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Abstract
This paper presents a novel method for the solution of a particular class of structural optimzation problems: the continuous
stochastic gradient method (CSG). In the simplest case, we assume that the objective function is given as an integral of a
desired property over a continuous parameter set. The application of a quadrature rule for the approximation of the integral
can give rise to artificial and undesired local minima. However, the CSG method does not rely on an approximation of the
integral, instead utilizing gradient approximations from previous iterations in an optimal way. Although the CSG method
does not require more than the solution of one state problem (of infinitely many) per optimization iteration, it is possible
to prove in a mathematically rigorous way that the function value as well as the full gradient of the objective can be
approximated with arbitrary precision in the course of the optimization process. Moreover, numerical experiments for a
linear elastic problem with infinitely many load cases are described. For the chosen example, the CSG method proves to be
clearly superior compared to the classic stochastic gradient (SG) and the stochastic average gradient (SAG) method.

Keywords Stochastic gradient method · Infinitely many state problems · Robust structural optimization ·
Proof of convergence

1 Introduction and problem statement

In the following, we define the set of Lebesgue integrable
functions mapping from the space X to space Y by
L1(X; Y ) and from the space X to the real numbers R by
L1(X). The “dot” notation is used in the following way:
g(·, y) denotes the mapping x �→ g(x, y).

Our goal in this article is to develop a novel stochastic
gradient method for the efficient solution of optimization
problems of the general form:

min
u∈Uad

F (u) = J (f (u, ·)). (1.1)
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Here, u is the design variable, which can be subject to
constraints described by the set Uad, and F : Uad �→ R

is given as a composition of a functional J : L1(Vad) �→
R and a function f : Uad × Vad �→ R, where Vad

is a continuous parameter set. Throughout this paper, we
further assume that the evaluation of the function f for any
(u, v) ∈ Uad × Vad requires the solution of an underlying
state problem, i. e., f is given in the form as follows:

f (u, v) = j (u, y(u; v)),

where y(u; v) denotes the solution of the state problem
parameterized by the design u and the additional continuous
index variable v ∈ Vad. As a consequence of this construction,
an evaluationof the functionF at a given designu theoretically
requires the solution of infinitely many state problems.

In order to demonstrate that problem (1.1) has a broad
range of applications, we give two particular examples for the
choice of the functional J . In our first example, J is simply
an integral over Vad, resulting in the problem as follows:

min
u∈Uad

∫
Vad

f (u, v) dv. (1.2)
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The structure in (1.2) can arise in various settings. First,
in an elastic setting, v could be a continuous load index
and f (·, v) a compliance, displacement, or stress evaluation
associated with the solution of the state problem with load
index v ∈ Vad. In this case, (1.2) would be a structural
optimization problem with infinitely many load cases. For
optimization problems with at least many load cases, we
refer, e.g., Alvarez and Carrasco (2005) and Zhang et al.
(2017), as well as the references therein. Furthermore,
if for applications in acoustics (see, e.g., Dilgen et al.
2019) or optics (see, e.g., Jensen and Sigmund 2011), a
state problem in time-harmonic form is considered, the
parameter v can play the role of a frequency or wavelength.
A prominent example for f in this context would be
an L2-tracking function, such that (1.2) would describe
the design of a device with a prescribed behavior over a
continuous frequency range, such as the range of visible
light, see Semmler et al. (2015). Another application in
optics could be the optimization of an anisotropic object
with respect to arbitrary illumination directions, again see
Semmler et al. (2015). While we have so far looked at all
these examples from a deterministic point of view, another
important class of applications arises if we interpret F(u)

as the expected value of a given property f associated
with a design u. This immediately leads to the notion of
reliability-based optimization problems (RBO), see, e.g.,
the overview article by Maute and Frangopol (2003), Conti
et al. (2009) or De et al. (2020) and the references therein
for a collection of more recent articles on this topic. In
all these cases, the parameter v constitutes a realization of
uncertainty (from a continuous uncertainty set Vad), where
the source of uncertainty can be, e.g., in loading, material
properties, or stiffness.

Following this line of argumentation a little further, we
come to the second instantiation of the generic problem (1.1),
which is referred to as robust structural optimization problem
according to De et al. (2020) and takes the form as follows:

min
u∈Uad

E[f (u, ·)] + λVar(f (u, ·)). (1.3)

Here, the expected value E[f (u, ·)]) is computed by the
integral in (1.2), and λ is a positive parameter that denotes
the importance of variations.

Having said this, we would like emphasize out that
our paper is not the first one suggesting the application
of stochastic-gradient-type methods for the solution of
structural optimization problems of the aforementioned
type. Zhang et al. (2017) use the classical stochastic
gradient (SG) method for the efficient solution of structural
optimization with many (but finitely many) load cases. In
De et al. (2020), robust optimization problems in the form of
(1.3) are solved by the SG method and variants, as well as a

stochastic version of the well-known GCMMA framework,
see Svanberg (2002). However, in this paper, a discrete set
of scenarios is also assumed from the very beginning. More
applications of the SG method can be found in the closely
related area of inverse problems, see Haber et al. (2012)
and Roosta-Khorasani et al. (2014). These are structurally
similar to the problems considered in this article, in the
sense that each evaluation of the function f for a given
scenario v, and also requires the potentially expensive
solution of a discretized partial differential equation (PDE).

However, there are at least two substantial differences
between all these references and the approach we suggest
in this paper. Firstly, even though in some cases in the afore-
mentioned articles a continuous index set Vad is considered,
an a priori selection of scenarios (or discretization of Vad)
is used. Secondly, even though in many applications the
property function f depends on the index variable v with
a certain regularity, this structure is ignored. In sharp con-
trast to this, we avoid an a priori discretization of integrals
in this paper. This is principally due to the fact that a too
coarse discretization can lead to artificial minima as will be
demonstrated by means of a simple example in Section 2.
Moreover, wewould like to exploit the natural regularity of the
property function f with respect to the index parameter v in
order to design an efficient optimization algorithm in which
the objective function F and its gradient are increasingly
better approximated.

Beyond stochastic descent methods, robust problems of
type (1.3) can also be approached by a combination of sto-
chastic collocation methods combined with deterministic
optimization solvers, see, e.g., Lazarov et al. (2012).
However, also in this case, through the collocation, an
approximation of the objective functional based on finitely
many scenarios is chosen a priori.

To the best knowledge of the authors, the SG method
itself is the only method which can, in principle, be applied
to structural optimization problems with infinitely many
state problems without relying on an a priori approximation
of the objective functional. However, as it will be shown
in the article, only the CSG method is able to successfully
solve these problems.

Despite this, there are substantial structural similarities
between our CSG method and the classic SG method and its
relatives. Therefore, in the following, we briefly describe the
basic SG idea.

