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Abstract We present a novel approach for efficient opti-
mization of systems consisting of expensive to simulate
components and relatively inexpensive system-level sim-
ulations. We consider the types of problem in which the
components of the system problem are independent in the
sense that they do not exchange coupling variables, how-
ever, design variables can be shared across components.
Component metamodels are constructed using Kriging. The
metamodels are adaptively sampled based on a system level
infill sampling criterion using Efficient Global Optimiza-
tion. The effectiveness of the technique is demonstrated by
applying it on numerical examples and an engineering case
study. Results show steady and fast converge to the global
deterministic optimum of the problems.

Keywords System optimization - Kriging - Expected
improvement - Efficient global optimization - Infill
sampling - Gaussian processes

1 Introduction

Optimization of systems has been dealt with in different
ways depending on the problem type. The field of multidis-
ciplinary design optimization has evolved at a fast rate in the
past decades with the development of various methods and
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techniques to address optimization of systems with many
components or disciplines. In multidisciplinary design opti-
mization the primary focus has been on optimization of
systems involving multiple interactions between disciplines
which are coupled with one another via coupling variables.
Various techniques have been developed that aid in main-
taining consistency between these disciplines during the
optimization process (Martins and Lambe 2013).

A majority of systems falls under the category of a prob-
lem where multiple components have complex interactions
with one another. However, a subset of engineering and non-
engineering systems consists of components that are not
interdependent. Such systems may contain several compo-
nents but the response of these components can be evaluated
independently of one another. In other words, the bi-level
problem has a hierarchical structure where, at the lower
level, each component in the system is only a function of
design variables and there is no exchange of coupling vari-
ables between components. In other words, the input-output
relation of a component is not influenced by the response of
any other components. For this type of problem there is no
requirement for maintaining consistency between the differ-
ent disciplines or components and the system optimization
process is therefore much simpler.

In addition, components could be expensive to evalu-
ate but the system transformation may be cheap. Systems
of this type are common in the field of integrated optics
(Lifante 2003). The response of integrated optical compo-
nents such as power splitters, directional couplers and phase
shifters can be obtained independently of other components.
Finding the component response usually requires compu-
tationally expensive electromagnetic simulations. Multiple
such components can be used to develop complex inte-
grated optical systems. An example of such a system is an
integrated optical serial ring resonator (Ahmed et al. 2011).

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s00158-017-1663-y&domain=pdf
mailto:M.Langelaar@tudelft.nl

1144

S. Ur Rehman and M. Langelaar

This work addresses optimization of deterministic hier-
archical systems based on independent components that are
expensive to evaluate. It is assumed that, once the compo-
nent responses are available, the system response is cheap
to compute. In order to optimize the system we construct
response surfaces of the underlying components. The accu-
racy of the response surfaces depends on the number of
samples and their locations. The challenge is to perform the
optimization with a desired accuracy at very low computa-
tional cost. The response surfaces are built using Kriging
(Sacks et al. 1989). Kriging provides an estimator of the
Mean Squared Error (MSE) in its interpolation. This MSE
was used by Jones et al. (1998) to develop the Expected
Improvement (EI) criterion in Efficient Global Optimiza-
tion (EGO). The EI criterion enables adaptive sampling of
unconstrained problems in order to estimate the optimum
using relatively few expensive simulations.

We develop a system level EI criterion that is derived
from a system level MSE. The system MSE is found by
performing a linear transformation of the component level
MSE generated by each component metamodel. The sys-
tem level EI suggests a potential location to be adaptively
sampled at each iteration of the algorithm and the compo-
nent metamodels are updated at the corresponding location.
The iterative update of the component metamodels results
in a higher fidelity system response with each passing iter-
ation. The process enables the optimum of the system to
be estimated using relatively few component simulation
calls.

Metamodels have often been used in multidisciplinary
optimization (Viana et al. 2014). Improving systems by
adaptively sampling component metamodels is also a
fairly well known concept (Li et al. 2006; Hu et al.
2011). Optimization of multilevel decomposed systems that
have a hierarchical structure has also received attention
(Kokkolaras et al. 2004). Similarly, (Barton 1997) employed
different strategies for component metamodel construction
and update for system level optimization. Research has also
been previously performed on partitioning expensive prob-
lems with a large number of variables so that they can be
treated using component metamodels in a multilevel sys-
tem framework (Koch et al. 2000), Haftka2005. On the
other hand, (Xiu et al. 2013) specifically studied the quan-
tification of error at system level due to component level
metamodels in a hierarchical system.

This work also aims to optimize a multi-level problem
with a hierarchical structure. The bi-level problem con-
sists of a cheap system transformation at the upper level
and expensive component models at the lower level. To
our knowledge, there has been no previous work on a sys-
tem level expected improvement based sampling strategy
for optimization of systems involving expensive to simu-
late components that are independent of each other. The
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proposed approach can efficiently optimize such systems,
provided the number of component variables is so small that
high fidelity component metamodels can be built using a
reasonable number of simulations.

The method is especially relevant for systems in which
the component behavior is easier to approximate than sys-
tem behavior. Also, it may be advantageous to employ
the technique in situations where many similar compo-
nents are present in the system since a single metamodel
can then often replace multiple components. Furthermore,
the approach is attractive for fields in which the systems
are typically composed of a selection of a small set of
components.

The paper is organized as follows. The system level opti-
mization problem of systems with independent components
is described in Section 2. In Section 3, we introduce Kriging
and EGO and then present the system level EI approach for
adaptive sampling of the system. The algorithm is tested on
several well known numerical test problems and the result
is analyzed in Section 4. The application of the algorithm
on a practical engineering problem is shown in Section 5.
Finally, Section 6 contains the conclusions and suggestions
for future work.

2 Optimization of systems with independent
components

We introduce unconstrained optimization of the system in
this section, but the method also applies to constrained
problems. The constrained problem will be discussed in
Section 3.1.3.

