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Abstract A novel technique for efficient global robust opti-
mization of problems affected by parametric uncertainties
is proposed. The method is especially relevant to problems
that are based on expensive computer simulations. The glob-
ally robust optimal design is obtained by searching for the
best worst-case cost, which involves a nested min-max opti-
mization problem. In order to reduce the number of expen-
sive function evaluations, we fit response surfaces using
Kriging and use adapted versions of expected improvement
to direct the search for the robust optimum. The numeri-
cal performance of the algorithm is compared against other
techniques for min-max optimization on established test
problems. The proposed approach exhibits reliable conver-
gence, is more efficient than previous methods and shows
strong scalability.

Keywords Kriging · Min-max optimization · Expected
improvement · Robust optimization · Parametric
uncertainties · Worst-case design

1 Introduction

Most practical design problems have some degree of uncer-
tainty associated with them. Problems that are sensitive to
even slight perturbations may give rise to suboptimal or
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even infeasible solutions when optimized without incorpo-
rating uncertainties. The uncertainties may be present in the
parameters or in the design variables. Uncertainty in the
parameters is known as parametric uncertainty while uncer-
tainty in the design variables is referred to as implementa-
tion error. Often the uncertainties are bounded-but-unknown
(Gurav et al. 2005) and the probability distribution of the
uncertainties is not available. In such a scenario, robust opti-
mization (Ben-Tal et al. 2009; Beyer and Sendhoff 2007)
has to be applied to find a robust solution.

The basic idea of robust optimization is the minimiza-
tion of the maximum realizable value of the objective with
respect to the uncertainty set, subject to the non-violation
of the worst-case constraints. Other terms such as best
worst-case optimization or min-max optimization are used
to describe the same concept.

Due to its wide ranging applications, robust optimiza-
tion has been a topic of intense research in several different
fields. Tackling robustness has been a fairly established con-
cept in robust control, please refer to (Zhou et al. 1996)
and the references therein for more detail. From a purely
engineering perspective, the pioneering paper was writ-
ten by (Taguchi 1984). Considerable progress in robust
optimization has been made in the field of mathemati-
cal programming in recent years (Ben-Tal et al. 2009).
However, the focus has been limited to solving convex
problems of varying complexity. Min-max optimization
has also received a lot of attention in decision and game
theory (Aghassi and Bertsimas 2006). Work in this field has
shown that for certain convex-concave functions, the global
robust optimum can be found by searching for a saddle
point solution (Rustem and Howe 2002). Therefore, sad-
dle point optimization has been used extensively to find the
robust optimum of such unconstrained min-max problems
(Rustem and Howe 2002).
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However, many practical robust optimization problems
are not convex. Additionally, the underlying simulation of
these unconstrained continuous min-max problems could
be expensive to evaluate. There is considerably less work
on finding the global robust optimum of such non-convex
unconstrained problems. Unconstrained continuous min-
max problems have many applications including, but not
limited to, aerodynamic shape design (Ong et al. 2006),
finance (Rustem and Howe 2002), game theory (Zuhe et al.
1990), fault detection (Frank and Ding 1997) and signal pro-
cessing (Kassam and Poor 1985). Evolutionary algorithms
have been used to find the global solution of such uncon-
strained continuous min-max problems for which no special
structure has been assumed (Cramer et al. 2009; Shi and
Krohling 2002; Ong et al. 2006; Zhou and Zhang 2010;
Lung and Dumitrescu 2011). However, using evolutionary
algorithms to find the min-max solution of such problems
leads to extremely high computational costs since these
algorithms usually require very high number of function
evaluations.

Since robust optimization involves solving a nested min-
max problem, applying robust optimization directly on
a problem based on an expensive computer simulation
usually leads to prohibitively high computational costs.
Instead, one can sample the expensive function at carefully
chosen points and build a response surface or surrogate
(Simpson et al. 2001; Forrester and Keane 2009). However,
the best sample placement depends on the characteristics of
the underlying function, which makes the sampling strategy
itself a challenging problem. The ultimate goal is to reduce
the number of expensive function evaluations required to
find the optimum. Many different kinds of response surfaces
can be used to build an approximate model. These include
non-interpolating methodologies such as polynomial and
regression models as well as interpolating approaches, e.g.
radial basis functions, Kriging and splines.

Amongst the different techniques for response surface
building, Kriging (Krige 1951; Sacks et al. 1989) holds
distinctive appeal due to its statistical framework which
enables an estimation for the error in the interpolation
between the sample points. This provides the groundwork
for the development of expected improvement (Jones 2001)
and Efficient Global Optimization (EGO) (Jones et al. 1998;
Franey et al. 2011) procedures, which allow the adaptive
placement of sample points at locations most likely to
lead to the global optimum. EGO has successfully been
applied in deterministic unconstrained optimization, e.g.
(Forrester et al. 2008), while the convergence properties of
expected improvement have been established in (Vazquez
and Bect 2010). A drawback of Kriging is that the corre-
lation matrix that contains the underlying basis functions
may tend to suffer from ill-conditioning (Jones et al. 1998).
Furthermore, it has also been shown that Kriging

underestimates the potential error in the interpolation
(den Hertog et al. 2006).

In recent work (Marzat et al. 2012, 2013), expected
improvement has also been applied to perform uncon-
strained continuous min-max optimization of black-box
functions. The robust solution is found by transforming
the min-max problem into a nominal constrained opti-
mization problem with constraint relaxation. Although the
method uses less expensive function evaluations compared
to evolutionary algorithms (Lung and Dumitrescu 2011), the
number of expensive function calls is still quite high.

This work also deals with global robust optimization
of unconstrained continuous min-max problems, where the
uncertainties are considered to be bounded-but-unknown.
The black box function is assumed to be continuous and to
be based on an expensive simulation. To solve the min-max
problem, we propose a technique that extends the estab-
lished Efficient Global Optimization (EGO) algorithm for
deterministic optimization to the non-deterministic case. At
each iteration of the proposed algorithm, the problem is
divided into a separate search for the next control vari-
ables sample location and the next parametric uncertainties
sample location. The EI criteria are suitably adapted to
find the robust optimum instead of the nominal optimum
using a small number of expensive function evaluations.
We compare the efficiency of our approach with other
methods using a set of standard test problems. Since the
proposed algorithm is based on surrogate construction, it
is not suitable for solving very high-dimensional problems.
For a more in-depth discussion on challenges involved in
applying surrogate-based optimization on high-dimensional
problems we refer readers to (Wang and Shan 2007).

This paper is organized as follows. We introduce the
problem in Section 2 and provide the mathematical back-
ground of robust optimization for problems involving para-
metric uncertainties. Section 3 contains a brief description
of Kriging and Efficient Global Optimization. In Section 4
a detailed description of the robust optimization algorithm
based on EGO is provided. Finally, Sections 5 and 6 contain
the results and conclusions, respectively.