The original SG method, see Robbins and Monro (1951),
is a method frequently used to minimize functions of the
form F : Rp → R, with

F(x) := 1

n

n∑
i=1

fi(x)
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and fi := R
p �→ R for all i ∈ {1, . . . , n}. Whereas

conventional gradient methods calculate all n gradients
∇fi in each iteration, the stochastic gradient method
uses only a small random selection thereof. Hereby, for
large n (as, e.g., in machine learning applications, see
Bottou and Cun 2004), the computational effort can be
drastically reduced in comparison to the classical gradient
method. Bottou et al. (2018) and Schmidt et al. (2017)
introduced an improved version of the SG algorithm, the
so-called stochastic average gradient method (SAG). This
benefits from previously calculated gradients, leading to a
better approximation of the exact gradient. Thus, a better
convergence behavior is typically observed. In this paper,
the basic properties of the SG and the SAG method will be
combined.

– Low computational effort per iteration
– Reuse of previously obtained information

We will integrate these two properties in our CSG algorithm
and compare it with the SG and the SAG method by means
of examples.

The remainder of this paper is structured as follows:
We will first close this section with the formal statement
of the problem. In Section 2, we introduce the proposed
CSG algorithm by which we aim to solve the types of
problems discussed. In Section 3, we then analytically study
the convergence of the algorithm and state assumptions
necessary for convergence. The main theoretical results are
given in the two Theorems 19 and 20. Section 4 provides
first numerical results of the CSG algorithm, as well as
a comparison with the SG and SAG methods. Finally, in
Section 5, we provide a summary and a brief outlook for
further scientific work.

1.1 Formal statement of the problem

Generally, we look at the objective functionals as defined in
(1.1), and we further assume the following:

Assumption 1 (Objective functional) The reduced objec-
tive functional F(u) : Uad �→ R is given by the composition
of a mapping J : L1(Vad;R) �→ R and f : Uad×Vad �→ R.
The Fréchet derivative of J will be denoted by its associated
function DJ := L∞(Vad;R)×Vad �→ R. DJ and ∇uf have
to be Lipschitz continuous w.r.t. both their arguments in the
respective topology.

For a definition of the Fréchet differential, see for instance
(Jahn 2007, Def. 3.11.). With F chosen as in (1.1) and the
latter assumption, we can state its derivative as follows:

Remark 2 (Derivative of F ) The derivative of F is then
given by the following:

∇F(u) =
∫

Vad

DJ (f (u, ·), v) · ∇uf (u, v) dv (1.4)

for all u ∈ Uad, with DJ being the Fréchet differential as
defined in Assumption 1.

The Fréchet derivative mentioned is exemplified in two
relevant cases:

Remark 3 (Examples for Fréchet derivatives)
If J (f (u, ·)) is the expected value of f w.r.t. the second
argument, we obtain the following:

DJ (f (u, ·), v) = 1

and for J (f (u, ·)) being the variance of f with respect to
the second argument, we obtain for all v ∈ Vad, as follows:

DJ (f (u, ·), v) = 2(f (u, v) − E[f (u, ·)])
+

∫
Vad

2(f (u, w) − E[f (u, ·)]) dw.

As already mentioned, in the case of structural optimiza-
tion, for each parameter v ∈ Vad, the evaluation of f (·, v)

requires the solution of an associated state problem. Conse-
quently, the (approximate) evaluation of F and its gradient
given in (1.4) is computationally very expensive. In general,
it can be stated that the algorithm introduced in Section 2 is
especially attractive for problems in which F is numerically
expensive to evaluate due to its functional dependency.

One advantage of our algorithm in comparison to the SG
and the SAG method is that no (a priori) quadrature rule
is used to approximate the integral in (1.4). In this way,
we later gain convergence of a subsequence to a stationary
point of the continuous problem (1.1). Moreover, this helps
to avoid artificial local minima, as will be outlined in the
next section.

2 Continuous stochastic gradient method

Before presenting the new optimization algorithm, we will
briefly discuss how discretization of the objective functional
can introduce local minima, looking at the following
function as follows:

F(u) :=
∫ 1

−1

v2

(u − v)2 + 10−3
dv. (2.1)

By choosing Uad = [− 1
2 ,

1
2 ] and Vad = (−1, 1), this

corresponds to problem (1.1).
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In Fig. 1, the graph of the function F in (2.1) is
shown along with numerical approximations based on
equidistant discretizations of the integral. Although the
original function is convex, local minima are introduced due
to the discretization of the integral. It is noted that without
much information on the function f , it is hard to choose
a suitable discretization, which would avoid this effect.
Nevertheless, a good algorithm should be able to prevent
convergence to such an artificial local minimum. In fact, this
is one of the key features of the CSG algorithm introduced
in detail in the following section.

2.1 The CSG algorithm

With PUad being the orthogonal projection onto Uad, λdv

being the Lebesgue measure in the dv-dimensional space,
and

Mn
i,j :=

{
v ∈ Vad :

∥∥∥∥
(

un − ui

v − ωi

)∥∥∥∥∗
<

∥∥∥∥
(

un − uj

v − ωj

)∥∥∥∥∗

}

being the set of points that are closer to (ui, ωi) than they
are to (uj , ωj ) in the ‖ · ‖∗-norm given in Definition 10, we
can state the proposed Algorithm 1:

Fig. 1 The analytic function F (blue) and the function F discretized
with 4 (red), 8 (yellow), 16 (green), and 32 (purple) equidistant
discretization points. F is given in (2.1)

Note that (V n
i )n

i=1 defined in Algorithm 1 is a partition of
Vad for all n ∈ N, i.e., V n

i ∩ V n
j = ∅ for all i, j ∈ {0, . . . , n}

with i �= j and Vad = ∪n
i=0V̄

n
i .

The CSGmethod as defined in Algorithm 1 is suitable for
problems of the form (1.1) and is structured as most gradient
descent methods. In each iteration n, a search direction Ĝn

(an approximation of the gradient ∇Fn := ∇F(un)) is
calculated, a step length τn > 0 is chosen and a sequence
(un)n∈N is generated by the following:

un+1 := PUad

(
un − τnĜn

)
.

Note that the existence and uniqueness of PUad is
guaranteed by the projection theorem (see, e.g., Aubin
(2000)) and for all w ∈ R

du defined by the following:

PUad(w) := argmin
u∈Uad

‖u − w‖ .