Let S represent the response of a system of a set of
N uncoupled components ¢. Each component c¢;, where
{ili € N,i <N}, is a function of design variables x; €
X; <€ X. Since design variables could potentially be shared
across components, the sets X; to X s may or may not be
disjoint. In addition, some design variables x; € X; may
only be present at system level, or may be present at both
component and system level. The union of sets X; Vi €
N and X; is the set X. We define design variables that
are only present in a single component as local variables.
Design variables that are present in multiple component or
at both component and system level are referred to as global
variables. The optimization of the system response can be
written as,

Egsrgl S(c1(x1), c2(x2), ¢3(X3), ..., cAF (XA, Xg). (D

If the system response is based on expensive to simulate
components, then applying optimization directly on the sys-
tem response is prohibitively costly. A more viable option
instead is to construct lower dimensional (i.e. cheaper)
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metamodels /C.; of the components and to apply optimiza-
tion on the resulting system,

I;‘gslg SIC(ICCI (x1), ICCZ(XZ)s ey ’CCN(XN)a Xs). (2)

The optimization problem in (2) is visualized in Fig. la.
In this work, we construct the metamodels using Kriging
which provides an estimator of the error in its interpolation.
We then adaptively sample the component metamodels in
such a way that the system optimum is found using only a
limited number of expensive simulations of the components.

The fidelity of the system response that is based on com-
ponent metamodels will heavily depend on the error of the
underlying component response surfaces. Furthermore, the
relative amount of system error is also governed by the opera-
tion that is performed on the component responses in order to
arrive at the system response. This operation could turn a
small component error into a large error contribution on the
system level and vice versa. Therefore, itis important that any
adaptive sampling of the components takes into account the
error generated at system level. In the following section we
show how such an adaptive sampling scheme can be developed.

3 Infill sampling criterion for system level
optimization

3.1 Kriging and efficient global optimization
3.1.1 Kriging

Kriging is a metamodelling method that constructs the best
linear unbiased predictor through a set of responses based

Optimizer

(a)

on certain statistical assumptions. The most important of
these assumptions is that the function responses (outputs) at
two input locations (points) are more correlated, the closer
these points are. Kriging is also a popular method for con-
structing response surfaces of fully deterministic simulation
results (Forrester et al. 2008). Before introducing our new
method in Section 3.2, we provide a condensed explanation
of the main steps in Kriging metamodel construction. Some
equations are included in the Appendix, for reference. Sacks
et al. (1989) provide a full description of Kriging.

Kriging uses a tunable basis function which usually takes
the form of a parameterized Gaussian correlation function,
(3), to measure the correlation between the outputs at sam-
ple points. This correlation between these outputs is given
by the following expression

k
Corr [Y(xi), Y(xj)] =exp| — ZQq (xiq - qu)2 3
qg=1

where x; and x; are any two locations in the domain and k
is the number of dimensions and 6, w, o2 are the param-
eters to be estimated via Maximum Likelihood Estimation
(MLE).

The Kriging prediction y at a previously unsampled loca-
tion then uses the MLE of the Kriging parameters. The
Kriging prediction y is approximated by

Fx) =i+ TRy — 172) 4)

where [1 is the estimated mean, Ris the N x N estimated
correlation matrix between the N samples, T is the vector
of estimated correlations between the observed data and the
new prediction and y is the observed response.

Optimizer

(b)

Fig. 1 a shows the process of optimization of the system based on metamodels of the independent components is shown. In b, a type of problem
in which dependence exists between the underlying components of the system is illustrated
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An important aspect of Kriging is that a potential error in
the interpolation can be estimated. The MSE estimate in the
Kriging prediction is approximated by the following equa-
tion, which ignores the noise created when the unknown
Kriging parameters are estimated,

1— 1T1A1—1f~}

- ®)
1TR-11

s2(x) = 62 [1 — iR+

where 62 is the MLE of o2. The error increases as the dis-
tance between the new point and the old points increases (if
the new point coincides with an old point, then the error is
exactly zero).

3.1.2 Efficient global optimization

The combination of the Kriging prediction y(x) and MSE
s2(x) can be used to adaptively sample the design domain in
order to quickly estimate the global minimum (Jones et al.
1998). One of the most effective Kriging based adaptive
sampling criteria is that of Expected Improvement (EI). EI
is formulated by exploiting the fact that Kriging assumes a
Gaussian Process, where the marginal distribution of y(x)
is normal An improvement can be made over the current
observed minimum ymiy at X if some part of Y (x) is below
Ymin- The Probability of Improvement (PI) over ypmi, may be
expressed as,

PlI(x)] = ® (yms—_y> , ©6)

where s is the square root of 52 in (5) and ®(.) is the
normal cumulative distribution function. A new sampling
location that gives the highest probability of improvement
over ymin can be found by maximizing (6). The use of this
infill sampling criterion will be discussed in more detail
in Section 3.1.3, where it finds its use for dealing with
constrained problems.

An alternative method of infill sampling involves find-
ing the expectation of the amount of improvement over
Ymin- The EI can be calculated by taking the expectation
E[1(x)] = E[max(Ymin — Y, 0)]. A computationally cheap
analytical expression for EI can be found in terms of the
normal cumulative distribution function ®(.) and the nor-
mal probability density function ¢ (.) (Schonlau and Welch
1996). Under the condition that § < ymin, the EI over the
minimum observed response at any location X is

E[X)] = (Ymin—3)® (@%w <M> ()

N

A new sampling location that gives the maximum expected
improvement can be found by estimating the maximizer
of (7).

@ Springer

The adaptive sampling strategy can be explained as fol-
lows An initial metamodel K is constructed using n sam-
ples chosen via Design of Experiments, e.g. Latin Hyper-
cube sampling (LHS). Equation 7 is then maximized to
estimate the new adaptive sampling location X;;¢,,. The sam-
pling location and response is added to the set of samples
and responses. The metamodel is constructed again with the
augmented set of samples and responses until either Elyax,
the maximum EI at the last iteration, becomes less than €g;
or the computational budget Nt is exhausted. The algorithm
is referred to as Efficient Global Optimization (EGO) (Jones
et al. 1998). This EGO algorithm forms the main inspiration
for the present work.

