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Abstract
This paper presents a novel proof of the conservativity of the intuitionistic theory of

strictly positive fixpoints, ̂IDi
1, over Heyting arithmetic (HA), originally proved in

full generality by Arai (Ann Pure Appl Log 162:807–815, 2011. https://doi.org/10.
1016/j.apal.2011.03.002). The proof embeds ̂IDi

1 into the corresponding theory over
Beeson’s logic of partial terms and then uses two consecutive interpretations, a real-
izability interpretation of this theory into the subtheory generated by almost negative
fixpoints, and a direct interpretation into Heyting arithmetic with partial terms using
a hierarchy of satisfaction predicates for almost negative formulae. It concludes by
applying van denBerg and van Slooten’s result (IndagMath 29:260–275, 2018. https://
doi.org/10.1016/j.indag.2017.07.009) that Heyting arithmetic with partial terms plus
the schema of self realizability for arithmetic formulae is conservative over HA.
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1 Introduction

An occurrence of a symbol in a formula ϕ is strictly positive if the occurrence is not
inside an antecedent of an implication in ϕ. Given a parameter predicate P we can
thus form all formulae which have only strictly positive occurrences of P , referred to
as the strictly positive operator forms. Given such an operator form�(P; x) with free
variable x and writing �(ϕ; x) for the result of substituting ϕ for P in �, a predicate
I� satisfying

∀x(I�(x) ↔ �(I�; x)) (1)

is then a fixpoint of the operator form �. The theory ̂ID1 is Peano arithmetic (PA)
extended with a new symbol I� and axiom (1) for all strictly positive operator forms
�, and ̂IDi

1 is the corresponding extension of Heyting arithmetic (HA). Inductively,
̂IDn+1 and ̂IDi

n+1 are the corresponding extensions of ̂IDn and ̂IDi
n respectively. ̂ID1 is

not conservative over PA, since already ̂ID1(�2), in which (1) holds only for strictly
positive �2 operator forms �, proves the consistency of PA. On the contrary, ̂IDi

1 is
known to be conservative over HA.

In the 1997 paper [1], Wilfried Buchholz proved that the theory of fixpoints for
strongly positive operator forms, that is where (1) holds for operator forms � which
contain no implications whatsoever, is conservative over HA for almost negative sen-
tences. The result was soon improved to full conservativity by Toshiyasu Arai in [2]. A
few years later (2002), Christian Rüede and Thomas Strahm in [3] made an improve-
ment in another direction, by showing that the theory ̂IDi

α , where α (< �0) refers to
ordinal iterations of the fixpoint construction, is conservative over the theory ACA−i

α

(intuitionistic theory of iterated arithmetical comprehension without set parameters)
for negative and �0

2 sentences. Their argument makes a realizability interpretation
of ̂IDi

α in an appropriate fragment, which is subsequently interpreted in the classical
theory ACA−

α via partial truth predicates; finally ACA−
α is conservative over ACA−i

α

for negative and �0
2 sentences. As a corollary, ̂IDi

n is conservative over HA for such
sentences.

A few years after this series of partial results (2011), Arai in [4] finally showed,
using cut-elimination of an infinitary derivation system formalised in HA, that the
theory ̂IDi

1 is fully conservative over HA (and the stronger result that all ̂IDi
n are

conservative over HA).
The aim of this paper is to reprove this important result by a new method. For clar-

ity we first outline our argument for conservation of almost negative sentences only.
This closely resembles that of Rüede and Strahm outlined above in that it combines
two natural translations: a realizability interpretation of ̂IDi

1 in the subtheory with the
fixpoint axiom (1) restricted to almost negative operator forms, and a direct interpre-
tation of this subtheory in Heyting arithmetic. As in [3], the first step uses standard
Kleene-style realizability in the manner of Buchholz’ [5, §6]. The main difference
lies in the second reduction, which interprets fixpoint predicates for almost negative
operator forms by partial satisfaction predicates definable in Heyting arithmetic and
generalises the conservativity of fixpoints for strictly positive �1 operator forms over
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Revisiting the conservativity of fixpoints 63

Peano arithmetic. In this way, the detour through classical logic used in [3] can be
avoided and conservativity of ̂IDi

1 over HA obtained also for almost negative sentences
outside �0

2, since, combining the two interpretations, if ϕ is an arithmetic theorem of
̂IDi

1 we obtain that ϕ is realizable in HA and thus HA � ϕ if ϕ is almost negative.
Full conservation can be obtained by the same argument if the theories in question

are formulated over Beeson’s logic of partial terms (see [6]) rather than intuitionistic

predicate logic. Let HAP and ̂IDi
1P be Heyting arithmetic with partial terms and its

extension to fixpoints for strictly positive operator forms respectively. We show that
every arithmetic theorem of ̂IDi

1 is realized in HAP via an analogous combination of
interpretations. This involves a realizability interpretation of ̂IDi

1P in the subtheory of
almost negative fixpoints, which we then show is a conservative extension of HAP.
This conservativity is likewise witnessed by the definability of partial satisfaction
predicates for almost negative formulae involving partial terms. The final step of
concluding HA � ϕ from the realizability of ϕ in HAP is a consequence of a result
due to Benno van den Berg and Lotte van Slooten in [7] that for this realizability
interpretation, Heyting arithmetic is conservatively extended byHAP+ϕ ↔ ∃x(x rϕ)

for arithmetic ϕ, where x r ϕ expresses ‘x realizes ϕ.’
Wewill start by fixing basic notation and terminology in Sect. 2. Heyting arithmetic

with partial terms and the basic realizability interpretation we utilise is introduced in
Sect. 3. The main results from [7] which we require are also rehearsed in that section.
Section4 concerns properties of the almost negative formulae. We present a hierarchy
of formulae (�n)n based on nesting depth of implications which exhausts the almost
negative formulae and present for each n a �n-formula that provably in HAP is a
satisfaction predicate for�n-formulae. Section5 overviews three intuitionistic fixpoint
theories of import: the theory ̂IDi

1 of strictly positive fixpoints over Heyting arithmetic,
the counterpart theory over the logic partial terms, ̂IDi

1P, and its subtheory of fixpoints

for almost negative operator forms, ̂IDi
1P(�), as well as interpretability results among

them. The article concludes with proving the main result and a discussion of the
methods and potential extensions, in Sect. 6.

This paper constitutes part of the first authors thesis, and the details of the omitted
proofs will be presented in the forthcoming dissertation.

2 Preliminaries

Our base languages will be LHA, LPRA and LHAP, all of which will contain the
quantifiers ∀ and ∃, the connectives ∧, ∨ and →, the propositional constant ⊥ and the
equality relation == as logical symbols. LHA, the language of Heyting arithmetic, in
addition contains the constant symbol0 and the function symbolsS,+ and×.Numerals
in LHA will be constructed from 0 and S in the usual way (0 = 0, n + 1 = S(n));
the same holds for all languages we will consider. LPRA, the language of primitive
recursive arithmetic, contains the symbols ofLHA aswell as a function symbol for each
primitive recursive function (including fresh symbols for addition and multiplication).
The final language, LHAP, of Heyting arithmetic with partial terms extends LHA by
constant symbols k, s, pl, pr, p, succ, r and the binary function symbol ·. Since · will
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64 M. Granberg Olsson, G. E. Leigh

occur more frequently than×we will often abbreviate it by juxtaposition and let× be
written out. HA (PA) is the intuitionistic (resp. classical) theory in LHA axiomatised
by basic axioms for the successor S, defining equations for + and ×, and induction
for LHA. Heyting arithmetic with partial terms, HAP, is the theory in LHAP presented
in [7] which we will return to in Sect. 3. HA(L) and HAP(L) will be HA and HAP
with induction extended (or restricted) toL, but with no additional axioms concerning
the non-arithmetical symbols. Finally, HALPRA is Heyting arithmetic axiomatised in
LPRA with defining equations for all function symbols as axioms, essentially as in,
for example, Troelstra and van Dalen’s [8]. While there is no real difference between
HA and HALPRA (they are mutually interpretable), the small number of symbols and
the fact that LHA ⊆ LHAP will be advantageous from our perspective; at the same
time, several formula-classes are less expressive in HA than in HALPRA , which makes
HALPRA more desirable to work with in some situations.

