodes at a radial distance
of L/2 and angular increments of π/24.

Standard and tensegrity solutions are compared in
Table 1. Firstly, it is clear that the solutions obtained using
the polar coordinate system are superior to those obtained
using a Cartesian grid, due to the nature of the optimal
solution. Secondly, it is clear that the optimal tensegrity
structure obtained using the polar coordinate system
also resembles the half-wheel solution, with compressive
elements terminating in close proximity to one another,

though not touching. The optimal tensegrity structure in
this case had a volume of 1.894PL/σ , which is 20.6%
greater than that of the known optimal solution. Use of
a finer grid would reduce this volume gap, though in the
limit the associated solutions would include compressive
elements terminating a vanishingly small distance apart.
The solutions shown are qualitatively similar to those
previously obtained for this problem by Park (2013). Note
that the truss solution obtained using the Cartesian grid
(shown in Table 1) is in unstable equilibrium with the
applied load; as mentioned in Section 2, this is allowed
by the basic truss layout optimization formulation, and in
practice would need to be stabilized by additional members
of nominal cross section.

3.2 Tensegrity prism example (3D)

The next example involves a tensegrity prism. A Cartesian
grid comprising 3 × 3 × 6 nodes in a 2L × 2L × 5L design
space (in the x × y × z directions) was considered. Supports
were located at the base—at (0, 0, 0), (L, 2L, 0) and
(2L, 0, 0)—and gravity loads of P applied at the top of the
domain—at (L, 0, 5L), (0, L, 5L) and (2L, L, 5L)—with
load and support locations chosen so as to avoid trivial
solutions involving vertical bars.

The solution obtained via solving problem (7) is shown
in Fig. 3b; this has a volume of 20.6PL/σ , with the solution
obtained in 140s. The structure generated resembles a
typical tensegrity prism solution, though has fewer tensile
elements; this is because a self-stress state has not yet been
imposed. To address this, the two approaches described
in Section 2.3 will be performed, with pre-stress ratio
r = 1.0. Both approaches generate the same solution

Table 1 Half-wheel example: optimum truss and tensegrity configuration of 2D simply supported structure to support a midspan point load
(members in compression shown in blue and members in tension in red)

*Difference in volume with respect to the optimal volume determined analytically (0.5πPL/σ )
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Fig. 3 Tensegrity prism example: a the ‘ground structure’ containing 1431 potential members; b structures generated with discontinuous
compression; c inclusion of self-stress following the steps described in Section 2.3

shown in Fig. 3c with the volume increased to 36.4PL/σ ,
an increase of 77%. If a reduced self-stress ratio r is
used then this volume increase would be correspondingly
lower. However, despite the identical solution, the CPU
time associated with the multiple load case approach
is 27,926s, whereas when the post-processing approach
is used the total CPU time is still 140s, since the
CPU cost associated with solving (10) is negligible
(0.05s). When varying the self-stress ratio from 0.1 to
1.0, the post-processing approach was shown to be from
62 to 199 times faster than using the multiple load case
approach.

The realized tensegrity prism comprises 3 compression
members and 12 tension members, derived from a ground
structure that had 1431 possible connections. Out of the
54 nodes in the ground structure, only the 3 loading points
and the 3 support points are part of the realized structure.
Note that the tensegrity prism in Fig. 3c does not satisfy the
super-stability condition given in lemma 4.5 in Zhang and
Ohsaki (2015). However, it is possible to choose appropriate
materials and sections to satisfy pre-stress stability (i.e. ‘a
prestressed pin-jointed structure is stable in the state of self-
equilibrium in the directions of infinitesimal mechanisms’,
see Zhang and Ohsaki (2015), page 117). For example,
when the elastic modulus is set to 100σ , the structure (with
supports) is pre-stress stable, i.e. the tangent stiffness matrix
(sum of linear stiffness matrix K and geometrical stiffness
matrix KG under self-stress, see also Zhang and Ohsaki

(2015), Chapter 4) is positive semi-definite. However, it
should be noted that this may not always be possible. Table 4
provides a stability load factor, which is the maximum
self-stress multiplier to give a positive semi-definite tangent
stiffness matrix. This stability load factor is the minimum
eigenvalue of the generalized eigenvalue problem Kφ =
−λKGφ, where φ is an associated eigenvector (for more
details, see Przemieniecky (1968), pages 396–398).

