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Abstract
We show that Hechler’s forcings for adding a tower and for adding a mad family can
be represented as finite support iterations of Mathias forcings with respect to filters
and that these filters are B-Canjar for any countably directed unbounded family B of
the ground model. In particular, they preserve the unboundedness of any unbounded
scale of the ground model. Moreover, we show that b = ω1 in every extension by the
above forcing notions.
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1 Introduction

In this paper, we analyze Hechler’s forcings from [7] for adding a tower (see Sect. 3)
and for adding a mad family (see Sect. 4), after giving some preliminaries onB-Canjar
filters in Sect. 2.

The forcings consist of finite conditions approximating a generic tower or a generic
mad family, respectively. We first show that the poset for adding a tower can be
represented as a finite support iteration, where each iterand adds a single real to the
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tower (which diagonalizes the initial part of the tower). In fact, each such iterand is
equivalent to Mathias forcing with respect to the filter generated by the respective
initial part of the tower (see Lemma 3.5). For the forcing adding a mad family, the
situation is analogous (see Lemma 4.5); in this case, the filter is generated by the
complements of the elements of the initial part of the mad family. It follows from
these representations that the above forcing notions are σ -centered (see Corollary 3.6
and Corollary 4.6) in many cases of interest.

The main results of this paper show that the above posets preserve the unbound-
edness of any countably directed unbounded family of the ground model (see
Theorem 3.7 and Theorem 4.7); in particular, any unbounded ground model scale
is preserved. We actually prove that, for a given countably directed unbounded fam-
ily B of the ground model, all the filters which are involved in the representation of
Hechler’s posets are B-Canjar, i.e., the corresponding Mathias forcings preserve the
unboundedness of B. To verify B-Canjarness, we use a combinatorial characterization
from [5] (see Theorem 2.3), together with a genericity argument. In Sect. 5, we con-
clude that b = ω1 holds true in every extension by one of Hechler’s forcings, using
that they can be decomposed into a forcing which adds an unbounded family of sizeω1
and a forcing which preserves the unboundedness of this family (see Corollaries 5.1
and 5.2). Finally, in Sect. 6, we list some open questions.

In [3], the authors of this paper define a forcing which adds a refining matrix of
regular height λ, i.e., a refining system of mad families of height λ without common
refinement. There is always a refiningmatrix of height h (which is theminimal possible
height), where h is the well-known distributivity number. In order to get a model with
a refiningmatrix of regular height λ > h, it is shown that the forcing to add the refining
matrix keeps the bounding number b (and hence h) small: to this end, the forcing is
represented as an iteration of Mathias forcings with respect to filters, which are shown
to be B-Canjar, where B is the family of ground model reals; this ensures that B is
unbounded in the final model, witnessing that b is small.

Since a refining matrix consists of mad families as well as (along the branches of
its corresponding tree) towers, the forcing used in [3] is an elaborate combination of
Hechler’s poset for adding a mad family and a tower, respectively. The proof that the
forcing from [3] preserves the unboundedness of the ground model reals is a more
complicated version of the proofs given in this paper.

2 B-Canjar filters

In this section, we will give the necessary preliminaries about B-Canjar filters and the
preservation of unboundedness.

Definition 2.1 Let F ⊆ P(ω) be a filter containing the Fréchet filter.Mathias forcing
with respect to F (denoted by M(F)) is the set of pairs (s, A) with s ∈ 2<ω and
A ∈ F , where the order is defined as follows: (t, B) ≤ (s, A) if

(1) t � s, i.e., t extends s,
(2) B ⊆ A,
(3) for each n ≥ |s|, if t(n) = 1, then n ∈ A.
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Towers, mad families, and unboundedness 813

Note that M(F) is σ -centered: for s ∈ 2<ω, the set {(s, A) | A ∈ F} is clearly
centered (i.e., finitely many conditions have a common lower bound). Also note that
Mathias forcing with respect to a countably generated filter has a countable dense
subset, and therefore is forcing equivalent to Cohen forcing C. For f , g ∈ ωω, we
write f ≤∗ g if f (n) ≤ g(n) for all but finitely many n ∈ ω. We say thatB ⊆ ωω is an
unbounded family, if there exists no g ∈ ωω with f ≤∗ g for all f ∈ B. The bounding
number b is the smallest size of an unbounded family in ωω. A family B ⊆ ωω is
called countably directed if the following closure property holds:

∀A ⊆ B (|A| = ℵ0 → ∃ f ∈ B ∀g ∈ A g ≤∗ f ).

A filter F is Canjar if M(F) does not add a dominating real over the ground model
(i.e., the ground model reals remain unbounded). We are interested in the following
generalization of Canjarness:

Definition 2.2 Let B ⊆ ωω be an unbounded family. A filter F on ω is B-Canjar if
M(F) preserves the unboundedness of B (i.e., B is still unbounded in the extension
by M(F)).

2.1 A combinatorial characterization ofB-Canjarness

Later, we will prove that certain filters are B-Canjar. A combinatorial characterization
of Canjarness has been given by Hrušák-Minami [8], which has been generalized to
B-Canjarness for well-ordered unbounded families B by Guzmán-Hrušák-Martínez
[4]. This has been extended to countably directed unbounded families by Guzmán-
Kalajdzievski [5].

Let F be a filter on ω; recall that a set X ⊆ [ω]<ω is in (F<ω)+ if and only if
for each A ∈ F there is an s ∈ X with s ⊆ A. Note that if G ⊆ F are filters and
X ∈ (F<ω)+, then X ∈ (G<ω)+.

Given X̄ = 〈Xn | n ∈ ω〉 (with Xn ⊆ [ω]<ω for each n ∈ ω), and f ∈ ωω, let

X̄ f =
⋃

n∈ω

(Xn ∩ P( f (n))).