We use an infinite sequence of variables, v0, v1, . . . ; metavariables for these will be
denoted by x, y, z, u, v, w, . . . etc.. Terms are constructed from variables, constants
and function symbols in the usual way; for disambiguation we will consider a variable
and the term made up of only that variable as distinct syntactic objects, in particular
when it comes to coding. We use τ, σ, ρ, . . . as metavariables for terms. We denote
tuples of terms (or variables) with �τ , or �τ n if we want to emphasise the tuple has
length n. Symbols�,�, φ, ϕ,ψ, θ, ϑ, . . . denotes formulae, where uppercase is used
to emphasise that the formula is an operator form, in that it contains a distinguished
predicate symbol (denoted by P , Q or R). Formulae are identified up toα-equivalence,
and we define the Gödel code of a formula to be the (numerically) least code of
any of the α-equivalent formulae with no nested bindings, i.e. two nested quantifiers
binding the same variable. Regarding substitution: σ [�u/�τ ], where σ is a term, �u is a
finite sequence of distinct variables and �τ is a sequence of terms of the same length,
denotes simultaneous substitution of τi for ui in σ for all indices i of the sequences.
Similarly ϕ(�u/�τ), where ϕ is a formula and �u and �τ are as above, denotes simultaneous
substitution of τi for the free occurrences of ui in ϕ for all indices i of the sequences
after renaming bound variables in ϕ to avoid conflicts. Since we identify α-equivalent
formulae this is permissible. The simpler expression ϕ(�τ) means ϕ(�v<n/�τ), where
�v<n is 〈v0, . . . , vn−1〉, with n the length of �τ . When introducing a formula with a
formulation of the kind “Let ϕ(�x) be a formula,” it is tacitly understood that �xn is
without repetitions and no variables other than v0, . . . , vn−1 occurs free in ϕ, that is
all free occurrences of �x in ϕ(�x) are obtained by the substitution; ϕ(�τ) is subsequently
the same as ϕ(�x)(�x/�τ).We use the corresponding notation for substitution of formulae
for relations:�(R/λ�x .ϑ), where the length of �x is the arity of R, denotes simultaneous
substitution in the formula � of the formula ϑ for the relation symbol R, where the
i th argument of R is substituted for the free occurrences of xi in ϑ , after renaming
bound variables in � and ϑ .1 Note, we do not require that xi is a free variable in ϑ or
that all free variables of ϑ are among �x .

1 It is of course important that no variable occurring as an argument to R is bound in ϑ .
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If we omit the ‘λ�x’ we mean that �x is �v<n and if ϑ consists of a single n-ary relation
symbol Q we write �(R/Q) for �(R/λ�v<n .Q(�v<n)), where we might also omit R if
it is clear from the context (as in Sect. 5). Finally, when expressing both relation and
term substitution, denoted �(λ�x .ϑ; �τ), term substitution takes precedence, namely
�(λ�x .ϑ; �τ) = (�(�τ))(λ�x .ϑ).2 We will abuse notation and write χ ∈ L for any
symbol, term or formula χ of the language L. The Gödel code of an expressions η

(in the language under consideration) will be denoted by �η�. When using numerals
of Gödel codes we suppress the bar, so that in e.g. HA� �η� =�= 0, �η� refers to the
numeral of the number �η�.

We finally turn to notations for syntactic formula-classes.�will denote the class of
almost negative formulae; a formula is almost negative if it contains no disjunctions
and existential quantifiers only occur immediately in front of term-equations. Note the
unfortunate clash of terminology that some strictly positive operator forms (meaning
the distinguished predicate P does not occur in the antecedent of an implication) will
at the same time be almost negative formulae. Both of these concepts are standard in
their fields, so there is little point in trying to avoid or change them here. Negative
formulae are the almost negative formulae which contains no existential quantifiers
whatsoever. When concerned with a syntactic formula-class � such as� or�n (or�n

introduced in Sect. 4) we will use the convention that � refers to the set of formulae
belonging to this class in the language under consideration, while �(HA) refers to the
set of formulaewhich areHA-equivalent to formulae from� in this language; the same
principle applies to other theories like HAP and PA. For example �1(PA) is the set of
formulae inLHA which are PA-equivalent to�1-formulae. Some cautionmust be used
here since LHA does not contain the symbol <;�0-formulae (and subsequently the
rest of the arithmetical hierarchy) are thus defined via the defined inequality: x < y
is ∃z(x + S(z) == y). If HA′ is Heyting arithmetic in LHA + <, this yields HA′ as a
definitional extension of HA, with the arithmetical hierarchy in HA the image of the
one in HA′.

3 LPT and HAP

For completeness and convenience wewill begin by briefly describing the system LPT
of Beeson’s logic of partial terms (see [6]), followed by HAP, Heyting arithmetic in
partial terms. Both of these presentations will be essentially as those given in [7]. Most
proofs will be omitted; we refer the reader to the references for details.

Definition 3.1 (LPT) Logic of Partial Terms, LPT, is a Hilbert-style deductive system
in a language containing at least equality with the following logical rules and axiom
schemata, where τ↓ abbreviates τ == τ and expresses that τ denotes:

2 Note that all choices involved can be made in an unambiguous (primitive recursive) way, which we will
assume without specifying one.
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66 M. Granberg Olsson, G. E. Leigh

LPT1. φ → φ

LPT2. φ, φ → ψ ⇒ ψ

LPT3. φ → ψ,ψ → χ ⇒ φ → χ

LPT4. φ ∧ ψ → φ, φ ∧ ψ → ψ

LPT5. φ → ψ, φ → χ ⇒ φ → ψ ∧ χ

LPT6. φ → φ ∨ ψ,ψ → φ ∨ ψ

LPT7. φ → χ,ψ → χ ⇒ φ ∨ ψ → χ

LPT8. φ ∧ ψ → χ ⇒ φ → (ψ → χ)

LPT9. φ → (ψ → χ) ⇒ φ ∧ ψ → χ

LPT10. ⊥ → φ

LPT11. φ → ψ ⇒ φ → ∀xψ for x /∈ FV(φ)

LPT12. ∀xφ ∧ τ↓ → φ(x/τ)

LPT13. φ → ψ ⇒ ∃xφ → ψ for x /∈ FV(ψ)

LPT14. φ(x/τ) ∧ τ↓ → ∃xφ
LPT15. ∀x(x == x)
LPT16. ∀xy(x == y → y == x)
LPT17. ∀xyz(x == y ∧ y == z → x == z)
LPT18. ∀�x �y(�x == �y ∧ f(�x)↓ → f(�x)== f(�y))
LPT19. ∀�x �y(R(�x) ∧ �x == �y → R(�y))
LPT20. c↓
LPT21. f(�τ)↓ → τi↓
LPT22. R(�τ) → τi↓
LPT23. x↓
Rules LPT11 and LPT13 are called (universal and existential) generalisation,

axiomsLPT12 andLPT14 (universal and existential) instantiation andLPT20, LPT21,
LPT22 and LPT23 are the strictness axioms. An instance of LPT22 is τ == σ →
τ↓ ∧ σ↓. Axiom LPT23 is not explicitly included in the axiomatisation in [7] but is
consistent with it, being derivable from the the axioms of HAP. Since the axiom is
present in Beeson’s axiomatisation in [6] and the axiomatisation of Troelstra’s [9], as
well as [8] (there called E+-logic), we include it for simplicity. This also makes sense
for α-equivalence, which is built into this system by construction; given LPT23 one
can also derive it from (more carefully formulated) LPT12 and LPT14.

Definition 3.2 If � is a set of formulae and φ a formula then � �Dφ means D is an
LPT-derivation (sequence of formulae) of φ using � as additional axioms. We write
� � φ to express that � �Dφ for some LPT-derivation D . If � is empty we write �Dφ.

The notion of derivation introduced above satisfies the deduction theorem. We can
also define weak equality and obtain:

Lemma 3.3 (“Leibniz Lemma” of [7]) Defining σ � τ as σ↓ ∨ τ↓ → σ == τ we
have � �σ � �τ → f(�σ) � f(�τ) and � σ � τ ∧ φ(x/τ) → φ(x/σ) for all function
symbols f and all formulae φ of the language.

Definition 3.4 (HAP) Heyting arithmetic with partial terms, HAP, is an LPT-theory
in the language LHAP. It is axiomatised by the following formulae for all variables x ,
y and z and formulae ϕ ∈ LHAP. Recall, juxtaposition of terms abbreviates use of ·
(read as application).
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Revisiting the conservativity of fixpoints 67

HAP1. S(x)↓, (x + y)↓, (x × y)↓
HAP2. S(x) == S(y) → x == y, 0 =�= S(x)
HAP3. x + 0 == x , x + S(y) == S(x + y)
HAP4. x × 0 == 0, x × S(y) == (x × y) + x
HAP5. kxy == x , (sxy)↓, sxyz � xz(yz)
HAP6. plx↓, prx↓, pl(pxy) == x , pr(pxy) == y, p(plx)(prx) == x
HAP7. succx == S(x), rxy0 == x , rxyS(z) � yz(rxyz)
HAP8. ϕ(x/0) → (∀x(ϕ → ϕ(x/S(x))) → ∀xϕ)

Terms and formulae from the fragment 0, S,+,× will be called arithmetical. A com-
binator (term) is a closed term without S, + or ×, making 0 the only arithmetical
combinator; the other combinator constants k, s, p, pl, pr, succ and r are the pure com-
binators. A combinator τ is unary (binary etc.) total if HAP� τ x↓ (HAP� (τ x)y↓
etc.). If L is a language extending LHAP we will extend HAP to an L-theory HAP(L)

by letting the induction schema HAP8 apply to all formulae of L.