3.1.3 Optimization of constrained problems

An infill sampling strategy based on Kriging for computa-
tionally expensive constrained problems was first suggested
by Schonlau (1997). The method involved building meta-
models of the objective and constraints and iteratively
improving both sets of metamodels via a single adaptive
sampling scheme. This infill sampling criterion was simply
a product of probability of improvement in the objective and
a probability of feasibility for the constraint.

The probability of feasibility measure operates in much
the same way as the probability of improvement for the
objective. Metamodels are built for the expensive to eval-
uate constraint(s). Let the Kriging prediction and MSE for
such a constraint metamodel be given by fz(x) and s (x).
The metamodel uncertainty for each constraint metamodel
is again described in terms of a normally distributed random
variable H (x) with mean fz(x) and variance s2® (x).

Let hpmin be the constraint limit, so fz(x) < hpin (stan-
dard notation uses %,,;, = 0, so the constrained problem at
x remains feasible as long as the constraint is less than or
equal to zero; for an example we refer to (30).

The probability of feasibility is given by the area of the
distribution H (x) that is below the constraint limit /iy,

P[F Bimin] = @ Finin — 8
[ (X)< min]— S(—h) . ()

A possible choice for a new feasible sampling criterion for
a constrained problem can then be the product of the prob-
ability of improvement of the objective and the probability
of feasibility of constraints. For a problem with a single
constraint this may be written as,

PIr = P{I(X)]P[F(X) < hmin] ®

Alternatively, the EI in the objective can be multiplied by the
product of the probability of feasibility of the constraints,

Elp = E[I(X)]P[F(X) < hpin]. (10)
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3.2 System level EI criterion

The aim of this work is to optimize (2) by means of building
and iteratively improving a set of component metamodels
such that the optimum of the original system problem, (1),
is estimated. An additional goal is to solve system prob-
lems involving constraints. Changes required in the iterative
sampling strategy to accommodate this goal are discussed
in Section 3.3.

The algorithm is initialized by building Kriging meta-
models of all components based on a set of initial samples.
In a software implementation, these could also be pre-built
library metamodels. The MSE of the individual component
metamodels, denoted as sl.z(x), follows from (5). Let the
system level response be given by
Boys = ScG1ED, 922, - -, FAC KA, %), (11)
where y; is the Kriging prediction of each component /C;.

In order to update the metamodels in regions of inter-
est for system optimization, an adaptive sampling strategy
at system level is required. To derive such a system infill
sampling criterion, an error estimate is needed of the system
level response, (11).

The EI criterion in Section 3.1 was found by assuming
that the uncertainty in the predicted value y(x) at a position
x can be described in terms of a normally distributed random
variable Y (x) with mean given by the Kriging prediction
$(x) and variance given by the Kriging MSE s2(x). Follow-
ing the same process, we assume that the uncertainty in the
system level response Jiys at a position x can be expressed
in terms of a random variable Yy, (x) with mean Jsys and
variance ssyx Furthermore, we retain the assumption that
the uncertainty in the predicted value of each component
K ;i can be described as a normally distributed random vari-
able Y; (x) with mean given by the Kriging prediction y; and
variance given by the Kriging MSE sl.z.

The random variable describing system level uncer-
tainty, Ysy,(X), can basically be described in terms of the
system operation on the component level random vari-

ables Y = [Y1, Y2, ..., Yn] and the deterministic system
variable Xxg,

Yiys(X) = S (Y1(x1), Y2(X2), ..., YAr(Xpr), Xs), (12)
where the normal random variables Y (x1), Y2(x2), ..., Y/

(x) are treated as being independent. Theoretically, these
variables may be assumed to be dependent, but in prac-
tice this dependence may be ignored (Kleijnen and Mehdad
2014).

A linear approximation of the right hand side of (12)
can be derived by performing the Taylor series expansion
of Sic(Y, Xy) about the mean values y; of Y and truncating

the series to include only the linear terms, i.e. the first two
terms,

aj\]NvXA)

+§]Y ”Kh. (13)

Sc(Y, x) = Sic(ﬁl V2,

Since the above expansion is linear, Yy is a normal random
variable (Taboga 2012). It can be shown (Ayyub 2003) that
the first order mean of Yy is given by

E(Yyys) =)A’sys = Sk[y1, Y2, -+ INH Xs] (14)
and the first order variance of Yy is given by
N
Var(Yyys) = s”,Y = Zblz 2
i=1
where b; = ﬁ ; (15)

The derivatives b; can be computed cheaply using finite
difference in case of black-box system functions, or ana-
lytically otherwise. This is based on the assumption that
the components are expensive to evaluate, but the system
is cheap. Since Yyy, is normally distributed, an analytical
expression similar to EI, (7), can be derived for the system
level EI as well.

Let the optimum on the system response, (2), be denoted
by dx.. We can improve on the value dic if Y;ys < dic. The
expectation of this improvement, I5y; = max(dic — Y;ys, 0),
can be found by

tS2VS
Iyys=00 exXp <_T)

E[I (x)]:/ Iiys ———d Iy, (16)
\—S,V/S_) Isys=0 e \/27Tssys .

EIJ}'S
where

dic — Igys — Peys
foys = +§Yg 17
Sys

The standard normal probability density function is given by

1 —z? 13
- (3) "

Plugging in (18) into (16), El,ys can be written as,

#(2)

Isys= 4 sy

A Ssys

E[Isys(x)] = (dx — YSyS) ¢(tsys)dtsys

tx)'s:_oo

P _dic—Tsys

S gy
_ssysf tsys‘ﬁ(tsys)dtsys- (19)
l‘g};=—00

The first integral in (19) can be recognized as the normal

e . de—3
cumulative distribution function ®(“£=2%). The second
Ssys
trzys

integral can be solved by using the substitution z = _T
Under the condition that jsys < djc, the final analytical

@ Springer
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Fig. 2 The components ¢ (x) 10
and ¢z (x) and the system

response S(c(x)) are plotted in

the domain x € [0, 1]

expression for the infill sampling criterion at system level,
El,yy, is

d — As S
Ellys(0)] = (dc — Jsys)® <’<_yY>

Ssys

d - As S
+Syysh (“—”) . (20)

Ssys

The location of the global maximum of (20) gives the next
infill sampling location X;;ey,.

