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Abstract
This paper is concerned with the proper way to effectivize the notion of a Polish space.
A theorem is proved that shows the recursive Polish space structure is not found in
the effectively open subsets of a space X , and we explore strong evidence that the
effective structure is instead captured by the effectively open subsets of the product
space N × X .
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1 Introduction

Descriptive set theory studies definable subsets of Polish spaces, i.e, separable, com-
pletely metrizable topological spaces. Although we require of a Polish space the
existence of a compatible complete metric that induces the topology, a particular
choice of metric is not part of the structure of a Polish space. There are many reasons
for omitting a choice of metric in the definition of a Polish space, for example:

(1) The Borel hierarchy of a space only depends on the topology, not the choice of
Polish metric which induces the topology;

(2) Many natural constructions of spaces have a canonical choice of topology but no
canonical choice of compatible metric; for instance, in forming the product of two
spaces X and Y , we have a natural product topology on X × Y , but no canonical
choice of compatible metric for the product space;

(3) When studying a Polish space space, one does not hesitate to swap an initial choice
of compatible metric with an alternative compatible metric which is better suited
to a particular construction.1

1 See, for example, section 4.F of [1] on the hyperspace of compact sets for a construction that begins by
selecting a compatible metric which is bounded by 1.
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1102 T. Arant

In this paper, we examine the proper “effectivization” of the structure of a Polish
space, i.e., we seek to determine the “effective topology” of a recursive Polish metric
space X . As developed in Moschovakis [2], the notion of a recursive Polish metric
space provides a robust setting for the effective theory of Polish metric spaces. In
subsequent work (see [3]), Moschovakis defined the effective topology of a space X
to be the collection of effectively open subsets of the product space N × X , which is
called the frame of the space and denoted by

R(X ) = �0
1(N × X ).

Frames are then used byMoschovakis to define the notion of a recursive Polish space;
a recursive Polish space is a pair (X ,R) such that R ⊂ N × X is the frame of a
recursive Polish metric space on X .

Since the topology of a space is the collection of open sets, it is indeed tempting to
define the recursive topology of a spaceX to be the collection of effectively open sets,
�0

1(X ).2 However, this definition is not suitable for the following reason. From our
intuition from classical topology, we expect that the effective topology of a product
X×Y would be determined by the effective topologies of its factorsX andY . However,
the collection of effectively open sets of a space does not determine the collection of
effectively open sets of its product

Main Theorem. There are two recursive Polish metric spaces X1,X2 with the same
underlying set X1 = X2 such that

�0
1(X1) = �0

1(X2) but �
0
1(N × X1) �= �0

1(N × X2).

While the collection �0
1(X1) determines which subsets are effectively open, the

frame �0
1(N×X1) encodes which sequences (Un)n of effectively open sets are recur-

sive uniformly in n. Thus, the theorem essentially says that it is possible for two
recursive Polish metric spaces to have the same effectively opens sets, but different
sequences of uniformly effectively open sets.

We will first discuss some necessary preliminaries in Sect. 2, and then prove the
Main Theorem in Sect. 3. After proving the Main Theorem—establishing that the
recursive Polish space structure is not determined by �0

1(X )—we will further discuss
in Sect. 4 the strong evidence that�0

1(N×X ) does properly effectivize the topological
structure of Polish space.

2 Background

We summarize here the basics of the theory of recursive Polish metric spaces, which
is more fully developed in [3].

Fix a recursive enumeration q0, q1, . . . of Q. Let X = (X , d) be a Polish metric
space. A recursive presentation of X is a function r : N → X such that

2 This definition is, in fact, made in multiple places in the literature; for instance, it is made on page 110
of [2], although the definition is not used after that.
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Recursive Polish spaces 1103

(i) the image r[N] = {r0, r1, . . . } is dense in X ; and
(ii) the relations P≤, P< ⊂ N

3 defined by

P≤(i, j, k) ⇐⇒df d(ri , r j ) ≤ qk, P<(i, j, k) ⇐⇒df d(ri , r j ) < qk

are recursive.

A recursive Polish metric space is a triple (X , d, r), where (X , d) is a Polish metric
space and r is a recursive presentation of (X , d). Often, when there is no risk of con-
fusion, we will suppress the metric and presentation in our notation, simply referring
to a space by its underlying set X .