2 Robust optimization of unconstrained problems
affected by parametric uncertainties

The considered problem may formally be stated as

min
xc∈Xc

max
xe∈Xe

f (xc, xe), (1)

where xc is the set of control variables while xe is the
set of parametric uncertainties or environment variables.
No special structure, such as convexity or monotonic-
ity, etc. is assumed for the function f (xc, xe). However,
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f (xc, xe) is assumed to be continuous. We seek to find
the global min-max solution of f (xc, xe). The function is
assumed to be expensive to evaluate and under this con-
straint, our aim is to develop a method that finds the location
of the global best worst-case cost using a small number
of function evaluations. This is done by estimating the
robust optimum location on a relatively much cheaper sur-
rogate model built using Kriging. The problem may be
written as,

min
xc∈Xc

max
xe∈Xe

Kf (xc, xe), (2)

where Kf is the continuously differentiable Kriging model
of the expensive to evaluate function f (xc, xe). The pri-
mary contribution in this work is to provide an adap-
tive sampling scheme, dedicated to the robust optimiza-
tion setting, such that the Kriging function models the
behaviour of the reference function f (xc, xe) very accu-
rately in regions of interest, i.e. potential robust optimum
locations, using relatively few expensive function calls of
f (xc, xe).

In principle, any global optimization approach can be
used to perform the min-max optimization in (2). How-
ever, since the Kriging model is available and the Jaco-
bian, Hessian information can be obtained cheaply as well,
optimizers that leverage this information would be prefer-
able. In this context there are several promising algorithms
that could be used to perform robust optimization on the
surrogate model. It should be noted that solving (2) is
equivalent to solving a semi-infinite optimization problem
(López and Still 2007) since (2) can be written as a con-
strained minimization problem over an infinite number of
constraints. For a survey of the state of the art methods that
solve (2) via a semi-infinite programming approach please
refer to (Stein 2012). Many of the algorithms reviewed
in (Stein 2012) require first and second order derivative
information for the specified function, which can easily
be provided for the continuously differentiable Kriging
function.

A strategy that does not require gradient information is
that of redefining (2) as a constrained minimization prob-
lem (Shimizu et al. 1997) and using constraint relaxation to
reduce the continuous set Xe to a finite discrete set. This
method was used for min-max optimization in combination
with Kriging by (Marzat et al. 2012).

In this work, our focus is on the adaptive sampling strat-
egy instead of on the particular method chosen to solve
the optimization problems on the resulting surrogate model.
Nevertheless, in the optimization process we have opted to
make full use of the availability of the Jacobian and Hessian
information. Details on the applied optimizers are given in
Appendix B.

Throughout this work, the 11th test problem from
Appendix A will be used to illustrate the steps taken by the
proposed algorithm,

f11(xc, xe) =
cos

(√
x2
c1 + x2

e1

)
√

x2
c1 + x2

e1 + 10
. (3)

The problem is a damped cosine wave in two dimensions
with Xc ∈ [0, 10] and Xe ∈ [0, 10]. As shown by Fig. 1, the
function is non-convex and multimodal. Both xc and xe have
been rescaled such that the design domain is in the range
[0, 1]. The oscillatory behaviour of the function in both
dimensions suggests that it is a non-trivial problem even for
nominal global optimization. Therefore, finding the global
min-max solution is also a challenging exercise. The prob-
lem will be used in Section 4 to visualize the steps involved
in the algorithm. In Section 5 it will be employed to demon-
strate the evolution of the algorithm as it searches for the
global robust optimum.

3 Kriging and efficient global optimization

3.1 Kriging

Kriging is an interpolation method that uses a stochastic
process approach to construct a cheap model of the expen-
sive function. In this work, Kriging is basically used as
a fitting technique for the deterministic simulation data.
A detailed derivation of Kriging surrogate construction
and prediction can be found in (Sacks et al. 1989). In
this section, a concise description of Kriging and EGO is
provided, while omitting details of the derivation.
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Fig. 1 Contour lines of the reference function f11(xc, xe). Used to
illustrate the choices made by the proposed algorithm at different
stages
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The function response at any position x in the domain
is assumed to be a normally distributed random variable
Y (x) with mean μ and variance σ 2. Each random variable in
this stochastic process is assumed to be correlated to other
random variables via the following parameterized Gaussian
correlation function,

Corr
[
Y (xi ), Y (xj )

] = exp

⎛
⎝−

k∑
q=1

θq

∣∣xiq − xjq

∣∣p
⎞
⎠ (4)

where xi and xj are any two locations in the domain and
k represents the total number of dimensions of the prob-
lem. We set p to a constant value of 2. The correlation is
therefore governed by the parameter θq and the distance
between the points. The correlation is 1 when xi = xj and it
drops as the distance between the points increases. θq deter-
mines how active the qth dimension is in shaping the cheap
response. A higher value of θq means that the correlation
will fall relatively quickly with respect to the qth dimen-
sion as the distance between the points increases. A lower
value of θq for the qth dimension, on the other hand, will
result in a relatively slower fall in correlation with increas-
ing distance. This would also lead to a comparatively flatter
response with respect to the qth dimension.

The maximum likelihood estimator for a normal distri-
bution is used to find values for θq , μ and σ 2 such that the
likelihood of the observed data is maximized.

Once these model parameters are found, Kriging esti-
mates the interpolation between the sample points that is
most consistent with the observed data. The value of the
response at these locations is found by maximizing the
combined likelihood of the observed data and the Kriging
prediction. The Maximum Likelihood Estimate (MLE) for
the prediction ŷ is given by

ŷ(x) = μ̂ + rTR−1(y − 1μ̂), (5)

where μ̂ is the estimated value for the mean, R is the N ×N

correlation matrix between the N sample points, r is the
vector of correlations between the observed data and the
new prediction, while y is the observed response. We find
the values for the correlation vector r and the correlation
matrix R via (4). It can be noted from (5) that the Kriging
predictor is simply a linear combination of basis functions
and a constant.

One of the advantages of the stochastic process assump-
tion in Kriging is that the error in the predicted response
ŷ(x) can be estimated. The mean squared error (MSE) in the
prediction is given by

s2(x) = σ̂ 2

[
1 − rTR−1r + 1 − 1TR−1r

1TR−11

]
, (6)

where σ̂ 2 is the maximum likelihood estimate of the vari-
ance σ 2. The fraction term in (6) represents the estimated

error in using a maximum likelihood estimate μ̂ for the
mean to compute the error instead of using the true mean.
An intuitive explanation of the mean squared error in terms
of the combined log-likelihood between the observed data
and the prediction can be found in Jones et al. (1998), while
the full derivation of (6) is available in Sacks et al. (1989).

3.2 Efficient global optimization

The estimated MSE enables adaptive sampling of the con-
structed surrogate. Therefore, it proves useful in order to
efficiently reach the global deterministic optimum of an
expensive to evaluate function. The adaptive sampling strat-
egy of expected improvement is also based on the MSE
(Jones et al. 1998). To formulate the expected improve-
ment metric, entirely new assumptions have to be made. In
this formulation, the uncertainty in the predicted value ŷ(x)
at any position x in the domain is described as a random
variable Y (x) having a normal distribution. The mean and
the variance of this distribution are assumed to be given
by the Kriging prediction ŷ(x) and the mean squared error
ŝ2(x) respectively. Let ymin denote the minimum objec-
tive value in the observed responses. We may be able to
improve on ymin at a position x if a part of the distribution
Y (x) lies below the current minimum. We find the expec-
tation of this improvement I by computing the expectation
E[I (x)] = E[max(ymin −Y, 0)]. Using integration by parts,
the expected improvement can be written as

E[I (x)] = (ymin − ŷ)�

(
ymin − ŷ

s

)
+ sφ

(
ymin − ŷ

s

)
(7)

where �(.) is the normal cumulative distribution function
and φ(.) is the normal probability density function. By find-
ing the position in the design domain where EI is maximum
we get an indication of where adding a new point would be
most beneficial. In this way, the Kriging prediction ŷ and the
error estimate ŝ2 enables the development of the method-
ology of expected improvement (EI) and efficient global
optimization (EGO) (Jones et al. 1998). Based on the Krig-
ing prediction and MSE, EI gives an indication of the best
location to sample in order to improve on ymin. Using the EI
strategy, EGO is able to converge to the global optimum of
the problem by adding new data points until the maximum
EI is sufficiently low.

