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Abstract
A σ -ideal I on a Polish group (X ,+) has the Smital Property if for every dense set
D and a Borel I-positive set B the algebraic sum D + B is a complement of a set
from I. We consider several variants of this property and study their connections with
the countable chain condition, maximality and how well they are preserved via Fubini
products. In particular we show that there are cmany maximal invariant σ -ideals with
Borel bases on the Cantor space 2ω.
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1 Introduction

We adopt the usual set-theoretical notation. We say that X is a Polish space if it is a
separable and completely metrisable topological space. Bor(X) denotes the family of
Borel subsets of X . M(X) and N (X) are the families of meager and null subsets of
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X respectively. Sometimes we will write briefly M and N if the underlying space is
clear from the context.
Let A be a (σ -)algebra and I be a (σ -)ideal on an Abelian Polish group (X ,+).
Throughout the paper we assume that I contains all singletons and

(∀I ∈ I)(∃A ∈ A ∩ I)(I ⊆ A).

IfA is not explicitly stated we assumeA = Bor(X). In such a case I has a Borel base.
We say that a set A is I-positive, if A /∈ I. A is called I-residual if Ac ∈ I, we

denote this fact by A ∈ I�.
For any sets A, B ⊆ X we denote the algebraic sum of these sets by A + B, i.e.

A + B = {a + b : a ∈ A, b ∈ B}.

Let us now recall the classical notion of the Steinhaus property and probably less
famous notions of Smital properties which were studied in [2].

Definition 1 We say that a pair (A, I) has

(i) the Steinhaus Property if for any A, B ∈ A\I the set A − B has a nonempty
interior;

(ii) the Smital Property, briefly SP, if for every dense set D and every A ∈ A\I the
set A + D is I-residual;

(iii) the Weaker Smital Property, briefly WSP, if there exists a countable and dense set
D such that for every A ∈ A\I the set A + D is I-residual;

(iv) the Very Weak Smital Property, briefly VWSP, if for every A ∈ A\I there is a
countable set D such that the set A + D is I-residual.
Note that M and N have all of these properties.
The following Proposition seems to be folklore but we could not find the proof of

the second part in the literature.

Proposition 2 The Steinhaus Property is equivalent to SP.

Proof The Steinahus Property implies SP. Let A ∈ A\I and D be countable and
dense. We may assume that D is a subgroup. Suppose that (A + D) /∈ I�. Then
(A + D)c /∈ I. By the Steinhaus Property (A + D) − (A + D)c contains an open
neighborhood of 0. A contradiction since 0 /∈ (A + D) − (A + D)c.

SP implies the Steinhaus Property. Assume that A − B has an empty interior for
A, B ∈ A\I. Then there is a countable dense set D ⊆ (A − B)c. It follows from SP
that (B + D) ∩ A �= ∅, a contradiction. 	


Let F ⊆ X × Y . Then for x ∈ X

Fx = {y ∈ Y : (x, y) ∈ F}

is the vertical section of F at x . Similarly, for y ∈ Y

F y = {x ∈ X : (x, y) ∈ F}
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Ideals with Smital properties 833

is the horizontal section of F at y.
For (σ -)algebras A ⊆ P(X) and B ⊆ P(Y ) let A ⊗ B ⊆ P(X × Y ) denote the

(σ -)algebra generated by the rectangles of the form A × B with A ∈ A and B ∈ B.
Definition 3 Let (A, I) and (B,J ) be pairs of (σ -)algebra - (σ -)ideal on Polish spaces
X and Y respectively. Then we define the Fubini product of I and J as follows:

K ∈ I ⊗ J ⇔ (∃C ∈ A ⊗ B)(K ⊆ C ∧ {x ∈ X : Cx /∈ J } ∈ I).

Notice that in the case of ideals possessing Borel bases, i.e. A = Bor(X) and
B = Bor(Y ) the above definition ensures the existence of a Borel base for I ⊗ J .

Proposition 4 If (A⊗ B, I ⊗J ) has SP (WSP, VWSP), then (A, I) and (B,J ) also
have it.

Proof Let us consider the case of WSP for I. Let D be a witness that I ⊗J has WSP.
Let A ∈ A\I. The set R = D + (A × Y ) is I ⊗ J -residual, therefore

˜R = {x ∈ X : Rx is J − residual}

is I-residual. Clearly, A + πX (D) = ˜R, hence we are done. 	

