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Abstract
In Cieśliński (J Philos Logic 39:325–337, 2010), Cieśliński asked whether composi-
tional truth theory with the additional axiom that all propositional tautologies are true
is conservative over Peano Arithmetic. We provide a partial answer to this question,
showing that if we additionally assume that truth predicate agrees with arithmetical
truth on quantifier-free sentences, the resulting theory is as strong as �0-induction for
the compositional truth predicate, hence non-conservative. On the other hand, it can
be shown with a routine argument that the principle of quantifier-free correctness is
itself conservative.
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1 Introduction

It is a very widespread phenomenon in logic that if a theory S1 can formulate a truth
predicate for a theory S2, then S1 is stronger than S2, a claim which can be made
precise in many different ways.

This phenomenon, stripped down to its essence, is investigated in the area of truth
theory. Truth theories are axiomatic theories which arise by adding a fresh predicate
T (x) to a base theory B which handles syntactic notions (Peano arithmetic, PA, is an
example of such a theory). The intended interpretation of T is the set of (codes of) true
sentences of the base theory. By considering various possible axioms governing the
behaviour of T , we investigate the impact of various notions of truth on the properties
on the obtained theory.
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One line of research in this area asks what precise properties of the truth predicate
make a theory with a truth predicate non-conservative over the base theory. (A theory
S1 is conservative over its subtheory S2 if it does not prove any theorems in the language
of S2 which are not already provable in that subtheory.)

It is rather straightforward to see that if we add to PA a unary truth predicate
which satisfies compositional axioms and the full induction scheme in the arithmetical
language extended with the truth predicate, then by induction on lengths of proofs
we can show that all theorems of PA are true and hence arithmetic is consistent.
On the other hand, by a nontrivial result of Kotlarski, Krajewski, and Lachlan from
Kotlarski et al. [1], the theory of pure compositional truth predicate with no induction
is conservative over PA. Recent research brought much better understanding of which
exact principles weaker than full induction yield a nonconservative extension of PA.1

One of the persistent open questions in this line of research askswhether the compo-
sitional truth theory over PAwith an additional axiom expressing that all propositional
tautologies are true is conservative over arithmetic. We know that related principles
such as “truth is closed under propositional logic” or “valid sentences of first-order
logic are true” are not conservative and indeed are all equivalent to �0-induction for
the truth predicate.2

In this article, we provide a partial answer to Cieśliński’s question. We show
that CT− extended with the principle expressing that propositional tautologies are
true becomes nonconservative upon adding quantifier-free correctness principle QFC
which states that T predicate agrees with partial arithmetical truth predicates on
quantifier-free sentences. The principleQFC can itself be easily seen to be conservative
over PA (we include a proof in the Appendix B; it is routine).

Our result can therefore be seen as a certain no-go theorem. Our methods for show-
ing conservativity of truth theories behave very well when we demand that several
such properties are satisfied at once. Therefore our theorem seems to impose cer-
tain restriction on what methods can be used to attack the problem of propositional
tautologies.

The argument presented in this article is the original proof of nonconservativity
of the compositional truth with the principles “propositional tautologies are true”
and the quantifier-free correctness. However, subsequently, another proof, based on
different ideas, has been found by Cieśliński and, after placing in a more general
framework, published in Cieśliński et al. [5], Proposition 15. We believe however,
that the argument presented in the present article might still be of interest, as it is
based on a significantly different technique, disjunction with stopping conditions,
introduced implicitly in Smith [6] and discussed more systematically in Kossak and
Wcisło [7], which we think might find still further applications in the study of models
and proof-theoretic properties of truth predicates.

1 A comprehensive discussion of recent discoveries can be found in Cieśliński [2].
2 The question was originally stated by Cieśliński in Cieśliński [3]. It was also asked by Enayat and
Pakhomov in Enayat [4].
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2 Preliminaries

2.1 Arithmetic

In this paper, we consider truth theories over Peano Arithmetic (PA) formulated in the
language {+,×, S, 0}. It is well known that PA, aswell as itsmuchweaker subsystems,
are capable of formalising syntax. This topic is standard and the reader can find its
discussion e.g. in Kaye [8] or Hájek and Pudlák[9]. Below, we list some formulae
defining formalised syntactic notions which we will use throughout the paper.

Definition 1

• Var(x) defines the set of (codes of) first-order variables.
• TermLPA(x) defines the set of (codes of) terms of the arithmetical language.
• ClTermLPA(x) defines the set of (codes of) closed terms of the arithmetical
language.

• Num(x, y) means that y is (the code of) the canonical numeral denoting x . We
will use the expression y = x interchangeably.

• t◦ = x means that t is (a code of) a closed arithmetical term and its formally
computed value is x .

• FormLPA(x) defines the set of (codes of) arithmetical formulae.
• Form≤1

LPA
(x) defines the set of (codes of) arithmetical formulae with at most one

free variable.
• SentLPA(x) defines the set of (codes of) arithmetical sentences.
• SentSeqLPA

(x) defines the set of (codes of) sequences of arithmetical sentences.
• qfSentLPA

(x) defines the set of (codes of) quantifier-free arithmetical sentences.
• PrPA(d, φ) means that d is (a Gödel code of) a proof of φ in PA. PrPA(φ) means
that φ is provable in PA.