Theorem 2.3 Let B ⊆ ωω be a countably directed unbounded family. A filter F on ω

is B-Canjar if and only if the following holds: for each sequence X̄ = 〈Xn | n ∈ ω〉 ⊆
(F<ω)+, there exists an f ∈ B such that X̄ f ∈ (F<ω)+.
Proof See [5, Proposition 10]. ��

It is well-known that Cohen forcing C preserves1 the unboundedness of every
unbounded family. As mentioned above, Mathias forcing with respect to a countably
generated filter is forcing equivalent to C, and hence any countably generated filter
is B-Canjar for every unbounded family B. To illustrate the characterization of B-
Canjarness from Theorem 2.3, we want to provide the following easy combinatorial
proof:

1 In fact, C is almost bounding.
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Lemma 2.4 Let B be a countably directed unbounded family. Then every countably
generated filter is B-Canjar.
Proof Let F be a filter generated by {an | n < ω}, i.e., A ∈ F if and only if an ⊆ A
for some n ∈ ω. Let X̄ = 〈Xn | n ∈ ω〉 ⊆ (F<ω)+. For every n ∈ ω, let sn ∈ Xn

with sn ⊆ ⋂
k<n ak (such sn exists since Xn ∈ (F<ω)+). Let g ∈ ωω be such that

g(n) = max(sn) for every n ∈ ω. Since B is unbounded, we can pick f ∈ B such
that f (n) > g(n) for infinitely many n. It is easy to check that sn ∈ X̄ f for infinitely
many n, and this implies that X̄ f ∈ (F<ω)+, as desired. ��

Later, we will actually use the following lemma (which is again based on the
characterization from the above Theorem 2.3) to show that a filter is B-Canjar.
Lemma 2.5 Let V ⊆ W bemodels of ZFC, and assume thatB ⊆ ωω∩V is unbounded
and countably directed in W, and that F ∈ W is a filter on ω. Moreover, assume the
following: for each sequence 〈Xn | n ∈ ω〉 ⊆ (F<ω)+ there exists a sequence 〈sn |
n ∈ ω〉, as well as a model V ′ with V ⊆ V ′ ⊆ W such that

(1) 〈sn | n ∈ ω〉 ∈ V ′,
(2) sn ∈ Xn for each n ∈ ω,
(3) for each D ∈ [ω]ω ∩V ′ and for each A ∈ F , there exists n ∈ D such that sn ⊆ A.

Then F is B-Canjar (in W).

Proof We want to show that F is B-Canjar by proving its characterization given by
Theorem 2.3. So suppose a sequence 〈Xn | n ∈ ω〉 ⊆ (F<ω)+ is given. By the
hypothesis of the lemma, we can fix 〈sn | n ∈ ω〉 and V ′ satisfying (1)–(3). Due to (1),
there is g ∈ V ′ such that sn ⊆ g(n) for each n ∈ ω. Since B is unbounded inW , there
is an f ∈ B such that g �

∗ f (i.e., g(n) < f (n) for infinitely many n ∈ ω); to finish
the proof, we want to show that

X̄ f =
⋃

n∈ω

(Xn ∩ P( f (n)))

is in (F<ω)+. So fix A ∈ F . We will find s ∈ X̄ f with s ⊆ A. Note that both f
(which is actually in V ) and g are in V ′, so there is an infinite set D ∈ V ′ such that
g(n) ≤ f (n) for each n ∈ D. Now use (3) to obtain an n ∈ D with sn ⊆ A; observe
that sn ∈ Xn by (2), and sn ⊆ g(n) ≤ f (n), hence sn ∈ X̄ f , as desired. ��

2.2 Preservation of unboundedness at limits

We will also use the following theorem by2 Judah-Shelah [9] about preservation of
unboundedness in finite support iterations:

Theorem 2.6 Suppose {Pα, Q̇α | α < δ} is a finite support iteration of c.c.c. partial
orders of limit length δ, and B ⊆ ωω is unbounded and countably directed. Moreover,

2 In fact, [9, Theorem 2.2] is a much more general version than the one presented here.
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Towers, mad families, and unboundedness 815

suppose that

∀α < δ �Pα
“B is an unbounded family”.

Then �Pδ
“B is an unbounded family”.

Proof See [2, Theorem 3.5.2]. ��

3 Hechler’s tower forcing

In this section, we analyze Hechler’s forcing from [7] to add a tower. First, we give
some basic definitions: For a, b ∈ [ω]ω, we say that b ⊆∗ a if b \ a is finite, i.e., ⊆∗
denotes almost-inclusion. For a sequence 〈aξ | ξ < δ〉 ⊆ [ω]ω, we say that b ∈ [ω]ω
is a pseudo-intersection of 〈aξ | ξ < δ〉 if b ⊆∗ aξ for each ξ < δ. We say that
〈aξ | ξ < δ〉 is a tower of length δ if aη ⊆∗ aξ for any η > ξ , and it does not have an
infinite pseudo-intersection. The tower number t is the smallest length of a tower.

The definition of the forcing we are giving here is not exactly as in [7], but it is easy
to see that it is equivalent. Let λ be a regular uncountable cardinal.

Definition 3.1 TOWλ is defined as follows: p ∈ TOWλ if p is a function with finite
domain, dom(p) ⊆ λ, and for each α ∈ dom(p), we have

p(α) = (s pα , f pα ) = (sα, fα),

where

(1) sα ∈ 2<ω,
(2) for each β ∈ dom(p) with β < α, |sβ | ≥ |sα|,
(3) dom( fα) ⊆ dom(p) ∩ α,
(4) fα : dom( fα) → ω,
(5) whenever β ∈ dom( fα), and n ∈ ω with n ∈ dom(sβ) ∩ dom(sα) and n ≥ fα(β),

we have

sβ(n) = 0 → sα(n) = 0.