The following definition is a variation of the ones found in [7, Definition 18.5], [9]

and agrees with the notation given in [3].

Definition 5 Let X and Y be Polish spaces and let F ⊆ P(X), G ⊆ P(Y ), H ⊆
P(X × Y ) be families of sets. Then we say that G isH-on-F if for each set H ∈ H

{x ∈ X : Hx ∈ G} ∈ F .

Mainly we will be interested in the case where G = J ⊆ P(Y ) is a σ -ideal, F ∈
{Bor(X), σ (Bor(X) ∪ I)} andH ∈ {Bor(X × Y ), σ (Bor(X × Y ) ∪ I ⊗J )}. Here
σ(D) is the σ -algebra generated by the family D. We will write, for example, that J
is Borel-on-measurable instead of Bor(X × Y )-on-σ(Bor(X) ∪ I) if the context is
clear. Notice that bothM andN are Borel-on-Borel (see [7, Exercise 22.22, 22.25]).

Example 6 Measurable-on-measurable not necessarily implies Borel-on-Borel.

Proof Let J = {∅} and take a Borel set B projection of which is analytic and not
Borel. 	

Proposition 7 Borel-on-measurable implies measurable-on-measurable.

Proof Assume that J is Borel on measurable. Let C ⊆ X × Y be measurable with
respect to I ⊗ J . Then C = (B\A1) ∪ A2, where B is Borel and A1, A2 ∈ I ⊗ J .
Clearly

{x ∈ X : A2x /∈ J } ∈ I,
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hence it is measurable. See that

{x ∈ X : (B\A1)x /∈ J } = {x ∈ X : Bx\A1x /∈ J }
= {x ∈ X : Bx /∈ J , A1x ∈ J } ∪ {x ∈ X : Bx /∈ J , A1x /∈ J , Bx\A1x /∈ J }.

Since {x ∈ X : Bx /∈ J } is measurable, {x ∈ X : A1x ∈ J } ∈ I� and

{x ∈ X : Bx /∈ J , A1x /∈ J , Bx\A1x /∈ J } ⊆ {x ∈ X : A1x /∈ J } ∈ I,

the set {x ∈ X : Cx /∈ J } is measurable. 	


2 Smital and ccc

Let I be a σ -ideal in a Polish space X and assume that I has a Borel base. We say
that I satisfies the countable chain condition (briefly: ccc) if every family of pairwise
disjoint Borel I-positive sets is countable. Let us also recall the following cardinal
coefficient

cov(I) = min
{

|A| : A ⊆ I,
⋃

A = X
}

.

Theorem 8 Let I be a σ -ideal possessing WSP. Then I satisfies ccc or cov(I) = ω1.

Proof Let I be σ -ideal with WSP and let D witness it. Let {Bα : α < ω1} be a family
of pairwise disjoint Borel I-positive sets. WSP implies that for each α < ω1 a set
D+ Bα is I-residual. If ⋂

α<ω1
(D+ Bα) = ∅, then cov(I) = ω1. On the other hand,

if
⋂

α<ω1
(D + Bα) �= ∅ then for x ∈ ⋂

α<ω1
(D + Bα) we have

(∀α ∈ ω1)(∃d ∈ D)(x ∈ d + Bα).

D is countable, hence there exist a setW ⊆ ω1 of cardinality ω1 and d ∈ D such that

(∀α ∈ W )(x ∈ d + Bα),

which gives x − d ∈ ⋂

α∈W Bα , a contradiction. 	

The following remark improves the result obtained in [4].

Remark 9 Let I be a σ -ideal possessing WSP. Then the following statements are
equivalent:

(i) For each family of sets {Bα : α < ω1} ⊆ B\I there exists a set W ⊆ ω1 of
cardinality ω1 such that

⋂

α∈W Bα �= ∅;
(ii) cov(I) > ω1.
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Ideals with Smital properties 835

Proof (ii)⇒ (i) is a part of Theorem 8. To prove (i)⇒ (ii) let us suppose that cov(I) =
ω1. Then there is a family of sets

{Aα : α < ω1} ⊆ B ∩ I

for which
⋃

α<ω1
Aα = X . Set ˜Aα = ⋃

β≤α Aα for each α < ω1. The family

{˜Aα : α < ω1} is ascending and covers X . Hence {˜Ac
α : α < ω1} is descending

family of I-residual sets. Moreover, for every W ⊆ ω1 of cardinality ω1 we have
⋂

α∈W ˜Ac
α = ∅, which contradicts (i). 	