• FV(x, y) means that y is (a code of) an arithmetical formula and x is amongst its
free variables.

• Asn(α, x) means that x is (a code of) an arithmetical term or formula and α is an
assignment for x , i.e., a function whose domain contains its free variables.

• If t ∈ TermLPA and α is an assignment for t , then by tα = x , we mean that x is
the formally computed value of the term t under the assignment α.

In the paper, we will make an extensive use of a number of conventions.

Convention 2

• Wewill use formulae defining syntactic objects as if they were denoting the defined
sets. For instance, we will write x ∈ SentLPA interchangeably with SentLPA(x).

• We will often omit expressions defining syntactic operations and simply write the
results of these operations in their stead. For example, we will write T (φ ∧ ψ)

meaning “η is the conjunction of (the codes of) the sentences φ,ψ, and T (η).”
• We will use formulae defining functions as if they actually were function symbols,
e.g. writing x or t◦ like stand-alone expressions.

• We will in general omit Quine corners and conflate formulae with their Gödel
codes. This should not lead to any confusion.
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• We will use expressions x ∈ FV(φ) and α ∈ Asn(φ) interchangeably with
FV(x, φ) and Asn(α, φ). Moreover, we will use the expressions FV(φ),Asn(φ)

as if they had a stand-alone meaning, denoting sets of free variables and of
φ-assignments respectively.

In this paper, we analyse the compositional truth theory. Let us define the theory in
question.

Definition 3 By CT− we mean a theory formulated in the arithmetical language
extended with a fresh unary predicate T (x) obtained by adding to PA the following
axioms:

1. ∀s, t ∈ ClTermLPA

(
T (s = t) ≡ s◦ = t◦

)
.

2. ∀φ ∈ SentLPA

(
T¬φ ≡ ¬Tφ

)
.

3. ∀φ,ψ ∈ SentLPA

(
T (φ ∨ ψ) ≡ Tφ ∨ Tψ

)
.

4. ∀φ ∈ Form≤1
LPA

∀v ∈ FV(φ)
(
T∃vφ ≡ ∃xTφ(x)

)
.

5. ∀s̄, t̄ ∈ ClTermSeqLPA
∀φ ∈ FormLPA

(
φ(s̄), φ(t̄) ∈ SentLPA ∧ s̄◦ = t̄◦ →

Tφ(s̄) ≡ Tφ(t̄)
)
.

Notice that in the axioms of CT− we do not assume any induction for the formulae
containing the compositional truth predicate.

Definition 4 By CT we mean the theory obtained by adding to CT− the full induction
scheme for formulae in the full language (i.e., arithmetical language extended with
the unary truth predicate).

By CTn we mean CT− with �n-induction in the extended language, for n ≥ 0.

It is very well known that PA (and,in fact, its much weaker fragments) can define
partial truth predicates, i.e., formulae which satisfy axioms of CT− for sentences of
some specific syntactic shape.3 In this paper, we will only need a very special case of
this fact.

Proposition 5 There exists an arithmetical formula Tr0(x) which satisfies axioms 1–3
of CT− restricted to φ,ψ ∈ qfSentLPA

, provably in PA.

2.2 The Tarski boundary

Recall that a theory S1 is conservative over S2 if S1 ⊇ S2 andwhenever φ is a sentence
from the language of S2 and S1  φ, then S2  φ. It is a persistent phenomenon in
logic that the presence of a truth predicate adds substantial strength to theories in
question, as witnessed by the following classical theorem4:

Theorem 6 CT is not conservative over PA.

3 See Chapter I, Section 2(c) of Hájek and Pudlák [9].
4 Its proof can be found in Halbach [10], along with an extensive discussion of truth theories in general.
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The compositional truth predicate can be employed to prove by induction on the size of
proofs that whatever is provable in PA is true. This allows us to derive the consistency
statement for PA which is unprovable in Peano Arithmetic itself by Gödel’s Second
Theorem. The straightforward argument mentioned above uses �1-induction for the
compositional truth predicate, but as shown in Łełyk and Wcisło [11], one can do
better:

Theorem 7 CT0 is not conservative over PA.

As a matter of fact, as shown in Łełyk [12], �0-induction is equivalent over CT− to
the following Global Reflection Principle (GRP):

∀φ ∈ SentLPA

(
PrPA(φ) → Tφ

)
.

Note that GRP is, in a way, the exact reason why CT is not conservative over PA. On
the other hand, one of the most important features of CT− is that it cannot prove any
new arithmetical theorems.

Theorem 8 (Essentially Kotlarski–Krajewski–Lachlan) CT− is conservative over PA.

Now, aswe can see, compositional truth by itself can be deemed “weak,” but it becomes
strong upon adding some induction. One of the main goals of our research is to
understand what principles can be added to CT− in order to make it nonconservative.
It turns out that CT0 plays a crucial role in this research. A number of apparently very
distinct principles turn out to be exactly equivalent with �0-induction for the truth
predicate. Let us present the one which largely motivates the research in this paper.