The order on TOWλ is defined as follows: q ≤ p (“q is stronger than p”) if

(1) dom(p) ⊆ dom(q),
(2) and for each α ∈ dom(p), we have

(a) s pα � sqα ,
(b) dom( f pα ) ⊆ dom( f qα ) and f pα (β) ≥ f qα (β) for each β ∈ dom( f pα ).

Given a generic filter G for TOWλ, we define, for each α < λ,

aα :=
⋃

{s pα | p ∈ G ∧ α ∈ dom(p)}.

It is not difficult to verify that the generic object 〈aα | α < λ〉 added by TOWλ is a
tower of length λ.
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3.1 Complete subforcings

We will now show that Hechler’s forcing for adding a tower of length λ has many
complete subforcings. Let us start with a useful definition:

Definition 3.2 A condition p ∈ TOWλ is called full if there exists an N ∈ ω such
that for all α ∈ dom(p)

(1) |s pα | = N ,
(2) N ≥ max(rng( f pα )),
(3) ∀β ∈ dom(p) with β < α it holds that β ∈ dom( f pα ).

The set of full conditions is dense:

Lemma 3.3 For every condition p ∈ TOWλ there exists a full condition q with q ≤ p
and dom(q) = dom(p). In particular the set of full conditions is dense in TOWλ.

Proof First extend p by defining f pα (β) := |s pα | for every α, β ∈ dom(p) with β < α

for which f pα (β) was not defined before. It is easy to see that this extension yields a
condition which fulfills (3). Now let N ≥ max(rng( f pα )), |s pα | for every α ∈ dom(p).
For every β ∈ dom(p) extend s pβ with 0’s to length N . It is easy to see that this is a
condition and it is full. ��

For any C ⊆ λ, let TOWC = {p ∈ TOWλ | dom(p) ⊆ C}. In particular, for any
α ≤ λ, we have TOWα = {p ∈ TOWλ | dom(p) ⊆ α}. Moreover, for p ∈ TOWλ,

let p �� C be the condition p′ with dom(p′) = dom(p) ∩ C , and s p
′

α = s pα , and

f p
′

α = f pα � C for each α ∈ dom(p′). Clearly, p �� C is a condition in TOWC . Note
that if C ⊆ λ is downward closed (i.e., if C is an ordinal), then p �� C = p � C .

Lemma 3.4 Let C ⊆ α ≤ λ. Then TOWC is a complete subforcing of TOWα .
Moreover, if p ∈ TOWα is a full condition, then p �� C is a reduction of p to
TOWC .

In particular, TOWβ is a complete subforcing of TOWα for each β < α ≤ λ, and,
if p ∈ TOWα is a full condition (in this case, it is easy to see that it is actually not
necessary to assume that p is full), then p � β is a reduction of p to TOWβ . In fact,
this is all we are going to need in this paper. Nevertheless, we decided to prove the
more general version (for sets C which are not an ordinal) because it might be useful
for future applications.

Proof of Lemma 3.4 We first show that TOWC ⊆ic TOWα , i.e., incompatible condi-
tions from TOWC are incompatible in TOWα . Let p0, p1 ∈ TOWC and q ∈ TOWα

with q ≤ p0, p1. We have to show that there exists a condition q ′ ∈ TOWC with
q ′ ≤ p0, p1. Let q ′ := q �� C . It is very easy to check that q ′ is as we wanted.

Let p ∈ TOWα . We want to define a reduction of p to TOWC . Let p
′ ≤ p be

a full condition (see Lemma 3.3), and let Np′ ∈ ω be such that |s p′
β | = Np′ for

all β ∈ dom(p′). Let red(p) := p′ �� C . Let q ≤ red(p) with q ∈ TOWC ; by
appending 0’s if necessary we can assume that there is Nq ∈ ω such that Nq ≥ Np′
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Towers, mad families, and unboundedness 817

and |sqβ | = Nq for all β ∈ dom(q) (we do not need to assume that q is full). We
have to show that q is compatible with p. To show this, we define a witness r as
follows. Let dom(r) := dom(p′) ∪ dom(q) = (dom(p′) \ C) ∪̇ dom(q). For β ∈
dom(q) ∩ dom(p′), let dom( f rβ ) := dom( f qβ ) ∪ dom( f p

′
β ) and let f rβ (δ) := f qβ (δ)

for every δ ∈ dom( f qβ ) and f rβ (δ) := f p
′

β (δ) for every δ ∈ dom( f p
′

β ) \ dom( f qβ ), and

for β ∈ dom(q) \ dom(p′), let f rβ := f qβ . For β ∈ dom(p′) \ dom(q), let f rβ := f p
′

β .

For β ∈ dom(q), let srβ := sqβ . For β ∈ dom(p′) \ C , define srβ � s p
′

β with |srβ | = Nq

as follows: for each n ∈ [Np′ , Nq), let srβ(n) = 1 if and only if there exists δ > β

such that δ ∈ dom(p′) ∩C and sqδ (n) = 1. Note that |srβ | = Nq for each β ∈ dom(r).
The only non-trivial part in showing that r is a condition in TOWα is verifying