3 Preserving Smital properties via products

In [2] the authors present some results on various Smital properites in product spaces.
Their setup is, in their words, as general as possible, concerned with algebras and
ideals. It is not clear if they intended their results to hold for σ -algebras and σ -ideals
or algebras and ideals only. The formulation of [2, Theorem 4.2] suggests the former
since it is concerned with the Borel algebra and the families of meager and null sets.
In their proof they rely implicitly on the following property.

Definition 10 LetA⊆ P(X×Y ) be a (σ -)algebra and let I⊆ P(X×Y ) be a (σ -)ideal.
A pair (A, I) has the positive rectangle property (PRP) if for every I-positive set
A ∈ A there is an I-positive rectangle R satisfying R ⊆ A ∪ I for some I ∈ I.

In this section we show explicitly that PRP holds for pairs algebra-ideal. However,
PRP does not hold for pairs σ -algebra - σ -ideal in general, including the relevant here
pair of Borel σ -algebra and the family of null sets.

Example 11 The pair (Bor(R2), [R]≤ω ⊗ [R]≤ω) does not have PRP.

Proof Let P ⊆ R be a perfect set such that P ∩ (P + x) is at most 1-point for x �= 0
(see [8]). Let us set

B = {(x, y) : x ∈ P ∧ y ∈ P − x}\(R × {0}).

B is Borel and B /∈ [R]≤ω ⊗ [R]≤ω. If x ∈ By , then x ∈ P and x ∈ P − y, therefore
By is at most 1-point.
Let us suppose that there are sets A1, A2 ∈ Bor(R2)\[R]≤ω and a set K ∈ [R]≤ω ⊗
[R]≤ω such that (A1 × A2)\K ⊆ B. Let T = {x ∈ R : |Kx | > ω} and notice that
|T | ≤ ω. Pick x0 ∈ A1\T . Then Kx0 is countable. By the definition of B for each
y ∈ A2\Kx0 we have K

y ⊇ A1\({x0}∪T ). So A2\Kx0 ⊆ Kx1 for x1 ∈ A1\({x0}∪T ),
a contradiction. 	


It is clear that the pair (Bor(R2),M) has PRP, since every nonmeager set possessing
the property of Baire is nonempty and open, modulo a set of the first category. What
about (Bor(R2),N )? As a warm up let us recall the following folklore result.
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Proposition 12 Every set E ⊆ [0, 1]2 of positive measure contains a subset of the
same measure which does not contain a rectangle of positive measure.

Proof Let E ⊆ [0, 1]2 have positive measure. Consider E ′ = {(x, y) ∈ E : x − y ∈
Q

c}. To see that λ(E ′) = λ(E) let us observe that E ′
x = Ex ∩ (Qc + x) for every

x ∈ [0, 1] and Q
c is co-null. Now, if A × B ⊆ E ′, A and B of positive measure,

then A − B should contain a nonempty open set (Steinhaus Theorem), but clearly
Q ∩ (A − B) = ∅. A contradiction. This completes the proof. 	


This result may be improved with the following Lemma.

Lemma 13 There exists a set F ⊆ R such that λ(F ∩U ) > 0 and λ(Fc ∩U ) > 0 for
every nonempty open set U.

Proof Let (Bn : n ∈ ω) be an enumeration of the basis of R. At the step 0 let
C1
0 ,C

2
0 ⊆ B0 be two disjoint Cantor sets of positive measure. At the step n + 1 let

assume that we have two sequences of pairwise disjoint Cantor sets (C1
k : k ≤ n) and

(C2
k : k ≤ n) which for all i ∈ {0, 1} and k ≤ n satisfy λ(Ci

k ∩ Bk) > 0. The set

Bn+1\
⋃

k≤n

(C1
k ∪ C2

k )

is nonempty and open, hence it contains two disjoint Cantor sets of positive measure.
Denote them by C1

n+1 and C
2
n+1. This completes the construction and F = ⋃

n∈ω C1
k

is the desired set. 	

The above Lemma will serve as a tool to prove the result from [6].

Example 14 (Erdös, Oxtoby). There is a set E ⊆ R
2 such that E ∩ (A × B) and

Ec ∩ (A × B) have positive measure for each A, B ⊆ R of positive measure.

Proof Let F be as in the formulationofLemma13and set E = {(x, y) ∈ R
2 : x − y ∈ F}.