Definition 9 By Propositional Closure Principle (PC) we mean the following
axiom:

∀φ ∈ SentLPA

(
PrPropT (φ) → Tφ

)
.

The formula PrPropT (x) means that x is provable from true premises in propositional
logic. By “true premises,” we mean the set of arithmetical sentences φ such that T (φ).

It was proved in Cieśliński [3] that PC is actually equivalent over CT− to CT0.
This is a very surprising result: the mere closure of truth under propositional logic is
actually enough to show that consequences of PA are true.

We can form principles similar to PC which employ stronger closure conditions:

• “Truth is closed under provability in first-order logic.”
• “Truth is closed under provability in PA.”

We can also weaken these principles so that they only express soundness of discussed
systems, not closure properties.

• “Any sentences provable in first-order logic is true.”
• “Any sentence provable in PA is true.”
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It turns out that all the principles listed above are equivalent to each other over CT−.5
One axiom which is noticeably absent from the list is the soundness counterpart of
PC. This is not an accident. Whether this principle is conservative over PA is still an
open problem. Let us state our official definition.

Definition 10 By propositional soundness principle (PS), we mean the following
axiom:

∀φ ∈ SentLPA

(
PrProp∅ (φ) → Tφ

)
.

The formula PrProp∅ (φ) expresses that φ is provable in propositional logic from the
empty set of premises. In other words, PS states that any propositional tautology is
true.

Enayat and Pakhomov [4] proved that actually a very modest fragment of
propositional closure, PC, is already enough to yield a non-conservative theory.

Definition 11 By Disjunctive Correcntess (DC), we mean the following principle:

∀(φi )i≤c ∈ SentSeqLPA

(
T

∨
i≤c

φi ≡ ∃i ≤ c Tφi

)
.

In other words, DC expresses that any finite disjunction is true iff one of its disjuncts is.
Here “finite” is understood in the formalised sense, so that it may refer to nonstandard
objects. We treat the symbol T

∨
i≤c φi as denoting disjunctions with parentheses

grouped to the left for definiteness.

Theorem 12 (Enayat–Visser) CT− +DC is equivalent to CT0. Consequently, CT− +
DC is not conservative over PA.

This theorem is really striking. Admittedly, DC can be viewed as a natural extension of
compositional axioms. We simply want to allow that the truth predicate behaves com-
positionally with respect not just to binary (or standard) disjunctions, but to arbitrary
finite ones.

2.3 Disjunctions with stopping conditions

The main technical tool which we are going to use in this article are disjunctions with
stopping conditions, a tool implicitly introduced (but not officially defined), in Smith
[6]. This is a particular propositional construction which is a very useful tool in the
analysis of CT−. The motivation and proofs of the cited facts concerning disjunctions
with stopping conditions can be found in Kossak and Wcisło [7].

5 The proofs and references for the listed facts can be found in Cieśliński [2], where the Tarski Boundary
programme is systematically discussed.
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Definition 13 Let (αi )i≤c, (βi )i≤c be sequences of sentences. We define the disjunc-
tion of βi with the stopping condition α for i ∈ [ j, c] by backwards induction on
j :

α,c∨
i=c

βi = αc ∧ βc

α,c∨
i= j

βi = (α j ∧ β j ) ∨ (¬α j ∧
α,c∨

i= j+1

βi ).

The key feature of disjunctions with stopping conditions is that they allow us to use
disjunctive correctness in some very limited range of cases which suffice for certain
applications without actually committing to the full strength of this axiom.

Theorem 14 Let (M, T ) |� CT−. Let (αi )i≤c, (βi )i≤c ∈ SentSeqLPA
(M) be

sequences of sentences. Suppose that k0 ∈ ω is the least number j such that
(M, T ) |� Tα j holds. Then

(M, T ) |� T
α,c∨
i=0

βi ≡ Tβk0 .

Notice that above we assume that k0 ∈ ω, i.e., it is in the standard part of M . In other
words: if we are guaranteed that some αk holds for a standard k, we can make an
infinite case distinction of the form: “either α0 holds and then β0 or α1 holds and then
β1... or αc holds and then βc” so that it actually works correctly in the presence of
compositional axioms alone without assuming any induction whatsoever. The proof
of Theorem 14 (together with applications) may be found in Kossak and Wcisło [7].

The following proposition explains why disjunctions with stopping conditions are
so named.

Proposition 15 Suppose that αiβi , i ≤ c are sentences of propositional logic. Then
every boolean valuation which makes exactly one of αi satisfied makes the following
equivalence satisfied:

c∨
i=0

αi ∧ βi ≡
α,c∨
i=0

βi .

Moreover, this is provable in PA.

Proof We work in PA. Fix any valuation which makes exactly one of the sentences αi

true, say, i = k. It is clear that the disjunction
∨c

i=k αi ∧ βi is equivalent to βk . We
will show by backwards induction on j that all formulae

∨αi ,c
i= j βi are equivalent to

βk .
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Suppose that j = k. Since αk holds, we immediately have the following
equivalence:

α,c∨
i=k

βi = (αk ∧ βk) ∨ (¬αk ∧
α,c∨

i=k+1

βi ) ≡ βk .