Definition 3.1(5). So assume that β < γ , β ∈ dom( f rγ ), n ≥ f rγ (β) and srγ (n) = 1.
We have to show that srβ(n) = 1. In case both γ and β belong to dom(q), this just
follows from the fact that q is a condition; otherwise, both γ and β belong to dom(p′),
and at least one of the two does not belong to C . If n < Np′ , we get that srβ(n) = 1 by
definition of r and the fact that p′ is a condition. So we can assume that n ∈ [Np′ , Nq),
and it remains to check the following three cases. Case 1: γ ∈ dom(p′) ∩ C and
β ∈ dom(p′)\C . Here, srβ(n) = 1bydefinition: sinceγ ∈ dom(p′)∩C ⊆ dom(q), we

have sqγ = srγ by definition, and hence sqγ (n) = 1 by assumption; therefore, srβ(n) = 1
by definition of srβ . Case 2: γ, β ∈ dom(p′) \C . Since srγ (n) = 1, by definition there

exists δ > γ such that δ ∈ dom(p′) ∩ C ⊆ dom(q) and sqδ (n) = 1. Note that δ > β,
so by definition srβ(n) = 1. Case 3: γ ∈ dom(p′) \ C and β ∈ dom(p′) ∩ C . Since
srγ (n) = 1, by definition there exists δ > γ such that δ ∈ dom(p′) ∩ C ⊆ dom(q)

and sqδ (n) = 1. Recall that p′ is a full condition, so in particular β ∈ dom( f p
′

δ ) and

f p
′

δ (β) ≤ Np′ . Moreover, q ≤ p′, hence β ∈ dom( f qδ ) and f qδ (β) ≤ f p
′

δ (β) ≤ Np′ .
Therefore, due to n ≥ Np′ ≥ f qδ (β), it follows that sqβ(n) = 1, and hence srβ(n) = 1
by definition of r . It is straightforward to check that r ≤ q and r ≤ p′ ≤ p. ��

3.2 Iteration via filteredMathias forcings

For α < λ, TOWα is a complete subforcing of TOWα+1 by Lemma 3.4, so we can
form the quotient TOWα+1/TOWα . For a generic filter G for TOWα , the quotient
is defined by TOWα+1/TOWα = {p ∈ TOWα+1 | ∀q ∈ G p �⊥ q}. Note that using
Lemma 3.4 a (full) condition p ∈ TOWα+1 belongs to TOWα+1/TOWα if and only
if p � α ∈ G.

Moreover, because conditions in TOWλ have finite domain,

TOWα =
⋃

δ<α

TOWδ

for each limit ordinal α ≤ λ; in other words, TOWα is the direct limit of the forcings
TOWδ for δ < α. So TOWλ is forcing equivalent to the finite support iteration of the
quotients TOWα+1/TOWα for α < λ.
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Recall that M(F) denotes Mathias forcing with respect to the filter F (see Defini-
tion 2.1). We are now going to show that TOWα+1/TOWα is forcing equivalent to
M(Fα) for a filterFα . Work in an extension by TOWα , and note that, for each β < α,
a set aβ has been added by TOWα . Let

Fα := 〈{aβ | β < α}〉Fréchet ,

i.e., Fα is the filter generated by (the Fréchet filter and) the ⊆∗-decreasing sequence
{aβ | β < α} added by TOWα . Note that each element of Fα is a superset of aβ \ N
for some β < α and N ∈ ω.

The quotient TOWα+1/TOWα adds the set aα . The following lemma will provide
a dense embedding from TOWα+1/TOWα to M(Fα) which preserves (the finite
approximations of) the generic realaα . Therefore,aα is also the generic real forM(Fα).
Recall that the generic real for M(F) is a pseudo-intersection of F , and the definition
ofFα ensures that a pseudo-intersection of it is almost contained in aβ for each β < α,
as it is the case for the real aα .

Lemma 3.5 TOWα+1/TOWα is densely embeddable into M(Fα).

Proof We work in a fixed extension by TOWα with generic filter G. The embedding
ι is defined as follows: ι(p) := (s pα , A) where

A :=
⋂

β∈dom( f pα )

(aβ ∪ f pα (β)) \ |s pα |.

To see that it is a dense embedding, we have to check the following conditions:

(1) (Density) For every condition (s, A) ∈ M(Fα) there exists a condition p such that
ι(p) ≤ (s, A).

(2) (Incompatibility preserving) If p and p′ are incompatible, then so are ι(p) and
ι(p′).

(3) (Order preserving) If p′ ≤ p then ι(p′) ≤ ι(p).

To show (1): Let (s, A) ∈ M(Fα). Since A ∈ Fα , there exist γ < α and N ∈ ω

such that aγ \ N ⊆ A. Extend s with 0’s to sα such that |sα| = max(|s|, N ) and let
dom( fα) := {γ } and fα(γ ) := |sα|. Let p := {(α, (sα, fα))} ∪ {(γ, (aγ � |sα|,∅))}.
Note that p is full and p � α = {(γ, (aγ � |sα|,∅))} ∈ G, so p ∈ TOWα+1/G. Now,
ι(p) = (sα, A′) where

A′ =
⋂

β∈dom( fα)

(aβ ∪ fα(β)) \ |sα|.

It follows that

A′ = (aγ ∪ fα(γ )) \ |sα| = aγ \ |sα| ⊆ aγ \ N ⊆ A.

Therefore, and by the above, sα � s, A′ ⊆ A, and sα(n) = 0 for all n ≥ |s|. So
ι(p) = (sα, A′) ≤ (s, A).
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Towers, mad families, and unboundedness 819

We prove (2) by showing the contrapositive: Assume ι(p) = (s pα , A) and ι(p′) =
(s p

′
α , A′) are compatible. Define q as follows: dom(q) := dom(p) ∪ dom(p′). For

β ∈ dom(q), let dom( f qβ ) := dom( f pβ ) ∪ dom( f p
′

β ) and for ρ ∈ dom( f qβ ) let

f qβ (ρ) = min( f pβ (ρ), f p
′

β (ρ)) (set f pβ (ρ) = ∞, f p
′

β (ρ) = ∞ if not defined). Let

sqα := s pα ∪ s p
′

α . Let N ∈ ω be such that N ≥ |s pβ | for each β ∈ dom(p) and

N ≥ |s p′
β | for each β ∈ dom(p′). Let sqβ := aβ � N for β ∈ dom(q) with β < α.