The algorithm is referred to as Bilevel Efficient Global
Optimization (BEGO). We illustrate the main idea of the
algorithm via the following illustrative example,

S(e(x)) = sin(cy(x)) + cos(ca(x)),
c1(x)=10x*, c2(x) = 10(1 — x)°, x € [0, 1].
21

where

The system response is a function of two components that
in turn are a function of the same variable x. Figure 2 shows
the plot of S(c(x)), c1(x) and c2(x). The system response
has three local minima, two of which are very close in terms
of their objective value.

We construct Kriging metamodels of the components
c1(x) and cp(x) based on a set of initial samples. The

(b)

10 3

true component and system responses are treated as black-
box. The system response based on metamodels may be
expressed as,

Sic(Ke(x)) = sin(Keq(x)) + cos(Ke2(x)),
x € [0, 1]. 22)

Figure 3 shows the Kriging metamodels, .| and K, of
the components ¢y and c; along with the system response
Sk and the system level El, El;ys. The metamodels have
been initialized with three samples 0.25, 0.5 and 0.75. The
MSE for K1 and K., and the error estimate for Sx are also
shown in plots (a), (b) and (c), respectively. The error esti-
mate for Si is constructed from the individual errors of C.|
and K., by employing the linear transformation, (15), at
each value of x. As expected, the error estimates are zero at
the sample locations in plots (a), (b) and (c). Similarly, the
plot of El;ys shows that no improvement is expected at loca-
tions that have already been sampled. Eljy, is maximum at
x = 0 and this would be chosen as the new infill sampling
location for this iteration of the algorithm.

Figure 4 shows a flowchart of the main steps involved in
system optimization using Kriging based system EI. After
constructing the component metamodels in Step 4, the new
infill sampling location X, is estimated in Step 5. This
involves a few substeps. Firstly, the optimum, dx: on S has

X

(d)

Fig. 3 The Kriging metamodel of components ¢ (x) and ¢, (x) and the system response Sx are plotted along with their respective error estimate
in (a), (b) and (c). Plot (d) shows the system level expected improvement Elyy

@ Springer
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1. Set Nt,n;

2. Choose ini-
tial samples

3. Compute response
on components ¢; to ¢y

4. Construct meta-
models K VN

I
I

. 6. Compute response
5. Estimate X, by P P
.. on components at
maximizing Ely .
’ Xyew, INCrement 7

no

Fig. 4 Flowchart shows the steps involved in system optimization

to be estimated. Thereafter, the linear transformation of the
component level MSE is performed to estimate the system
level error, ssys The system error estimate s 5ys 18 used along
with the optimum dj; to evaluate El,yg in (20). The global
maximum of (20) gives the new sampling location X;;z,,. In
Step 6 the component response is evaluated at X;,,. If the
stopping criterion has already been reached, then the argu-
ment of dic (namely, the minimizer of Sx) is returned as the
final system optimum; otherwise, the algorithm returns to

Step 4, and the loop is repeated until termination.
3.3 Constrained optimization of systems

If the system involves constraints then the sampling crite-
rion must also be adapted to deal with these constraints.
Similar to the formulation of system-level EI above, a
probability of feasibility measure at system level can be
derived to ensure that samples are added in areas of inter-
est for constrained optimization instead of unconstrained
optimization.

Let Sy represent the transformation of the component
metamodels in order to get the constraint response ﬁsys.
hsys = Sn(P1(x1), $2(%2), . ... SN (XA, Xy). (23)
The error in the constraint response h sys can be derived in
a manner that is completely analogous to the system error,
Ssys. found for the objective. The system level variance
for the constraint is denoted by s> The probability of

J

7. Stopping
criterion
reached?

yes ( 8. Return
L Xpest = argminS g

feasibility, PF;y,, for the constraint S, can be expressed
as,

hmin - ﬁsys
PIF(X) < hpinl =P | ——————— | . (24)
S

where h,,;, is the constraint limit that dictates whether
the constraint is feasible or infeasible. The product of the
system level EI, Els,; and the system level probability
of feasibility, PFyy,, gives a criterion for sampling a con-
strained problem. For a single constraint this criterion can
simply be expressed as,

El s = Eljys.PFyy. (25)

The maximizer of (25) is then sampled before constructing
the component metamodels again. If there are multiple con-
straints, the product of individual probability of feasibility
of all constraints will replace PFy, in (25).

4 Numerical test problems

The algorithm is tested on several test problems to inves-
tigate its ability to estimate the optimum of the system
accurately and consistently. The performance of the algo-
rithm is compared against treating the entire system as
a component and applying optimization using the EGO
method (Jones et al. 1998). In the following discussion we
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refer to the system decomposed into several components
with the term DEC, (DEComposed), and the system treated
as a single component with the term SAC, where SAC
stands for System-As-Component. Similarly, we compare

2 0.5 1 % 0.5 1
10 10
5 5
Op——ea—"_ _____| oF------—-=
Y 0.5 1 0.5 1
X X

(a) (b)

the performance of the approach with an LHS with a
fixed sample size based sampling scheme for approxi-
mate response construction and optimization of the SAC
response.