For example,N, equipped with the metric d(i, j) = |i − j | and whose presentation
is the identity function id : N → N, is a recursive Polish metric space. This space
plays a critical role in the effective theory, and we will refer to it simply by writing N.

There are, of course, a wealth of examples of uncountable spaces, the most impor-
tant of which are the Baire space N = N

N and Cantor space {0, 1}N. See [3] for a
considerable list of interesting examples of uncountable recursive Polishmetric spaces.

Our proof of the Main Theorem will make use of the following space which serves
as a good source of counterexamples in the theory. Consider N as a metric space with
the strongly discrete metric, dis, defined by

dis(i, j) = 1 if i �= j, otherwise dis(i, j) = 0

It is a simple exercise to show that for the metric space (N, dis) any arbitrary bijection
r : N → N is a recursive presentation. For any bijection r, we use the notation

N
r
dis = (N, dis, r).

Note that, in general, Nr
dis-recursive objects are not the same as the classical Turing

computable objects on N.
Effectively open sets Given a recursive Polish metric space X , we associate an

effectively enumerated neighborhood basis for X as follows. For each s ∈ N, define
the set3

Ns(X ) = {x ∈ X : d(x, r(s)0) < q(s)1}.

We introduce the notation cenX (s) = r(s)0 and rad(s) = q(s)1 so that Ns(X ) is the
open ball with center cenX (s) and radius rad(s).

A subset P ⊂ X is effectively open or semirecursive if there is a Turing computable
function f : N → N such that P = ⋃

i∈N N f (i)(X ). Equivalently, P ⊂ X is
effectively open if and only if there is a recursively enumerable (r.e.) relation P0 ⊂ N

that satisfies the equivalence

P(x) ⇐⇒ (∃s)[x ∈ Ns(X ) ∧ P0(s)]. (1)

3 Here, s �→ ((s)0, (s)1) is some fixed recursive surjection N → N
2.
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1104 T. Arant

We refer to this representation of P as a �0
1-normal form. We denote by �0

1(X ) the
collection of all effectively open subsets ofX . For the spaceN,�0

1(N) is the collection
of r.e. sets from classical computability theory.

For recursive Polish metric spaces X = (X , dX , rX ) and Y = (Y, dY , rY ), we
form the product space X × Y by taking as its metric

dmax((x1, y1), (x2, y2)) = max{dX (x1, x2), dY (y1, y2)}

and using the recursive presentation r(i) = (rX (i), rY (i)). The product space has
an alternative but—in some sense—equivalent construction, where one takes the
Euclidean metric,

dE ((x1, y1), (x2, y2)) =
√

(dX (x1, x2))2 + (dY (y1, y2))2

instead of the max metric.4

For a recursive Polish metric space X , members of the frame �0
1(N×X ) have the

following normal form: for any P ∈ �0
1(N×X ), there exists P0 ∈ �0

1(N
2) such that,

for every n ∈ N and x ∈ X ,

P(n, x) ⇐⇒ (∃s)[x ∈ Ns(X ) ∧ P0(n, s)]. (2)

Let X and Y be recursive Polish spaces. A function f : X → Y is recursive if
the relation {(s, x) ∈ N × X : f (x) ∈ Ns(Y)} is �0

1(N × X ). For the space N, the
recursive functions f : N → N are precisely the Turing computable functions.5

The following theorem summarizes the important properties of the collection of
effectively open sets that we will use throughout.

Theorem 1 (Properties of �0
1 , see [3]) Let X be a recursive Polish metric space.

(i) If P, Q ⊂ X are �0
1(X ), then so too are the relations P ∧ Q, P ∨ Q ⊂ X defined

by

(P ∧ Q)(x) ⇐⇒df P(x) ∧ Q(x), (P ∨ Q)(x) ⇐⇒df P(x) ∨ Q(x).

(ii) If P ⊂ N × X is �0
1(N × X ), then the relations obtained from bounded

quantification and unbounded existential quantification,

(∀≤P)(n, x) ⇐⇒df (∀m ≤ n)P(m, x),

(∃≤P)(n, x) ⇐⇒df (∃m ≤ n)P(m, x), (∃NP)(x) ⇐⇒df (∃n)P(n, x),

are also �0
1 .

4 Theorem 7 will address in what sense these two constructions give the same “effective topology”.
5 We will henceforth choose to consistently refer to such functions as computable rather than recursive.
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Recursive Polish spaces 1105

(iii) �0
1 is closed under recursive substitutions, i.e., if f : X → Y is recursive and

P ∈ �0
1(Y), then

R(x) ⇐⇒df P( f (x))

is �0
1(X ).