3.3 Kanno tower example (3D)

In the next example, an inclined five-layer tensegrity tower,
similar to that presented by Kanno (2013b), is considered.
The ground structure (both the nodal locations and the
connections allowed) was defined using the description
of the structure provided by Kanno (2013b); see Fig. 4.
Three loads of 50N were applied in the gravity direction
and stress limits in tension and compression of 10MPa
and 2MPa, respectively, were specified. An optimization
was then run using formulation (7), and the outcome
layout is shown in Fig. 5a. The proposed process took
0.42s to solve, compared with 63,000s reported in Kanno
(2013b). However, it should be noted that Kanno sought to
minimize the number of cables and considered additional
constraints such as bar collisions, slack in tension cables
and the presence of cable-only nodes, whereas here the
aim is simply to identify the minimum volume tensegrity
structure. To impose a self-stress state, the two approaches
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Fig. 4 Kanno tower example: ground structure and connectivity used
by Kanno (2013b), also used to generate the structure shown in Fig. 5

in Section 2.3 were utilized, both of which generated the
solution shown in Fig. 5b, with a volume increment of 4.9%.
However, when the elastic modulus is set to 1 GPa, the
self-stress load factor for a globally stable structure is found
to be 0.802. One solution to improve stability is to reduce
self-stress (Zhang and Ohsaki 2007). Here the maximum
self-stress ratio, 0.769, can be identified rapidly by using the
post-processing approach in conjunction with the bisection
method.

To investigate the effects of varying the number of
nodes and connections in the ground structure, Kanno’s
original ground structure was successively refined. In the
first refined ground structure (‘refined I’), each node in the
original structure was replaced by three other nodes lying
in a circle of radius 0.5m centred at the location of the
original node, and lying on the plane of the layer occupied
by the original node. In the next refined structure (‘refined
II’), nodes in the ‘refined I’ structure were then replaced
by two nodes (at ±0.5m on the vertical axis). Both of
these node replacement processes were only carried out for
intermediate layers (layers 2, 3 and 4), with the top and

Fig. 5 Kanno tower example:
optimal structure for five-layer
tower, using the ground
structure and member
connections used by Kanno
(2013b); a solution obtained
with discontinuous compression
and b solution obtained after
inclusion of self-stress
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bottom layers kept unchanged. As such both the original and
refined ground structures had exactly the same loading and
support conditions. Two connectivity cases were considered
for both the original and refined ground structures. The
‘restricted’ connectivity case follows the case considered by
Kanno, who disallowed connections between layers 1 to 4,
1 to 5, and 2 to 5; a second, ‘full’ connectivity case was
also considered, in which all possible connections between
nodes were allowed.

Results are summarized in Table 2. When the number of
nodes available was increased, it was observed that a more
efficient structure could be obtained, consuming a lower
volume of material, though requiring greater computational
effort (e.g. comparing rows 1 and 3 of Table 2, the volume
reduces by 55%, whereas the CPU time increases from
less than 1s to nearly 6min). However, it was observed
that increasing the number of connections significantly
improved the objective value whilst only requiring a
marginally higher CPU time (e.g. comparing rows 1 and 2
of Table 2, the volume reduces by 47%, whilst the CPU time
increases only by 1s). A possible explanation for this is that
the tensegrity constraint in Eq. (2) may be easier to comply
with if there are more options available.

4 Design application: Kent ‘Tensegritree’

The proposed method has also been used to study the design
of a ‘Tensegritree’ structure, similar to that recently installed
at University of Kent, UK (Daro et al. 2015). Here the
design consists of 16 radially extending arms with nodes
in each arm lying on a parabolic curve. Separate parabolic
curvesrepresent even (−0.25x2 + 1.283x, see Fig. 6a and b)
and odd numbered branches (−0.15x2+0.900x, see Fig. 6c)
respectively. The design space can be refined by changing
the number of nodes in each branch and the design space
altered by changing the depth and the terminal points of the
parabolic segments.