In this contribution, we use the following abbreviations:
Fn := F(un) and ‖ · ‖ denote the euclidean norm in
the respective dimensions. The distinctive feature of the
algorithm lies in the calculation of the search direction Ĝn.
In each iteration n, the gradient ∇uf (un, ·) is evaluated at
a random position ωn ∈ Vad and stored for later iterations.
The search direction Ĝn is in principle a linear combination
of the former gradients gi := ∇uf (ui, ωi), i = 0, . . . , n
with weights αn

i , i = 0, . . . , n. To provide an idea
how the weights are calculated, we refer to the sketch in
Fig. 2. There, ω0, . . . , ω10 ∈ Vad are randomly sampled
points and g0, . . . , g10 the corresponding gradients. Then,
the approximate gradient is given as Ĝ10 = ∑10

k=0 akgk ,
where a100 , . . . , a1010 are the lengths of the line segments
associated with the points (ω0, u0), . . . , (ω10, u10). Here,
the assignment of segments to points is indicated by the
same color. The underlying structure is the Voronoi diagram
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Fig. 2 Example for the
calculation of the approximated
gradient Ĝn in Algorithm 1 in
the case of Vad, Uad ⊂ R

of the points (ωk, uk)k∈{1,...,10} (see, e.g., Fortune (1995)).
More formally, the weights α10

k can be defined for all k ∈
{0, . . . , 10} as the dv-dimensional measure of Ωk ∩ (u10 ×
Vad) where Ωk ⊂ Vad × Uad is the Voronoi face associated
with the point (ωk, uk).

We note that the computational complexity per iteration
is given by the evaluation of the gradient of the function
f and the calculation of the weights αn

0 , . . . , α
n
n . Up to the

calculation of the weights, this is analogous to the SG and
SAG method. It should also be noted that all the gradients
g0, . . . , gn−1 of the previous iterations are included in the
current iteration. In Section 3, we will show that the error
‖Ĝn − ∇Fn‖ almost sure converges to zero. Hence, the
algorithm does not become trapped in a local minimum of
the discretized function. Therefore, the problem described
in Fig. 1 will not arise, since the approximation of ∇Fn by
Ĝn will be better and better.

3 Convergence analysis

In this section, we will study the convergence of the
proposed algorithm. Due to the randomly chosen evaluation
point within the algorithm, we will have to study
probabilistic convergence behavior in terms of “almost
sure convergence” and convergence in expectation. This

notion of convergence as well as further assumptions and
definitions are given in Section 3.1. In Section 3.2, we prove
that the error in the gradient approximation goes to zero and
finally apply this result in Section 3.3 to prove convergence
of the CSG method.

3.1 Assumptions, definitions, and preliminary
results

For the convergence analysis of Algorithm 1, the following
three assumptions on the objective functional, the step
length, and the sets Uad, Vad are an important ingredient. In
the following, we will assume that these Assumptions are
always satisfied without mentioning it explicitly.

Definition 4 (Lipschitz constants and maxima)
We will denote the Lipschitz constants of DJ and ∇uf

with respect to both their arguments by L
(1)
DJ

, L
(2)
DJ

and by

L
(1)
∇uf

, L
(2)
∇uf

. Their maximal absolute function values will be
defined as CDJ , C∇uf .

For Uad and Vad, we assume the following:

Assumption 5 (Regularity of Uad and Vad) The
set Uad ⊂ R

du is compact and convex. Vad ⊂ R
dv is
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open and bounded. In addition, there exists c ∈ R s.t.∣∣Vad \ V r
ad

∣∣ ≤ cr ∀r ∈ (0, 1), with V r
ad := {x ∈ Vad :

Br(x) ⊂ Vad} and where Br(x) ⊂ R
dv is an open ball

centered in x ∈ R
dv with radius r .

The latter assumption is fulfilled for non pathological
open sets with finite perimeter.

Assumption 6 (Step length) The step length (τn)n∈N
satisfies the following: ∃N ∈ N, c1, c2 ∈ R>0, and δ ∈(
0, 1

max{dv,2}
)
s.t.

c1n
−1 ≤ τn ≤ c2n

−1+ 1
max{dv,2} −δ ∀n ∈ N>N .

These conditions on the step length satisfy the conditions
stated in Robbins and Monro (1951, Eqns. (6) and (26))
as well as equivalently in Bottou et al. (2018, Eqn. (4.19)
in the one-dimensional case, and can be seen as a higher
dimensional equivalent.

Remark 7 (Step length for dv = 1 and dv = 2) In case of a
one- or two-dimensional set Vad, Assumption 6 is satisfied iff

τn ∈ O(n−1) ∩ o(n− 1
2 )

with the Big Oh and Little Oh notation as defined in
Bürgisser and Cucker (2013). In other words, the null series
(τn)n∈N must not tend faster to zero than (n−1)n∈N but not
as slow as (n− 1

2 )n∈N.

The lower bound for the stepsizes ensure that the
accumulated stepsizes reach infinity and the algorithm does
not get stuck due to their reduction. The upper bound
ensures that the approximation of the search direction is
appropriate. This is equivalent to the rate of convergence for
empirical measures, see, e.g., Dudley (1969, Prop. 3.4.).

Despite these assumptions in the stepsize, in Theorem 20,
a result will be stated for the case of a step length bounded
away from zero.

To show convergence of the algorithm, we must first state
the probability space setting.

Definition 8 (Probability space setup) The probability
space (Ω,A,P) is given by the following:

Ω := V N

ad, P := μ⊗N

A := σ {A1 × . . .×An : Ai ∈ B(Vad), ∀i, n ∈ N},
where μ⊗N(A1 × . . . × An) = ∏n

i=1
μ(Ai)
μ(Vad)

is the product

measure and μ = λdv the Lebesgue measure in Rdv .

All the following random variables are defined in this
setting. For the convergence of random variables, we use the
following commonly used notation:

Definition 9 (Stochastic convergence) A sequence of
random variables (Zn)n∈N converges almost surely to some
random variable Z iff

P

(
{ω ∈ Ω : lim

n→∞Zn(ω) = Z(ω)}
)

= 1,

which we denote by Zn −→ a.s.Z.

In this document, we define the following norm on the
product space Uad × Vad.

Definition 10 (Norm in Uad × Vad) For better readability,
we define the following 	1/	2-norm on the product space
Uad × Vad:∥∥∥∥
(

u

v

)∥∥∥∥∗
:= ‖u‖2 + ‖v‖2.

Due to norm equivalence in finite dimensional spaces, the
results presented later hold for all chosen norms in Uad and
Vad and combinations thereof.

The orthogonal projection used in Algorithm 1 has some
important properties:

Lemma 11 (Orthogonal projection) Let S ⊂ R
n for n ∈

N>0 be closed and convex and let PS be the orthogonal
projection, then the following holds for all x, y ∈ R

n and
z ∈ S:

a) (PS(x) − x)T (PS(x) − z) ≤ 0,
b) (PS(y) − PS(x))T (y − x) ≥ ‖PS(y) − PS(x)‖2 ≥ 0,
c) ‖PS(y) − PS(x))‖ ≤ ‖y − x‖.

Proof (a) is (ii) in Aubin (2000, Thm. 1.4.1) and (b), and (c)
are (iii) and (ii) in Aubin (2000, Prop. 1.4.1).

For h ∈ C1(Uad) and Uad convex, the following suffi-
cient conditions for first-order optimality are equivalent:

Corollary 12 (Optimality conditions) For all u∗ ∈ Uad,
the following items are equivalent:

i) −∇h(u∗)T (u − u∗) ≤ 0 ∀u ∈ Uad,
ii) P(u∗ − t∇h(u∗)) = u∗ ∀t ≥ 0.