The flowchart in Fig. 2 shows how EGO makes use of EI
to find the global optimum. NT is the total number of sample
points available. This is determined by the simulation time
and cost. The initial number of samples, n, is chosen through
uniform sampling for single design variable problems or
through a space-filling strategy, e.g., Latin hypercube sam-
pling (LHS) (Morris and Mitchell 1995) for two or more
design variables. The Kriging metamodel of f (x) is denoted
by Kf . The algorithm terminates when either EImax falls
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Fig. 2 Flowchart of the
efficient global optimization
algorithm (Jones et al. 1998).
The algorithm uses Kriging and
expected improvement to find
the nominal optimum of an
unconstrained problem with
relatively few function calls of
an expensive to evaluate function

below the threshold εEI or the total number of samples NT

is consumed.

4 Efficient global robust optimization
of parametric uncertainties affected problems

4.1 Main concept

We propose an efficient global robust optimization algo-
rithm for finding the best worst-case cost of unconstrained
problems affected by parametric uncertainties. The primary
goal of this method is to find the global robust solution using
a relatively small number of expensive function evaluations.
Before expounding the algorithm, the main concept behind
the technique will be discussed.

The proposed algorithm is similar to the efficient global
optimization technique in that both methods employ an ini-
tialization phase followed by an iterative surrogate-based
optimization approach, where the optimal sampling loca-
tion at each iteration is chosen via adaptive sampling. We
refer to the proposed method as Efficient Global Robust
Optimization (EGRO).

During the initialization phase, the underlying expen-
sive simulation is sampled in the control and environment
variable space, (Xc,Xe), using an appropriate design of
experiments strategy. Based on the sampled set, an approxi-
mate model that encompasses the combined space (Xc,Xe)

is constructed using Kriging.
This is followed by the iteration phase, in which the

expensive function is adaptively sampled by evaluating it

at the location that is most expected to improve the cur-
rent robust optimum. The sampling location is searched
for in two stages, firstly, in the control variable space
(Section 4.3) and secondly in the environment variable
space (Section 4.4). For both stages, the control vari-
ables and environment variables location is found by using
modified versions of the expected improvement criterion.
Thereafter, the expensive function is evaluated at the new
location. The Kriging metamodel is then rebuilt with the
augmented set of sampling locations and responses. The
process of finding the new sampling location is repeated
until convergence.

4.2 Algorithm

Figure 3 shows a flowchart that helps to visualize the main
steps involved in the proposed algorithm. Comparing EGO
(Fig. 2) and EGRO (Fig. 3), we observe that four steps, high-
lighted by a bold border for the flowchart boxes, have been
added.

After initialization in Step 1, n initial sampling locations
are chosen in the combined control and environment vari-
able space through a space-filling technique in Step 2. The
response at these sampling locations is evaluated on the
expensive function in Step 3. Thereafter, a Kriging meta-
model Kf of f (xc, xe) is constructed using the samples and
responses. Step 5 is divided into three sub-steps. In Step 5a,
a reference robust optimum solution rK is searched for on
the constructed metamodel Kf ,

rK = min
xc∈Xc

max
xe∈Xe

Kf (xc, xe). (8)
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Fig. 3 Flowchart shows the
algorithm for efficient global
robust optimization of
parametric uncertainties affected
problems (EGRO). The steps
with the bold borders represent
the changes that have been made
to the EGO algorithm in Fig. 2
in order to incorporate robust
optimization in the presence of
parametric uncertainties

In Step 5b and 5c, the algorithm identifies the next
location xnew at which the expensive function should be
evaluated. The location corresponding to the highest expec-
tation of improvement over the current robust optimum rK
is chosen as xnew. The search for xnew is performed by
consecutively finding the control variables xnew

c and the
environment variables xnew. The key steps are treated in the
next subsections.

4.3 Optimal sampling location in Xc

In order to find xnew
c we limit the search space to the con-

trol variable space Xc only. xnew
c should be the location in

the control variable space that is expected to give the high-
est improvement over the current robust optimum rK. To
compute the expectation of improvement we need to know
the worst-case Kriging prediction across the whole control
variable space:

ŷmax(xc) = max
xe∈Xe

Kf (xc, xe) (9)

and the corresponding maximizer in the environment vari-
able space Xe is denoted by xemax.

Figure 4 visualizes the steps described so far. Figure 4a
shows a Kriging metamodel of the damped cosine function

of one control variable and one environment variable plotted
in Fig. 1. The worst-case Kriging prediction ŷmax is plotted
in Fig. 4b. The robust optimum rK is the minimum value on
this curve. rK is determined in Step 5a.

As in deterministic expected improvement, we assume
that the uncertainty in the value of the worst-case Krig-
ing prediction, ŷmax, at any point

(
xc, xmax

e

)
can be mod-

elled using a normally distributed random variable Ymax

with mean ŷmax and variance s2
(
xc, xmax

e

)
. The term

s2
(
xc, xmax

e

)
represents the Kriging mean squared error at(

xc, xmax
e

)
.

An improvement of the worst-case Kriging prediction
ŷmax over the current robust optimum rK occurs when
Ymax < rK. The expected improvement is found by comput-
ing the expected value of the improvement Ic = max(rK −
Ymax, 0) under the normal distribution setting,

E[Ic(xc)]︸ ︷︷ ︸
EIc

= ∫ Ic=∞
Ic=0 Ic

exp

(
− tc

2
2

)
√

2πs
dIc, (10)

with

tc = rK − Ic − ŷmax

s
, s = s

(
xc, xmax

e

)
(11)
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(a) (b) (c)

Fig. 4 The Kriging metamodel of a two-dimensional function is shown in (a). The worst-case Kriging prediction, ŷmax , is plotted in (b). The
reference robust optimum rK is the minimum value obtained on ŷmax . EIc is plotted in (c). xnew

c is the global maximizer of EIc

Since the standard normal probability density function is
defined as

φ(z) = 1√
2π

exp

(−z2

2

)
, (12)

the modified expected improvement criterion EIc can be
simplified as

E[Ic(xc)] = (rK − ŷmax)

∫ tc= rK−ŷmax
s

tc=−∞
φ(tc)dtc

−s

∫ tc= rK−ŷmax
s

tc=−∞
tcφ(tc)dtc. (13)

We recognize the first integral in (13) as the normal cumula-

tive distribution function �
(

rK−ŷmax

s

)
. The second integral

in (13) can be solved by using the substitution z = −tc
2

2 .
The final expression for EIc is

E[Ic(xc)] = (rK − ŷmax)�
(

rK−ŷmax

s

)

+sφ
(

rK−ŷmax

s

)
. (14)

The global maximizer of (14) is the new control vari-
able location xnew

c at which the expensive function should
be evaluated since this is the control variables location
that gives the highest expectation of improvement. The
flowchart in Fig. 3 shows that we search for this global max-
imizer in Step 5b. Figure 4c shows the expected improve-
ment EIc as a function of xc, along with the location of the
maximizer xnew

c . Computing rK and EIc could be compu-
tationally expensive since they both involve estimation of
ŷmax . For a more in-depth discussion on calculation of rK
and EIc please refer to Appendix B.