Suppose that the claim holds for j + 1 ≤ k. Since j < k, by assumption α j is not
true. Hence, again by elementary manipulations, the following equivalence holds:

α,c∨
i= j

βi = (α j ∧ β j ) ∨ (¬α j ∧
α,c∨

i= j+1

βi ) ≡
α,c∨

i= j+1

βi .

By induction hypothesis, the last formula is equivalent to βk . This proves our claim. ��

Theorem 14 can be proved by following the above argument, starting with k0 instead
of k and noticing that in this case, we only need to perform standardly many steps in
of induction, so it can be carried out externally. Let us also remark, that Proposition
15 can be clearly proved in much weaker subsystems of PA such as I�0 + exp.

Most importantly for this article, the behaviour of disjunctions with stopping
conditions can be partly encoded as a propositional tautology.

We will use the following notation: if (αi )i≤c is a sequence of sentences, then by
©i≤cαi , we mean the following sentence:

∨
i≤c

(
αi ∧

∧
j �=i

¬α j

)
.

It expresses that exactly one of αi s is true.

Corollary 16 For any sentences αi , βi , i ≤ c, the following is a propositional
tautology:

©i≤cαi →
( c,α∨
i=0

βi ≡
c∨

i=0

αi ∧ βi

)
.

Morevoer, this is provable in PA.

3 Themain result

In this section, we prove the main result of our paper. We will show that the propo-
sitional soundness principle added to CT− becomes non-conservative (and actually
equivalent to CT0) upon adding an innocuous principle which can be easily shown to
be conservative by itself.
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Definition 17 By the quantifier-free correctness principle (QFC), we mean the
following axiom:

∀φ ∈ qfSentLPA

(
Tφ ≡ Tr0φ

)
.

In other words, on quantifier-free sentences arithmetical partial truth and truth in
the sense of the T predicate agree. Notice that this allows us to use full induction
when reasoning about the truth predicate applied to quantifier-free sentences, since
the truth predicate restricted to such sentences is equivalent to an arithmetical formula.
It turns out that this innocuous principle is enough to yield propositional soundness
nonconservative.

Theorem 18 The theory CT− + QFC + PS is not conservative over PA. In fact, it is
exactly equivalent to CT0.

Crucially, CT− + QFC is by itself conservative over PA.

Theorem 19 The theory CT− + QFC is conservative over PA.

The proof of this fact is a routine application of Enayat–Visser proof of conservative-
ness of CT−. For completeness, we present it in Appendix B.

Now, we can present the last crucial ingredient of our proof. As we have already
mentioned, disjunctive correctness was proved to be equivalent to CT0 (over CT−) in
Enayat and Pakhomov [4]. However, by inspection of the proof, it can be seen that
actually somewhat weaker assumption is employed, as the disjunctive correctness is
used only with respect to one rather specific kind of formulae.

Definition 20 By Atomic Case Distinction Correctness (ACDC) we mean the fol-
lowing axiom: For any sequence of arithmetical sentences (φi )i≤c ∈ SentSeqLPA

and
any closed term t ∈ ClTermLPA , the following equivalence holds:

T

⎛
⎝∨

i≤c

(
t = i ∧ φi

)
⎞
⎠ ≡ ∃a ≤ c

(
t◦ = a ∧ Tφa

)
.

Theorem 21 (Essentially Enayat–Pakhomov) CT− +ACDC is equivalent to CT0. In
particular it is not conservative over PA.

As we already mentioned, this theorem is proved by a straightforward inspection of
the earlier argument by Enayat and Pakhomov. For the convenience of the reader, we
will discuss it in Appendix A. Now, we are ready to present the proof of our main
result, Theorem 18.

Proof of Theorem 18 Fix any model (M, T ) |� CT− +QFC+ PS. We will show that

(M, T ) |� CT− + ACDC,

which shows by Theorem 21 that (M, T ) |� CT0.
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Fix any c ∈ M , a closed term t ∈ ClTermLPA(M), and an arbitrary sequence of
sentences (φi )i≤c ∈ SentSeqLPA

(M).
First, suppose that there exists a ≤ c such that t◦ = a and Tφa holds. Observe

that:

(t = a ∧ φa) →
∨
i≤c

(
t = i ∧ φi

)

is recognised in M as a propositional tautology. Hence, by CT− + PS, we obtain:

(M, T ) |� T

⎛
⎝∨

i≤c

(
t = i ∧ φi

)
⎞
⎠ .

This proves one direction of ACDC. For the harder direction, assume that

(M, T ) |� T

⎛
⎝∨

i≤c

(
t = i ∧ φi

)
⎞
⎠ .

Wefirst show that indeedM |� t◦ ≤ c. Suppose otherwise. Then, this fact is recognised
by the partial arithmetical truth predicate as follows:

M |� Tr0
∧
i≤c

¬(t = i).

By QFC, the same holds for the truth predicate T rather than Tr0. Moreover, notice
that the following sentence is a propositional tautology:

∧
i≤c

¬(t = i) → ¬
∨
i≤c

(
t = i ∧ φi

)
.