Remark 3.5 van den Berg and van Slooten’s [7] used strong equality in the third part
of axiom HAP7. Private communication with Benno van den Berg has revealed that
this was not intended and that the results of [7] do not depend on it. We therefore use
the version with weak equality, which is in line with Beeson’s [6] and Troelstra and
van Dalen’s [11].

Not surprisingly HA directly embeds into HAP. The next lemma summarises the
key observations for this result.

Lemma 3.6 LetL1 ⊆ L2 bearbitrary first-order languages and�1,�2 sets of formulae
in the respective language. Let �I denote derivability in ordinary intuitionistic logic,
as captured by the Hilbert-style system LPT plus the extra logical axiom τ↓ for all
terms τ . Suppose �2 � σ↓ for all terms σ of L1. If �2 � γ for all γ ∈ �1 and �1 �I ϕ

then �2 �ϕ, for all ϕ ∈ L1.

Proof Induction on derivations �1 �I ϕ. ��
Corollary 3.7 HAP proves all theorems of HA.

3.1 Combinatory algebra in HAP

This subsection aims to describe how the basic facts of combinatory algebra are deriv-
able in HAP. In this, we follow [6, VI.2.]. The basic idea is to regard every object
of the theory both as a number and as a partial function, where · denotes function
application to an argument. It is in line with this reading we will write τ �σ and τ · �σ
for τ · σ0 · · · · · σn , which in turn is a shorthand for ((· · · (τ · σ0) · · · · ) · σn); thus
association of · is to the left.

It is well known that combinatory algebra is Turing-complete, and thus defines the
same class of functions as the recursive functions or the λ-calculus. Adapted to present
purposes we observe that we can define a denoting ‘λ-term’ for any partial term in the
language, such that if applied to an argument they are weakly equal.
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68 M. Granberg Olsson, G. E. Leigh

Proposition 3.8 (λ-terms, Proposition 2.3 of [7]) For each term τ and variable x in
LHAP, there is a term λx .τ in the fragment without S, + and × such that FV(λx .τ ) =
FV(τ )\{x}, HAP� λx .τ↓ and HAP� σ↓ → (λx .τ ) · σ � τ [x/σ ].

As stated above we will call terms constructed in accordance with this lemma λ-
terms. At first sight they might seem rather redundant, but note that a λ-term always
denotes, as opposed to the term it was constructed from (though the application of a
λ-term to some argument need not denote, of course). Note that this also means that
τ is not a subterm of λx .τ in general. Another consequence of the construction is that
λ-terms do not contain any arithmetical function symbols, but only ·. We will use the
usual notational conventions for stacking λs, that is λx .λy.τ will be written λxy.τ etc.

Proposition 3.9 (Primitive recursion in HAP) For each function symbol of LPRA
defined as a primitive recursive function there is a combinator of LHAP such that
HAP proves its defining equations. More precisely there is an interpretation τ of these
function symbols of LPRA into the combinator terms of LHAP such that for all such f,
g, and h( j) with arities n, k + 2 and k

HAP � ∀x τZx == 0,

HAP � ∀x τSx == S(x),

HAP � ∀�x τπk
i
�x == xi ,

HAP � ∀�x τ◦kn(f,h0,...,hn−1)
�x == τf(τh0 �x) · · · (τhn−1 �x),

HAP � ∀�x τ rec k (g,h)�x 0 == τh�x,
HAP � ∀�x y τ rec k (g,h)�x(S(y)) == τg�x y(τ rec k (g,h)�x y),

(where the length of �x is k) and consequently

HAP � τfa0 · · · an−1 == val(f, �a)

for every a0, . . . , an−1 ∈ N. In particular HAP � τf↓ for every such f.

Proof The proof is standard. See e.g. [10, Theorem 1.2.4] and [11, Theorem 9.3.11].
��

Fixing LHA we can extend this interpretation compositionally to an interpretation
T of LPRA into LHAP, yielding the following result.

Proposition 3.10 RecallHALPRA isHeyting arithmetic axiomatised inLPRA. For every
formula φ of LPRA,

HALPRA � φ ⇒ HAP� T (φ)

In particular, if φ ∈ LPRA is a true (in N) �1-sentence, then HAP� T (φ).

Proof Apply Lemma 3.6 to T [HALPRA ] ⊂ HAP. ��
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Proposition 3.11 (Recursion in HAP) Combinatory algebra in HAP encompasses all
recursive functions: there are combinator terms d, fix and min such that

HAP� x == y → dxy f gz � f z,

HAP� x =�= y → dxy f gz � gz,

HAP�fix f ↓ ∧ fix f x � f (fix f )x,

HAP�min f x↓ ↔ ∃y( f xy == 0 ∧ ∀z < y( f xz↓))

and

HAP�min f x↓ → ( f x(min f x) == 0 ∧ ∀y < (min f x)( f xy > 0)).

Proof Again standard. See [10, Proposition 1.2.1.], [6, VI.2.6–8] and [11, 9.3.7–11].
��

The above thus embeds LPRA (and more) into LHAP. It will, however, be important
that LHA ⊂ LPRA is embedded in LHAP in a way that does not involve · and the pure
combinators; recall that LHA ⊂ LHAP by definition as the arithmetical formulae of
LHAP, which are not affected by T .

By interpreting · as Kleene application, we also have a result in the converse direc-
tion.

Proposition 3.12 There is an interpretation F of LHAP in LHA which interprets · as
Kleene application, such that

1. HA�φ ↔ F(φ) for all φ ∈ LHA,
2. HAP� φ ⇒ HA�F(φ) for all φ ∈ LHAP.

Corollary 3.13 (Proposition 2.4 of [7]) HAP is conservative over HA.

3.2 Realizability in HAP

Realizability in HAP is one of the main tools of [7], and we will utilise many of
their results, and those of similar systems like in [6, 11]. We present this technical
background, mainly without proof, in this subsection, together with some additional
machinery.

We will, in fact, extend these definitions of realizability to languages L extending
LHAP with an unspecified set of relation symbols and parameterise this extension by
the clauses for these symbols. We let L be fixed throughout this subsection.

Definition 3.14 (Realizability) For each term τ and formula ϕ we define the formula
τ r ϕ after renaming of bound variables in ϕ to avoid conflicts with τ and nested
bindings. The notion of realizability we will use is defined via the following clauses:

123
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τ r (σ1 == σ2) is σ1 == σ2

τ r ⊥ is ⊥
τ r (φ ∧ ψ) is (plτ r φ) ∧ (prτ r ψ)

τ r (φ ∨ ψ) is (plτ == 0 → prτ r φ) ∧ (plτ =�= 0 → prτ r ψ)

τ r (φ → ψ) is ∀y(y r φ → (τ y↓ ∧ τ y r ψ))

τ r ∀xφ is ∀x(τ x↓ ∧ τ x r φ)

τ r ∃xφ is prτ r (φ(x/plτ))

τ r R(σ0, . . . , σn−1) is QR(σ0, . . . , σn−1, τ )

where y is a fresh variable (which can be chosen in a systematic fashion which we
will not specify). Here QR is an as yet unspecified relation symbol whose arity is one
greater than that of R.

That this is a well-defined notion, in that it respects α-equivalence, can be proved
by structural induction. Other standard properties of realizability can be proved in the
same manner, e.g.

Lemma 3.15 For every formula φ and term τ , τ r φ is negative and the free variables
of φ are among the free variables of τ r φ, which are among the free variables of φ

and τ .

For the rest of this section we will simply let rR denote the unspecified relation QR

in the definition of r above, whence the final clause reads

τ r R(σ0, . . . , σn−1) is (rR)(σ0, . . . , σn−1, τ )

for relations R. We will make some concrete choices for this rR in particular cases in
Sect. 5.2. This draws attention to a potential subtlety, in that τ rϕ(�x) could a priorimean
both τ r (ϕ(�x)) and (τ r ϕ)(�x). As our choice of notation for the base case indicates,
however, these are the same as long as τ contains none of the variables substituted for.

Lemma 3.16 (Lemma 4.4.6.(ii) of [8]) Substitution distributes over realizability: Let
ϕ be a formula and τ a term. For all equally long finite sequences �u and �σ of distinct
variables and terms, respectively, (τ r ϕ)(�u/�σ) = (τ [�u/�σ ]) r (ϕ(�u/�σ)). In particular,
(x r ϕ)(x/τ) = τ r ϕ if x is fresh.