We call u∗ satisfying one of the above conditions a
stationary point.

Proof Define for u ∈ Uad the cone

NUad(u) := {x ∈ R
du : xT (ū − u) ≤ 0 ∀ū ∈ Uad}.

Using Lemma 11 ((i) for “⇒” and (ii) for “⇐”), it is
straightforward to see that for x ∈ R

du and u ∈ Uad,

PUad(x) = u ⇔ (x − u) ∈ NUad(u).

Since −∇h ∈ NUad(u
∗), the result follows.
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3.2 Error in the approximate gradient

In this subsection, we analyze the error in the nth iteration
of the approximate gradient Ĝn and the gradient of the
objective functional ∇Fn. To do this, we define for v ∈
Vad, ω ∈ Ω the sequence of random variables (Xn)n∈N by
the following:

Xn(ω; v) := min
k=1,...,n

∥∥∥∥
(

uk(ω) − un(ω)

ωk − v

)∥∥∥∥∗
.

Lemma 13 (Convergence result) For v ∈ Vad ,

∞∑
n=1

P (Xn(·; v) > εn) < ∞,

where εn := 2C∇uf c2|Vad |n− δ
2 + ε̃n and ε̃n := n

δ
2− 1

max(2,dv)

with c2 and δ defined in Assumption 6 and C∇uf in
Definition 4. Moreover,

∞∑
n=1

sup
v∈V

εn
ad

P (Xn(·; v) > εn) < ∞,

with V
εn

ad defined in Assumption 5.

Proof By item (iii) in Lemma 11 we have

P(Xn(·; v) ≥ εn)

≤ P

(
min

k=i0,...,n

∥∥∥∥
(

uk(ω) − un(ω)

ωk − v

)∥∥∥∥∗
≥ εn

)

≤ P

⎛
⎝n−1∑

i=i0

‖τiĜi‖ + min
k=i0,...,n

‖ωk − v‖ ≥ εn

⎞
⎠

≤ P

⎛
⎝C∇uf c2|Vad |

n−1∑
i=i0

1

iκ
+ min

k=i0,...,n
‖ωk − v‖ ≥ εn

⎞
⎠

where i0 := �n − an + 1� and κ ∈ (0, 1) given by κ :=
1 − 1

max{dv,2} + δ. For dv = 1, we choose an = √
n and if

dv ≥ 2, we choose an = n1− δ
2 . Observe that for n > 2 we

obtain

n−1∑
i=i0

1

iκ
≤

∫ n

i0−1

1

sκ
ds = 1

1 − κ
·
(
n1−κ − (�n − an�)1−κ

)

≤ 1

1 − κ
·
(
n1−κ −(n−an)

1−κ
)
= 1

1−κ
·
(

n

nκ
− n−an

(n−an)κ

)

= 1

1 − κ
·
(

nκ(1 − an

n
)κ − nκ

nκ · (n − an)κ

)
+ an

(1 − κ)(n − an)κ

applying Bernoulli’s inequality in the first term

≤ 1

1 − κ
·
( −κan

(n−an)κ

)
+ an

(1−κ)(n−an)κ
= an

nκ
(1− an

n
)−κ

As an

n
= n

δ
2− 1

max{dv,2} ≤ n
− 1

2max{dn,2} we obtain

n−1∑
i=i0

‖τiĜi‖ ≤ C∇uf c2|Vad |
1 − 2− 1

2max{dn,2}
n− δ

2 = εn. (3.1)

For all v ∈ Vad there exists n large enough such that
Bε̃n

(v) ⊂ Vad . Hence,

P(Xn(·; v) ≥ εn) ≤ P

(
min

k=i0,...,n−1
‖ωk − v‖ ≥ ε̃n

)

= P (‖ωk − v‖ ≥ ε̃n ∀k ∈ {i0, . . . , n − 1})

=
n−1∏
k=i0

P (‖ωk − v‖ ≥ ε̃n) =
n−1∏
k=i0

(
1 − |Bε̃n

(v)|
|Vad |

)

≤
(
1 − |Bε̃n

(v)|
|Vad |

)an

=
(
1 − ν · n

− dv
max(2,dv)

+ dv δ
2

)an

,

with ν := π
dv
2

�( dv
2 +1)|Vad | . Thus

P(Xn(·; v) ≥ εn) ≤
(
1 − ν · n

δ
2

an

)an

.

By the limit comparison test, the corresponding
series converge. Finally, note that Assumption 5 gives
that v ∈ V

εn

ad implies Bεn(v) ⊂ Vad and therefore

sup
v∈V

εn
ad

P(Xn(·; v) ≥ εn) ≤
(
1 − ν · n

δ
2

an

)an

.

As a direct consequence of the latter result, we obtain
almost sure convergence:

Corollary 14 (Density of ω in Vad) For all v ∈ Vad

Xn( · ; v) −→ a.s.0 for n → ∞.

Proof The result follows by Lemma 1 and the Borel-
Cantelli Lemma, see, e.g., Klenke (2013, Thm. 6.12).

Thus, due to the Lipschitz continuity of ∇uf , and DJ

the integral in ∇F(un) is increasingly is increasingly better
approximated by Ĝn for n → ∞ :

Corollary 15 (Error in gradient approximation) The
norm of the difference between approximate gradient Ĝn in
the nth iteration (defined in Algorithm 1) and the gradient
of the exact objective functional ∇F in un goes to zero, i.e.,

‖Ĝn − ∇Fn‖ −→ a.s.0, lim
n→∞E

[
‖Ĝn − ∇Fn‖

]
= 0

and
∞∑

n=0

τnE

[
‖Ĝn − ∇Fn‖

]
< ∞. (3.2)
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Proof For v ∈ Vad, define

kn(v) := argmin
k=1,...,n

{∥∥∥∥
(

uk(ω) − un(ω)

ωk − v

)∥∥∥∥∗

}
.

Then,

Ĝn =
∫

Vad

DJ (f̂ (un, ·), ωkn(v))∇uf̂ (un, v) dv,

where f̂ (un, v) := f (ukn(v), ωkn(v)). By the Lipschitz
continuity assumed in Assumption 1, we therefore obtain
the following:

‖Ĝn − Fn‖ ≤
(
C∇uf L

(1)
DJ

max{L(1)
f , L

(2)
f } + C∇uf L

(2)
DJ

+CDJ max{L(1)
∇uf

, L
(2)
∇uf

}
)∫

Vad

Xn(ω; v) dv,

with constants defined in Definition 4 and Xn(·; v) as
defined in Lemma 1. Recall thatUad, Vad are bounded. Now,
the almost sure convergence, as well as the convergence
of the expectations, is followed by Lebesgue’s dominated
convergence result.