Let A, B ⊆ R have a positive measure. Then

λ(E ∩ A × B) =
∫∫

χF (x − y)χA(x)χB(y)dxdy

=
∫∫

χF (x)χA(x + y)χB(y)dxdy

=
∫

F
λ((A − x) ∩ B)dx .

λ((A − x) ∩ B) is a continuous non-negative function. Furthermore, it is positive on
some interval, since

∫

R
λ((A− x)∩ B)dx = λ(A× B), so

∫

F λ((A− x)∩ B)dx > 0.
	


Corollary 15 (Bor(R2),N ) does not have PRP.

Now we will focus on PRP for products of algebras.
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Lemma 16 Let A ⊆ P(X) and B ⊆ P(Y ) be algebras. Then A ⊗ B ⊆ P(X × Y )

consists of finite unions of rectangles.

Proof First let us observe that complements of rectangles are finite unions of rectan-
gles:

(A × B)c = (A × Bc) ∪ (Ac × B) ∪ (Ac × Bc).

Next, see that finite intersection of a finite union of rectangles is again a finite union
of rectangles. Let T1, T2 ⊆ ω be finite. Let An

k , B
n
k be rectangles from A and B

respectively for every n ∈ T1 and k ∈ T2. Then

⋂

n∈T1

⋃

k∈T2
An
k × Bn

k =
⋃

f ∈T T1
2

⋂

n∈T1
An

f (n) × Bn
f (n).

T T1
2 is finite and finite intersections of rectangles are also rectangles, hence the proof

is complete. 	

For algebra A and ideal I let A[I] denote the algebra generated by A ∪ I.

Proposition 17 Let A ⊆ P(X) and B ⊆ P(Y ) be algebras and let I be an ideal in
X × Y . Then ((A ⊗ B)[I], I) has PRP.

Proof Notice that (A ⊗ B)[I] = {C�I : C ∈ A ⊗ B, I ∈ I}. PRP follows from the
previous Lemma. 	


From now on letA ⊆ P(X),B ⊆ P(Y ) be σ -algebras, and I ⊆ P(X),J ⊆ P(Y )

σ -ideals.

Theorem 18 Let I and J possess WSP and assume one of the following properties

(i) J is Borel-on-Borel;
(ii) J measurable-on-measurable;
(iii) (Bor(X × Y ), I ⊗ J ) has PRP.

Then I ⊗ J also has WSP.

Proof Let D1 and D2 witnessWSP for I andJ respectively. Let B ∈ Bor(X×Y )\I⊗
J . If any of the properties (i)-(iii) holds then a set ˜B = {x ∈ X : Bx /∈ J } contains a
Borel, I-positive set and D1 + ˜B is I-residual. Let us observe that

(D1 × D2) + B ⊇
⋃

d1∈D1

⋃

x∈˜B

({d1 + x} × (D2 + Bx )),

therefore for every x ∈ D1+ ˜B the set ((D1 ×D2)+ B)x isJ -residual. Since D1 + ˜B
is I-residual, the proof is complete. 	


In [1] the authors showed that M ⊗ N and N ⊗ M have SP and thus WSP. The
following corollary extends this result regarding WSP.
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Corollary 19 Let n ∈ ω and Ik ∈ {M,N } for any k ≤ n. Then I0 ⊗ I1 ⊗ ...⊗ In has
WSP.

Proof By [5, Lemma 3.1] the ideal I0 ⊗I1 ⊗ ...⊗In is Borel-on-Borel for any n ∈ ω

and Ik ∈ {M,N }, k ≤ n. 	


In [2, Theorem 4.3] the authors showed that if B = J ∪J � and (A, I) has SP then
(A ⊗B, I ⊗J ) also has SP. We will generalize this result (Theorem 24). Let us start
with two technical definitions.

Definition 20 We say that a pair (A⊗B, I ⊗J ) has the Tall Rectangle Hull Property
(TRHP) if for every set C ∈ A ⊗ B

(∃˜C ∈ A, I ∈ I, J ∈ J )((˜C\I ) × (Y\J ) ⊆ C ⊆ (˜C × Y ) ∪ (I × Y ) ∪ (X × J )).

If a set C fulfills the above condition we will say that it has TRHP witnessed by the
triple (˜C, I , J ).

Analogously we define Wide Rectangle Hull Property (WRHP):

(∃˜C ∈ B, I ∈ I, J ∈ J )((X\I ) × (˜C\J ) ⊆ C ⊆ (X × ˜C) ∪ (I × Y ) ∪ (X × J )).