0 0.5 1 0
4 0.2

0.15
0.1

0.05

L
|

5
0
0 0.5 1
0.2

0.15

0.1

0.05

0.02

0.015

0.01

0.005

0 0.5 1 0 0.5 1
x107°

0.8

0.6

0.4

0.2

0 0.5 1 0 0.5 1
xT xT

(c) (d)

Fig. 5 The evolution of the method is shown as new sampling points are added at each iteration. The Kriging metamodel of components ¢ (x)
and ¢ (x) and the system response Sy are plotted along with their respective error estimate in (a), (b) and (c). Plot (d) shows the system EI, Elyy
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The advantages of using an adaptive sampling scheme
for the decomposed system problem are exhibited by com-
paring the effectiveness of the method with optimizing a
system response for a constrained problem based on com-
ponent metamodels built via one-shot LHS. A disadvantage
of an adaptive sampling scheme such as BEGO is that the
user is required to solve a multi-modal optimization prob-
lem at every iteration, (20), albeit on a cheap response.
The optimization problem is multi-modal because EI =
0 at each sample location that has already been simu-
lated. Various methods for estimating the global optimum
on this problem are mentioned in Kleijnen (2015), (p.
268). In this context, it should be noted that we operate
under the assumption that the components are so compu-
tationally expensive that the internal computational com-
plexity of BEGO is negligible in comparison. If the com-
putational complexity of the underlying components is of
the same order as the internal algorithm computation cost
then the user may be better served to employ one-shot
LHS.

4.1 Algorithm evolution example

Before performing an in-depth analysis, we illustrate the
evolution of the algorithm on the one-variable system that
consisted of two non-linear components. The problem was
introduced in Section 3, (21). The plot of the reference
components and system response was given in Fig. 2.

Figure 5 shows five iterations of the algorithm, after it
has been initialized with three samples at 0.25, 0.5 and 0.75
within the domain x € [0, 1]. The component metamodels
and the system response along with their respective error
estimates are given in plot (a), (b) and (c) for each itera-
tion. Plot (d) shows the system EI found at each iteration.
Each subsequent iteration updates the component meta-
model with X, the location of the maximum value for
El,yy attained in the previous iteration. By the Sth iteration
the maximum Eljy, falls to an insignificantly small value
and the global optimum of the problem, § = —1, is found
at x = 0.0196. The error estimates for the components and
system response also drop fast. At the 5th iteration the com-
ponent metamodels and the system response Sk match the
reference in Fig. 2 and the respective error estimates are also
very low.

The DEC and SAC algorithms were applied 20 times
on the illustrative system problem S;. Both methods were
initialized with two random sampling locations for each
replication. The average number of iterations needed by
DEC to converge to the optimum was 6.6 while the corre-
sponding number of iterations for SAC was 14.5. In part,
this disparity is caused by the difference in nonlinearity
of the system and component responses, which require
varying amounts of samples to approximate appropriately.

To further illustrate this aspect, additional test problems are
discussed below.

4.2 Unconstrained test problems

The algorithm is tested on a set of one-dimensional systems
based on the following numerical problem,

Sple(x)] = sin(c1(x)) + cos(ca(x)),
c1(x) = px, co(x) = (75 — p)x, x € [0, 1], (26)

where p changes from p = 0 to p = 70 in steps of
10. This results in 8 different system problems with differ-
ent values of the frequency p. Figure 6 shows the number
of iterations needed to find the optimum for each of these
8 problems by SAC and DEC. Each problem was initial-
ized with two random sampling locations for both SAC and
DEC. In order to ensure that the result is not skewed by
fortuitously hitting the optimum, both algorithm are only
terminated when the optimal solution is repeated over 2
consecutive iterations. The bar chart shows the average per-
formance over 20 runs for both methods. DEC found the
optimum for each problem using less than 5 iterations.
On the other hand SAC needed more than 15 iterations
in all cases. For all values of p, the functions had multi-
ple local optima that were relatively close to each other, so
the problem was relatively difficult to optimize even in one
variable.

A question that arises from the clear difference between
the performance of DEC and SAC in Fig. 6 is why DEC
does so much better than SAC on all problems. The fact is
that the metamodels that DEC has to build are very sim-
ple linear functions that require only relatively few function
calls to fit. On the other hand SAC has to construct the
metamodel of the system response which is highly nonlin-
ear. Therefore SAC requires many more iterations to fit the
response well enough to estimate the optimum correctly.

Average number of simulations

0 10 20 30 40 50 60 70
p

Fig. 6 Comparison of the average number of simulations, based on
20 runs, needed by DEC and SAC to converge to the optimum of the
problem. The horizontal axis is the value of the problem parameter p
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To test this argument, we apply the following problem on
SAC and DEC,

Sgle)] = c1(x) + c2(x),
ci(x) = 5(x — 0.5))2 + 20sin(gx),
cx) = 5(x — ().5))2 —20sin(gx), x € [0, 1], (27)

where the frequency g changes from g = 10 to ¢ = 100
in steps of 10. This results in ten problems with differing
frequency of the components. The system transformation is
linear while the component responses are highly nonlinear.
It should be noted however that if SAC is used to optimize
(27) then the response is always linear and always the same,
no matter what value is chosen for g. This is due to the fact
that the sinusoidal parts of the components cancel each other
at system level.

Both SAC and DEC are initialized with two random sam-
ples. Again, in order to ensure that the algorithm is not ter-
minated when the algorithm accidentally finds the optimum,
both algorithms are stopped when the optimum is repeated
over two consecutive iterations. Based on an average of 20
runs SAC requires only 5 total function calls to locate the
optimum. Figure 7 shows the performance of DEC for dif-
ferent values of g. For all values of ¢, DEC requires more
simulations than SAC to converge to the optimum. But inter-
estingly the difference between the performance of SAC
and DEC is not as dramatic in Fig. 7 as was the case for
the problems shown in Fig. 6. This example, nevertheless,
demonstrates that in certain specific cases, such as the one
described above, a system problem with independent com-
ponents should not be decomposed. The choice of whether
to decompose the problem or not, depends on the relative
nonlinearity of the system and components, respectively.

The algorithm is next tested on the three-hump
camel function, which is an established test problem

Il sAC
I DEC

10 20 30 40 50 60 70 80 90 100
q

Fig. 7 The average number of simulations, based on 20 runs, needed
by DEC and SAC to converge to the optimum of the problem. The
horizontal axis is the value of problem parameter g

Average number of simulations
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(Surjanovic and Bingham 2013) for unconstrained opti-
mization in two dimensions,

6
X
Seamel = 23612 - 1.05)(1t + FI + x1x2 +x22,
x; € [-5,5]Vi e N. (28)

In the decomposed system level problem, we assume that
there are three expensive components and the rest of the
function is cheap to compute. The problem is decomposed
and written in terms of the system and components as,

3 (x1)

Seamet[e(X)] = 2¢1(x1) — 1.05¢7 (x1) + <

+c2(x1, x2) + c3(x2),
c1(x1) = x7, ca(x1,x2) = x1x2, ¢3(x2) = x3,
x; € [-5,5]Vi e N. 29)

The proposed algorithm is applied 100 times on the sys-
tem in (29). The component models are constructed using
4 initial samples based on LHS. The number of expensive
simulations is limited to 12. Therefore the algorithm can run
for 8 iterations.