Finally, let C be a generic constant and ε > 0. Since
supv∈Vad

Xn(·; v) ≤ D < ∞, where D := diam(Vad) +
diam(Uad) denotes the diameter of Vad plus the diameter of
Uad, and by Fubini’s theorem, we have the following:

E

[
‖Ĝn − ∇Fn‖

]
≤ C E

[∫
Vad

Xn(·; v)dv

]

≤ C

∫
Vad

εP(Xn(·; v) ≤ ε) + 2D P(Xn(·; v) > ε) dv

≤ C

(
ε+

∫
Vad\V ε

ad

P(Xn(·; v) > ε) dv +
∫

V ε
ad

P(Xn(·; v) > ε) dv

)

≤ C

(
2ε + sup

v∈V ε
ad

P(Xn(·; v) > ε)

)
,

where V r
ad is given in Assumption 5. If we choose ε = εn =

2C∇uf c2 · n− 1
2 + n

− 1
max(2,dv)

+ δ
2 as in Lemma 1, we obtain the

following:
∞∑

n=1

τnE

[
‖Ĝn − ∇Fn‖

]

≤ C

⎛
⎝ ∞∑

n=1

1

n1+δ
+ 1

n1+ δ
2

+sup
v∈V

εn
ad

P(Xn(·; v) > εn)

⎞
⎠ < ∞,

which concludes the proof.

3.3 Convergence result

As we have seen in Corollary 14, the error ‖Ĝn − ∇Fn‖
converges almost surely and in expectation to zero for n →
∞. It remains to provide sufficient conditions under which
the algorithm converges to a stationary point.

Lemma 16 (Objective functional values) The difference
of the objective functional values in iteration n ∈ N can be
approximated as follows:

Fn+1 − Fn ≤ − 1

τn

‖un+1 − un‖2 + φn,

with φn := τn‖∇Fn − Ĝn‖ · ‖Ĝn‖ + τ 2nC‖Ĝn‖2.

with a constant C ∈ R≥0 depending on the lipschitz
constants and suprema of the involved functions.

Proof By the mean value theorem, there is a c ∈ (0, 1) such
that (we set ∇Fc

n := ∇F((1 − c)un + cun+1)

Fn+1 − Fn = (∇Fc
n )T (un+1 − un)

= ∇FT
n (un+1 − un) + (∇Fc

n − ∇Fn)
T (un+1 − un)

≤ ∇FT
n (un+1 − un) + C‖un+1 − un‖2,

using the Cauchy–Schwartz inequality and Definition 4.
Recall that un+1 = PUad(un − τnĜn). With Lemma 11 (b),
(c), and the Cauchy–Schwartz inequality for the first term
of the right-hand side of the latter equation, we obtain the
following:

∇FT
n

(
PUad(un − τnĜn) − un

)

= ĜT
n

(
PUad(un − τnĜn) − un

)

+(∇Fn − Ĝn)
T

(
PUad

(un − τnĜn) − un

)

≤ − 1

τn

(un − τnĜn − un)
T ·

(
PUad

(un − τnĜn) − un

)

+‖∇Fn − Ĝn‖‖PUad
(un − τnĜn) − un‖

≤ − 1

τn

‖un+1 − un‖2 + τn‖∇Fn − Ĝn‖‖Ĝn‖.

Applying Lemma 11 (c) to the second term yields
‖PUad(un − τnĜn) − un‖2 ≤ τ 2n‖Ĝn‖2.

Since the first term in right-hand side of the estimate in
the above Lemma is strictly negative while the second term
is strictly positive, we may expect a descent, providedE [φn]
is small enough.

Corollary 17 (Convergence result) We have the following:

∞∑
n=0

E [φn] < ∞,

where φn := τn‖∇Fn − Ĝn‖‖Ĝn‖ + τ 2n
C∇uf

2 ‖Ĝn‖2.

Proof Since ‖Ĝn‖ is bounded and
∞∑

n=1
τ 2n < ∞ by

Assumption 6, the result follows by (3.2).
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Before we present our main results, we need the
following auxiliary result:

Lemma 18 (Projection of gradient steps)

‖PUad(un − tĜn) − un‖≤ t

τn

‖un+1 − un‖ t ≥ 0.

Proof Define x := un, y := Ĝn, and τ := τn. We assume
that x − τy /∈ Uad (otherwise the result follows by Lemma
11) and set nτ := x − τy − PUad(x − τy) and

H := {u ∈ R
du | uT nτ ≤ PUad(x − ty)T nτ }.

Since Uad is convex, we have Uad ⊂ H , and therefore
∀u ∈ R

du by Lemma 11,

‖u − x‖ ≥ ‖PH (u) − x‖ ≥ ‖PUad(u) − x‖, (3.3)

where PH is the orthogonal projection onto H (compare
Fig. 3). With B := t

τ

(
PUad(x − τy) − x

) + x and (3.3), we
have the following:

t

τ
‖PUad(x − τy) − x‖ ≥ ‖PH (B) − x‖

= ‖PH (x − ty) − x‖ ≥ ‖PUad(x − ty) − x‖.

Recalling the characterization of stationary points from
Corollary 12, we obtain our first main result:

Theorem 19 (Convergence result) For all t ≥ 0,

∞∑
n=0

τnE

[
‖PUad(un − t∇Fn) − un‖2

]
< ∞.

Proof First, note that by the compactness of Uad and
regularity of F , Finf := infu∈Uad F(u) > −∞. Summing

Fig. 3 Illustration of the intercept theorem for the proof of Lemma 17

both sides of the inequality in Lemma 16 up to an N ∈ N

gives the following:

Finf − F0 ≤ E
[
FN+1

] − F0 =
N∑

n=0

E
[
Fn+1 − Fn

]

≤
N∑

n=0

(
− 1

τn

E

[
‖un+1 − un‖2

]
+ E [φn]

)
.

Hence, by Corollary 17,

∞∑
n=0

1

τn

E

[
‖un+1−un‖2

]
≤ F0−Finf+

∞∑
n=0

E [φn] < ∞.

Using Lemma 11 (ii) together with Lemma 18 gives for all
n ∈ N sufficiently large,

‖PUad(un − t∇Fn) − un‖2
≤

(
‖PUad(un − tĜn) − un‖

+ ‖PUad(un − t∇Fn) − PUad(un − tĜn)‖
)2

≤
(

t

τn

‖un+1 − un‖ + t‖Ĝn − ∇Fn‖
)2

.

Since ‖un+1−un‖ ≤ τn‖Ĝn‖, this combined with Corollary
15 gives the result.

As a direct consequence, we have the following:

Theorem 20 (Main theorem) Let (un)n∈N be generated
by Algorithm 1. Then, there exists a sub-sequence (unk

)k∈N
converging to a stationary point, i.e.,

lim inf
n→∞ E

[
‖PUad(un − t∇Fn) − un‖2

]
= 0 ∀t > 0.

Proof Direct consequence of Theorem 19.