To disambiguate when there is a potential clash we will let τ rϕ(�y)mean τ r (ϕ(�y))
etc., since this seems to be the natural reading when τ is a(n explicitly given) single
variable.

The relationship between realizability and substitution of formulae for relation
symbols is only slightly more involved, since the former might change the relations
occurring in a formula.
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Lemma 3.17 Let n ∈ N, R be an n-ary relation symbol, τ be a term andϑ be a formula
without free occurrences of vn. Suppose rR is not the same as rQ for any other relation
symbol Q. Then τ r (ϕ(R/λ�v<n .ϑ)) = (τ r ϕ)(rR/λ�v≤n .vn r ϑ) for every ϕ ∈ L.

Proof Induction on the construction of ϕ.

• All base-cases except R(�σ) follow since the substitutions are vacuous. Moreover

τ r (R(�σ)(R/λ�v<n .ϑ)) = τ r (ϑ(�v<n/�σ))

= (vn r ϑ)(�v≤n/�σ , τ)

= (rR(�σ , τ))(rR/λ�v≤n .vn r ϑ)

= (τ r R(�σ))(rR/λ�v≤n .vn r ϑ)

for all terms τ by Lemma 3.16.
• Assume the statement holds for χ and ψ and let τ be a term. Then

τ r ((χ ∧ ψ)(R/λ�v<n .ϑ))

= plτ r (χ(R/λ�v<n .ϑ)) ∧ prτ r (ψ(R/λ�v<n .ϑ))

= (plτ r χ)(rR/λ�v≤n .vn r ϑ) ∧ (prτ r ψ)(rR/λ�v≤n .vn r ϑ)

= (τ r (χ ∧ ψ))(rR/λ�v≤n .vn r ϑ)

by induction hypothesis. The disjunctive case is similar.
• Assume the statement holds for χ and ψ and let τ be a term and y a variable
without free occurrences in χ , ψ , ϑ or τ . Then

τ r ((χ → ψ)(R/λ�v<n .ϑ))

= ∀y(y r (χ(R/λ�v<n .ϑ)) → (τ y↓ ∧ τ y r (ψ(R/λ�v<n .ϑ))))

= ∀y((y r χ)(rR/λ�v≤n .vn r ϑ) → (τ y↓ ∧ (τ y r ψ)(rR/λ�v≤n .vn r ϑ)))

= (τ r (χ → ψ))(rR/λ�v≤n .vn r ϑ)

by induction hypothesis and since y is fresh.
• Assume the statement holds for ψ and let τ be a term. We can without loss of
generality assume that x does not occur in τ or ϑ . Then

τ r ((∀xψ)(R/λ�v<n .ϑ)) = ∀x(τ x↓ ∧ τ x r (ψ(R/λ�v<n .ϑ)))

= ∀x(τ x↓ ∧ ((τ x r ψ)(rR/λ�v≤n .vn r ϑ)))

= (τ r ∀xψ)(rR/λ�v≤n .vn r ϑ)

by induction hypothesis.
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• Assume the statement holds of ψ and let τ be a term. We can without loss of
generality assume that x does not occur in τ or ϑ . Then

τ r ((∃xψ)(R/λ�v<n .ϑ)) = prτ r (ψ(R/λ�v<n .ϑ)(x/plτ))

= prτ r (ψ(x/plτ)(R/λ�v<n .ϑ))

= (prτ r (ψ(x/plτ)))(rR/λ�v≤n .vn r ϑ)

= (τ r (∃xψ))(rR/λ�v≤n .vn r ϑ)

by induction hypothesis.

This concludes the induction. ��
Lemma 3.18 Realizability is closed under derivability in LPT: Let � be a set of for-
mulae including the axioms of HAP(L) and � be a set of formulae such that for each
γ ∈ � there is a term σ with free variables among those of γ and �� σ↓ ∧ σ r γ .
Let ϕ be a formula and D a derivation with � �Dϕ. Then there is a term τ with free
variables among those of ϕ such that �� τ↓ ∧ τ r ϕ.

Proof By induction on the depth of D . The proof is similar to [6, VII. Theorem 1.6].
��

While we rely heavily on the work in [7], our definitions of realizability are not
literally the same, since there disjunction is a defined predicate (ϕ ∨ ψ is ∃n((n ==
0 → ϕ) ∧ (n =�= 0 → ψ))). This difference is immaterial, however, since the notions
are equivalent in the following sense. Let r̂ denote the notion of realizability from [7].

Lemma 3.19 The realizability notion r is equivalent to r̂: for every formula ϕ ∈ LHAP
there are unary total combinators μ and ν such that HAP� ∀x(x r ϕ → μ · x r̂ ϕ)

and HAP�∀x(x r̂ ϕ → ν · x r ϕ). Consequently HAP�∃x(x r ϕ) ↔ ∃x(x r̂ ϕ).

Since we can thus identify the two notions of realizability we get the following as
a consequence of Corollary 3.6 from [7]:

Proposition 3.20 HAP plus the schema ϕ ↔ ∃x(x r ϕ) for ϕ ∈ LHA is conservative
overHA. In particular, for every formula ϕ ∈ LHA, ifHAP � ∃x(x r ϕ) thenHA � ϕ.

It is important for the above proposition that LHA is a subset of LHAP, instead of
being embedded into it in a way involving the (pure) combinators or the application
function symbol specific to the language LHAP (like the inclusion of the rest of LPRA
in Proposition 3.9). In addition to allowing us to state the theorem as a simple con-
servativity result, this is required for the proof of [7, Corollary 3.6], which relies on
an interpretation of HAP into itself which changes the application function and pure
combinators, while preserving LHA.

4 A hierarchy of almost negative formulae

An important subtheory of ̂IDi
1 is that given by the fixpoint axioms for operator forms

which are almost negative. Recall a formula is almost negative if it contains no dis-
junctions and the matrix of any existential quantifier is an equation between terms. �
denotes the class of almost negative formulae.
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In this sectionwe introduce a hierarchy (�n) of formulaewhich exhausts the almost
negative formulae�. In classical arithmetic, the arithmetic (quantifier) hierarchy clas-
sifies formulae of the language according by quantifier complexity (that is, quantifier
alternations). This hinges on the existence of a prenex normal form, and in particular
on De Morgan’s laws and the possibility to define → in terms of ∨ and ¬. For intu-
itionistic arithmetic this is no longer a possibility and the situation is not as simple.
A few hierarchies for intuitionistic arithmetic have been proposed, in this context we
should mentionWolfgang Burr whose�′-hierarchy in [12] is very close to the one we
consider (see also Burr’s [13]).

This formula hierarchywill behave relative to� in several respects similarly to how
the arithmetic hierarchy behaves relative to the entire language in the classical case. In
addition to exhausting the almost negative formulae (in a sense made precise below),
each level of the hierarchy contains a partial satisfaction predicate for that level: for
each n ∈ N there is a �n-formula Satn which HAP proves to be a (compositional)
satisfaction predicate for formulae in �n . The construction of the Satn will be the
main content of Sect. 4.2.

4.1 Stratifying the almost negative formulae

For now we turn to more elementary properties of �n . Two of the most notable of
these are the Diagonal Lemma 4.6 and the closure of �n under substitution into
strictly positive positions (Lemma 4.5). These properties play crucial roles in the
interpretability argument of Theorem 5.7.

Definition 4.1 �e, the set of�-equations, is the set of formulae of the form ∃x σ = τ ,
whereσ and τ are terms.�0 is the smallest set closed under conjunctionwhich contains
�e and the atomic formulae. �n+1 is the smallest set that contains �e and atomic
formulae which is closed under conjunction, universal quantification and implications
with �n antecedents; that is, if ϕ ∈ �n+1 and ψ ∈ �n then ψ → ϕ ∈ �n+1.

The normal form hierarchy (�nf
n )n is defined as follows:�nf

0 is the set conjunctions
ψ ∧ ∧k

i=1 ϕi where ψ ∈ �e, k ≥ 0 and each ϕi for i ≤ k is an atomic formula other
than ⊥ or an equation (whence �nf

0 = �e for LHA, LPRA and LHAP). �nf
n+1 is the set

of universally quantified conjunctions of implications with �nf
n antecedents and �nf

0

consequents, namely formulae of the form ∀x ∧k
i=0(φi → ψi ) where {φ0, . . . , φk} ⊆

�nf
n and {ψ0, . . . , ψk} ⊆ �nf

0 . Let �nf = ⋃

n∈N �nf
n .

It should be noted that this stratification of � is closed under α-equivalence and
thus is well defined. A consequence of the definition is that the �n form a strictly
telescoping hierarchy:

Lemma 4.2 For every n ∈ N, �n ⊂ �n+1.