The mean performance of the 100 runs of the system
level approach is compared against applying optimization
on a Kriging metamodel of the original function in (28)
which is constructed using 12 expensive simulations chosen
via LHS. The Kriging metamodel is also constructed 100
times based on 100 different combinations of LHS samples
and the mean performance is analyzed.

Table 1 shows the comparison of the two approaches
along with the reference global optimum of the function.
The mean and standard deviation of the objective value at
the global optimum location found by both methods are
shown. The objective values shown have been generated
on the original function, (28), as a post-processing step.
The mean optimum found by adaptive system sampling
approach for the decomposed problem is closer to the ref-
erence solution than the one found by LHS. In addition,
the standard deviation for the system sampling scheme is
also much lower compared to the one found by using LHS.
This indicates that performing adaptive system sampling
of the decomposed problem in (29) is more efficient than

Table 1 Comparison of adaptive system optimization of decomposed
Camel problem, (29), versus application of LHS on the original Camel
function, (28). The mean and standard deviation of the global optimum
found by each method is shown based on 100 runs

Optimum Mean  Standard Expensive func-
deviation tion evaluations

Reference 0 - —

Adaptive system sampling  0.00 0.001 12

Latin Hypercube sampling ~ 1.02 0.015 12
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applying LHS on the original problem in (28). However,
a comparison of the performance of LHS and the adaptive
sampling scheme on a decomposed problem would also be
interesting. In the following subsection we show this com-
parison for the more widely applicable case of a constrained
problem.

4.3 Constrained test problem

The algorithm is now applied on a constrained benchmark
problem. The objective is a modified version of the Ras-
trigin function (Miihlenbein et al. 1991). The constrained
problem is given below,

2

10
f(x) = 0.01 (100 +> [x} - 10 cos(O.an,)])

i=1
4
35— x7 <0,
i=1

x; € [-5.12,5.12Vi e N.  (30)

The problem consists of 10 variables. We choose to decom-
pose the problem into a system with four expensive com-
ponents. Based on this decomposition, the system can be
written as,

Se(x)] = 0.01 (100 4 ¢; — 10cs + ¢3 — 10¢4)?
s.t.35—¢; <0,

4 4
= Zx? ) = Zcos(O.ani),
i=1 i=1

10 10
c3 = inz, cq4 = Zcos(O.ani),
i=5 i=5

x; € [-5.12,5.12)Vi € V. 3D

The system non-linearly transforms the response of the four
non-linear components. The components ¢; and ¢, are a
function of four variables which are shared across both the
components. On the other hand, c3 and ¢4 are a function of
six different variables, which are also shared across these
two components. The component ¢; makes an appearance
in both the objective and the constraint. The metamodel of
c1 can therefore be used for both the system transformation,
Sic, of the objective as well as in the system transformation,
S, of the constraint.

The decomposed problem in (31) is used to compare the
performance of BEGO with an LHS based strategy. For this
problem, metamodels are made for the component response
instead of the system response for the LHS based approach
as well. Both methods are run 20 times on the proposed
problem, (31), and the mean performance is compared.

In the case of BEGO, the component metamodels are ini-
tialized with a different number of samples based on the

number of dimensions of the component. The four dimen-
sional components ¢ and ¢ are initialized with 20 samples,
while the six dimensional components c3 and ¢4 are initial-
ized with 30 samples. The algorithm is allowed to run for
80 iterations. This means that at termination, 100 samples
would have been added to KC.; and /Cpp, while K3 and K4
would be based on 110 samples.

The LHS based approach is therefore given a total bud-
get of 100 samples for ¢ and ¢, and 110 samples for ¢3 and
c4. The system response Sic based on the LHS based meta-
models is optimized and the average result of the 20 runs is
analyzed.

We also compare the performance for the case in which
both LHS and BEGO are given 25 less expensive sim-
ulations. This means that BEGO is terminated after 55
iterations. On the other hand, for LHS /.| and K., are con-
structed based on 75 samples and K3 and KC.4 are built
using 85 samples.

Figure 8 shows the average global optimum found at each
iteration of BEGO, based on 20 runs. The objective is eval-
uated, as a post-processing step, on the reference system
response based on the optimal location found at each itera-
tion of BEGO. The reference global optimum is also found
on the reference system. The errorbars indicate the standard
deviation around the optimum. After about 60 iterations of
BEGQO, the algorithm has converged to a value close to the
reference global optimum and the standard deviation is also
relatively low.

Table 2 shows the comparison of the statistics of the
global optimum found by LHS and BEGO. Once again the
objective values given here have been found by evaluating
the optima found by each method on the reference system
response as a post-processing step. The results indicate that
BEGO performs better than LHS in terms of mean close-
ness of the optimum to the reference solution, given the

100

—— Average global optimum
—— Reference global optimum

[0
o

System objective
(2]
o

N
o

20—

10 20 30 40 6560 60 70 80
Number of iterations

Fig. 8 The mean and standard deviation of the global optimum found

on each iteration of BEGO based on the 20 runs for the test problem
defined in (31)
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Table 2 Comparison of the

Reference

BEGO LHS Evaluations ¢y, ¢ Evaluations c3, ¢4

mean and standard deviation of Optimum
the global optimum found by
BEGO and LHS based on 20 Mean 46.03
runs for small and large Standard deviation —
number of observations C . L
onstraint violations -
Mean 46.03

Standard deviation -

Constraint violations —

47.43 48.89 75 85
0.97 2.12 75 85
0 0 75 85
46.93 47.70 100 110
0.66 1.34 100 110
0 2 100 110

same number of component evaluations. The standard devi-
ation of BEGO is also lower than for LHS. Interestingly, for
LHS with a higher number of samples, 2 out of the 20 opti-
mal locations found result in a constraint violation. On the
other hand, the optimal locations of BEGO do not violate
the constraint for any of the 20 runs. Comparing the result
of the higher number of evaluations (second set of rows in
Table 2) with the result for the lower number of evaluations,
we note that convergence is steadily taking place for both
approaches. The mean and standard deviation for BEGO
based on the lower number of evaluations are both bet-
ter than the corresponding numbers for LHS with a higher
number of evaluations.