Hence, by propositional soundness PS and our assumption that T
∨

i≤c(t = i ∧ φi )

holds, the value of t , as computed in M , is below c.
Now, fix a ≤ c such that t◦ = a. Fix any permutation σ : {0, . . . , c} → {0, . . . , c}

such that σ(a) = 0 (so after permuting, the only disjunct which can be true is placed
as the first one). Since disjunctions are associative and commutative provably in PA
(and in much weaker systems), by propositional soundness PS, the following holds:

(M, T ) |� T

⎛
⎝∨

i≤c

(
t = i ∧ φi

)
⎞
⎠ ≡ T

⎛
⎝∨

i≤c

(
t = σ(i) ∧ φσ(i)

)
⎞
⎠ .
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Now, notice that exactly one of the formulae t = i is true, and this can be expressed
as follows:

M |� Tr0
∨
i≤c

(
t = i ∧

∧
j �=i

¬t = j
)
.

By QFC, using our notation from previous section, this is equivalent to:

M |� T ©i≤c t = i .

The same argument applies, if we consider sentences t = σ(i) rather than t = i . By
Corollary 16, the following is a propositional tautology, hence true in the sense of the
predicate T by PS:

©i≤ct = i →
⎛
⎝

⎛
⎝∨

i≤c

(
t = i ∧ φi

)
⎞
⎠ ≡

t=i,c∨
i=0

φi

⎞
⎠ .

Again, this holds if we consider sequences t = σ(i) and φσ(i) instead. Putting it all
together, we know that the following formulae are true:

(M, T ) |� T ©i≤c t = σ(i) ∧ T
c∨

i=0

(
t = σ(i) ∧ φσ(i)

)
.

Therefore,

(M, T ) |� T

t=σ(i),c∨
i=0

φσ(i).

By Theorem 14 on disjunctions with stopping conditions, as the above disjunction
stops at i = 0, we obtain:

(M, T ) |� Tφσ(0).

Since σ(0) = a = t◦, this concludes our argument. ��
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Appendix A: The strength ofACDC

In the main part, we crucially used the observation that Atomic Case Distinction
Correctness, ACDC is equivalent to CT0. As we already mentioned, this result is
really due to Enayat and Pakhomov, as this is what their arguments in [4] actually
show. However, since verifying this claim would be admittedly cumbersome, we will
rather repeat their argument below.

Following closely the presentation in the original paper, we split our argument
into two parts. We first show that ACDC together with internal induction yields �0-
induction for the truth predicate. Subsequently, we show that ACDC implies internal
induction. Before any of this happens let us define what internal induction actually is.

Definition 22 By Internal Induction (INT), we mean the following axiom:

∀φ ∈ Form≤1
LPA

(
∀x(Tφ(x) → Tφ(x + 1)

) → ∀x(Tφ(0) → ∀x Tφ(x)
))

.

In other words, internal induction expresses that any arithmetical formula satisfies
induction under the truth predicate.

Theorem 23 CT− + ACDC + INT is equivalent to CT0.

Proof It can be directly verified that CT0 implies INT and full DC. Therefore, we will
focus on the harder direction, showing that CT− + ACDC + INT implies CT0.

Fix any model (M, T ) |� CT− + ACDC + INT. We want to show that (M, T ) |�
CT0. It is enough to demonstrate that for any c ∈ M , the set T ∩ [0, c] is coded, i.e.,
there exists s ∈ M such that a ∈ T ∩ [0, c] iff the a-th bit of s in the binary expansion
is equal to 1.

Fix the unique sequence (φi )i≤c of sentences such that �φi� = i if i happens to
be an arithmetical sentence (that is, i ∈ SentLPA(M)) and φi = �0 �= 0� otherwise.
Consider the following formula �(a, x):

�c(x) :=
∨
i≤c

(x = i ∧ φi ).
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By ACDC, for φ ∈ SentLPA(M) ∩ [0, c],

(M, T ) |� T�c(φ) ≡ Tφ.

On the other hand, by INT, the formula T�c(x) satisfies full induction. In particular,
the set of elements smaller than c satisfying this formula is coded. ��

Now, we can move to the second ingredient of the proof:

Theorem 24 CT− + ACDC implies INT.

In the paper [4] which we closely follow in this presentation, the analogue of Theorem
24 is proved by an extremely elegant detour via a theory of iterated truth predicates.

Definition 25 By ITB (Iterated Truth Biconditionals), we mean a theory with two
sorts: a number sort and index sort, over the language with the following symbols:

• The function symbols ofLPA, whose arguments come from the number sort.
• A fresh predicate T (α, x), where α comes from the index sort and x from the
number sort. We will also denote it with Tα(x).

• A fresh predicate α ≺ β, whose arguments come from the index sort.

Its axioms consist of PA, axioms saying that ≺ is a linear ordering of the index sort
and the following scheme:

∀α
(
Tαφ ≡ φ≺α

)
,

where φ comes from the full language and φ≺α is φ with the index-sort quantifiers
∀β, ∃β replaced with ∀β ≺ α, ∃β ≺ α.

ITB axiomatises a hierarchy of truth predicates over a linear order. The key point is
that this order cannot have infinite descending chains. The theorem below was proved
in [4], based on the main result in [13].