The hierarchy (�nf
n )n represents normal forms for formulae of � in the sense that

�nf
n ⊆ �n for every n, and every formula in �n is provably equivalent to a formula

in �nf
n over the theory HA or HAP as appropriate. This latter result is strengthened in

Lemma 4.4.
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We are interested here in the almost negative formulae, which is why we allow �e
as ‘atoms,’ much as �0-formulae are treated as ‘atoms’ in the classical arithmetical
hierarchy. In the latter case, however, we have generous closure conditions on this set
of ‘atoms,’ even though this makes no real difference further on in the arithmetical
hierarchy, while here we are requiring the special ‘atoms’ to have a very concrete
form. We could, for the purposes of this paper, have let �e be closed under (at least)
conjunctions, disjunctions and existential quantification and subsequently used formu-
lae constructed therefrom by conjunctions, implications and universal quantifications
instead of the almost negative formulae (thus thereby essentially allowing general�1-
formulae as ‘atoms’) without much extra work. Since the almost negative formulae
seem to be the established standard in these contexts, however, we will not generalise
in this direction. This will have the added advantage of making the definitions of the
satisfaction predicates somewhat clearer since no connectives or quantifiers are in the
scope of an existential quantifier.

In the other direction, as opposed to Heyting arithmetic in the language of PRA,
every (partial) recursive function is represented by a term in HAP. Thus, adding an
existential quantifier to form a �-equation does not yield increased expressibility.
So we could have simplified the definition of �nf in this setting by leaving out the
existential quantifiers altogether. However, we gain little by doing so, and thus prefer
to have �nf formulated as a template for all adequate languages.

The essential difference between the �-hierarchy and Burr’s �′ from [12] is that
�n is also closed under conjunction to exhaust the almost negative formulae. Both
can be seen as mirroring the ordinary arithmetic hierarchy, in that they are classically
equivalent to it.

In the following lemma, let PAP denote the result of adding the law of excluded
middle to HAP.3 Given a set � of formulae and a theory T, recall �(T) denotes the
set of formulae that are provably in T equivalent to some formula in �.

Lemma 4.3 �n relates to almost negative formulae and the usual arithmetical hier-
archy in the following way:

1. The �n exhaust the almost negative formulae, that is � = ⋃

n∈N �n.
2. In the arithmetic languages LPRA and LHAP: Let HA∗ be HALPRA or HAP. Then

�nf
0 (HA∗), the formulae equivalent to �nf

0 -formulae over HA∗, is precisely the
formulae equivalent to�e-formulae overHA∗, as well as the formulae equivalent
to �1-formulae over HA∗.

3. In the arithmetic languages LPRA and LHAP: Let PA∗ be PALPRA or PAP. For
n > 0, �nf

n (PA∗) = �n+1(PA∗). Moreover, �nf
0 (PA∗) = �e(PA∗) = �1(PA∗).

Proof Observe that �n ⊆ � for all n ∈ N. We show that � ⊆ ⋃

n �n by induction
on the complexity of almost negative formulae:

• If ϕ is an atom or a �e-formula, then ϕ ∈ �0.
• The induction steps for ∧ and ∀ are straightforward.
• If ϕ = (ϑ → ψ) for ϑ,ψ ∈ ⋃

k∈N �k ∩ �, let n be such that both are in �n (by
Lemma 4.2). Then ϕ ∈ �n+1.

3 To the best of our knowledge the theory PAP has not been studied. We thus make no claims on suitability
for any particular purpose, but merely use it as a name for adding LEM to HAP.
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This concludes the proof of the first statement.
For the remaining statements, clearly �e = �nf

0 ⊆ �1 by definition. We show by
induction on n > 0 that �nf

n ⊆ �n+1(PA∗).

• Let ϕ = ∀x ∧

i (ϑi → ψi ), where ϑi , ψi ∈ �nf
0 ⊆ �1. Then by classical logic

ϕ ∈ �2(PA∗).
• Let k ≥ 1 and ϕ = ∀x ∧

i (ϑi → ψi ), where ϑi ∈ �nf
k ⊆ �k+1(PA∗) and

ψi ∈ �nf
0 ⊆ �1. Then by classical logic ϕ ∈ �k+2(PA∗).

Conversely, since �0-formulae in LPRA and LHAP are equivalent to atoms in
HA∗, �1 ⊆ �e(HA∗) = �nf

0 (HA∗) ⊆ �nf
0 (PA∗) by structural induction. Hence

�1(HA∗) = �nf
0 (HA∗) and the corresponding for PA∗. We show that �n+1(PA∗) =

�nf
n (PA∗) by induction on n > 0.

• Suppose ϕ = ∀xϑ , where ϑ ∈ �1 ⊆ �nf
0 (PA∗). Then ϕ ∈ �nf

1 (PA∗). Thus
�2 ⊆ �nf

1 (PA∗), whence �2(PA∗) = �nf
1 (PA∗) by above.

• Suppose ϕ = ∀xϑ , where ϑ ∈ �k+1. Let ¬̃χ be χ → ∃x(0 == S(0)) for formulae
χ . Then ¬̃ϑ ∈ �k+1(PA∗) = �nf

k (PA∗) by induction hypothesis. Let ψ ∈ �nf
k

be equivalent. Then PA∗ �ϕ ↔ ∀x¬̃ψ , where ∀x¬̃ψ ∈ �nf
k+1. Note that this

would not work with ¬, since ⊥ is not a �nf
0 -formula. So �k+2 ⊆ �nf

k+1(PA
∗)

and consequently �k+2(PA∗) = �nf
k+1(PA

∗). ��
In particular, �e(HAP) is closed under conjunction, disjunction, existential quan-

tification and bounded universal quantification.
It should be intuitively clear that �0 is HAP-equivalent to �nf

0 . The same holds
for all n, as we will show. In order to define a satisfaction predicate for �n , however,
we need to have access to an explicit transformation from �n to its normal form
�nf

n in HAP. Corresponding transformations can be defined for languages other than
LHAP. Since it is clear that �nf

n ⊆ �n , this transformation yields the inclusions
�nf

n ⊆ �n ⊆ �nf
n (HAP) and �nf

n ⊆ �n ⊆ �nf
n (PAP) for all n.

We now fix a standard coding of the language LHAP in HA, and thus in HAP. The
featureswewill assume are that the set of codes of two types of syntactic objects (terms,
formulae etc.) never intersect, that no two distinct syntactic objects are assigned the
same code, that 0 is not the code of any syntactic object and that the code of formu-
lae and terms are (numerically) strictly larger than their (immediate) constituents. A
similar note on the coding of sequences are that they are assumed to be strictly larger
than their length and all of their elements. Thus we can reason about �n-formulae in
a theory of arithmetic.

Lemma 4.4 There are primitive recursive functions λn : �n −→ �nf
n which trans-

forms �n-formulae to HAP-provably equivalent normal forms.

Proof We omit the actual construction, fromwhich we can see that HAP� ϕ ↔ λn(ϕ)

for ϕ ∈ �n but which is otherwise unenlightening. We only give the general ideas on
which it hinges.

Firstly, we can easily add redundant parts to a (�-)equation to make it an equivalent
�nf

n -formula, as well as finding a �-equation equivalent to ⊥ (as above).
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Secondly, if ∃x(σ1 == σ2) and ∃y(τ1 == τ2) are�nf
0 -formulae, then ∃v(((σ1

.−σ2)+
(σ2

.− σ1))(x/plv) + ((τ1
.− τ2) + (τ2

.− τ1))(y/prv) == 0) is a �nf
0 -formula equiv-

alent to their conjunction (where .− is a shorthand for application of the combinator
representing the primitive recursive subtraction function).

Thirdly, if ∀x ∧k
i=0(ψi → ϕi ) and ∀y ∧m

j=0(ξ j → ϑ j ) are �nf
n+1-formulae and

χ ∈ �nf
n , then

∀x
k

∧

i=0

(ψi → ϕi ) ∧ ∀y
m
∧

j=0

(ξ j → ϑ j )

∀u∀x
k

∧

i=0

(ψi → ϕi )

and

χ → ∀x
k

∧

i=0

(ψi → ϕi )

where x , y and u could be the same, are equivalent to

∀v((

k
∧

i=0

ψi → ϕi )(x/v) ∧ (

m
∧

j=0

ξ j → ϑ j )(y/v))

∀v(

k
∧

i=0

(ψi → ϕi )(x/plv)(u/prv))

and

∀v

k
∧

i=0

((χ ∧ ψi (x/v)) → ϕi (x/v))

respectively, where v is fresh. The first two are in �nf
n+1 and the third can be given

such a form inductively, since χ ∧ ψi (x/v) ∈ �n . ��
The λn can be chosen to be (provably in HAP) primitive recursive in the structure

of their arguments.
We finally turn to the two key properties of the hierarchy mentioned earlier.