For applications, the condition on the step length (Assump-
tion 6) is inconvenient, since the step length becomes very
small and the algorithm thus progresses only slowly. If the
algorithm is performed with a constant stepsize, and if the
sequence (un)n∈N converges to some u∗ ∈ Uad, then the
following theorem demonstrates that u∗ is a stationary point.

Theorem 21 (Convergent series) Assume the time-step
series (τn)n∈N satisfies τn ≥ τ ∀n ∈ N for some τ > 0.
Let further (vn)n∈N be dense in Vad and assume (un)n∈N
converges to u∗ ∈ Uad. Then, u∗ is a stationary point of F ,
i.e.,

E

[
‖PUad(u

∗ − t∇F(u∗)) − u∗‖2
]

= 0 ∀t > 0.
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Proof Similar to Corollary 15, ‖Ĝn −∇Fn‖ → 0. Thus, by
convergence of (un)n∈N, we obtain the following:

‖PUad(u
∗ − t∇F(u∗)) − u∗‖

= lim
n→∞‖PUad(un − t∇Fn) − un‖

≤ lim
n→∞

(
‖PUad(un − tĜn) − un‖

+ ‖PUad(un − tĜn) − PUad(un − t∇Fn)‖
)

≤ lim
n→∞

t

τn

(
‖PUad(un − τnĜn) − un‖

+ ‖PUad(un − tĜn) − PUad(un − t∇Fn)‖
)

≤ lim
n→∞

t

τ
‖PUad(un − τnĜn) − un‖ + lim

n→∞t‖Ĝn − ∇Fn‖

= t

τ
lim

n→∞‖un+1 − un‖ + t lim
n→∞‖Ĝn − ∇Fn‖ = 0

by Lemma 18 and Lemma 11 (c).

Note that almost all sequences (vn)n∈N that are given
by the random number generator in Algorithm 1 are dense
in Vad. In addition to the convergence properties shown
in the latter theorems, the algorithm also approximates the
objective functional value with arbitrary accuracy:

Corollary 22 (Approximation of F ) Let the series
(un)n∈N be generated by Algorithm 1. Then, for all
convergent subsequences (unk

)k∈N with unk
→ u∗, we

obtain for F̂ as defined in Alg. 1: |F̂nk
− F(u∗)| a.s.→

0, assuming further (vnk
)k∈N is dense in Vad, we obtain

limk→∞ F̂nk
= F(u∗).

Proof The proof is similar to the proof of Lemma 1 relying
on the Lipschitz continuity of F—as a direct consequence
of Assumption 1—and Corollary 13.

Remark 23 (Termination condition) By the regularity
assumption on the objective functional in Assumption 1,
the termination condition in Algorithm 1 can be posed as
follows:

‖PUad

(
un − Ĝn

)
− un‖ ≤ ε

for ε > 0. This is obviously not possible for SG. To satisfy
such a condition by the SAG method, the discretization
of the objective functional has to be sufficiently fine
in order to approximate the gradient with sufficiently
accurate. However, depending on the particular example, an
a priori discretization satisfying this property can be hard to
determine.

4 Numerical results

In this section, we will compare the following stochastic opti-
mization methods mentioned in the introductory section:

– CSG (continuous stochastic gradient method): as intro-
duced in Section 2, this scheme relies on the compu-
tation of a single gradient in each iteration and the
interpolation with previously computed information.

– SG (stochastic gradient method): the classical stochas-
tic optimization scheme as outlined in Bottou et al.
(2018). The convergence of the method is based on on
decreasing stepsizes.

– SAG (stochastic average gradient method): an
improved stochastic gradient scheme as introduced in
Schmidt et al. (2017) restricted to the case of a finite
sum as objective rather than an integral. The true
advantage of possible larger stepsizes can be seen in
the examples and is also valid for CSG. We will write
SAGn (n ∈ N) for an SAG method relying on an n-step
quadrature rule to discretize the integral in the original
objective.

The performance of these methods strongly depends
on the chosen stepsizes. In the following examples, the
stepsizes are chosen such that all the schemes have a good
performance, in the range of their possibilities. However,
adaptive stepsize control (also known as learning rate in
the field of machine learning) is itself a subject of research
for stochastic optimization schemes and is not the focus of
this contribution. For example, in Kingma and Ba (2015),
the stepsizes are derived from estimates of first and second
moments of the gradients and in Tan et al. (2016), a Barzilai-
Borwein-type stepsize adaption is discussed.

To compare the methods, we have chosen the following
way to display the results. For a large number of
optimization runs, we compute the quantile curves αp(n)

defined as P(un > αp(n)) = p for p ∈ (0, 1). With this, we
define the quantile sets Pp,q which lie in between the p and
the q-quantile, i.e.,

Pp,q :={
(n, v) ∈ N × Uad : αp(n))<un <αq(n))

}
. (4.1)

These areas will be colored in various degrees of opacity
in order to show the behavior of the optimization procedure
in its probabilistic nature.

First, we will compare the algorithms by optimizing the
function defined in (2.1) and equivalently in (4.2), as well as
an additional academic objective functional which will be
defined in (4.3).
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Fig. 4 The analytic function F (blue) given in (4.3) and the function
F discretized with 4 (red), 8 (yellow) equidistant discretization points

4.1 Academic examples

We will study the behavior of the algorithms in the
following two cases:

F(u) :=
∫ 1

−1

v2

(u − v)2 + 10−3
dv (4.2)

as introduced in (2.1) (see Fig. 1) and

F(u) :=
∫ 1

−1
(tanh(10v − 1) − u)2 dv. (4.3)

(see Fig. 4).

Fig. 5 Comparison of CSG (top row, green), SG (second row, blue),
SAG4 (third row, purple), and SAG8 (bottom row, red) in the case of
objective functional (4.2) with stepsize τn = 10−1n−0.6 (left column)
as well as constant stepsize τn = 10−4 (right column) for 256 opti-
mization steps each. The shaded areas denote from light to dark the

quantile sets P0.1,0.9, P0.2,0.8, P0.3,0.7, and P0.4,0.6 as defined in (4.1).
The dashed magenta line denote the optimal value of F . It is noted that
in the case of SAG4 and SAG8, convergence towards different local
minima introduced by the discretization is observed

To be able to apply the SAG algorithm, we approximate
the integral by the trapezoidal rule in both cases. For this, we
use an equidistant grid, i.e., for N ∈ N, v0 := −1, we define
vi = v0 + kh k = 1, . . . , N + 1 with h := |Vad|

N
= 2

N
. In

this way, F is approximated as follows:

F(u) =
N∑

i=1

∫ vi

vi−1

f
(
u, v

i+ 1
2

)
dv ≈ 2

m

N∑
i=1

f
(
u, v

i− 1
2

)
.

The optimization problem considered in the SAG case, thus
reads as follows:

min
u∈Uad

2

N

N∑
i=1

f
(
u, v

i− 1
2

)
. (4.4)

The approximation error directly depends on the second
derivative of f w.r.t., the second argument and the grid-
spacing h, that is, the number of intervals. A finer grid thus
leads to a better approximation, but also, for a deterministic
gradient descent method, to a high number of problems to
solve in each iteration.