(iv) �0
1(X ) has a good N-parameterization, i.e., there is a �0

1 relation G ⊂ N × X
such that the collection of the sections Gn = {x ∈ X : G(n, x)} is exactly the
collection of �0

1(X ) sets and, moreover, for every �0
1(N × X ) relation P there

exists a computable function S : N → N such that Pn = GS(n) for all n ∈ N.

Most of these properties are trivial and readily verified; the one possible exception
is property (iv), which can be thought of as a general version of the s-m-n theorem
from classical computability theory.

3 The proof of themain theorem

The spaces X1 and X2 we will use to prove the Main Theorem will both be of the
form N

r
dis, with different choices of presentation r. If we take r = id, then X1 = N

id
dis

is easily shown to be recursively isomorphic to N. Then, we will take X2 = N
r
dis with

r some non-computable bijection which maps r.e. sets to r.e. sets, but not in a way
that is uniform in r.e. indices. Because r preserves r.e. sets, Nr

dis will have the same
effectively open sets as Nid

dis. On the other hand, the non-computability of r will mean
that the frames disagree; e.g., the sequence of open sets {r(0)}, {r(1)}, . . . is uniformly
recursive for the space Nr

dis but not the space N
id
dis.

We shall require several lemmas, the first of which characterizes the effectively
open subsets of the strongly discrete space Nr

dis.

Lemma 2 Let r : N → N be a bijection. A nonempty set P ⊂ N is in �0
1(N

r
dis) if and

only if there is a computable function f : N → N such that

P = {r f (i) : i ∈ N} = r[ f [N]].

Proof Let P ∈ �0
1(N

r
dis) be nonempty. If P = N, the result is trivial, so suppose

P �= N. Fix a computable h : N → N such that P = ⋃
i∈N Nh(i)(N

r
dis). Since P �= N,

the neighborhoods Nh(i)(N
r
dis) enumerated by h are either empty or singletons. By

computably altering h if needed, we may assume that every Nh(i)(N
r
dis) is a singleton;

indeed, start by enumerating some nonempty basic neighborhood contained in P
(which exists since P �= ∅), and then any time h would enumerate an empty basic
neighborhood, instead return the code for the most recently enumerated code for a
nonempty basic neighborhood. Now, define f : N → N by f (i) = (h(i))0. Clearly,
f is computable and

P =
⋃

i∈N
Nh(i)(N

r
dis) =

⋃

i∈N
{r(h(i))0} = {r f (i) : i ∈ N},
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1106 T. Arant

which is of the desired form.
Conversely, suppose P = {r f (i) : i ∈ N} for some computable f : N → N. Define

a computable h : N → N so that cenNr
dis

(h(i)) = r f (i) and rad(h(i)) = 1/2 for all i .
Then,

P = {
r f (i) : i ∈ N

} =
⋃

i∈N
{r f (i)} =

⋃

i∈N
Nh(i)(N

r
dis),

so that P ∈ �0
1(N

r
dis). ��

Lemma 2 has the following important consequence.

Lemma 3 Let r : N → N be a bijection. If for every P ∈ �0
1(N), both r[P] and

r−1[P] are �0
1(N), then �0

1(N
r
dis) = �0

1(N).

Proof Let P ∈ �0
1(N

r
dis) be nonempty. By Lemma 2, P = r[ f [N]] for some com-

putable f : N → N; the assumed property of r then immediately implies that
P ∈ �0

1(N).
Now let Q ∈ �0

1(N) be nonempty. By our assumption, the set r−1[Q] is also
�0

1(N) and nonempty. If follows that there is a computable function f : N → N

which enumerates r−1[Q]. Then,

{r f (i) : i ∈ N} = r[ f [N]] = r[r−1[Q]] = Q,

which shows that Q is also �0
1(N

r
dis), again using Lemma 2. ��

We now turn our attention to the frame ofNr
dis. We will first prove a general criterion

to establish when two recursive presentations on the same Polish metric space yield
the same frame. This result is useful when working with any recursive Polish metric
space.6

Lemma 4 Let (X , d) be a Polish metric space, and let r1, r2 be two recursive
presentations of (X , d). Denote the associated recursive Polish metric spaces by
X1 = (X , d, r1) and X2 = (X , d, r2). The following are equivalent.