Proposition 21 If a pair (A ⊗ B, I ⊗ J ) have TRHP or WRHP then it has PRP.

Proof Let C ∈ A ⊗ B has TRHP witnessed by (˜C, I , J ):

(˜C\I ) × (Y\J ) ⊆ C ⊆ (˜C × Y ) ∪ (I × Y ) ∪ (X × J ))

and assume that C /∈ I ⊗J . Then ˜C ×Y is the desired rectangle. Clearly ˜C ×Y ⊆ C
modulo a set from I ⊗ J . It is also I ⊗ J -positive, otherwise

(˜C × Y ) ∪ (I × Y ) ∪ (X × J )) ∈ I ⊗ J

and also C ∈ I ⊗ J .
The proof of WRHP case is almost identical. 	


Lemma 22 The family of sets possessing TRHP is closed under countable unions and
complements. The same is true for the family of sets possessing WRHP.

Proof Proofs for both cases follow the same pattern, so without loss of generality let
us focus on the case of TRHP.

Let C = ⋃

n∈ω Cn and (˜Cn, In, Jn) witness TRHP for Cn , n ∈ ω. Then for each
n ∈ ω

(˜Cn\In) × (Y\Jn) ⊆ Cn ⊆ (˜Cn × Y ) ∪ (In × Y ) ∪ (X × Jn).
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Then
(

⋃

n∈ω

˜Cn\
⋃

n∈ω

In

)

×
(

Y\
⋃

n∈ω

Jn

)

⊆
⋃

n∈ω

(

˜Cn\In
) × (Y\Jn) ⊆

⋃

n∈ω

Cn = C

⊆
⋃

n∈ω

(

(˜Cn × Y ) ∪ (In × Y ) ∪ (X × Jn)

)

⊆
((

⋃

n∈ω

Cn

)

× Y

)

∪
((

⋃

n∈ω

In

)

× Y

)

∪
(

X ×
(

⋃

n∈ω

Jn

))

.

Hence, setting ˜C = ⋃

n∈ω
˜Cn , I = ⋃

n∈ω In , J = ⋃

n∈ω Jn completes this part of the
proof.

Now let C = Dc for D witnessing TRHP with (˜D, I , J ). We have

(˜D\I ) × (Y\J ) ⊆ D ⊆ (˜D × Y ) ∪ (I × Y ) ∪ (X × J ).

Through complementation

(

(˜D × Y ) ∪ (I × Y ) ∪ (X × J )
)c ⊆ C ⊆ (

(˜D\I ) × (Y\J )
)c

.

Let us focus on the right-hand side

(

(˜D\I ) × (Y\J )
)c = ((˜D\I ) × (Y\J )c) ∪ ((˜D\I )c × Y )

⊆ ((˜D)c × Y ) ∪ (X × J ) ∪ (I × Y ).

Now the left-hand side. It is an intersection of the following sets

(˜D × Y )c = (˜D)c × Y ,

(I × Y )c = (X\I ) × Y ,

(X × J )c = X × (Y\J ),

which is equal to

((˜D)c\I ) × (Y\J ).

In summary

((˜D)c\I ) × (Y\J ) ⊆ C ⊆ ((˜D)c × Y ) ∪ (X × J ) ∪ (I × Y ).

Then ((˜D)c, I , J ) witnesses TRHP for C . The proof is complete. 	
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Theorem 23 Let C = A ⊗ B. Then
(i) if A = I ∪ I� then (C, I ⊗ J ) has WRHP.
(ii) if B = J ∪ J � then (C, I ⊗ J ) has TRHP.

Proof Let us prove (i i) (the proof of (i) is similar). Let us notice that rectangles from
C have TRHP. Indeed, if C = A × B then set

˜C = A, I = ∅, J = Bc if B ∈ J �

˜C = ∅, I = ∅, J = B if B ∈ J .

The rest of the proof relies on Lemma 22 which allows us to perform an induction
over the hierarchy of sets making up the σ -algebra C. 	

Theorem 24 Let C = A ⊗ B and assume that

(i) (C, I ⊗ J ) has TRHP and (A, I) has SP, or
(ii) (C, I ⊗ J ) has WRHP and (B,J ) has SP.

Then (C, I ⊗ J ) has SP.