The elements shown in grey in Fig. 6 are predefined bars,
prescribed by constraining them to carry compression and
introducing a lower limit on member area. The members
in green are assumed to act as rigid supports. However,

Fig. 6 Kent ‘Tensegritree’ example: branch geometries employed
(in metres). a branches 2,6,10,14; b branches 4,8,12,16; c branches
1,3,5,7,9,11,13,15 Predefined bars are shown in grey, supports in green
and nodes in the ground structure in black

Table 2 Kanno tower example: effect of initial ‘ground structure’ on solutions obtained

# Ground struct. Connectivity No. nodes No. connections CPU time Vol. (post-processed)

(post-process) (s) (×10−6m3)

1 Original Restricted 16 93 0.42 (0.05) 5968.3 (6258.3)
2 Original Full 16 120 1.70 (0.06) 3164.7 (4302.2)
3 Refined I Restricted 36 567 351 (0.04) 2677.0 (2959.9)
4 Refined I Full 36 630 407 (0.03) 2469.4 (3476.7)
5 Refined II Full 66 2145 204,16 (0.06) 2228.5 (2680.4)
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Fig. 7 Kent ‘Tensegritree’ example: alternative structures with point
loads applied along the perimeter. Prescribed members are shown
in green; a–c solution obtained with discontinuous compression; d–f

solution obtained after inclusion of self-stress (with additional ten-
sion ring manually added to ensure pre-stress stability shown in
yellow)
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members passing through the vertical ‘trunk’ and/or lying
on the bottom plane, except for those on the outer ring, are
disallowed, though member intersections are not explicitly
checked for.

The optimization was carried out considering a set of
permanent downward loads of magnitude 10kN applied on
the external perimeter nodes (see Fig. 7), and assuming an
allowable stress of 100MPa. The ground structure contained
97 nodes and 4266 potential members, and the optimal solu-
tion of 9.591×10−2m3 was computed with a CPU time of
3827s. The initial optimized structure is shown in Fig. 7a–c.
Theself-stress condition was then imposed using the post-
processing approach described in Section 2.3.2; the result-
ing structure has a volume of 1.199×10−1m3 when a self-
stress ratio of 1.0 was used.

To check pre-stress stability, the elastic modulus of all
elements used to form the structure was taken as 205GPa,
and compression elements were modelled using circular hol-
low sections with a ratio between inner and outer diameters
of di

do
= 0.94. However, the generated structure was found

not to be pre-stress stable. To address this, a linear buck-
ling stability analysis was run to identify unstable modes;
the most affected members were found to be those radi-
ating outwards to the points of application of the external
loads. Therefore, an additional ring of cable elements (of

7mm diameter) was added (yellow lines in Fig. 7d–f), inter-
linking each of the loaded points. Also, to ensure that these
remained in tension at all times, pre-stress was applied. This
modification increased the volume of the structure by just
1.33%; the resulting load factor computed to be 38.

It is worth noting that, even though the post-processing
step in Section 2.3.2 does not always guarantee a pre-stress
stable solution, it provides an extremely efficient means of
generating self-stressed structures, providing a good starting
point for subsequent manual design interventions, if requi-
red. In this case, the structural analysis tool Karamba3D
(Preisinger 2013) was employed to verify stability, operat-
ing within the flexible Rhinoceros/Grasshopper parametric
modelling environment.

5 Discussion

In Section 3, various 2D and 3D tensegrity structures were
generated using the proposed formulation.