(1) The relation

E(i, j, n) ⇐⇒df d(r1(i), r2( j)) < qn

is �0
1(N

3).
(2) �0

1(N × X1) = �0
1(N × X2).

(3) �0
1(N × X1) ⊃ �0

1(N × X2).

(4) If G1,G2 ⊂ N × X are good N-parametrizations of �0
1(X1) and �0

1(X2)

respectively, then there is a computable f : N → N such that for all e ∈ N,
G2

e = G1
f (e).

6 E.g., the lemma implies that on the Baire space N , any presentation r : N → N which is computable
(in the sense of classical computability on Baire space) gives the standard recursive topological structure
onN .
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Recursive Polish spaces 1107

Proof (1) ⇒ (2) Assume E is �0
1(N

3). By the �0
1-normal form (1), to show the

inclusion �0
1(N×X1) ⊂ �0

1(N×X2) it suffices to prove that the basic neighborhood
relation {(s, x) ∈ N × X : x ∈ Ns(X1)} is in �0

1(N × X2). We will do this by
establishing the equivalences

x ∈ Ns(X1) ⇐⇒ (∃t)[x ∈ Nt (X2) ∧ d(cenX1(s), cenX2(t)) + rad(t) < rad(s)
]

⇐⇒ (∃t)[x ∈ Nt (X2) ∧ E((s)0, (t)0, (s)1 − (t)1)].

The only nontrivial claim here is the ( �⇒ ) direction of the first equivalence. Assume
x ∈ Ns(X1) and pick a rational δ > 0 such that

d(x, cenX1(s)) < rad(s) − δ.

By denseness of r2[N], choose some r2(i) with d(x, r2(i)) < δ/2. Choose t with
cenX2(t) = r2(i) and rad(t) = δ/2. Then, x ∈ Nt (X2) and a simple triangle inequality
argument shows that

d
(
cenX1(s), cenX2(t)

) + rad(t) < rad(s).

To prove the converse inclusion R(X2) ⊂ R(X1), we argue as above, swapping
the roles of X1 and X2.

Both (2) ⇒ (3) and (3) ⇒ (4) are trivial.
(4) ⇒ (1). Suppose we have a computable function f : N → N as in (4). Since

the basic neighborhood relation {(s, x) ∈ N × X : x ∈ Ns(X2)} is �0
1(N × X2) and

G2 is a good parameterization for �0
1(X2), there is a computable function h : N → N

such that, for all x ∈ X and s ∈ N,

x ∈ Ns(X2) ⇐⇒ G1(h(s), x).

Then, we have the equivalences

E(i, j, n) ⇐⇒ d(r1(i), r2( j)) < qn
⇐⇒ r1(i) ∈ Ns(X2), where cenX2(s) = r2( j) and rad(s) = qn

⇐⇒ G2(h(s), r1(i))

⇐⇒ G1( f (h(s)), r1(i)).

Using that�0
1 is closed under recursive substitution, it follows that E is indeed�0

1(N
3).
��

An application of Lemma 4 gives us the following criterion to decide whether Nr
dis

and N
id
dis have the same frame.

Lemma 5 Let r : N → N be a bijection. Then, �0
1(N × N

r
dis) = �0

1(N × N
id
dis) if and

only if r : N → N is computable.
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1108 T. Arant

Proof By Lemma 4 it is enough to prove that r : N→N is computable if and only if

E(i, j, n) ⇐⇒ d(id(i), r j ) < qn ⇐⇒ d(i, r j ) < qn

is �0
1(N

3).
Suppose r : N → N is computable. The desired conclusion follows by noting the

equivalence

E(i, j, n) ⇐⇒ (0 < qn ∧ r j = i) ∨ (qn > 1)

and that the graph of r is �0
1(N

2).
Conversely, suppose E is �0

1(N
3). Fix n0 such that qn0 = 1/2. Then

r j = i ⇐⇒ d(id(i), r j ) <
1

2
⇐⇒ E(i, j, n0),

which shows that the graph of r is �0
1(N

2), hence r : N → N is computable. ��
The following theorem of Dekker and Myhill will give us a recursive presentation

r of Ndis which is non-computable but preserves r.e. sets.