Theorem 26 The theory ITB together with the axioms ∀α∃β β ≺ α and the sentence
expressing nonemptiness of the index sort is inconsistent.

By the above theorem, there exists a finite fragment  of ITB which proves that ≺ has
the least element. This theory contains finitely many biconditionals of the form:

∀α
(
Tαφ ≡ φ≺α

)
.

Let φ1, . . . , φn be the enumeration of sentences which occur in the biconditionals
from . Let us denote the biconditional involving φi with B(φi ).

Proof of Theorem 24 Let (M, T ) |� CT− + ACDC. Fix any φ ∈ Form≤1
LPA

(M) such
that for some c0 ∈ M , (M, T ) |� Tφ(c0). We will show that there exists the least
c ∈ M such that (M, T ) |� Tφ(c). Since φ is arbitrary, and by compositionality of
T , this implies that internal induction holds in (M, T ).
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By induction we will construct in M a sequence of interpretations ιa, a ∈ M of
 ⊂ ITB, i.e., a sequence of tuples of formulae: the definitions of domains for number
and index sorts, the interpretations of the arithmetical symbols, and the interpretations
for the predicates ≺, T (α, x).

• For all a, ιa interprets arithmetical symbols by identity and the domain of number
quantifiers is the whole M (i.e., the domain is defined by the formula x = x).

• The a-th domain of index quantifiers is given by da(x) := x ≤ a ∧ φ(x).
• The index inequality ≺ is interpreted by the usual inequality <.
• The predicate T (α, x) is defined recursively as follows:

∨
i≤n

(
x = φi ∧

∨
j<a

(
α = j ∧ φ( j) ∧ ι j (φi )

))
.

We will show that for all a, if (M, T ) |� Tφ(a), then ιa is indeed an interpretation
of  under the truth predicate. This means that for all sentences ψ ∈ ,

(M, T ) |� T ιa(ψ).

This is immediate for arithmetical axioms and the ordering axioms for ≺. Thus it
is enough to check that the claim is satisfied for the truth biconditionals. Fix k ≤ n
and a ∈ M . We want to check that:

(M, T ) |� T ιa∀α
(
Tαφk ≡ φ≺α

k

)
.

If there are no a′ < a such that (M, T ) |� Tφ(a′), then the interpretation of the
universal quantifier ∀α makes the sentence trivially true. So suppose otherwise and
fix any α < a such that Tda(α) holds. We want to check that the following holds:

T ιaT (α, φk) ≡ T ιaφ
≺α
k .

Expanding the definition of ιa on the left-hand side of the equivalence yields:

T

(∨
i≤n

(
φk = φi ∧

∨
j<a

α = j ∧ φ( j) ∧ ι j (φi )
))

.

The first disjunction has standardly many disjuncts, of which only one, namely k, is
true, so by the compositional axioms, this is equivalent to:

T
∨
j<a

(
α = j ∧ φ( j) ∧ ι j (φk)

)
.

By ACDC, this is equivalent to:

Tφ(α) ∧ T ια(φk).
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By assumption on α, this is equivalent to

T ια(φk).

Now, it is enough to check that the following equivalence holds:

T ια(φk) ≡ T ιaφ
≺α
k .

We essentially check by induction on complexity of subformulae ψ of φk that this
equivalence holds for all ψ . To make this more precise, we introduce the following
definition. We say that a tuple t1, . . . , tm ∈ ClTermLPA(M) is suitable for a formula
ψ if ψ has m free variables and for every term t corresponding to an index variable
β, (M, T ) |� Tdα(t).

Now, by induction on the complexity of formulae, we will show that for any subfor-
mulaψ of φk , and any suitable tuple t̄ of closed terms in the sense of M , the following
equivalence holds:

T ια(ψ)(t̄) ≡ T ιa(ψ)≺α(t̄).

The induction steps for connectives and number quantifiers, as well as the initial step
for the arithmetical atomic formulae and the atomic formula β ≺ γ are immediate.
Let us now focus on the initial case for the formula T (β, x). Fix any suitable pair
of closed terms t1, t2. In particular this means that the value of t2 is no greater than
α < a. T ιαT (t1, t2) is the following sentence:

T

(∨
i≤n

(
t1 = φi ∧

∨
j<α

t2 = j ∧ φ( j) ∧ ι j (φi )
))

.

By ACDC and the fact that t2◦ ≤ α < a, this is equivalent to:

T

(∨
i≤n

(
t1 = φi ∧

∨
j<a

t2 = j ∧ φ( j) ∧ ι j (φi )
))

.

(The two formulae differ by the range of the second disjunction.) Since the second
formula is equal to T ιaT (t1, t2) = T ιaT (t1, t2)≺α , the atomic case is proved.

What remains to be proved is the induction step for the index quantifier. Suppose
that our claim holds forψ and consider the formula ∀βψ(β).Notice that the following
equalities hold:

ια∀βψ(β) = ∀x
(
dα(x) → ιαψ(x)

)

ιa

(
(∀βψ(β))≺α

)
= ∀x

(
dα(x) → ιaψ

≺α(x)
)
.