The 2D half-wheel example provides a practical demon-
stration of the fact that the optimal tensegrity structure must
always consume at least as much material as the corre-
sponding conventional truss solution; indeed in this case, the
optimal tensegrity structure will tend towards the optimal

Fig. 8 Tensegrity prism with
four loads and supports:
a solution generated by the
optimization procedure that
cannot be automatically
stabilized using the proposed
post-processing procedure,
which involves adding
additional tension members;
b alternative solution generated
by the inclusion of a self-stress
load case
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Table 3 Comparison of methods of including self-stresses

Examples Self-stress Multiple load case Post-process approach Volume difference (%) Speed up factor

ratio r in Section 2.3.2 approach in Section 2.3.1

Vol. CPU cost (s) Vol. CPU cost (s)

Fig. 3 0.1 22.18 7484 22.18 120 0 62

0.5 28.5 11,262 28.5 156 0 72

1.0 36.40 27,926 36.40 140 0 199

Fig. 5 0.1 5986 3.1 5986 0.4 0 8

0.5 6069 3.1 6069 0.6 0 5

1.0 6258 4.7 6258 0.6 0 8

Fig. 8 0.1 28.55 13,463 a a – –

0.5 37.15 26,094 a a – –

1.0 b b a a – –

a, infeasible. b, solver terminated after 24h run time

truss solution as more and more nodes are used in the ground
structure, assuming that in the limit compression members
are permitted to terminate a vanishingly small distance apart
from one another.

The tensegrity prism examples show that if loads and
supports are used in conjunction with a conventional lay-
out optimization formulation, supplemented by 0-1 binary
variables to facilitate imposition of the tensegrity constraints,
then structures that are in unstable equilibrium with the ap-
plied loads are likely to be generated. To include a self-stress
state in such structures, an efficient post-processing step
has been proposed. Compared with the more conventional
multiple load case formulation described in Section 2.3.1,
the post-processing step may not always find a set
of additional tension members from within the ground
structure to provide a viable self-stress condition; e.g. see

the example shown in Fig. 8. However, in many cases, the
post-processing step, which has negligible CPU cost, has
been found to be capable of obtaining identical solutions
to those obtained via the multiple load case approach; see
Table 3.

In the case of the Kent ‘Tensegritree’ example, the post-
processing step was supplemented by a manual step that
involved placing an additional ring of cables to address
the instability mechanism identified via a standard elastic
analysis. In this case, the modifications increased the
volume of the structure by only a very small amount.

Table 4 summarizes some properties of the generated
structures, where ds is the degree of statical indeterminacy
and dk is the degree of kinematical indeterminacy. Since
global stability is not directly addressed in this approach,
it needs to be checked afterwards. Stability load factors

Table 4 Summary of the status of the generated structures

Examples Self-stress No. nodes No. struts No. cables Statical Kinematical Stability load factor

ratio r indeterminacy ds indeterminacy, dk under self-stressa

Prism (Fig. 3c) 1.0 6 3 12 3 0 66

Prism 0.5 6 3 12 3 0 126

Prism 0.1 6 3 12 3 0 607

Kanno tower #1 (Fig. 5b) 1.0 16 8 47 13 0 0.8

Kanno tower #1 0.5 16 8 46 12 0 1.5

Kanno tower #1 0.1 16 8 45 11 0 7.3

Kanno tower #2 1.0 14 7 41 12 0 7.1

Kanno tower #3 1.0 32 16 121 47 0 9.1

Kanno tower #4 1.0 21 10 79 32 0 13.7

Kanno tower #5 1.0 40 18 152 57 1 12.7

Tengegritree (Fig. 7d–f) 1.0 53 24 207 78 0 38b

aMaximum self-stress multiplier, which is obtained as the minimum eigenvalue of the generalized eigenvalue problem Kφ = −λKGφ, where φ

is an associated eigenvector. bResult obtained after manually adding tensile ring
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under self-stress are provided, showing that most generated
structures are self-stress stable; the only exception is the
example in Fig. 5b using a high self-stress ratio r = 1.0. It
should also be noted that the geometrical stiffness matrices
are not positive semi-definite, so super-stable status is not
achieved.