4.4 Optimal sampling location in Xe

Once xnew
c has been identified, we need to find the loca-

tion xe, in the environment variable space Xe, at which the
expensive function should be evaluated. In this space, the
worst-case cost (maximum) is of interest. Let the determin-
istic maximum on the metamodel, with respect to xe, at the
new control variable location xnew

c be given by

gK
(
xnew
c , xe

) = max
xe∈Xe

Kf

(
xnew
c , xe

)
. (15)

Figure 5a shows the same Kriging metamodel of the damped
cosine problem as Fig. 4a. The new sampling location in
the control variable space, xnew

c , is indicated. The Kriging
surface along the red line at xnew

c is reproduced as a function
of xe in Fig. 5b. The maximum on this slice of the Kriging
surface gives the reference worst-case cost gK.

In order to find xnew
e , a modified expected improve-

ment criterion is employed once again. To formulate the
EI measure, it is again assumed that the uncertainty in the
value of the Kriging prediction ŷ

(
xnew
c , xe

)
at any point(

xnew
c , xe

)
can be modelled using a normally distributed

random variable Y with mean ŷ and variance s2
(
xnew
c , xe

)
.

Note that when computing an improvement in the control
variable space we were searching for the global minimum of
the worst-case function. In the environment variable space
we are searching for the global maximum of the function
at xnew

c . An improvement is sought over the current max-
imum gK and this occurs when Y > gK. We define an
improvement Ie over gK as Ie = max(Y −gK, 0). Given the
normal distribution setting, the expected improvement can
be written as,

E
[
Ie

(
xnew
c , xe

)]
︸ ︷︷ ︸

EIe

=
∫ Ie=∞

Ie=0
Ie

exp
(
− te

2

2

)
√

2πs
dIe, (16)
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(a) (b) (c)

Fig. 5 The Kriging metamodel of a two-dimensional function is shown in a along with the location of xnew
c . The Kriging prediction at xnew

c ,
corresponding to the red line on the left plot, is plotted as a one-dimensional function with respect to xe in (b). EIe is plotted in (c). xnew

e is the
global maximizer of EIe

with

te = ŷ − Ie − gK
s

, s = s
(
xnew
c , xe

)
. (17)

Using derivation similar to the one shown for EIc, the
expected improvement simplifies to

E
[
Ie

(
xnew
c , xe

)]
︸ ︷︷ ︸

EIe

=(ŷ−gK)�

(
ŷ−gK

s

)
+ sφ

(
ŷ−gK

s

)
.

(18)

The global maximizer of (18) is the new environment
variable location xnew

e at which the expensive function
should be evaluated. Step 5c in Fig. 3 involves the search
for this global maximizer. Figure 5c shows the expected
improvement EIe as a function of xe, and the location of the
maximizer xnew

e .
Next, in Step 6 of the flowchart, the expensive to evaluate

function f is sampled at
(
xnew
c , xnew

e

)
. Step 7 is a condi-

tional statement. If the total number of samples available is
not exhausted or EImax

c is greater than the threshold εEI , the
algorithm returns to Step 4 where the Kriging metamodel
is reconstructed with the additional sample and the process
of finding xnew is repeated. Otherwise, the algorithm termi-
nates in Step 8 and the argument of the last robust optimum
found, rK, is returned as the robust optimum location, xbest .

4.5 Algorithm choices and rationale

Here we discuss two important choices made in the defini-
tion of the EGRO algorithm.

1. Use of EIe

Instead of computing the expected improvement EIe in
the environment variable space, a simpler option could have
been to sample the location of the deterministic maximum

gK. However, sampling the location of the deterministic
maximum at xnew

c is not viable since this often leads to
the algorithm resampling the same location in the next iter-
ations. The algorithm would stall in such a situation and
would fail to converge. Furthermore, not only would the
resampling be a waste of expensive function evaluations,
but it would also cause the Kriging correlation matrix R to
become ill-conditioned. The use of EIe effectively avoids
such problems because the uncertainty near sampled points
is low, resulting in low EI values.

2. Formulation of EIc

The expression for EIc, (10), is approximate since
we lack vital information to find the exact expression.
In our formulation of EIc, we first evaluated the deter-
ministic maximum ŷmax , with respect to the environ-
ment variable space Xe, for a fixed xc. This evaluation
was repeated until the worst-case Kriging prediction was
known for the complete Xc space. Thereafter, we imposed
the assumption that each point on the deterministically
found worst-case Kriging prediction surface is actually
a random variable, whose mean is given by ŷmax and
variance is given by the Kriging mean squared error.
This assumption enabled us to find an analytical expres-
sion for EIc (14) similar to the one for the nominal
EI (7).

To find the exact expression for EIc, we need to first
retain the assumption from deterministic EGO that each
point on the Kriging surface is a random variable, whose
mean is given by the Kriging prediction and variance is
given by the Kriging mean squared error. Now we are
interested in finding the distribution of the maximum
(Arellano-Valle and Genton 2008), with respect to the
environment variables, for a fixed xc. However, to per-
form this operation, additional assumptions concerning the
joint distribution of the random variables are required. In
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all likelihood, the distribution of the maximum would be
non-Gaussian and the computation of expected improve-
ment would require numerical integration (ur Rehman et al.
2014). The lack of joint distribution information and the
high cost of performing numerical integration makes exact
evaluation of EIc less attractive. Therefore, a more
pragmatic approach of computing the worst-case
Kriging prediction as a deterministic quantity and
imposing a Gaussian distribution assumption on
ŷmax was taken to find an analytical expression
for EIc. Further details on the rationale behind this
approach may be found in (ur Rehman et al. 2014).
To what extent this choice affects the effectiveness of
EGRO is investigated using numerical benchmark tests.

5 Results

5.1 Test problems and evaluation methodology

The algorithm is tested on a set of standard robust optimiza-
tion problems from literature of varying dimensions and
type. The 13 test problems are provided in the Appendix.
Problems 1 to 7 have been applied in (Rustem and Howe
2002; Marzat et al. 2012) while problems 8 to 13 have
been used in (Ong et al. 2006; Cramer et al. 2009;
Shi and Krohling 2002; Lung and Dumitrescu 2011;
Marzat et al. 2012, 2013).

To illustrate the practical value of the algorithm, an
engineering case study has been added to the set of
numerical examples. The engineering problem is that of
an optical filter that can be affected by manufacturing
uncertainties, leading to deterioration in parameters of
interest.

The first seven problems, f1 to f7, are convex in the
control variable space xc and concave in the environment
variables space xe. These problems have been optimized
using saddle-point optimization in (Rustem and Howe 2002)
while a Kriging-based optimization approach has been used
in (Marzat et al. 2012). Problem f1 to f3 are 4 dimen-
sional with 2 dimensions in Xc and 2 dimensions in Xe. The
largest problem is f7 which has 5 dimensions in Xc and 5
dimensions in Xe.