By induction hypothesis and the compositional axioms if we substitute suitable terms
in the formulae on the right-hand side, then the first one is true if and only if the second
one is. This concludes the induction argument and the whole proof. ��
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Appendix B: Conservativeness of CT− + QFC

In the main part, we claimed that the quantifier-free correctness can be added to CT−
still yielding a conservative theory. As we already noted, this is a very simple applica-
tion of the Enayat–Visser construction, but we could not find this exact statement in
the literature.6 Therefore, we decided to include a proof of this claim. However, the
reader should feel entirely free to skip it.

Definition 27 Let M |� PA. We say that a set T0 ⊂ SentLPA(M) is a partial compo-
sitional truth predicate if there exists a set of formulae D closed under taking direct
subformulae such that:

• T0 satisfies the axioms of CT− for all sentences resulting from substituting closed
terms into formulae from D;

• If T0(φ) holds, then any formula resulting from replacing terms in φ with other
terms (possibly with free variables) is in D.

We will derive Theorem 19 from the following, more general fact.

Theorem 28 Let M0 |� PAand let T0 ⊂ M0 beapartial compositional truth predicate.
Then there exists an elementary extension (M0, T0) � (M ′, T ) and T ′ ⊇ T such that
(M ′, T ′) |� CT−.

Proof of Theorem 19 from Theorem 28 Let M |� PA and let T0 ⊂ M0 be defined as the
set of sentences φ such that M |� Tr0(φ).We apply Theorem 28 to (M0, T0) obtaining
an elementary extension (M ′, T ) � (M0, T0) and T ′ ⊇ T such that (M ′, T ′) |� CT−.

Now, observe that actually (M ′, T ′) |� CT− + QFC. Indeed, by elementarity T is
exactly the set of φ ∈ SentLPA(M ′) such that M ′ |� Tr0(φ). ��

Nowwe turn to the proof of Theorem 28. Since we are dealing with truth predicates
for a language with terms and we include extensionality in our axioms, we have to
take care of certain additional technicalities. Before we proceed to the proof, we will
introduce some definitions and notation.

Definition 29 Let M |� PA and let φ ∈ FormLPA(M). By a trivialisation of φ, we
mean a formula φ̂ such that:

• There exists a sequence of terms t̄ ∈ TermSeqLPA
(M) such that φ = φ̂(t̄).

• No variable occurs in φ̂ both free and bound.
• No free variable occurs in φ̂ more than once.
• No closed term occurs in φ̂.
• No complex term whose all variables are free occurs in φ̂.
• φ̂ is the least formula with the above properties. (In order to guarantee the
uniqueness.)

6 Similar statements concerning satisfaction classes containing �n arithmetical truth can be found e.g. in
[14], but the definitions of satisfaction class there is slightly different from the one we use. However, the
conservativeness result proved here is neither surprising nor really original.
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For instance, if φ = ∃x∀y
(
x + (z × S0 + 0 × u) = x × y + 0

)
, then

φ̂ = ∃x∀y
(
x + v1 = x × y + v2

)
,

where v1, v2 are chosen so as to minimise the formula φ̂.

• We say that two formulae φ1, φ2 are syntactically similar if φ̂1 = φ̂2. We denote
it with φ1 ∼ φ2.

• If φ ∈ FormLPA and α ∈ Asn(φ), then by φ[α] we mean the sentence resulting by
substituting the numeral α(v) for each variable v.

• If φ1, φ2 ∈ FormLPA , α1 ∈ Asn(φ1), α2 ∈ Asn(φ2), then we say that (φ1, α1) is
extensionally equivalent to (φ2, α2) if φ1 ∼ φ2 and there exist two sequences
of closed terms t̄1, t̄2 ∈ ClTermSeqLPA

such that t1◦ = t2◦ (the values of terms
in t̄1, t̄2 are pointwise equal), φ1 = φ(t̄1), φ2 = φ(t̄2), where φ = φ̂1 = φ̂2. We
denote this relation with (φ1, α1) ∼ (φ2, α2).

Notice that the syntactic similarity and extensional equivalence are both equivalence
relations.

Proof Let M0 be any model of PA and let T0 ⊂ M0 be a partial truth predicate. We
will construct a chain of models (Mi , Ti , Si ), i ∈ ω. The chain of models (Mi , Ti )
will be elementary and the binary predicates Si will be partial satisfaction predicates
extending one another and extending Ti .

We perform the construction in the following way: once we have constructed the
model (Mi , Ti , Si ), we let (Mi+1, Ti+1, Si+1) be any model of the theory �i+1 con-
sisting of the following axioms in the arithmetical language with additional predicates
Si+1, Ti+1:

• ElDiag(Mi , Ti ). (The elementary diagram of (Mi , Ti ), formulated with Ti+1
replacing Ti .)

• Comp(φ), φ ∈ FormLPA(Mi ). (The compositionality scheme, to be defined later.)

• ∀φ, φ′ ∈ FormLPA∀α ∈ Asn(φ), α′ ∈ Asn(φ′)
(
(φ, α) ∼ (φ′, α′) →

Si+1(φ, α) ≡ Si+1(φ
′, α′)

)
. (The extensionality axiom)

• ∀x
(
Ti+1(x) → Si+1(x,∅)

)
. (The satisfaction predicate Si+1 agrees with Ti+1.)