Finally, since no attempt is made to automatically detect
and disallow intersecting compression members, these may
be present in the solutions generated using the proposed
approach. However, rather than introducing additional con-
straints to disallow intersections directly in the optimiza-
tion formulation, at significant computational expense, a
pragmatic alternative is to use geometry optimization in a
post-processing rationalization step (e.g. see He and Gilbert
2015). This involves adjusting the positions of the nodes to
improve the solution, in this case increasing its practicality;
this will be the subject of future work.

6 Conclusions

A simple formulation that can identify the layouts (element
connectivities) of minimum volume tensegrity structures for
problems with external applied loads and supports has been
presented:

– The simple mixed integer linear programming (MILP)
formulation proposed is capable of obtaining solutions
comparatively quickly. For example, a tensegrity prism
problem previously considered by Kanno (2013b) was
solved more than 5 orders of magnitude more quickly
using the proposed formulation, albeit without the
additional constraints on bar collisions, cable slack and
cable-only nodes that Kanno (2013b) considered.

– A simple and computationally inexpensive post-
processing procedure has been proposed to apply self-
stress to the tensegrity structures generated. This has
been found to be a computationally inexpensive alterna-
tive to applying self-stress via the use of a multiple load
case formulation.

– Although in the interests of computational efficiency
the proposed methods do not explicitly ensure that the
generated structures are pre-stress stable, subsequent
analysis of the example structures considered herein
showed that the great majority were in fact pre-stress
stable. When this was not the case, it was found that this
could be addressed via a simple manual post-processing
step.

– Although tensegrity structures are often considered
inherently ‘optimal’, the presence of additional con-
straints in the optimization formulation means that
they can never be more ‘optimal’ (or lower volume
in this case) than non-tensegrity structures. In fact it

is shown that as increasingly fine nodal discretizations
are employed, compression members may terminate in
closer and closer to proximity to one another, with the
optimizer trying to reduce the influence of the con-
straints that limit the number of compressive elements
at each joint to one.
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Appendix A: MATLAB script

A MATLAB script is provided in the electronic supplemen-
tary data to enable optimization problems to be solved and
solutions visualized. The script includes the following key
functions:

– tensegrityopt3D is the main function and
includes the workflow of the layout optimization
method.

– createGS creates the ‘ground structure’, e.g. Fig. 1c.
– getBoundary sets up load and support conditions.
– calcB creates the equilibrium matrix B.
– solveTruss creates and solves problems (1) and

(7).
– showTruss and plotBar enable visualization of the

structure generated.

A.1 Gurobi installation

The Gurobi optimizer is required to run the MATLAB script
provided. To install Gurobi for MATLAB:
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Table 5 MATLAB commands
to solve example problems Problem MATLAB command

Table 1: Cartesian tensegrityopt3D([], 0, 8, 5, 0)

Table 1: Polar tensegrityopt3D(‘wheel’, 0)

Fig. 3 tensegrityopt3D(‘prism’, 1)

Fig. 5 tensegrityopt3D(‘tower1’, 1)

Table 2: #2 tensegrityopt3D(‘tower2’, 1)

Table 2: #3 tensegrityopt3D(‘tower3’, 1)

Table 2: #4 tensegrityopt3D(‘tower4’, 1)

Table 2: #5 tensegrityopt3D(‘tower5’, 1)

Fig. 8 tensegrityopt3D(‘prism4’, 0)

– Obtain Gurobi from http://www.gurobi.com
– Obtain a Gurobi license code (free for academic use)

and install it as per the instructions provided.
– Run the gurobi setup.m script located in the Gurobi

installation folder to add it to MATLAB.

A.2 Solving example problems

The half-wheel example problem shown in Table 1 can be
solved by entering:

tensegrityopt3D([], 0, 8, 5, 0)
in the MATLAB command window.

The source code can be modified to solve different
problems. However, to avoid the need to modify the code,
the script can also read in example problems from data
files. Thus, files that include data describing the ‘ground
structure’ and also the relevant load and support conditions
for each example are provided in the ‘CSV’ subfolder; see
Table 5 for details.

Layout optimization problems may not have a unique
global optimal solution; this means there can exist several
layouts corresponding to the same optimal volume. Only
one such layout is shown in this paper.
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