Test problems f8 to f13 have been widely used by
the evolutionary optimization community (Cramer et al.
2009; Shi and Krohling 2002; Zhou and Zhang 2010) to
test evolutionary methods designed to optimize min-max
problems. The same problems have also been tested by
(Marzat et al. 2012, 2013). The problems have a relatively
smaller size, with a maximum of 4 dimensions. Some of the
test problems, such as f10 and f11, are especially difficult
to optimize due to the non-convex and highly multimodal
behaviour of the functions.

All the test problems used as numerical examples in this
work are established benchmark problems for robust opti-
mization using surrogates. By using these benchmarks, the
performance of the proposed algorithm can easily be com-
pared against state of the art methods in literature in terms
of number of expensive function calls needed to reach the
global robust optimum. The reference results for function f1

to f7 have been solved to theoretically global robust opti-
mality (Rustem and Howe 2002). Amongst the algorithms
in literature, the MiMareK 1 and MiMareK 2 algorithms
(Marzat et al. 2012; 2013) converge to the global robust
optimum in the lowest number of expensive function eval-
uations. In this work, we compare the converge speed of
EGRO in terms of number of expensive function evalua-
tions required to reach the global robust optimum against
currently available methods.

When constructing the metamodel, we choose the ini-
tial sampling locations using a space-filling technique such
as Latin hypercube sampling. Since this type of initial
sampling is non-deterministic, the algorithm is run 100
times on each test case and the results are averaged. The
repeatability of the algorithm for random initial sampling
is thereby tested. The average results are compared against
other techniques used for min-max optimization.

For all problems, the initial number of sampling locations
are chosen as n = 10 × nd , where nd represents the number
of dimensions. The threshold for termination for EImax

c is
fixed at ε = 10−7. The maximum number of function evalu-
ations available is different for each function. However, this
number is not allowed to exceed NT = 35 × nd for any
problem.

5.2 Illustrative example

Before performing a detailed analysis of EGRO’s numer-
ical performance, we illustrate the evolution of the algo-
rithm as it searches for the global robust optimum by
applying it on a two-dimensional problem. The function,
which is basically a damped cosine wave, is plotted in
Fig. 1.

The problem is multimodal, non-convex and a func-
tion of one control variable and one environment variable.
Since the problem is only 2-dimensional, it is relatively
easy to visualize the choices made by EGRO at each iter-
ation of the algorithm as it searches for the global robust
optimum.

The initial variables of EGRO are set to n = 20,
εEI = 10−7 and NT = 50. We aim to find the robust
optimum within 50 evaluations of f11(xc, xe). Latin hyper-
cube sampling is used to choose n = 20 locations where
the expensive function is evaluated. Before choosing these
locations both the dimensions are scaled such that they lie
in the range [0, 1]. Given this range for the dimensions,
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Fig. 6 Snapshots of the
progress of the algorithm
applied to f11(xc, xe). The left
column shows the Kriging
metamodel Kf of the function.
The best worst-case expected
improvement EIc is plotted in
the central column. The right
column shows the deterministic
worst-case cost ŷmax on Kf and
the true worst-case cost ymax,
which is provided as a reference.
By the 24th iteration the robust
optimum has been found

the global robust optimum of the problem is located at
x = (0.7044, 1).

The Kriging metamodel Kf is built based on the sam-
pling locations and responses. Figure 6 shows how the
algorithm evolves in its search for the robust optimum of the
problem. The numbers on the far left represent the iteration
of the algorithm. The column on the left shows the Kriging
metamodel Kf of the function. The expected improvement
in the control variable space EIc is plotted in the central
column. The column on the right shows the deterministic
worst-case cost ŷmax on Kf and the true worst-case cost
ymax, computed on f11(xc, xe). The true worst-case cost
ymax is provided as a reference and the algorithm does not
have access to it. It is interesting to note that ymax , with its
peaks and flat plateaus, looks slightly like a step or a stair-
case function. The worst-case cost experiences a very slight
dip at xc = 0.7044. It is at this location that the worst-case
cost is minimum and therefore this is the robust optimum
location in Xc.

At the first iteration, the Kriging metamodel, constructed
using n = 20 initial samples, seems to have captured the

general trend of the true function f11(xc, xe). However, the
worst-case cost ŷmax on the metamodel does not approxi-
mate the true worst-case cost ymax too well at this stage. We
note that for the first iteration EIc is maximum at xc = 1 and
this is where a new sample is added in the Xc domain. By the
6th iteration, there is significant improvement in the global
accuracy of both the nominal Kriging metamodel Kf as
well as the worst-case cost ŷmax . However, locally, the plots
show that there is significant room for improvement in some
parts of the design landscape, such as between xc = 0.1 to
xc = 0.6 in the worst-case cost plot. It is interesting to note
that by the 6th iteration, ŷmax approximates ymax very well
at the location of the robust optimum at xc = 0.7044. The
two plots are also quite close to each other in the general
vicinity of this robust optimum at this stage.

By the 11th iteration of EGRO, ŷmax and ymax , at least
visually, seem to be almost the same for all values of xc. At
this stage, the general location around xc = 0.7044 has also
been sampled more than once. Shifting our focus to the cen-
tral column of Fig. 6, we note that EIc has also fallen to quite
a low value. By the 24th iteration, the Kriging metamodel
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Kf seems to approximate the concentric circular contours
of the true function in Fig. 1 quite well. Additionally, ymax

and ŷmax are now visually indistinguishable in the plots
shown. The robust optimum, which is found by identifying
the argument of rK, is returned at this point since EImax

c is
now smaller than the threshold εEI .

5.3 Numerical performance evaluation

Now we turn our attention to analyzing the numerical
performance of the algorithm based on the average per-
formance of 100 runs on each test problem provided in
the Appendix. Table 1 shows the reference results obtained
from (Rustem and Howe 2002; Marzat et al. 2012). The
table shows the robust optimum locations for the control
variable and environment variable and the robust optimum
object value. The number of dimensions in Xc and Xe

along with their size are also provided in the second col-
umn of Table 1 for each test problem. The right-most

column shows the total number of dimensions nd for each
function.

The numerical performance of EGRO on the test prob-
lems is summarized in Table 2. The first column lists the
test functions. The mean robust optimum location in Xc

and Xe based on 100 runs is provided in the second and
third column respectively. The fourth and fifth column show
the mean and standard deviation of the objective value
fi(xc, xe) at the robust optimum, where i denotes the func-
tion number. Finally, the sixth column provides the total
number of expensive function evaluations nf scaled by the
total number of dimensions nd of the problem. For instance
f7(xc, xe) required a total of nf = 288 evaluations. The
function has nd = 10 total dimensions. The ratio of nf to
nd is therefore 288/10, which is rounded up to 29 in the
table.