The only non-trivial part in showing that q is a condition in TOWα+1/G is verifying

Definition 3.1(5) for α. We can assume without loss of generality that s pα � s p
′

α = sqα .
Let β ∈ dom( f qα ), n ≥ f qα (β), and sqα(n) = 1. We have to show that aβ(n) = 1. In

case f qα (β) = f p
′

α (β), we get that aβ(n) = 1 because p′ is a condition in the quotient.
So let us assume that f qα (β) = f pα (β) < f p

′
α (β). If n < |s pα |, then we are finished

because p is a condition in the quotient. If n ≥ |s pα |, the compatibility of (s pα , A) and

(s p
′

α , A′) implies n ∈ A. Since (s pα , A) = ι(p), the definition of ι in particular yields
n ∈ aβ ∪ f pα (β), so we are finished. It is straightforward to check that q ≤ p, p′.

To show (3): Let p′ ≤ p. By definition that means: s p
′

α � s pα and dom( f p
′

α ) ⊇
dom( f pα ), and f p

′
α (β) ≤ f pα (β) for β ∈ dom( f pα ); so

A′ :=
⋂

β∈dom( f p
′

α )

(aβ ∪ f p
′

α (β)) \ |s p′
α | ⊆

⋂

β∈dom( f pα )

(aβ ∪ f pα (β)) \ |s pα | =: A.

Let n ≥ |s pα | and s p
′

α (n) = 1. We have to show that n ∈ A; fix β ∈ dom( f pα ) and
show that n ∈ aβ ∪ f pα (β). If n < f pα (β), this is clear. If n ≥ f pα (β), it follows that

n ≥ f p
′

α (β), hence s p
′

β (n) = aβ(n) = 1, because p′ is a condition in the quotient.

This shows that ι(p′) = (s p
′

α , A′) ≤ (s pα , A) = ι(p). ��
As a side result, let us mention that Hechler’s forcing for adding a tower is σ -

centered:

Corollary 3.6 If λ ≤ c, then TOWλ is σ -centered.

Proof Since Mathias forcing with respect to a filter is always σ -centered (see the
remark after Definition 2.1) and TOWα+1/TOWα is densely embeddable into such
a forcing by the above lemma, also TOWα+1/TOWα is σ -centered.

So TOWλ is a finite support iteration of σ -centered forcings of length at most c.
As a matter of fact, the finite support iteration of σ -centered forcings of length strictly
less than c+ is σ -centered (the result was mentioned without proof in [10, proof of
Lemma 2]; for a proof, see [1] or [6, Lemma 5.3.8]). ��

3.3 The filters areB-Canjar

Finally, we show that Hechler’s forcingTOWλ preserves the unboundedness of count-
ably directed unbounded families B. More precisely, let V be the ground model over
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which we force withTOWλ, and letB ∈ V be a countably directed unbounded family
of reals; we want to show that B is still unbounded in the extension by TOWλ. Since
there always exists an unbounded family B of size b which is countably directed,
TOWλ does not increase the bounding number b (for more details, see Sect. 5; in fact,
we argue there that we even get b = ω1 whenever we force with TOWλ).

In Sect. 3.2, we have defined filters Fα for α < λ and have shown that TOWλ is
equivalent to the finite support iteration of the Mathias forcings M(Fα). So we can
finish the proof by showing that the filters Fα are B-Canjar (and M(Fα) therefore
preserves the unboundedness of B), and using Theorem 2.6 at limits. In fact, we show
the following:

Theorem 3.7 LetB be a countably directed unbounded family. ThenTOWλ preserves
the unboundedness of B. More precisely,

(1) TOWα preserves the unboundedness of B for each α ≤ λ,
(2) Fα is B-Canjar for each α < λ.

Proof First note thatB is countably directed in the extension byTOWα for eachα ≤ λ,
since TOWα has the c.c.c. (and thus all countable sets of ground model objects are
covered by a countable set of the ground model).

We prove (1) and (2) by (simultaneous) induction on α < λ. Suppose (1) and (2)
hold for all α′ < α.

Proof of (1):
In case α = α′ + 1 is a successor ordinal, use the fact that (1) holds for α′ by

induction, so B is unbounded in the extension by TOWα′ ; recall that, by Lemma 3.5,
TOWα = TOWα′ ∗ M(Fα′); since (2) holds for α′ by induction, M(Fα′) preserves
the unboundedness of B, hence the same is true for TOWα , as desired.

In case α is a limit ordinal, we use the fact thatTOWα is the finite support iteration
of c.c.c. forcings, aswell as that (1) holds for eachα′ < α; sowe can applyTheorem2.6
to conclude (1) for α.

Proof of (2):
In case cf(α) ≤ ω, just note that Fα is countably generated; so, by Lemma 2.4, Fα

is B-Canjar, as desired.
In case cf(α) > ω, we proceed as follows (this is going to be the main technical

part of the proof): in order to show that Fα is B-Canjar, it is sufficient to establish the
hypothesis of Lemma 2.5.

Let W be the extension of V by TOWα; note that Fα , which is generated by the
Fréchet filter and {aβ | β < α}, lies inW . Nowobserve that we have already proven (1)
for α (without having used (2) for α), i.e., we know that B is unbounded in W .

Now suppose that 〈Xn | n ∈ ω〉 ⊆ (Fα
<ω)+ is given. We will find 〈sn | n ∈ ω〉 and

V ′ with V ⊆ V ′ ⊆ W such that Lemma 2.5(1)–(3) hold. Since the Xn’s are essentially
reals, the forcing TOWα has the c.c.c., and cf(α) > ω, we can fix γ < α such that
〈Xn | n ∈ ω〉 belongs to the extension of V by TOWγ ; let V

′ be the extension
by TOWγ+1; clearly, V ⊆ V ′ ⊆ W .