Theorem 6 (Dekker and Myhill, see [4] 12.3) There exists a cohesive subset of N,
i.e., there is an infinite set A ⊂ N such that for every P ∈ �0

1(N), either A ∩ P or
A \ P is finite.

It follows that there is a non-computable bijection r : N → N such that for every
P ∈ �0

1(N) both the image r[P] and the preimage r−1[P] are �0
1(N) sets.

The existence of the cohesive set is proven via a simple priority argument with
infinitely many requirements and no injuries. If Pn , n ∈ N, is an enumeration of the
infinite r.e. subsets of N, then we construct A = ⋂∞

n=0 An as follows: A0 = N and,
given that An = {an1 < an2 < . . . }, we set An+1 = An if An\Pn is finite, otherwise
we set An+1 = {an1, . . . , ann} ∪ (An\Pn). Note that we keep the first n elements of
An in An+1 to ensure that A = ⋂∞

n=0 An is infinite.
To construct a bijection as in the theorem, let A be a cohesive set and define a

bijection r so that r(n) = n if and only if n /∈ A. Since A is clearly not r.e., r is not
computable. Moreover, for every r.e. P ⊂ N, r[P] is again r.e. since the symmetric
difference P�r[P] is finite by the cohesiveness of A. A similar argument shows that
r−1[P] is also r.e.

Now, we are ready to prove the Main Theorem.

Proof of theMain Theorem Let r : N → N be the bijection from Theorem 6 and
consider Nr

dis. From two applications of Lemma 3 we have

�0
1(N

r
dis) = �0

1(N) = �0
1(N

id
dis).

Since r is not computable, it follows from Lemma 5 that

�0
1(N × N

r
dis) �= �0

1(N × N
id
dis),
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Recursive Polish spaces 1109

which completes the proof. ��

4 The frame captures the effective topology

Recall that for a recursive Polish metric space X , the frame of X is
R(X ) = �0

1(N × X ). This notion is developed in [3] and here we point out several
properties that suggest that the frame captures the recursive topology of the space.

First, since a function f : X → Y is recursive precisely when

{(s, x) ∈ N × X : f (x) ∈ Ns(Y)} ∈ �0
1(N × X ),

it follows that whether f is recursive is determined by the frames of X and Y—not
the metrics.

Moreover, the frame of a space is respected by the natural, constructive operations
on topological spaces:

Theorem 7 [see [3]]

(i) For all X1,X2,Y ,

R(X1) = R(X2) �⇒ R(Y × X1) = R(Y × X2),

regardless of whether the max metric or the Euclidean metric is chosen for the
product space structure.

(ii) If (X , d) is a recursive Polish metric space and d1 = min(d, 1), then (X , d) and
(X , d1) have the same frame.

(iii) Suppose X0,X1, . . . , Y0,Y1, . . . are sequences of spaces and that
R(Xn) = R(Yn) uniformly in n ∈ N. Then,

R(
∏

n∈N Xn) = R(
∏

n∈N Yn).

Computable spaces In addition to the properties mentioned above, the frame of
a space also provides a descriptive set theoretic framework that unifies the study of
recursive metric spaces with the study of notions from computable analysis in the
sense of Weihrauch.

A presentation r : N → X of a Polish metric spaceX is computable if the relations

PW (i, j, k) ⇐⇒df d(ri , r j ) < qk, QW (i, j, k) ⇐⇒df qk < d(ri , r j ) (3)

are both r.e. X is computable if it admits a computable presentation.
Computable spaces were introduced by Weihrauch [5], and a great amount of

research has been devoted to them. The resulting theory is similar to the theory of
recursive metric spaces, but these two effective versions of metric spaces are indeed
different notions.7 Every recursive Polishmetric space is computable, but the converse
fails:

7 See [6] for a detailed comparison of these two theories.
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1110 T. Arant

Theorem 8 (Gregoriades et al. [6]) There is a computable Polish metric space which
is not isometric with any recursive Polish metric space.

On the level ofmetric space structure, we are left with these two competing effective
theories; however, for the descriptive set theorist ultimately interested in the lightface
definable subsets of a space, the notion of recursive Polish space eliminates the dis-
tinction between computable and recursive Polish metric spaces at the level of their
effective topology.

Theorem 9 (Gregoriades et al. [6]) If (X , d) is a computable Polish metric space,
then there is a recursive Polish metric space (X , d ′) on the same universeX such that
(X , d) and (X , d ′) have the same frame.
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