Using the constrained and unconstrained problems, we
have evaluated the performance of BEGO in different set-
tings. The method converges well on the problems and also
performs better than a space-filling based strategy. The pri-
mary advantage of the adaptive technique lies in reducing
the computational budget needed to find the global opti-
mum. Since each extra component simulation significantly
increases the time and computational costs of optimization,
any amount of reduction in these costs brings significant
efficiency improvement. We now test the algorithm in a

Fig. 9 Top-view schematic of a
second order serial optical ring
resonator. The cloud
encompasses the complete
system. The colored boxes, on
the other hand, represent the six
expensive to evaluate
components

@ Springer

more practical setting by applying it on an engineering
problem.

S Engineering problem: Optimization of an optical
filter

5.1 Background of the problem

We perform system optimization of an integrated photonic
serial ring resonator that behaves as an optical filter. Light
is confined in a high refractive index SiN core layer which
is buried inside a relatively lower refractive index SiOp
cladding layer. The light is guided inside these optical inte-
grated circuits via the principle of total internal reflection.
Figure 9 shows the top-view schematic of the system. When
light at a certain wavelength is launched into the waveguide
(black paths lines) at the ‘In’ port, it partially couples into
the adjacent waveguide. This coupled light travels through
the first ring section and partially couples again into the sec-
ond ring section. A portion of this coupled light is dropped at
the ‘Drop’ port. The rest of the light exits via the ‘“Through’
port.

w¢ —_
Drop
c1, 2
€3, C4
83 Cs, ('6
—>
Through
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The amount of coupling can be varied by changing the
gap and the length of the coupling sections (area enclosed
by the colored boxes in Fig. 9). This change in coupling
gives rise to a change in the optical response at the ‘Drop’
and ‘Through’ port. Different optical filter responses can
therefore be generated by varying the coupling ratio of each
coupler. The objective in this study is to achieve the band-
pass filter response given in Fig. 10 at the ‘Through’ port.

In order to compute the power coupling ratio of the cou-
pler, two expensive electromagnetic simulations have to be
performed. The first simulation computes the power cou-
pling ratio, Prop, when the coupling length is zero. The
second simulation computes the beat length, L., which
is defined as the coupling length needed to completely
couple light from the first waveguide into the second waveg-
uide and back into the first waveguide. Since the exchange
of light between adjacent waveguides follows a sinusoidal
curve, the two parameters, Pro and L, are enough to com-
pute the coupled power at any coupling length given a
certain gap (Syms and Cozens 1992). Figure 11 shows the
power coupling ratio as a function of the coupling length
based on a certain simulated value of Pz and L, for a given
gap.

Once the power coupling ratio of each coupler is known,
the transfer function at the ‘Through’ port can be cheaply
computed as a function of the normalized frequency using
scattering matrix analysis (Ahmed et al. 2011). Let H(n f)
represent the transfer function for the normalized frequency
ny € [0 1]. We can then define a system objective for the
desired bandpass spectral response as,

. 1—-b, - -
min 2 i, + 5 [1 = 1~ ]

xeX
1-b -
+ T H HstopZ ”p ) (32)

where Hsmpl, Hpass and I-_Ismpz represent the vector of
responses for ny € [0 0.1], ny € [0.2 0.8] and ny €

1

0.8}

0.6}

0.4¢

Absolute power

0.2}

0809 1

Normalized frequency

% 0102

Fig. 10 Desired band-pass filter spectral response (red line) of the
serial ring resonator. No preference is specified in the intervals
[0.1,0.2] and [0.8, 0.9]

Ly
i < .
)
2
[}
o
el
=2
o
3
O
[ PLQ
0 L
0 1200
Coupler length (um)

Fig. 11 Power coupling ratio as a function of the coupler length for a
certain coupler gap

[0.9 1], respectively. The five design variables of the prob-
lem, depicted in Fig. 9, are x € [w g1 g g3 L], where
w € [1 1.15]um, L € [02400]um and all the gaps are in the
range [1 1.3]um, . If p is large then the objective basically
involves minimization of the weighed sum of the maximum
value in the two stop bands and the minimum value in the
pass-band. The p-norm is used instead of the maximum and
minimum value in order to ensure that the objective remains
continuously differentiable. The use of the p-norm instead
of the minimumum and maximum values enables faster con-
vergence for the algorithm since the objective is relatively
easier to model. The weights are based on the value of 4. In
this work, we choose p = 20 and b = 0.6. The value of
p was chosen such that there is a balance between smooth-
ness of the objective and the need to closely approximate
the maximum value.

5.2 System optimization

The system response, S, can be modeled in terms of two
expensive components that are repeated three times in the
second order resonator since each coupler requires two
expensive simulations and there are three couplers in the
system. Figure 9 shows the six components ¢ to ce as well
as the five design variables of the problem [w g1 g2 g3 L].
We treat the responses Prg and L, generated from each
coupling section, as the components of the problem since
this suits the mathematical structure of this problem. The
expensive components are only a function of the width and
the respective gaps. The components cj, ¢3 and c5 give the
power coupling ratio Prg for each coupler while the beat
length L, for each coupler is found by components c;, c4
and cg.