Figure 7 shows the ratio of the average robust optimum
(third column in Table 2) to the reference robust optimum
(sixth column in Table 1) for all the test problems except

Table 1 Reference results of
all the test problems. The
functions are listed in the
Appendix. The reference
results have been obtained
from (Rustem and Howe 2002;
Marzat et al. 2012)

Test function Xc Xe xc xe fi(xc, xe) nd

f1(xc, xe) [−5, 5]2 [−5, 5]2 −0.4833 0.0833 −1.6833 4

−0.3167 −0.0833

f2(xc, xe) [−5, 5]2 [−5, 5]2 1.6954 0.7186 1.4039 4

−0.0032 −0.0001

f3(xc, xe) [−5, 5]2 [−3, 3]2 −1.1807 2.0985 −2.4688 4

0.9128 2.666

f4(xc, xe) [−5, 5]2 [−3, 3]3 0.4181 0.709 −0.1348 5

0.4181 1.0874

0.709

f5(xc, xe) [−5, 5]3 [−1, 1]3 0.1111 0.4444 1.345 6

0.1538 0.9231

0.2 0.4

f6(xc, xe) [−5, 5]4 [−2, 2]3 −0.2316 0.6195 4.543 7

0.2229 0.3535

−0.6755 1.478

−0.0838

f7(xc, xe) [−5, 5]5 [−3, 3]5 1.4252 0.5156 −6.3509 10

1.6612 0.8798

−1.2585 0.2919

−0.9744 0.1198

−0.7348 −0.1198

f8(xc, xe) [0, 10] [0, 10] 5 5 0 2

f9(xc, xe) [0, 10] [0, 10] 0 0 3 2

f10(xc, xe) [0, 10] [0, 10] 10 2.1257 0.0978 2

f11(xc, xe) [0, 10] [0, 10] 7.0441 10 0.0425 2

f12(xc, xe) [−0.5, 0.5] [0, 10]2 0.5 0 0.25 4

[0, 1] 0.25 0

f13(xc, xe) [−1, 3]2 [0, 10]2 1 Any 1 4

1 Any
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Table 2 The average
numerical performance of
EGRO based on 100 runs is
evaluated on the 13 test
problems provided in the
Appendix

Test function Average xc Average xe Average fi(xc, xe) Standard deviation fi
Total evaluations nf

Number of dimensions nd

f1(xc, xe) −0.4830 0.0828 −1.6833 2.15 × 10−5 24−0.3168 −0.0828

f2(xc, xe) 1.6953 0.7183
1.4039 1.5 × 10−3 27−0.0031 −0.0015

f3(xc, xe) −1.1908 2.1060 −2.4689 7.4 × 10−2 32
0.9282 2.6966

f4(xc, xe) 0.4181 0.7082

−0.1348 2.1685 × 10−4 250.4156 1.0907

0.7074

f5(xc, xe) 0.1113 0.4463

1.3453 1.8286 × 10−4 230.1544 0.9262

0.2008 0.4022

f6(xc, xe) −0.2318 0.6180

4.543 3.1 × 10−3 34
0.2233 0.3533

−0.6747 1.4775

−0.0840

f7(xc, xe) 1.4250 0.5176

−6.3509 4.3 × 10−3 29

1.6608 0.8783

1.2569 0.2949

−0.9738 0.1201

−0.7346 −0.1218

f8(xc, xe) 5 5 0 8.9 × 10−8 11

f9(xc, xe) 0 0 3 1.49 × 10−2 18

f10(xc, xe) 10 2.1181 0.0978 3.47 × 10−4 25

f11(xc, xe) 7.0496 10 0.0425 1.40 × 10−6 30

f12(xc, xe) 0.5 0
0.251 2.7 × 10−3 11

0.25 0

f13(xc, xe) 0.999 −
0.997 5.6 × 10−3 16

0.999 −

The table shows the mean and standard deviation of the robust optimum along with the average robust
optimum locations in Xc and Xe. The total number of evaluations per dimension on the expensive function
is shown in the right-most column for each problem

f8. In case of f8, the ratio has not been plotted since the
reference robust optimum is zero. Nevertheless, for f8 there
is no difference between the reference objective and the
average robust optimum achieved by EGRO. The error bars
in Fig. 7 indicate the standard deviation (fifth column in
Table 2) around the average robust optimum. It is clear from
the figure that the ratio of the average to the reference robust
optimum is close to 1 for all the test problems. Furthermore,
the standard deviation for the objective function is also
low for most of the functions. For f3(xc, xe) the standard
deviation is relatively higher, but the mean robust optimum
objective is still quite accurate. The relatively higher stan-
dard deviation can be explained by the fact that the norm
of the gradient at the robust optimum for f3(xc, xe) is more
than two orders of magnitude larger than the corresponding
value for the other functions. The overall results suggest that

EGRO is consistently able to accurately find the robust opti-
mum objective value, regardless of the function type or size.

We now turn our attention to the average robust opti-
mum location in Xc and Xe (second and third column in
Table 2) for the given test problems. The reference results
are provided in the fourth and fifth column in Table 1.
Again the numbers compare quite favorably and differences
between the reference results and the algorithm’s results sur-
face only in the second and third decimal place. It should
be noted here that there is a greater scope for difference
between the reference robust optimum location and those
achieved by the algorithm because it may be the case that
some functions are quite flat with respect to certain dimen-
sions. Therefore, the robust optimum could be quite close
to the reference result even if the robust optimum location
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Fig. 7 Figure shows the ratio of the average robust optimum
to the reference robust optimum for all the test problems. The
error bars indicate the standard deviation around the average robust
optimum

is relatively not as close to the reference result. Nonethe-
less, we note that the average robust optimum location found
by the algorithm compares very well against the reference
results.

The most important aspect of the algorithm is its abil-
ity to reach the global robust optimum consistently in
relatively few expensive function evaluations. Finding the
global robust optimum is an especially challenging problem
since it involves a nested global optimization. Therefore,
a large amount of expensive function evaluations could be
needed to solve even quite small problems compared to the
amount needed for nominal optimization.

The sixth column in Table 2 shows the total number of
expensive function evaluations nf required for the corre-
sponding average numerical performance scaled by the total
number of dimensions nd for each test problem. The com-
bined results of this benchmark indicate that the ratio

nf

nd

does not increase significantly with the number of dimen-
sions nd since all of the ratios remain in the same vicinity
of 15-35 evaluations per dimension. Even for large prob-
lems such as f6 (7 total dimensions) and f7 (10 total
dimensions) the ratio of the total evaluations to the num-
ber of dimensions remains steady. Similarly, non-convex
and highly multimodal problems such as the damped sine
problem, f10, and the damped cosine problem, f11, do
not require especially high numbers of expensive function
evaluations.

5.4 Comparison with other approaches

It is pertinent here to compare the efficiency of the proposed
approach against contemporary techniques for min-max

optimization. Problems f8 to f13 have been used for min-
max optimization using evolutionary approaches (Cramer
et al. 2009; Shi and Krohling 2002; Zhou and Zhang
2010). The algorithms in (Cramer et al. 2009; Shi and
Krohling 2002) require a ratio of more than 104 total
function evaluations to number of dimensions to reach
the robust optimum consistently. The plots in (Zhou and
Zhang 2010) suggest that the robust optimum is found
based on only 110 fitness function evaluations. However,
the actual expensive function evaluations are hidden within
each iteration of the surrogated assisted evolutionary algo-
rithm, resulting in total function evaluation in the same
order as (Cramer et al. 2009; Shi and Krohling 2002).
As shown by the last column in Table 2, EGRO is sev-
eral orders faster than the evolutionary algorithms since
it solves the problems f8 to f13 using only a maxi-
mum ratio of 30 total function evaluations to number of
dimensions.

We also compare EGRO against the recent Kriging-based
min-max optimization approaches, known as MiMaReK 1
(Marzat et al. 2012) and MiMaReK 2 (Marzat et al. 2013).
Marzat et al. tested MiMaReK 1 on all the test prob-
lems, f1 to f13, while MiMaReK 2 was applied on
the problems f8 to f13. Marzat et al. state that under
most conditions MiMaReK 2 will converge faster than
MiMaReK 1. Both these algorithms were shown to use
much fewer expensive function evaluations compared to
evolutionary techniques in order to reach the robust
optimum.