For each n ∈ ω, we have aγ \ n ∈ Fα and Xn ∈ (Fα
<ω)+; therefore, for each n,

there exists an s ∈ Xn such that s ⊆ aγ \n. The sameholds inV ′ since Xn ∈ V ′ for each
n and aγ ∈ V ′. Since 〈Xn | n ∈ ω〉 ∈ V ′, we can pick a sequence 〈sn | n ∈ ω〉 ∈ V ′
such that sn ∈ Xn and sn ⊆ aγ \ n for every n.

123
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It remains to show that Lemma 2.5(3) holds true. So fix D ∈ [ω]ω ∩V ′; we have to
prove that each element of Fα contains (as a subset) an sn for some n ∈ D, i.e., that
the following holds for each β < α:

∀k ∈ ω ∃n ∈ D sn ⊆ aβ \ k. (1)

In case β ≤ γ , this is easy: fix k ∈ ω; recall that aγ ⊆∗ aβ , so we can pick n ≥ k
with n ∈ D such that aγ \ n ⊆ aβ ; but then sn ⊆ aγ \ n ⊆ aβ \ k, as desired.

In case β > γ , we show (1) by induction on β: assume we have shown it for every
β ′ < β; we will show it for β.

Fix k ∈ ω, and work in the extension by TOWβ (note that D belongs to the
extension by TOWγ+1, hence also to the extension by TOWβ due to β ≥ γ + 1);
observe that aβ is added in the step from β to β + 1, i.e., by the quotient forcing
TOWβ+1/TOWβ (which is equivalent to M(Fβ)). We finish the proof by showing
that the set

{q ∈ TOWβ+1/TOWβ | ∃n ∈ D q � sn ⊆ aβ \ k}

is dense. Let p ∈ TOWβ+1/TOWβ , so p(β) =: (s, f ) where f is a function with
dom( f ) ⊆ β finite. Let β ′ := max(dom( f )), and note that β ′ < β. Moreover, let  be
large enough such thataβ ′ \ ⊆ aβ ′′ for eachβ ′′ ∈ dom( f ), and let L := max(, k, |s|).
Use (1) for β ′ and L to pick n ∈ D such that sn ⊆ aβ ′ \ L; because L ≥ , it follows
that sn ⊆ aβ ′′ \ L for each β ′′ ∈ dom( f ). Now strengthen p as follows. Extend s to
s∗ in such a way that s∗(m) = 1 if m ∈ sn and s∗(m) = 0 if m /∈ sn and m ≥ |s| (this
is legitimate, because sn is a subset of each aβ ′′ with β ′′ ∈ dom( f )); then it is easy
to find a condition q ∈ TOWβ+1/TOWβ such that q ≤ p and q(β) = (s∗, f ). Note
that q � sn ⊆ aβ \ k, as desired. ��

4 Hechler’s mad family forcing

In this section, we analyze Hechler’s forcing from [7] to add a mad family. Again,
we start with some basic definitions: For a, b ∈ [ω]ω, we say that a and b are almost
disjoint if a ∩ b is finite. Moreover, we say that A ⊆ [ω]ω is an almost disjoint family
if a and a′ are almost disjoint whenever a, a′ ∈ A with a �= a′. An almost disjoint
family A is maximal (called mad family) if for each b ∈ [ω]ω there exists a ∈ A such
that |b ∩ a| = ℵ0. The almost disjointness number a is the smallest size of an infinite
mad family.

The definition of the forcing we are giving here is not exactly as in [7], but it is easy
to see that it is equivalent. Let λ be a regular uncountable cardinal.

Definition 4.1 MADλ is defined as follows: p ∈ MADλ if p is a function with finite
domain, dom(p) ⊆ λ, and for eachα ∈ dom(p), we have p(α) = (s pα , h p

α) = (sα, hα)

where

(1) sα ∈ 2<ω,
(2) dom(hα) ⊆ dom(p) ∩ α,
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(3) hα : dom(hα) → ω,
(4) whenever β ∈ dom(hα), and n ∈ ω with n ∈ dom(sβ)∩ dom(sα) and n ≥ hα(β),

we have

sβ(n) = 0 ∨ sα(n) = 0.

The order on MADλ is defined as follows: q ≤ p (“q is stronger than p”) if

(1) dom(p) ⊆ dom(q),
(2) and for each α ∈ dom(p), we have

(a) s pα � sqα ,
(b) dom(h p

α) ⊆ dom(hqα) and h p
α(β) ≥ hqα(β) for each β ∈ dom(h p

α).

Given a generic filter G for MADλ, we define, for each α < λ,

aα :=
⋃

{s pα | p ∈ G ∧ α ∈ dom(p)}.

It is not difficult to verify that the generic object {aα | α < λ} added by MADλ is a
mad family of size λ.

4.1 Complete subforcings

We will now show that Hechler’s forcing for adding a mad family of size λ has many
complete subforcings. Let us start with a useful definition:

Definition 4.2 A condition p ∈ MADλ is called full if there exists an N ∈ ω such that
for all α ∈ dom(p)

(1) |s pα | = N ,
(2) N ≥ max(rng(h p

α)),
(3) ∀β ∈ dom(p) with β < α it holds that β ∈ dom(h p

α).

The set of full conditions is dense:

Lemma 4.3 For every condition p ∈ MADλ there exists a full condition q with q ≤ p
and dom(q) = dom(p). In particular the set of full conditions is dense in MADλ.

Proof First extend p by defining h p
α(β) := |s pα | for every α, β ∈ dom(p) with β < α

for which h p
α(β) was not defined before. It is easy to see that this extension yields a

condition which fulfills (3). Now let N ≥ max(rng(h p
α)), |s pα | for every α ∈ dom(p).