The comparison of the algorithms is based on the
number of function evaluations as these constitute the
time-consuming steps for complex optimization tasks. We
compare two different settings, one with a stepsize which
is proportional to n−0.6 (see left column in Figs. 5 and 6)
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and one with an appropriately chosen constant stepsize (see
right column in Figs. 5 and 6). The shaded areas in Figs. 5
and 6 denote the quantile sets as defined in (4.1) for the
10 and 90% quantile (light), 20 and 80% quantile and 30
and 70% quantile (medium dark), as well as 40 and 60%
quantile (dark). The quantiles are based on 105 optimization
runs each with randomized initial datum. The black lines
in the Figs. 5 and 6 identify the median for CSG and SG.
In SAG4 and SAG8, they identify the median of the series
converging to one of the local minima. In addition to this,
the line thickness and the patch opacity is proportional to the
probability of converging to the respective local minimum.

Results of numerical experiments In case of objective
functional (4.2) optimized by SAG4 and SAG8, the
algorithm converges to one of the three or five local minima
of the discretized objective functional, respectively (see
Fig. 1 with N = 4 and N = 8). In contrast to SAG, SG
(in the case of decreasing stepsizes, see Fig. 5, left) and
CSG (in both considered cases, see Figs. 5 and 6) converge
to the optimal value of F . The “failure” of SAG is due
to the fact that SAG is only approximating the original

objective functionals. On the other hand, it is clear that
for a sufficiently regular function (see Assumptions 1), the
optimal values of SAGN converge to the optimal solution of
the original problem for N → ∞. However, a sufficiently
large number N is in general not known a priori. Thus, even
for a large N , it is not clear how (local) optimal solutions
u∗ as well as their objective functional values F(u∗) are
affected by the discretization of the integral. Moreover, the
convergence of the SAGmethod becomes slower with larger
N as can be clearly seen from the more diffuse quantile sets
in Figs. 5 and 6.

Figures 5 and 6 clearly show the advantage of CSG as
it converges considerably faster in comparison to SG and
does not converge to an artificial local minimum as SAG.
While SG also approaches the optimal value at least in the
case with decreasing stepsize, the speed of convergence is
considerably lower compared to CSG. The true potential
of CSG comes into play whenever constant stepsizes τn

are chosen. This can be seen in the right columns of
Figs. 5 and 6. It should be noted that the stepsize could be
adapted individually for each method, in order to approach
a slightly better convergence behavior. In particular, the

Fig. 6 Comparison of CSG (top row, green), SG (second row, blue),
SAG4 (third row, purple), and SAG8 (bottom row, red) in the case of
objective functional (4.3), stepsize τn = n−0.6 (left column) as well as
constant stepsize τn = 10−2 (right column) for 64 optimization steps
each. Note that the stationary point for SAG differs from SG and CSG

due to the discretization of the objective functional. The shaded areas
indicate, from light to dark, the quantile sets P0.1,0.9, P0.2,0.8, P0.3,0.7,
and P0.4,0.6 as defined in (4.1). The dashed magenta line denote the
optimal value of F . The artificially looking jump in the area plots are
due to the non-symmetry of the objective functional
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constant stepsize we have chosen uniformly for all methods
seems to be too large for SG. On the other hand, CSG can
easily handle this stepsize.

Finally, it is observed that CSG combines the advantages
of SAG and SG. For instance, in the left column in Fig. 6,
SAG4 converges quickly but unfortunately to the “wrong”
result, while SG converges to the correct limit point, but
convergence is very slow. In contrast, CSG converges
quickly to the correct limit point.

Another advantage of CSG is that according to Theorem
20, Corollary 21 and as discussed in Remark 22, the CSG
algorithm can be stopped whenever the objective function
is approximated with defined accuracy and the first-order
optimality conditions are satisfied within a given error
tolerance. This is, in general, neither possible for SG nor for
SAG.

4.2 Structural optimization example

As a design optimization test case, we have chosen the
optimization of a 2D tire, fixed at the midpoint and loaded
from an arbitrary direction. A weighted sum of the expected
compliance, a volume penalization term and a regularization
term form the objective functional.

In detail, we consider the design domain Ω := {x ∈ R
2 |

0.1 < ‖x‖ < 1}—an annulus—which is subject to a load
described by the function

g(x) = hα(arctan2(x1, x2))n(x) (4.5)

on the outer boundary ΓN ⊂ ∂Ω , and fixed with a
homogeneous Dirichlet condition on the inner boundary
ΓD ⊂ ∂Ω (see Fig. 7). Here, n(x) denotes the outer normal
vector in x ∈ ∂Ω and hα : R → R denotes for α ∈ R the
scalar function:

hα(β)=1 + tanh
(
103 (cos (β − α) − 1) + 10−1

)
. (4.6)

The angle α describes the position where the boundary
force takes its maximum value and the function can be seen
as a smoothed Dirac force on the boundary (see Fig. 8).

In Ω , material properties are defined using a pseudo
density function ρ which is used to scale a given isotropic
material characterized by Lamé parameters λ and μ.
Denoting this material by E, the resulting material function
is given by the SIMP law ρpE, with a penalty parameter
p > 1, see Bendsøe (1989). We assume that the material
properties are fixed close to the outer boundary and thus set
the pseudo density ρ is set to 1 in this part of the domain,
i.e., ρ|

Ω̂
≡ 1 with Ω̂ := {x ∈ R

2 | 0.9 < ‖x‖ < 1} (see
Fig. 7, yellow marked area). In the rest of the domain, ρ

serves as design variable and is allowed to vary between a
small positive value ε and 1.

Now, for each admissible design ρ and each α ∈ [0, 2π ]
a linear elasticity problem, the so-called state problem is

Fig. 7 Design setting for optimization problem (4.8). The normal
force defined in (4.5) acts on the Neumann boundary ΓN ; ΓD is a
homogeneous Dirichlet boundary and Ω is subdivided into the green
region which is subject to optimization and a yellow region Ω̂ with
ρ = 1

defined on Ω applying boundary conditions as described
above. The corresponding state solution is denoted by
u(ρ, α).