A more complete comparison can be made against
MiMaReK 1, since reference average results based on 100
runs are available for it in (Marzat et al. 2012) for all the
test problems. Figure 8 shows the ratio of the total func-
tion evaluations to the total number of dimensions

nf

nd
for

EGRO, MiMaReK 1 and MiMaReK 2. Comparing EGRO
with MiMaReK 1 in Fig. 8, we note that EGRO uses fewer
function evaluations to reach the global robust optimum for
all functions. In some cases, EGRO is more than an order
of magnitude faster than MiMaReK 1, such as for the two
largest problems f6 (nd = 10) and f7 (nd = 7). As can
be noted from Fig. 8, the difference between EGRO and
MiMaReK 1 is not as dramatic for the smaller problems, but
EGRO does considerably better on all functions. Figure 8
also shows the comparison of EGRO with MiMaReK 2
for the test problems f8 to f13. MiMaReK 2 uses fewer
function evaluations than MiMaReK 1, but it is still slower
than EGRO.

EGRO achieves average results for the robust optimum
that are relatively close to the reference in Table 1 and are
comparable to those found for MiMaReK 1 and MiMaReK
2 (Marzat et al. 2012, 2013). The standard deviation around
the robust optimum for the 100 runs is also quite low for all
problems.
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Fig. 8 Figure shows the ratio of the total function evaluations to
the total number of dimensions

nf

nd
for EGRO, MiMaReK 1 and

MiMaReK 2

5.5 Engineering case study: robust optimization of an
optical filter

In this work, we consider the robust optimization of an
integrated photonic microdevice known as a ring resonator
(Bogaerts et al. 2012). A top-view schematic of such a
resonator is given in Fig. 9. The device consists of two
straight optical paths separated by a ring-shaped optical
path, all of which are integrated on a chip. These opti-
cal paths on the chip are known as waveguides. The chip
consists of a single stripe of Silicon Nitride buried in Sili-
con Dioxide and the geometry is referred to as TripleXTM

(Heideman et al. 2012). When light at a certain frequency
is inserted into one of the straight waveguides, it is trans-
ferred, via the ring section, into the other straight waveguide
as a result of resonant coupling between the adjacent waveg-
uides. The device operates as an optical filter that allows
power to be transferred only at certain frequencies. This
property motivates the use of ring resonators in many appli-
cations in optical communication and signal processing. The
optical performance, however, is very sensitive to fabrica-
tion induced variations in geometry of the integrated circuit.
For further details concerning the theory and application of
ring resonators, please refer to (Bogaerts et al. 2012).

Figure 10 shows the spectral response at the drop port
(output) of a ring resonator. In this case study, we are inter-
ested in maximizing the filter bandwidth, B, defined as the
bandwidth of the response at −3dB. The design variables
are the gap, g, between the straight and the ring section,
the length L of the straight coupling section in the ring and

Fig. 9 Top-view schematic of an optical ring resonator

the width W of the waveguides. There are two paramet-
ric uncertainties, �W and �t . �W represents uncertainty
in the width due to fabrication variations while �t repre-
sents the uncertainty in the out-of-plane thickness of the
waveguide. The robust optimization problem is defined as,

min
w,g,L

max
�W,�t

− B, (19)

where w ∈ [1, 1.17]μm, g ∈ [1, 1.3]μm and L ∈
[100, 300]μm. The uncertainty �W ∈ [−0.1, 0.1]μm and
�t ∈ [−3, 3]nm. The nominal thickness of the waveguides
is t = 32nm. The set of control variables is xc ∈ [w g L] and
the set of environment variables consists of xe ∈ [�W �t].

The ring resonator is simulated using a commercial soft-
ware package, (PhoeniX Software 2014). Each simulation
costs approximately 10 min. An initial Kriging metamodel
is built using 10×nd = 50 samples chosen via Latin Hyper-
cube sampling. The computational budget is set to 30×nd =
150 expensive simulations. EGRO is therefore allowed to
run for 100 iterations. The robust optimum found via EGRO
is compared to the nominal optimum of the problem. This
nominal optimum is estimated by using the Efficient Global
Optimization algorithm described in Section 3. The same
total computational budget of 150 simulations is allowed
for the nominal optimization and the algorithm is initialized
with 10 × nd = 30 samples chosen via Latin Hypercube
sampling.

Table 3 shows a comparison of the robust optimum esti-
mated by EGRO with the nominal optimum found by EGO.
The optimal locations for W , g and L are provided for both
optima (column 2 to 4). The worst-case location in �W and

Table 3 Comparison of the robust optimum and deterministic optimum for the filter bandwidth at the respective worst-case locations

W g L �W �t Nominal B Worst-case B Expensive simulations

Robust optimum 1 1.032 233.64 −0.1 0.003 254.1 GHz 23.3 GHz 150

Nominal optimum 1.071 1.045 300 −0.1 −0.003 405.8 GHz 19.5 GHz 150
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Fig. 10 Spectral response at the drop port of a ring resonator. The
bandwidth of the ring resonator, B, is also indicated on the plot

�t is also given for the two cases (column 5 and 6). Column
7 and 8 show the nominal and worst-case bandwidth found
at the respective locations. It is important to note that the
values given for both these quantities have been found on
the expensive simulation via postprocessing after both algo-
rithms terminate. The computational budget used by the two
algorithms is given in the last column.

The performance of the robust optimum and the nomi-
nal optimum is first compared at the nominal location. The
table shows that the nominal bandwidth B for the robust
optimum is 254.0 GHz. On the other hand, the bandwidth
at the nominal optimum is a much higher value, 405.8 GHz.
However, this large difference, in reality, is not significant
since even the slightest deviation from the ideal parame-
ter values causes the bandwidth B to drop dramatically for
both cases. The comparison of the nominal bandwidth to the
worst-case bandwidth (second last column, Table 3) for the
two optima also gives an indication of the sensitivity of the
objective with respect to the parametric uncertainties. For
both optima, the bandwidth falls by more than an order of
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Fig. 11 The worst-case bandwidth found on the metamodel at each
iteration of EGRO is plotted for the total number of iteration

magnitude when moving from the nominal to the worst-case
solution.

It is therefore more instructive to compare the worst-case
bandwidth found for the nominal and robust optimal loca-
tions. The worst-case bandwidth for the robust optimum is
3.8 GHz (19 percent) higher than the worst-case bandwidth
for the nominal optimum. Although the robust optimum
is nominally suboptimal, it will perform better than the
nominal optimum in the worst-case scenario.

Interestingly, the worst-case location in �W and �t

for both the optima occurs at the bounds. This is purely
coincidental since the objective function is, in general, non-
convex with respect to �W and �t for many choices
of xc.

In addition to the final result, it is also informative to
observe how the two methods, EGRO and EGO, evolve
with each iteration. Figure 11 shows the worst-case band-
width found on the metamodel at each iteration of EGRO.
Observing the evolution of the worst-case cost, we note
that it fluctuates from the 1st to the 35th iteration. It
stays relatively constant for the next 20 iterations but starts
to shift again from iteration 55 to iteration 70. There-
after, the value remains largely steady until the algorithm
terminates at the 100th iteration. An interesting observa-
tion is that the worst-case cost found on the metamodel
does not exactly match the worst-case cost found on the
expensive simulation, Table 3, when the algorithm ter-
minates at the 100th iteration. This indicates that more
than 150 total simulations are needed in order to improve
the metamodel fidelity in the local region of the robust
optimum.