For every β ∈ dom(p) extend s pβ with 0’s to length N . It is easy to see that this is a
condition and it is full. ��

For any C ⊆ λ, let MADC = {p ∈ MADλ | dom(p) ⊆ C}. In particular, for any
α ≤ λ, we have MADα = {p ∈ MADλ | dom(p) ⊆ α}. Moreover, for p ∈ MADλ,

let p �� C be the condition p′ with dom(p′) = dom(p) ∩ C , and s p
′

α = s pα , and

h p′
α = h p

α � C for each α ∈ dom(p′). Clearly, p �� C is a condition in MADC . Note
that if C ⊆ λ is downward closed (i.e., if C is an ordinal), then p �� C = p � C .
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Lemma 4.4 Let C ⊆ α ≤ λ. Then MADC is a complete subforcing of MADα . More-
over, if p ∈ MADα is a full condition, then p �� C is a reduction of p to MADC .

Before proving the lemma, let us recall that in the context of Hechler’s forcing
to add a tower, we only used a special instance of Lemma 3.4, namely that TOWβ

is a complete subforcing of TOWα , whereas here, we are going to use the more
general version for sets C ⊆ α which are not ordinals. For Sect. 4.2, we need again
only the special case of β < α; the more general version is needed in Sect. 4.3. In
Sect. 3.3, when dealing with TOWλ, we do not need such a more general version,
for the following reason: the filter Fγ+1 is always countably generated (just because
{aγ \ n | n ∈ ω} is a basis, due to the fact that aγ ⊆∗ aβ for each β < γ ), and so
the analogue of the set C ⊆ α needed in Theorem 4.7 can be replaced by any upper
bound which is a successor ordinal. This is not possible when dealing with MADλ

since then Fβ is never countably generated unless β < ω1.

Proof of Lemma 4.4 We first show that MADC ⊆ic MADα , i.e., incompatible condi-
tions from MADC are incompatible in MADα . Let p0, p1 ∈ MADC and q ∈ MADα

with q ≤ p0, p1. We have to show that there exists a condition q ′ ∈ MADC with
q ′ ≤ p0, p1. Let q ′ := q �� C . It is very easy to check that q ′ is as we wanted.

Let p ∈ MADα . We want to define a reduction of p to MADC . Let p′ ≤ p be

a full condition (see Lemma 4.3), and let Np′ ∈ ω be such that |s p′
β | = Np′ for all

β ∈ dom(p′). Let red(p) := p′ �� C . Let q ≤ red(p) with q ∈ MADC . We have
to show that q is compatible with p. To show this, we define a witness r as follows.
Let dom(r) := dom(p′) ∪ dom(q) = (dom(p′) \ C) ∪̇ dom(q). For β ∈ dom(q),

let srβ := sqβ , and for β ∈ dom(q) ∩ dom(p′), let dom(hrβ) := dom(hqβ) ∪ dom(h p′
β )

and let hrβ(δ) := hqβ(δ) for every δ ∈ dom(hqβ) and hrβ(δ) := h p′
β (δ) for every

δ ∈ dom(h p′
β ) \ dom(hqβ), and for β ∈ dom(q) \ dom(p′), let hrβ := hqβ . For β ∈

dom(p′) \ dom(q), let srβ := s p
′

β and hrβ := h p′
β .

The only non-trivial part in showing that r is a condition in MADα is verifying
Definition 4.1(4). So assume that β < γ , β ∈ dom(hrγ ), n ≥ hrγ (β) and srγ (n) = 1.
We have to show that srβ(n) = 0 if it is defined. In case both γ and β belong to dom(q),
this just follows from the fact that q is a condition; otherwise, both γ and β belong
to dom(p′), and at least one of the two does not belong to C . If n < Np′ , we get that
srβ(n) = 0 by definition of r and the fact that p′ is a condition. But if n ≥ Np′ , then
either srβ(n) or srγ (n) is not defined, and there is nothing to show. It is straightforward
to check that r ≤ q and r ≤ p′ ≤ p. ��

4.2 Iteration via filteredMathias forcings

For α < λ, MADα is a complete subforcing of MADα+1 by Lemma 4.4, so we can
form the quotient MADα+1/MADα . For a generic filter G for MADα , the quotient is
defined by MADα+1/MADα = {p ∈ MADα+1 | ∀q ∈ G p �⊥ q}. Note that using
Lemma 4.4 a full condition p ∈ MADα+1 belongs to MADα+1/MADα if and only
if p � α ∈ G.
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Moreover, because conditions in MADλ have finite domain,

MADα =
⋃

δ<α

MADδ

for each limit ordinal α ≤ λ; in other words, MADα is the direct limit of the forcings
MADδ for δ < α. So MADλ is forcing equivalent to the finite support iteration of the
quotients MADα+1/MADα for α < λ.

Recall that M(F) denotes Mathias forcing with respect to the filter F (see Defini-
tion 2.1). We are now going to show that MADα+1/MADα is forcing equivalent to
M(Fα) for a filterFα . Work in an extension by MADα , and note that, for each β < α,
a set aβ has been added by MADα . Let

Fα := 〈{ω \ aβ | β < α}〉Fréchet ,

i.e., Fα is the filter generated by (the Fréchet filter and) the complements of the
members of the almost disjoint family {aβ | β < α} added by MADα .

The quotient MADα+1/MADα adds the set aα . The following lemma will provide
a dense embedding from MADα+1/MADα to M(Fα) which preserves (the finite
approximations of) the generic realaα . Therefore,aα is also the generic real forM(Fα).
Recall that the generic real for M(F) is a pseudo-intersection of F , and the definition
ofFα ensures that a pseudo-intersection of it is almost disjoint from aβ for eachβ < α,
as it is the case for the real aα .