• Si+1(φ, α), where φ ∈ FormLPA(Mi−1), α ∈ Asn(φ) and (φ, α) ∈ Si . (The
preservation scheme.)

An instance of the compositionality scheme Comp(φ) is defined as the disjunction
of the following clauses:

1. ∃s, t ∈ TermLPA

(
φ = (s = t) ∧ ∀α ∈ Asn(φ) S(φ, α) ≡ sα = tα

)
.

2. ∃ψ ∈ FormLPA

(
φ = (¬ψ) ∧ ∀α ∈ Asn(φ) S(φ, α) ≡ ¬S(ψ, α)

)
.

3. ∃ψ, η ∈ FormLPA

(
φ = (ψ ∨ η) ∧ ∀α ∈ Asn(φ) S(φ, α) ≡ S(ψ, α) ∨ S(η, α)

)
.
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4. ∃ψ ∈ FormLPA , v ∈ Var
(
φ = (∃vψ) ∧ ∀α ∈ Asn(φ)

(
S(φ, α) ≡ ∃β ∼v

α S(ψ, β)
))

.

For the time being, suppose that all theories �n are consistent. We will finish the
proof under this assumption and return to it afterwards.

Let M ′ = ⋃
n∈ω Mn , T = ⋃

Tn . Let

T ′ = {
φ ∈ SentLPA(M) | ∃n ∈ ω φ ∈ Mn ∧ (φ,∅) ∈ Sn+1

}
.

It can be directly verified that the predicate T ′ defined in such a way satisfies axioms
of CT− thanks to the assumption that the predicates Sn satisfy the compositionality
scheme together with preservation and extensionality axioms. Similarly, we check
that T ′ ⊃ T , because each of the predicates Sn extends Tn . The details are rather
straightforward. The reader can consult the Appendices in [7] or [15], where a very
similar construction is presented.

We have yet to check by induction that all theories �n are consistent. So assume
that this is true for a given �n and let Mn |� �n . In order to make the proof work
uniformly for the successor and the initial steps of induction, we set by convention
M−1 = T−1 = S−1 = ∅.

We will prove consistency of �n+1 in the following way. Consider any finite sub-
theory  ⊂ �n . In the model Mn , we will find a binary relation S which satisfies
.

Since  is finite, there are only finitely many formulae φ1, . . . , φk which occur in
the compositionality scheme.

Consider the equivalence classes [φi ] of the formulae φi under the syntactic simi-
larity relation ∼. Let � be the transitive closure of the following relation on classes:
[φ] � [ψ] if there exist φ′ ∈ [φ], ψ ′ ∈ [ψ] such that φ′ is a direct subformula of ψ ′.
This is indeed an ordering: transitivity and reflexivity is clear, so it is enough to check
weak antisymmetry. However, this is clear, since if [φ] � [ψ], then the total number
of connectives and quantifiers in φ is no greater than in ψ .

We define the extension of S as follows. We define the set S0 by the following
conditions. A pair (φ, α) belongs to S0 if one of the following conditions is satisfied:

• [φ] ∩ Mn−1 �= ∅ and (φ′, α′) ∼ (φ, α) for some φ′ ∈ Mn−1 and α′ ∈ Mn such
that (φ′, α′) ∈ Sn .

• There exists φ′ ∈ Mn such that (φ′,∅) ∼ (φ, α) and φ′ ∈ Tn .
• φ is an atomic formula of the form t = s for some terms t = s and tα = sα.

In the above list, we do not explicitly include the case when [φ] is minimal among
[φi ] with respect to the relation � and [φ] ∩ Mn−1 = ∅, but we also implicitly treat
this case as covered. Such formulae are simply not satisfied under any assignment.
Hence, they effectively define the empty set under the satisfaction predicate.

Then we inductively construct a series of predicates S j . We define S j+1 as the
union of S j with the set of (φ, α) such that [φ] = [φi ] for some i ≤ k, [φi ] is not
minimal with respect to the relation�, and φ satisfies one of the following conditions:

• There exists ψ ∈ Mn such that φ = ¬ψ and (ψ, α) /∈ S j .
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• There exist ψ, η ∈ Mn such that φ = ψ ∨ η and (ψ, α) ∈ S j or (η, α) ∈ S j .
• There exists ψ, v ∈ Mn such that φ = ∃vψ , and β ∼v α such that (ψ, β) ∈ S j .

Since we considered only finitely many classes [φi ], the construction terminates at
some point. Let S be the predicate obtained as the final one in this construction. We
claim that (Mn, Tn, S) satisfies thefinite theory. The elementary diagramof (Mn, Tn)
is obviously satisfied in the obtained model. Our construction and the fact that Sn and
Tn were compositional and extensional immediately guarantee that the constructed
predicate S agrees with Tn , preserves Sn for formulae from Mn−1 and satisfies the
instances of the compositional scheme from . Finally, we check by induction on j
that each S j satisfies the extensionality axiom. This concludes the proof of consistency
of , the proof of consistency of �n+1 and consequently, the proof of Theorem 28. ��
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