PUBLISHER'S ERRATUM

Erratum to: Generalized incremental frequency method for topological design of continuum structures for minimum dynamic compliance subject to forced vibration at a prescribed low or high value of the excitation frequency

Niels Olhoff¹ · Jianbin Du²

Published online: 24 October 2016 © Springer-Verlag Berlin Heidelberg 2016

Erratum to: Struct Multidisc Optim (2016) DOI:10.1007/s00158-016-1574-3

The original version of the above article unfortunately contained some typographical errors on page 12. These typos should be corrected as follows:

- 1. Page 12, left hand column, first line after Equation (1c*): (1b**) should read (1b*)
- 2. Page 12, left hand column, second line after Equation (1c*): (1c**) should read (1c*)
- 3. Page 12, left hand column, fifth line after Equation (1c*): (1b**) should read (1b*)
- 4. Page 12, left hand column, sixth line after Equation (1c*): (1c**) should read (1c*)
- 5. Page 12, right hand column, seventh line from top: (1c**) should read (1c*).

Thus, the two paragraphs after Equation (1c*) should read: Here, (1b*) expresses the constraint for the static compliance C_s with \overline{C}_s as a given upper bound, and (1c*) is the static equilibrium equation, where **P** denotes the static loading, and the corresponding static displacement vector \mathbf{U}^* is defined as $\mathbf{U}^* = \mathbf{U}(\omega = 0)$. Based on Eqs. (1b*) and (1c*), the sensitivity C_S' of the static compliance is obtained as

$$C'_{s} = \mathbf{P'}^{T}\mathbf{U}^{*} + \mathbf{P}^{T}\mathbf{U'}^{*} = 2\mathbf{U}^{*T}\mathbf{P'} - \mathbf{U}^{*T}\mathbf{K'}\mathbf{U}^{*},$$
 (14)

where prime denotes partial derivative with respect to the design variable ρ_e , and the sensitivity \mathbf{P}' of the load vector vanishes if \mathbf{P} is design-independent. Note that the gradient C_s' in (14) is reduced analogously to the gradient of the objective function F° for the squared dynamic compliance in (10) to facilitate treatment by adjoint sensitivity analysis.

With the inclusion of the upper bound on the static compliance of a structure, the dynamic and static equilibrium equations (1c) and (1c*) are solved by Gauss elimination, and the constrained topology design problem (1a-e, b*,c*) is solved iteratively to convergence by means of the gradients C'_d and C'_s of the dynamic and static compliances, by usage of the MMA optimizer (Svanberg, 1987).

The original article was corrected.

The online version of the original article can be found at http://dx.doi.org/10.1007/s00158-016-1574-3.

☐ Jianbin Du dujb@tsinghua.edu.cn

Niels Olhoff no@m-tech.aau.dk

- Department of Mechanical and Manufacturing Engineering, Aalborg University, DK-9220 Aalborg East, Denmark
- School of Aerospace Engineering, Tsinghua University, Beijing 100084, People's Republic of China