The optimization goal is to minimize the expected
compliance for angles α ∈ [0, 2π ]. In addition, we
introduce a term to penalize the total material consumption
and a filter regularization term as proposed in Semmler et al.
(2018, Section 3.2). This leads to the objective functional as
follows:

∫ 2π

0
J (ρ, u(ρ, α)) dα,

where

J (ρ, u) := γ0

∫
ΓN

u(x) · g(x) dx

+γv

∫
Ω

ρ dx + γϕ

∫
Ω

(
ρ − ρ ∗ ϕ

1 ∗ ϕ

)2

dx, (4.7)

γ0, γv, γϕ > 0 are given scaling parameters, “ ∗ ” denotes a
convolution operator in R2 and the filter kernel ϕ : R2 → R

is defined by the following:

ϕ(x) := max{0, r0 − ‖x‖}

Fig. 8 Plot of hα as defined in (4.6) for α = π
2 , showing the magnitude

of the normal force g defined in (4.5) acting on ΓN of the domain
visualized in Fig. 7
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with radius r0 > 0. By finite element discretization, this
leads to the following optimization problem:

min
ρh∈[ε,1]M

∫ 2π

0
jh(ρh, uh(ρh, α)) dα,

s.t . K(ρh)uh(ρh, α) = gh(α), α ∈ [0, 2π ]. (4.8)

Here, M is the number of design variables, K(ρh) ∈
R

N×N denotes the global stiffness matrix with N degrees
of freedom, and gh(α) ∈ R

N the right-hand side of the
linear elastic state problem with the load centered in angle
α in finite element notation. Moreover, jh is the discretized

Fig. 9 Comparison of CSG (green), SG (blue), SAG8 (purple), and
SAG16 (red) in the case of objective functional (4.7) with τn = 5 ·
103n−0.6 (top) as well as constant stepsize τn = 750 (bottom) and 2048
optimization steps each. Note that the stationary point for SAG differs
from SG and CSG due to the discretization of the objective functional.
The shaded areas denote the quantile sets P0.1,0.9 (light) and P0.25,0.75
(dark) as defined in (4.1). This plot clearly shows the advantage of
CSG in terms of speed of convergence as well as resulting objective
functional value

equivalent of J . In the following example, the parameters
are chosen as follows: γ0 = 1, γv = 0.1, γϕ = 1, r0 = 0.05,
and SIMP parameter p = 3 (see, e.g., Bendsøe (1989)).
As material parameters, we have chosen λ = μ = 1 and,
choosing ε = 10−2, the void stiffness was defined as 10−6.

Computational optimization results As in the academic
examples presented in Section 4.1, we show and compare
results for SG, SAG, and CSG. All optimization runs have
been started with ρ ≡ 1

2 in the design domain Ω \ Ω̂ .
The linear elasticity problem is discretized using ≈ 40 · 103
unstructured triangular elements generated by TRIANGLE

(see Shewchuk (1996)). Using first-order Lagrange basis
functions, this discretization results in approximately the
same number of degrees of freedom in terms of uh. The
design domain comprises roughly 20 · 103 degrees of
freedom in terms of ρh. The implementation is performed
in MATLAB and the linear system is solved using the direct
solver available through the backslash operator.

Analogous to the previous experiments, we have chosen
a suitable initial stepsize and have discretized the integral
in (4.8) for SAG using a trapezoidal rule. Again, the SG
method is applied to its undiscretized version to omit
dependencies on the choice and accuracy of the quadrature
rule. For validation and comparison purposes, the objective
function is further approximated with the trapezoidal rule
using a total of 180 equidistant discretization points to
ensure a good approximation for the expected compliance.

In Fig. 9, the distribution of obtained objective functional
values for 480 optimization runs with 2048 steps each is
compared for the different methods with appropriately chosen
stepsize rules. The presented results clearly show the fast
convergence of CSG in comparison to the other schemes.

Moreover, in Fig. 10, a rapid convergence of the
increasingly better approximated objective function values
is observed when applying the CSG method to the structural
optimization problem. It is noted that, by construction, this
type of convergence can neither be expected for the SG nor
for the SAG method.

In Fig. 11, the so-called physical density ρp is shown for
SAG, SG, and CSG for constant stepsize. While SG does

Fig. 10 Relative error between the approximated objective functional
by CSG and the objective functional approximated by 180 load cases in
the case of the functional stated in (4.7) and constant stepsize. It shows
a clear convergence trend of the approximated objective functional
value F̂ (see Algorithm 1) to the true objective functional value F as
predicted by Corollary 21
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Fig. 11 Comparison of the
solution ρp for SG
(left column), SAG8
(middle column), and CSG
(right column). The rows show
from top to bottom the solution
of one optimization run after
128,256,512,1024, and 2048
optimization steps in the case of
objective functional (4.7) and
optimization problem defined in
(4.8) with suitable constant
stepsize. In the middle column,
one can clearly see the eight load
cases applied in the discretized
objective functional of SAG8.
For each optimization method,
the run with the lowest resulting
objective functional was chosen

not converge in 2048 iteration, SAG converges, though the
resulting density distribution is strongly influenced by the
discretization of the objective functional—note the 8 struts
corresponding to the 8 discrete load cases applied (see the
middle column of Fig. 11). No such effect is observed in the
case of the CSG result (right column of Fig. 11). Moreover,
the CSG result appears to be much clearer compared to the
SG result, which is due to faster convergence.

It is finally noted that, in the interest of comparability,
we have not applied any continuation scheme (e.g., SIMP
parameter p → ∞), which would result in a true “black

and white” solution, i.e., ρ(x) ∈ {0, 1} ∀x ∈ Ω \ Ω̃ . This is
of course necessary to achieve a physical interpretable and
manufacturable solution. We leave the question of defining
a continuation scheme suitable for CSG as a subject for
further research.

5 Conclusion and outlook

In this work, we introduced the continuous stochastic
gradient method, which is applicable for the solution of a
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broad class of structural optimization problems. Preliminary
experiments with notorious academic examples as well
as an application from mechanics, in which an elastic
structure has been optimized with respect to infinitely
many load cases, revealed that the CSG method performed
better than both, the traditional SG method and its relative,
SAG, in the sense that a significantly lower function value
could be obtained in a defined number of iterations. This
is particularly interesting as the CSG algorithm requires
roughly the same computational effort per optimization
iteration as the SG and the SAG method. Moreover, like the
SAGmethod, it benefits from gradient information obtained
in previous iterations. Importantly, the CSG method does
not require an a priori discretization of integrals entering
the objective function, and the function value and gradient
can be approximated with arbitrary precision throughout the
optimization iterations. The latter results in the CSGmethod
approaching a full gradient method throughout the course of
the iterations.

While the CSG method appears promising, to obtain
a full picture of its behavior when applied to practical
applications, more examples, e.g., from robust optimization,
acoustics, or optics should be tested in future.

Furthermore, from a theoretical point of view, an analysis
covering the convergence rate for convex functions would
be helpful to provide a deeper understanding of the
algorithm. It should also be noted that the computational
effort of computing the gradient weights αn

0 , . . . , α
n
n

grows with each iteration. As compensation, an efficient
implementation of the algorithm is crucial. While this can
easily be done in the case of a one-dimensional index
set Vad, the question remains how this can be achieved
in higher dimensions. Other interesting questions center
around how Lipschitz constants can be estimated throughout
the optimization process and how the stepsize can be
automatically adapted.

Finally, similarly as suggested in De et al. (2020),
a combination with established structural optimization
algorithms as, for instance, GCMAA is conceivable.
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