Lemma 4.5 If φ ∈ �n has only strictly positive occurrences of the k-ary relation
symbol R and θ ∈ �m then φ(R/θ) ∈ �max(n,m).

Proof Let M = max(n,m). The proof is by induction on the complexity of φ.

• Let σ and τ be terms. Then (σ == τ)(R/θ) = (σ == τ) ∈ �M .
• We have ⊥(R/θ) = ⊥ ∈ �M .
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• We have (R(�τ))(R/θ) = θ(�v<k/�τ) ∈ �M .
• We have (Q(�τ))(R/θ) = Q(�τ) ∈ �M .
• Let σ and τ be terms. Then (∃xσ == τ)(R/θ) = (∃xσ == τ) ∈ �M .
• Let χ,ψ ∈ �n have only strictly positive occurrences of R and be such that

χ(R/θ), ψ(R/θ) ∈ �M . Then (χ ∧ ψ)(R/θ) = (χ(R/θ) ∧ ψ(R/θ)) ∈ �M .
• In case n ≥ 1, letψ ∈ �n have only strictly positive occurrences of R and be such
thatψ(x/z)(R/θ) ∈ �M for all z. Then (∀xψ)(R/θ) = ∀y(ψ(x/y)(R/θ)) ∈ �M

for some fresh y.
• In case n ≥ 1, letψ ∈ �n have only strictly positive occurrences of R and be such
that ψ(R/θ) ∈ �M , and χ ∈ �n−1 be such that χ → ψ has only strictly positive
occurrences of R. Then (χ → ψ)(R/θ) = (χ → ψ(R/θ)) ∈ �M since R does
not occur in χ .

This concludes the proof. ��
Since HAP has terms for all primitive recursive functions, there is a term sub for

the substitution function in LHAP. This is used to prove the following:

Lemma 4.6 (Diagonal Lemma inHAP)�n and�nf
n are closed under diagonalisation:

If ϕ ∈ �n (resp. ∈ �nf
n ) has free variables v0, . . . , vk , then there is a formula ψ ∈ �n

(ψ ∈ �nf
n ) with free variables v0, . . . , vk−1 and

HAP � ψ(�x) ↔ ϕ(�x, �ψ�),

where �x has length k.

Proof This is the standard diagonal argument. ��

4.2 Satisfaction predicates for almost negative formulae

Given terms η, ν and τ we write ητ
ν for the term λu.duν(kτ)ηu, where u is fresh.

(Recall d is the ‘decision by case’ term from Proposition 3.11.) This term is such that
HAP� ∀xy(ητ

x · x � τ ∧ (x =�= y → ητ
x · y � η · y)), corresponding to the ‘update’

of the function η with the new value τ for input ν. Note, there is no assumption that
τ denotes. For sequences �τ and �ν of terms (of equal length) we define η�τ

�ν by iterating
the above construction.

Since partial combinatory algebras are Turing complete (see Proposition 3.11 and
[6, VI. Theorem 2.8.1]) it is possible to define a valuation combinator for partial terms
of LHAP.

Definition 4.7 (Valuation function in HAP) Using Proposition 3.9 we have formu-
lae and combinators corresponding to the following primitive recursive relations and
functions: Seq, lh, Var, FV, BV (the second argument is a (code of a) free/bound
variable of the first), Term, Fmla, Sent, sub, Σe, Λnfn , λλλn and num (the formal
numeral function).

Let val be a combinator in HAP such that
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1. HAP�val · e · �c� == c for every constant symbol c,
2. HAP�Var(x) → val · e · x � e · x , and
3. HAP�val · e · (�f�(�a)) � f(

−−−−−−→
val · e · a) for every function symbol f

(recall the notational convention that �α� means �α�, the numeral of the Gödel code
of α, for expressions α).

These defined relations will notationally be treated as predicate symbols.
Recall that in HAP every object in the domain is a partial function and, in particular,

is a partial variable assignment mapping codes of variables to values. Thus it is not
necessary to place any restriction on the e in val · e · z such as, for example, that
e represents an assignment for the variables of (the term coded by the value of the
variable) z.

Lemma 4.8 The valuation functionval acts as a partial valuation function for partial
terms of LHAP. In particular:

1. HAP� ∀e, f , t((Term(t) ∧ ∀x < t(FV(t, x) → e · x � f · x)) → val · e · t �
val · f · t).

2. HAP� ∀e, t, v, x(Term(t) ∧ ¬FV(t, v) → val · exv · t � val · e · t).
3. HAP� ∀e, s, t, x(Var(x) ∧ Term(t) ∧ Term(s) → val · e · (sub · t · x · s) �

val · eval·e·s
x · t).

4. HAP� ∀e(val · e · �τ� � τ(e · �v0�, . . . , e · �vn−1�)) for every partial term τ

with free variables among v0, . . . , vn−1.

Proof The first three are proved by induction on t in HAP. The final claim is an
induction on the construction of τ . ��

In the interest of readability we will conflate coding and concatenation in the coded
language. Any logical symbols occurring within square brackets [ ] refer to the codes
of these symbols, concatenated with the other (named) constructs appearing in the
brackets. For instance, [∃v(s == t)] below is the code �∃v0(v1 == v2)� with the codes
v, s, t formally substituted for �v0�, �v1�, �v2� respectively.

Theorem 4.9 (Partial Satisfaction Predicates in HAP) For every n there is a �nf
n -

formula Satn(e, F) which HAP proves is a compositional satisfaction predicate for
�n-formulae.

Proof The proof is cumbersome but straightforward. Essentially, we mimic standard
constructions of �n-satisfaction predicates in PA, as in e.g. Hájek and Pudlák’s [14].

We first construct an intermediate satisfaction predicate for �nf
n -formulae in LHAP

by induction on n.

• First Sat′′
0(e, F) is

∃x, v, s, t(Term(s) ∧ Term(t) ∧ Var(v) ∧ F = [∃v(s = t)] ∧ val · exv · s
== val · exv · t)

This is straightforwardly HAP-equivalent to a �e-formula. The predicate Sat′
0

is thus the �nf
0 normal form of this formula, which is HAP-equivalent to it by

Lemma 4.4.
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• We define Sat′′
n+1(e, F) as

Λnfn+1(F) ∧ ∀x, v,G, s(Var(v) ∧ F == [∀vG]
∧ Seq(s) ∧ lh · s > 0 ∧ G == conjs · s

→ ∀i < lh · s ∀ f , g < si (si = [g → f ] ∧ Λnfn (g) ∧ Λnf0 ( f )

→ (Sat′
n(e

x
v , g) → Sat′

0(e
x
v , f ))))

where conjs is the combinator representing the primitive recursive function

conjs(〈e〉) == e

conjs(〈h, t〉) == conjs(t) ∧ h,

in accordance with Proposition 3.9.
Sat′′

n+1 is �n+1, whence Sat′
n+1 is the �nf

n+1-formula λn+1(Sat′′
n+1).

We now define Satn(e, F) as Sat′
n(e,λλλn · F), which is compositional on �n-

formulae. This, and the intermediate facts that Sat′
n respects conjunction, only

depends on the values of e for the free variables of F and ‘commutes’ with sub-
stitution, that is

HAP� ∀F,G, e(Λnfn (F) ∧ Λnfn (G)

→ (Sat′
n(e,λλλn · [F ∧ G]) ↔ Sat′

n(e, F) ∧ Sat′
n(e,G))),

HAP� ∀F, e, f (Λnfn (F) ∧ ∀x < F(FV(F, x) → e · x � f · x)
→ (Sat′

n(e, F) ↔ Sat′
n( f , F)))

and

HAP�∀F, x, s, e(Λnfn (F) ∧ Var(x) ∧ Term(s) ∧ (∀v < F¬(BV(F, v) ∧ FV(s, v)))

→ (Sat′
n(e,sub · F · x · s) ↔ Sat′

n(e
val·e·s
x , F))),

are now shown by induction on n as before, with inner inductions on the structure
of F . ��
Corollary 4.10 Let φ be a �n formula with free variables among v0, . . . , vk−1. Then
HAP� ∀e(Satn(e, �φ�) ↔ φ(e · �v0�, . . . , e · �vk−1�)).