Proof Assume (i). Let D ⊆ X × Y be dense, set D1 = π1(D) and let B ∈ C be
I ⊗ J -positive. Then there are ˜B ∈ A\I and J ∈ J such that ˜B × (Y\J ) ⊆ B. It
follows that

D + B ⊇ D + (˜B × (Y\J )) ⊇
⋃

d1∈D1

⋃

d2∈Dd1

(d1 + ˜B) × (d2 + Y\J )).

Therefore for every x ∈ D1 + ˜B the set (D + B)x contains a translation of Y\J . By
SP D1 + ˜B ∈ I� thus D + B is I ⊗ J -residual.

The proof assuming (i i) is analogous. 	


4 Maximal invariant �-ideals with Borel bases

There is a surprising connection between maximal invariant σ -ideals with Borel bases
and Smital properties.

Proposition 25 The following are equivalent:

(i) I has VWSP;
(ii) I is maximal among invariant proper σ -ideals with Borel base.

Proof (i) ⇒ (i i) : Let us suppose that J � I is such an ideal. Let A be a Borel
set from J \I. Then there exists a countable set D such that D + A is I-residual,
therefore J -residual, hence J is not proper.
(i i) ⇒ (i) : Let us suppose that there is a set B ∈ Bor\I for which B + D is not
I-residual for every countable set D. Consider the family

I ′ = {A ∪ C : A ∈ I ∧ (∃D)(C ⊆ D + B ∧ |D| ≤ ω)}.
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Ideals with Smital properties 841

It is an invariant proper σ -ideal satisfying I � I ′, which leads to a contradiction.
	


Proposition 26 Let {In : n ∈ ω} be a countable family of pairwise distinct maximal
invariant σ -ideals on X with Borel bases. Then for each n ∈ ω the σ -ideal In is
orthogonal to

⋂

k∈ω\{n} Ik .

Proof Fix n ∈ ω. There are sets Ak ∈ (Bor(X) ∩ In)\Ik , k ∈ ω\{n}. By Proposition
25 for each of them there is a countable setCk such that Ak +Ck ∈ In ∩I�

k . Therefore

⋃

k∈ω\{n}
(Ak + Ck) ∈ In ∩

⋂

k∈ω\{n}
I�
k .

	

Corollary 27 Let I be a maximal invariant σ -ideal with a Borel base different from
M and N . Then there is A ∈ I ∩ (M ∩ N )�.

Let us now focus on X = 2ω. The following result incorporates techniques similar
to these used in [10, Theorem 3.1].

Theorem 28 There are c many maximal invariant σ -ideals on 2ω.

Proof Let {Aα : α < c} be an AD family on ω, i.e. for all distinct α, β < c the set
Aα ∩ Aβ is finite. For every α < c set

Iα = {A ⊆ 2ω : (∃B ∈ Bor(2ω)A ⊆ B ∧ (∃M ∈ M(2Aα ))(∀x ∈ 2Aα )

(x /∈ M → Bα
x ∈ N (2ω\Aα ))},

where Bα
x = {y � ω\Aα : y ∈ B, y � Aα = x}.

Let us show that Iα �= Iβ if α �= β. Set

M ∈ M(2Aα\Aβ )\N (2Aα\Aβ ),

C = {x ∈ 2ω : x � (Aα\Aβ) ∈ M}.

Notice that C ∈ Iα . The set

Mα =
⋃

t∈2Aα∩Aβ

{

y ∈ 2Aα : y � (Aα ∩ Aβ) = t ∧ y � (Aα\Aβ) ∈ M
}

is a finite union of meager sets, hence meager. For each x ∈ 2Aα\Mα the set Cα
x is

empty.
On the other hand for each x ∈ 2Aβ

Cβ
x =

{

y ∈ 2ω\Aβ : y � (Aα\Aβ) ∈ M
}

.
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The above set may be considered as a product M ×2ω\(Aα∪Aβ) of non-null set and the
whole space, which is not null.

Now we will show that every Iα is maximal among invariant σ -ideals on 2ω with
Borel bases. Each Iα is essentiallyM(2Aα )⊗N (2ω\Aα ). It follows that Iα has WSP,
thus by Proposition 25 the proof is complete. 	


The reasoning in the above Theorem does not translate to the case of R. We may
ask the following question.

Question 29 Are M and N the only maximal invariant σ -ideals with Borel bases in
R?

Question 30 Is it true that for every set G ∈ (M ∩ N )� there is a countable set C
such that C + G = R?

A positive answer to Question 30 would also answer positively Question 29.
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