A commercial electromagnetic solver, PhoeniX Soft-
ware, is used to compute Prg and L. Both simulations
require approximately 10 minutes. Initial Kriging metamod-
els for c; and ¢, are built based on n; = 9 samples for w

@ Springer



1156

S. Ur Rehman and M. Langelaar

0.8f

0.6

041

Power - Through port

0.2} = = = Approximate system response
—— Reference system response
0 . . . .
0 0.2 0.4 0.6 0.8 1

Normalized frequency

Fig. 12 Plot shows the approximate system response and the reference
system response at the global optimum found by BEGO

and g chosen via LHS. We assign g> and g3 the same ini-
tial sample values as g;. Since the design domain for all the
components is the same we can essentially use /C.; as the
approximate response for Ppg for all three components ¢y,
c3 and cs. Similarly K can be used to give the beat length
L, for components c2, c4 and cs.

Once the component metamodels that predict the value
for Prg and L, for each coupler have been constructed, the
following operations to evaluate the system objective are
performed at system level. In order to evaluate the objec-
tive to be optimized, (32), the power coupling ratio of each
coupler is needed. This operation is performed on system
level since the value of Pro and L, can cheaply be pre-
dicted by the Kriging metamodels for each coupler. The
computation of the transfer function via scattering matrix
analysis involves simple operations on small matrices and is
therefore also performed on system level. Once the transfer
function is known, it has to be plugged into (32) to find the
system objective.

A total computational budget of 21 expensive simula-
tions for evaluating Pro and L, is reserved in addition
to the 9 initial simulations. At each iteration of the sys-
tem algorithm, Pro and L, is simulated three times for
the three different combinations [w g1], [w g»2] and [w g3]
of the location for infill sampling suggested by the algo-
rithm. The total number of simulations available translates
to 7 iterations of the system optimization algorithm since
7 x 3 = 21 simulations. The three new Pr( responses at
each iteration are all added to the Kriging metamodel ;.
On the other hand, KC.y is augmented with the set of three
new beat length responses L, at each iteration.

Table 3 The location of the global optimum is given along with the
objective on the approximate system and the reference system

w gl g2 23 L Sic S

Optimum 1.0699 1.085 1.100 1.084 1940.2 0.0159 0.0160
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Table 4 The response of the individual components at the global
optimum are given for the metamodels and the reference simulator

Components c¢1(Pro) ¢3(Pro) c¢s(Pro) c2(Lx) ca(Ly) co(Lyz)

0.1203  0.1126  0.1203
0.1203  0.1130 0.1203

903.45 937.83 903.45
903.62 938.00 903.62

Reference
Kriging

Figure 12 shows the optimal system response found after
7 iterations of BEGO. The approximate system response Si
is plotted along with the system response obtained when the
optimal result is fed into the expensive component simula-
tors. It can be seen from the figure that the system response
based on the component metamodels closely resembles the
actual system response at the global optimum. The optimum
found by BEGO seems to perform quite well in the pass
band region, i.e. almost all the light in the normalized fre-
quency region [0.2 0.8] is being passed through. The amount
of power in the stop bands [0 0.1], [0.9 1] is still not very
low. This is to be expected since we are optimizing a sec-
ond order filter, i.e. there are only two rings in the serial
resonator structure. Increasing the filter order will further
improve the performance.

Table 3 shows the location at which the global optimum
of the serial ring resonator is found. Although we do not
impose the restriction that g3 = g1, the optimal result
produces a resonator with symmetric gaps. The numerical
objective value for S and Si confirm the result shown in
Fig. 12. Table 4 gives the response of the individual compo-
nents at the global optimum. As expected, the Kriging meta-
model responses for Pro and L, for each directional cou-
pler section is close to the reference component response.

6 Conclusion

In this work, we have developed an efficient strategy
for global optimization of systems involving independent
components. The approach, referred to as BEGO, targets
systems involving expensive to evaluate components that
do not interact with each other. Kriging metamodels were
employed to construct the responses of the expensive com-
ponents. A novel system level infill sampling strategy was
derived in order to sample the components in regions of
interest for system optimization. A linear Taylor series
approximation of the system transformation of the Kriging
components was performed in order to obtain an analyt-
ical expression for system level EI. The infill sampling
criterion was modified for constrained system optimization
by deriving a system level probability of feasibility for each
constraint.

The system level optimization approach was first com-
pared with treating the problem as a single component and



Global optimization of systems with independent components

1157

applying EGO (Jones et al. 1998) for obtaining the optimum.
Similarly, the effectiveness of the technique was compared
with building a response surface of the system via LHS and
globally optimizing the cheap response. Both comparisons
exhibited that, in general, there is clear efficiency improvement
when optimization is performed on the decomposed prob-
lem. However, if the component responses are highly non-
linear and the system response is linear then decomposition
may not always result in efficiency improvement.

We demonstrated the advantages of using an adaptive
sampling scheme for the decomposed system problem by
comparing the effectiveness of the strategy with perform-
ing optimization of a system response based on component
metamodels constructed using LHS.

The two approaches were applied on a modified and
constrained version of the Rastrigin function. Based on an
average of 20 runs, BEGO converged comparatively faster
to the optimum of the problem as opposed to the LHS based
optimization strategy.

In addition, BEGO was applied on an engineering system
involving an optical filter based on an integrated photonic
serial ring resonator. The engineering problem consisted of
a system with six uncoupled components. It was shown that
BEGO was able to determine the global optimum of the
system problem using only a limited number of expensive
component simulations.

The algorithm is especially relevant for problems in
which many multiple components are part of the sys-
tem. In such a situation the same metamodel can be used
to construct the response for the multiple components.
Another advantage of employing the bilevel framework
is that the number of dimensions for each component
metamodel is often much lower than the total dimension
size at system level. This enables the approximate sys-
tem response to converge fast to the actual response with
each passing component level simulation. Since the com-
ponent response is treated as a black-box, the method is
applicable to any hierarchical system with low dimensional
components.

In this work, we have addressed optimization of sys-
tems involving independent components. A future aim is to
extend the algorithm to the case where the components are
dependent. We expect that the extension of the algorithm to
systems of dependent components will have to draw upon
methods developed within the field of Multidisciplinary
Design Optimization (Martins and Lambe 2013).

Open Access This article is distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were made.
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