Proof Outer induction on n, inner induction on φ. ��

5 Fixpoint theories

We return now to our main item of study: the intuitionistic theory of fixpoints over
Heyting arithmetic, ̂IDi

1. Similar to the way HA is included in HAP we want to embed
̂IDi

1 in a corresponding theory in the logic of partial terms, extending the notion of
strictly positive fixpoints to HAP.We denote this theory as ̂IDi

1P. We start by formally
introducing these fixpoint theories.
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5.1 ̂IDi
1 and ̂IDi

1P

Let L be a fixed language extending LHA. Let P = (Pn)n∈N be a sequence of new
predicate symbols such that Pn has arity n. LetL(Pn) be the languageLwith Pn added
and LP that of L with all Pn added. We will by POSPn (L) denote the set of formulae
in L(Pn) whose free variables are exactly v0, . . . , vn−1 and such that Pn occurs at
least once in the formula and in strictly positive position only. That is, Pn may not
occur in the antecedent of any implication. Let POSP (L) = ⋃

n∈N POSPn (L). Note
that this definition ensures that POSP (L) is a union of disjoint classes, so exactly one
of the Pns occur in any formula of POSP (L); the requirement that Pn actually occur is
no real restriction on the POSPn (L). Formulae of POSP (L) will be used as operators
with Pn as parameters to generate (axioms for) strictly positive fixpoints, the strictly
positive operator forms (in L) from the introduction. Now we can formally define ̂IDi

1
as follows: For each � ∈ POSPn (L) we introduce a new n-ary predicate I� and the
axiom

∀�x(I�(�x) ↔ �(I�; �x)). (Ax�)

Similarly to above, we will by L(I�) denote the language L extended with the (spe-
cific) symbol I� and by LID that of L with I� added for every � ∈ POSP (L). Then
̂IDi

1(�) is HA(LID) plus all (Ax�) for � ∈ POSP (L) ∩ �, where � is some class
of LP -formulae. ̂ID1(�) is ̂IDi

1(�) + LEM (or equivalently, PA(LID) + {Ax� | � ∈
POSP (L) ∩ �}). Often we will use this for classes � whose exact definition depends
on the ambient language (like ̂ID1(�2) in the introduction), whence it is tacitly under-
stood that the definition used for � is the one appropriate for LP (i.e. �2 here means
all �2-formulae in the language LP ); if there is reason to avoid confusion we will
write �(LP ) for this set. In case � is all of LP , and/or the language L is evident, we
will often drop them from the notations. Thus ̂IDi

1 is ̂IDi
1(LP

HA).
We now extend this definition to fixpoint theories over HAP.

Definition 5.1 The theory ̂IDi
1P is the LPT-theory in the language LID

HAP axiomatised
by

1. the axioms of HAP(LID
HAP),

2. the schema (Ax�) for all � ∈ POSP (LHAP).

The theory ̂IDi
1P(�), where � is a subset of LP

HAP, is axiomatised by clause 1 above,
and

3. the schema (Ax�) for all � ∈ POSP (LHAP) ∩ �.

It follows from these definitions that the language of ̂IDi
1 is contained in that of

̂IDi
1P; LID

HA ⊂ LID
HAP. Given Lemma 3.6, we can in fact make a stronger claim.

Lemma 5.2 ̂IDi
1P proves every theorem of ̂IDi

1.

Proof ByLemma 3.6HAP(LID
HAP)�HA(LID

HA). Hence by the same lemma all we need
to check are the fixpoint axioms of ̂IDi

1. Let I�(�v) ↔ �(I�; �v) be such an axiom.
Since this is literally an axiom of ̂IDi

1P we are done. ��
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The corresponding lemma holds for ̂IDi
1(�) and ̂IDi

1P(�) if � is a set of formulae
(but recall that e.g. � and �n below denote different sets in LP

HA and LP
HAP).

5.2 Partial realizability interpretation of ̂IDi
1P

The notion of realizability we are employing (Sect. 3.2) syntactically transforms a
formula into a negative formula (Lemma 3.15). This transformation also preserves
strictly positive occurrences of symbols and subformulae inmany important instances.
In particular, for� ∈ POSPn (L), a strictly positive operator form in the n-ary predicate
Pn , its ‘realization’ x r � will be in POSrPn (L), i.e. a strictly positive operator form
in the (n + 1)-ary predicate rPn . Since a fixpoint axiom of ̂IDi

1P will be realized if we
can provide functions transforming realizers of the fixpoint predicate into realizers of
the corresponding operator applied to that predicate and vice versa, if we postulate
these functions to be identity we get that I�(�v) ↔ �(I�; �v) has a realizer provided
that

vn r I�(�v) ↔ vn r �(I�; �v) (2)

holds. By above this biconditional is itself (equivalent to) a strictly positive fixpoint
axiom, and since realizability is a transformation into negative formulae, (2) is actu-
ally equivalent to an axiom of ̂IDi

1P(�). In this section we make this realizability
interpretation of ̂IDi

1P in ̂IDi
1P(�) precise (Theorem 5.6).

First, we augment the realizability transformation with a clause for the ‘fixpoint
generators’ P , and subsequently for all fixpoint predicates I�, in the manner of
[5, §6].

Definition 5.3 For the language LP
HAP, we stipulate rPn = Pn+1, that is

τ r Pn(�x) is Pn+1(�x, τ )

in the final clause of the definition of realizability.

Lemma 5.4 In LP
HAP with realizability as per Definition 5.3 we have that vn r � for

� ∈ POSPn (LHAP) is in POSPn+1(LHAP) ∩ �. More generally, let L extend LHAP
with a set of relation symbols, R being among them. Suppose rR is not the same as rQ
for any other relation Q. If φ ∈ L has only strictly positive occurrences of R and τ is
a term, τ rφ is negative and has only strictly positive occurrences of rR, the number of
which equals the number of occurrences of R in φ, and FV(τ r φ) = FV(φ) ∪ FV(τ )

if R occurs in φ.

Proof The statement about negativity follows from Lemma 3.15. The rest is shown by
induction on complexity of φ.

• The atomic cases are trivial.
• The inductive steps for the Boolean connectives are straightforward, so we present
only the argument for the implication.
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Thus consider the case when φ is an implication ψ → θ , where ψ does not
contain R, θ has only strictly positive occurrences of R and for all terms σ1 and
σ2 do we have that σ1 r ψ has no occurrence of rR, the number of occurrences of
rR in σ2 r θ is the same as the number of occurrences of R in θ , and if θ has at
least one occurrence of R then the free variables of σ2 r θ are those of θ and σ2.

Let τ be a term. Then

τ r (ψ → θ) = ∀x(x r ψ → (τ x↓ ∧ τ x r θ))

has only strictly positive occurrences of rR by induction hypothesis, since all of
these are in τ x rθ . Thus the number of such occurrences equals the number of such
occurrences in τ x r θ , which by induction hypothesis is the number of occurrences
of R in θ , i.e. in ψ → θ . If R occurs in ψ → θ then it occurs in θ , whence

FV(τ r (ψ → θ)) = FV(∀x(x r ψ → (τ x↓ ∧ τ x r θ)))

= (FV(ψ) ∪ ((FV(τ ) ∪ FV(θ)) ∪ {x}))\{x}
= FV(ψ) ∪ FV(θ) ∪ FV(τ )

= FV(ψ → θ) ∪ FV(τ )

by Lemma 3.15 and induction hypothesis, since x does not occur in ψ , θ and τ .
• Since the existential case contains all essential ideas from the universal case but
is slightly more involved, we omit the universal case.
Consider the case when φ starts with an existential quantifier, ∃xψ , where ψ

only has strictly positive occurrences of R and for any term σ and formula θ with
only strictly positive occurrences of R and the same complexity as ψ , σ r θ is
strictly positive in rR, has as many occurrences of rR as θ has of R and satisfies
FV(σ r θ) = FV(θ) ∪ FV(σ ) if R occurs in θ .
Let τ be a term. By convention we can assume its variables are not bound in

∃xψ . Then

τ r (∃xψ) = prτ r (ψ(x/plτ))

Since ψ(x/plτ) has the same complexity as ψ the induction hypothesis applies,
whence prτ r (ψ(x/plτ)) is strictly positive in rR and has as many occurrences
of rR as ψ(x/plτ), and hence ∃xψ , has of R. Also, if R occurs in ∃xψ it occurs
in ψ(x/plτ) whence

FV(τ r ∃xψ) = FV(prτ r (ψ(x/plτ)))

= FV(ψ(x/plτ)) ∪ FV(prτ)

= FV(ψ)\{x} ∪ FV(τ )

= FV(∃xψ) ∪ FV(τ )

by induction hypothesis.

This concludes the proof. ��
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Another consequence of the above is that x r �(I�; �y) is strictly positive in r I�,
the particular choice of which we can now specify.

Definition 5.5 For the language LID
HAP, given � ∈ POSPn (LHAP) we stipulate r I� =

Ivn r�, the almost negative strictly positive operator form from Lemma 5.4, that is

τ r I�(�x) is Ivn r�(�x, τ )

in the final clause of the definition of realizability.

Theorem 5.6 For the realizability interpretation given by Definitions 3.14 and 5.5,
̂IDi

1P� ϕ ⇒ ̂IDi
1P(�)� ∃x(x r ϕ) for ϕ ∈ LID

HAP and x /∈ FV(ϕ).