The response of the expensive simulation at each newly
added sample point is plotted with respect to the number
of iterations of EGO in Fig. 12. The figure also shows
the nominal optimum found at each iteration. Studying the
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Fig. 12 The nominal optimum at each iteration of EGO is plot-
ted as a function of the number of iterations. The figure also shows
the simulated response for the new sampling location chosen at each
iteration
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plot, we note that the nominal optimum at any iteration in
EGO is given by the maximum simulated bandwidth found
till that iteration. The nominal optimum does not change
after the 40th iteration since no better solution is found
thereafter.

6 Conclusion

Optimization problems involving bounded-but-unknown
uncertainties and expensive simulations are often encoun-
tered in practice. In this work, we have proposed a novel
method for efficient global robust optimization of such
problems that are affected by parametric uncertainties. To
avoid extensive use of expensive function evaluations, a
surrogate-based robust optimization technique was formu-
lated. The approach depended on constructing a Kriging
metamodel and adaptively sampling the resulting surrogate.
The sampling locations were found using expected improve-
ment criteria that reflected the need for finding the best
worst-case cost instead of the nominal cost.

The presented algorithm was tested on several test prob-
lems found in literature. We demonstrated that the proposed
approach can consistently locate the global robust optimum
of these functions using relatively much fewer expensive
function evaluations than the amount reported in previ-
ous work. The reproducibility of the technique was tested
by observing average performance based on 100 runs on
each test problem. The statistical comparison of the method
against comparable approaches were also quite favorable.

In addition to the application of the algorithm on numer-
ical problems, the technique was tested on an engineering
problem as well. It was shown that the method can provide
a fabrication tolerant integrated circuit design for an optical
filter affected by fabrication uncertainties.

Tests on the benchmark problems showed that the pro-
posed approach accurately found the global robust opti-
mum. Furthermore, the algorithm scaled linearly in terms of
expensive function evaluations with the number of dimen-
sions and exhibited much faster convergence than existing
techniques. Numerical results also suggest that the approx-
imations made in the algorithm did not hinder convergence
to the global robust optimum.

Open Access This article is distributed under the terms of the Cre-
ative Commons Attribution License which permits any use, distribu-
tion, and reproduction in any medium, provided the original author(s)
and the source are credited.

Appendix A: Test problems

The 13 test functions on which EGRO is applied are pro-
vided below. Functions 1 to 7 have been employed as test

problems in (Rustem and Howe 2002; Marzat et al. 2012)
while functions 8 to 13 have been used in (Cramer et
al. 2009; Shi and Krohling 2002; Zhou and Zhang 2010;
Marzat et al. 2012, 2013).

f1(xc, xe) = 5(x2
c1 + x2

c2) − (x2
e1 + x2

e2)

+xc1(−xe1 + xe2 + 5) + xc2(xe1 − xe2 + 3). (20)

f2(xc, xe) = 4(xc1 − 2)2 − 2x2
e1

+x2
c1xe1 − x2

e2 + 2x2
c2xe2. (21)

f3(xc, xe) = x4
c1xe2 + 2x3

c1xe1

−x2
c2xe2(xe2 − 3) − 2xc2(xe1 − 3)2 (22)

f4(xc, xe) = −
3∑

i=1

(xei − 1)2 +
2∑

i=1

(xci − 1)2

+xe3(xc2 − 1) + xe1(xc1 − 1) + xe2xc1xc2 (23)

f5(xc, xe) = −xe1(xc1 − 1) − xe2(xc2 − 2)

−xe3(xc3 − 1) + 2x2
c1 + 3x2

c2 + x2
c3

−x2
e1 − x2

e2 − x2
e3 (24)

f6(xc, xe) = xe1(x2
c1 − xc2 + xc3 − xc4 + 2)

+xe2(−xc1 + 2x2
c2 − x2

c3 + 2xc4 + 1) +
xe3(2xc1 − xc2 + 2xc3 − x2

c4 + 5)

+(5x2
c1 + 4x2

c2 + 3x2
c3 + 2x2

c4) −
3∑

i=1

(xei)
2 (25)

f7(xc, xe) = 2xc1xc5 + 3xc4xc2 +
xc5xc3 + 5x2

c4 + 5x2
c5 − xc4(xe4 − xe5 − 5)

+xc5(xe4 − xe5 + 3)

+
3∑

i=1

xei(x
2
ci − 1) −

5∑
i=1

(x2
ei) (26)

f8(xc, xe) = (xc1 − 5)2 − (xe1 − 5)2 (27)

f9(xc, xe) = min(3 − 0.2xc1 + 0.3xe1, 3 + 0.2xc1 − 0.1xe1)

(28)

f10(xc, xe) = sin(xc1 − xe1)√
x2
c1 + x2

e1

(29)

f11(xc, xe) =
cos(

√
x2
c1 + x2

e1)√
x2
c1 + x2

e1 + 10
(30)

f12(xc, xe) = 100(xc2 − x2
c1)

2 + (1 − xc1)
2 −

xe1(xc1 + x2
c2) − xe2(x

2
c1 + xc2) (31)
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f13(xc, xe) = (xc1 − 2)2 + (xc2 − 1)2 +
xe1(x

2
c1 − xc2) + xe2(xc1 + xc2 − 2). (32)

Appendix B: Numerical choices and optimizers

The calculation of EIc is more computationally demanding
than calculating the deterministic EI, (7), since ŷmax has to
be computed for each evaluation of EIc. In this work, Mat-
lab implementation of the multistart framework for global
optimization (Ugray et al. 2007) is used to estimate ŷmax .
The algorithm is a global optimization method that chooses
the best solution after performing local optimization runs
from multiple starting points. The Matlab implementation
fmincon, of the interior point algorithm for non-linear pro-
gramming (Byrd et al. 1999), was used as the local solver
in this work. Since ŷmax is computed on a known analyt-
ical function, i.e. the Kriging predictor, the Jacobian and
Hessian of the Kriging predictor can very cheaply and
easily be computed as well. In order to enhance the effi-
ciency, the Jacobian and Hessian were also provided to the
local solver.

Estimating the robust optimum rK on the metamodel,
(8), is also a computationally intensive part of the algorithm
since it requires computation of ŷmax as well. EIc and rK
use the same strategy, described above, for estimating ŷmax .

It should be noted here, that any type of global optimizer
can be used to estimate ŷmax . However, because ŷmax , (9),
has to found each time EIc needs to be evaluated, it is best
to use an approach that can use analytically supplied Jaco-
bian and Hessian of the Kriging predictor, since they can be
computed very cheaply.

The global optimization of EIc and the outer global min-
imization for estimating the optimal rK in (8) are performed
via the Matlab implementation of the Simulated Annealing
algorithm (Ingber 1996).

The computational cost of evaluating EIe is much
less than the calculation of EIc, (18), since there is
no internal optimization that has to be performed each
time EIe is evaluated. However, EIe requires a pre-
computed value for the reference global worst-case cost
gK. Matlab implementation of the Simulated Annealing
algorithm (Ingber 1996) is again used for this global
optimization.
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