Proof By Lemma 3.18 and compactness it is enough to show that for each non-logical
axiom ϕ of ̂IDi

1P there is a combinator τ with ̂IDi
1P(�)� τ↓∧τ rϕ. Now, every axiom

except the induction and fixpoint schemata, HAP2 and the third part of HAP5 is an
equation true in HAP(LID

HAP), and hence realised by 0 there; HAP2 and the third part
of HAP5 are realized by id. As for the induction axiom Indϕ ,

HAP(LID
HAP) � r r Indϕ

For the fixpoint axioms, we observe the following. By Definition 5.5 realizability
is a transformation of the language LID

HAP into the fragment defined by the almost
negative strictly positive operator forms. Thus given a fixpoint axiom ∀�y(I�(�y) ↔
�(I�; �y)) with � ∈ POSPn (LHAP) let � ∈ POSPn+1(LHAP) be the operator form
from Lemma 5.4 such that r I� = I� . Then

̂IDi
1P(�) � x r I�(�y) ↔ I�(�y, x) definition

↔ �(I�; �y, x) fixpoint axiom

↔ �(�y, x)(I�) definition

↔ (vn r �)(�y, x)(I�) Lemma 5.4

↔ (x r �(�y))(I�) Lemma 3.16

↔ (x r �(�y))(r I�) definition

Appealing to Lemma 3.17 this equivalence, with x universally quantified, is equivalent
to p · id · id r (I�(�y) ↔ �(I�; �y)). Hence

̂IDi
1P(�)� (λ�y.p · id · id) r ∀�y(I�(�y) ↔ �(I�; �y)),

which concludes the proof. ��
We close the section by proving that ̂IDi

1P(�) is a conservative extension of HAP.
The proof utilises the partial satisfaction predicates introduced in Sect. 4.
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Theorem 5.7 ̂IDi
1P(�) is interpretable in HAP, keeping LHAP fixed.

Proof We define a compositional interpretation F : LID
HAP −→ LHAP which fixes

LHAP. To that extent, for k ∈ N let Tk be the term id�v<k−−−→�v<k�
(the identity combinator

modified so that�v j� ismapped to (the value of)v j ), so thatTk has exactlyv0, . . . , vk−1
free, HAP� Tk↓ and HAP� Tk · �v j� == v j for all j < k. Take an almost negative
� ∈ POSPk (LHAP) and let n be the smallest index for which � ∈ �n , by Lemma 4.2.
Set φ = �(λ�v<k .Satn(Tk, vk); �v<k). By Theorem 4.9 φ ∈ LHAP, and by Lemma 4.5
φ ∈ �n . Diagonalisation (Lemma 4.6) yields a formula ψ ∈ �n with free variables
v0, . . . , vk−1 and

HAP�ψ(�x) ↔ φ(�x, �ψ�).

Defining F(I�) = ψ we thus see

HAP�F(I�(�x)) ↔ ψ(�x)
↔ φ(�x, �ψ�)

↔ �(λ�v<k .Satn(Tk, �ψ�); �x)
↔ �(λ�v<k .ψ(�v<k); �x)
↔ �(ψ; �x)
↔ �(F(I�); �x)
↔ F(�(I�; �x))

by Corollary 4.10. Setting F(�) = ⊥ for � ∈ POSP (LHAP)\� (since these are

inconsequential), the interpretation of the remaining axioms of ̂IDi
1P(�) are immedi-

ate. Consequently HAP�F[̂IDi
1P(�)]. ��

6 Conclusion

Tying together the above results, we can prove the wanted conservativity result.

Theorem 6.1 ̂IDi
1 is conservative over HA.

Proof Let ϕ be a sentence of LHA. Then we have the following chain of implications:

̂IDi
1 �ϕ ⇒ ̂IDi

1P�ϕ Lemma 5.2

⇒ ̂IDi
1P(�)� ∃x(x r ϕ) Theorem 5.6

⇒ HAP�∃x(x r ϕ) Theorem 5.7

⇒ HA� ϕ Proposition 3.20 ��
The argument we have presented combines two interpretations: a realizability inter-

pretation of a fixpoint theory into the subtheory of fixpoints for almost negative
operator forms and a direct interpretation of this subtheory in Heyting arithmetic. Full

123



Revisiting the conservativity of fixpoints 85

conservativity does not directly follow from these reductions because realizability and
provability do not coincide for Heyting arithmetic: there are statements in the language
of arithmetic which are (Kleene-)realizable yet not provable. As the two notions agree
on the fragment of almost negative formulae, conservativity for this class of sentences
holds. But by lifting the two interpretations to the corresponding theories formulated
over Beeson’s richer logic of partial terms the stronger conservation result becomes
a consequence of van den Berg and van Slooten’s theorem; for arithmetic formulae,
provability in Heyting arithmetic subsumes realizability in Heyting arithmetic with
partial terms.

A key ingredient in our argument is the existence of partial satisfaction predicates
for a formula-hierarchy which exhausts the almost negative formulae. These partial
satisfaction predicates do not rely on the presence of partial terms in any essential way,
and arithmetic counterparts are available which, provably in HA, are compositional
satisfaction predicates for the arithmetic formulae at the same level. A natural question
is whether there exist partial satisfaction predicates for classes of formulae including
the positive connectives ∨ and ∃, whether in the language with partial terms or pure
arithmetic. A partial negative answer to this question was provided by Leivant in
[15], who, improving a result of de Jongh [16], gave lower bounds on the negative
nesting depth of possible satisfaction predicates for formula classes which include all
propositional combinations of �1-, �1- or �2-formulae, to some fixed nesting depth.
Whether, more generally, there is a stratification of the entire language which admits
partial satisfaction predicates in HA is, to the authors’ knowledge, unknown, which
is somewhat surprising given the importance of such predicates in the proof theory of
classical systems of arithmetic.

There can, however, not be a hierarchy of arithmetic formulae which (i) is closed
under substitution in strictly positive positions (Lemma 4.5), (ii) is closed under diag-
onalisation (Lemma 4.6), (iii) exhausts the entire language LHA, and (iv) has partial
satisfaction predicates for every level. Such a hierarchy with corresponding satisfac-
tion predicates would give rise to a direct interpretation of ̂IDi

1 in HA by generalising
Theorem 5.7, but it would also allow the classical theory ̂ID1 to be interpreted in PA by
the same argument. This cannot be the case because ̂ID1 is strictly stronger than PA.
On the other hand, this line of reasoning shows that ̂ID1(�) is conservative over PA,
again by generalising Theorem 5.7. Thus, the strictly positive almost negative operator
forms gives a weaker classical fixpoint theory than the merely positive almost negative
ones, since the latter is equivalent to ̂ID1. Attempting to carry out our argument for
this class of fixpoints fails on Lemma 4.5, since �n is not closed under substitutions
into merely positive positions. A final note is that, since �1 has a �1 satisfaction
predicate and is closed under substitutions into strictly positive positions, ̂ID1(�1) is
conservative over PA essentially by replacing �n by �1 in the proof of Theorem 5.7.
On the other hand ̂ID1(�2) is not conservative over PA, since it interprets the Kripke-
Feferman theory of truth KF (Feferman, [17]) which proves the consistency of PA.
It would therefore be interesting to identify the subclasses � of �2 forms for which
̂ID1(�) is still conservative.
We do believe this argument generalises to finite iterations ̂IDi

n of fixpoint theories,
however. The main idea would then be to repeat the application of Theorem 5.7 induc-
tively to reduce ̂IDi

n+1P(�) to ̂IDi
nP(�), viewing HAP as ̂IDi

0P(�) (̂IDi
nP(�) should
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mean all operator forms are almost negative, not just the nth ‘top layer’). The possible
issue we see in Sect. 4.2 is that Theorem 4.9 requires (primitive) recursive transforma-
tions from �n to �nf

n as in Lemma 4.4, which is not as straightforward for countable
vocabularies. This should bemanageable bymore careful attention to coding, or finally
by a compactness argument in Theorem 5.7. The proof of Theorem 5.7 should oth-
erwise generalise, essentially by placing an ‘F’ defined by induction hypothesis in
front of every appearance of � except the first. In the rest of the argument of The-
orem 6.1, generalising in this direction would add a countable number of relation
symbols and axioms governing these, and Lemma 5.2 clearly generalises to this case.
For the results leading up to Theorem 5.6, prominently Lemma 5.4, we have taken
some care not to specify the relation symbols in the base language, so reformulating
Theorem 5.6 slightly this step should also generalise by induction. Finally, the final
step would remain unchanged.

A natural question would be whether a generalisation of this argument works also
for some transfinite iterations ̂IDi

α . While we have no clear ideas in this direction, it’s
a reasonable question for future work.
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