Lemma 4.5 MADα+1/MADα is densely embeddable into M(Fα).

Proof Wework in a fixed extension byMADα . The embedding ι is defined as follows:
ι(p) := (s pα , A) where

A :=
⋂

β∈dom(h p
α )

((ω \ aβ) ∪ h p
α(β)) \ |s pα |.

To see that it is a dense embedding, we have to check the following conditions:

(1) (Density) For every condition (s, A) ∈ M(Fα) there exists a condition p such that
ι(p) ≤ (s, A).

(2) (Incompatibility preserving) If p and p′ are incompatible, then so are ι(p) and
ι(p′).

(3) (Order preserving) If p′ ≤ p then ι(p′) ≤ ι(p).

To show (1): Let (s, A) ∈ M(Fα). Since A ∈ Fα , there exist finitely many {βi |
i < m} ⊆ α and N ∈ ω such that

⋂
i<m(ω\aβi )\N ⊆ A. Extend s with 0’s to sα such

that |sα| = max(|s|, N ) and define hα by dom(hα) = {βi | i < m} and hα(βi ) = |sα|
for each i < m. Let p := {(α, (sα, hα))} ∪ {(βi , (〈〉,∅)) | i < m}. Clearly, p � α

belongs to any generic filter for MADα , and therefore p ∈ MADα+1/MADα . Now,
ι(p) = (sα, A′) where

A′ =
⋂

β∈dom(hα)

((ω \ aβ) ∪ hα(β)) \ |sα|.
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It follows that

A′ =
⋂

β∈dom(hα)

(ω \ aβ) \ |sα| ⊆
⋂

i<m

(ω \ aβi ) \ N ⊆ A.

Therefore, and by the above, sα � s, A′ ⊆ A, and sα(n) = 0 for all n ≥ |s|. So
ι(p) = (sα, A′) ≤ (s, A).

We prove (2) by showing the contrapositive: Assume ι(p) = (s pα , A) and ι(p′) =
(s p

′
α , A′) are compatible. Define q as follows: dom(q) := dom(p) ∪ dom(p′). For

β ∈ dom(q), let sqβ := s pβ ∪ s p
′

β (set s pβ = 〈〉, s p′
β = 〈〉 if not defined), dom(hqβ) :=

dom(h p
β) ∪ dom(h p′

β ) and for ρ ∈ dom(hqβ) let hqβ(ρ) = min(h p
β(ρ), h p′

β (ρ)) (set

h p
β(ρ) = ∞, h p′

β (ρ) = ∞ if not defined). Similar to the proof of (2) in Lemma 3.5, it
follows that q is a condition in the quotient and q ≤ p, p′.

To show (3): Let p′ ≤ p. By definition that means: s p
′

α � s pα and dom(h p′
α ) ⊇

dom(h p
α), and h p′

α (β) ≤ h p
α(β) for β ∈ dom(h p

α); so

A′ :=
⋂

β∈dom(h p′
α )

((ω \ aβ) ∪ h p
′

α (β)) \ |s p′
α | ⊆

⋂

β∈dom(h p
α )

((ω \ aβ) ∪ h pα(β)) \ |s pα | =: A.

Let n ≥ |s pα | and s p′
α (n) = 1. We have to show that n ∈ A; fix β ∈ dom(h p

α) and show
that n ∈ (ω \ aβ) ∪ h p

α(β). If n < h p
α(β), this is clear. If n ≥ h p

α(β), it follows that

n ≥ h p′
α (β), hence aβ(n) = 0, because p′ is a condition in the quotient. This shows

that ι(p′) = (s p
′

α , A′) ≤ (s pα , A) = ι(p). ��
As a side result, let us mention that Hechler’s forcing for adding a mad family is

σ -centered:

Corollary 4.6 If λ ≤ c, then MADλ is σ -centered.

Proof The proof is completely analogous to the proof of Corollary 3.6. ��

4.3 The filters areB-Canjar

Finally, as we did in Sect. 3.3 for Hechler’s tower forcing TOWλ, we show that Hech-
ler’s forcing MADλ preserves the unboundedness of countably directed unbounded
families B. More precisely, let V be the ground model over which we force with
MADλ, and let B ∈ V be a countably directed unbounded family of reals; we want to
show thatB is still unbounded in the extension byMADλ. Since there always exists an
unbounded family B of size b which is countably directed, MADλ does not increase
the bounding number b (for more details, see Sect. 5; in fact, we argue there that we
even get b = ω1 whenever we force with MADλ).

In Sect. 4.2, we have defined filters Fα for α < λ and have shown that MADλ is
equivalent to the finite support iteration of the Mathias forcings M(Fα). So we can
finish the proof by showing that the filters Fα are B-Canjar (and M(Fα) therefore
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preserves the unboundedness of B), and using Theorem 2.6 at limits. In fact, we show
the following:

Theorem 4.7 LetB be a countably directed unbounded family. ThenMADλ preserves
the unboundedness of B. More precisely,

(1) MADα preserves the unboundedness of B for each α ≤ λ,
(2) Fα is B-Canjar for each α < λ.

Proof First note thatB is countably directed in the extension byMADα for eachα ≤ λ,
since MADα has the c.c.c. (and thus all countable sets of ground model objects are
covered by a countable set of the ground model).

We prove (1) and (2) by (simultaneous) induction on α < λ. Suppose (1) and (2)
hold for all α′ < α.

Proof of (1):
In case α = α′ + 1 is a successor ordinal, use the fact that (1) holds for α′ by

induction, so B is unbounded in the extension by MADα′ ; recall that, by Lemma 4.5,
MADα = MADα′ ∗ M(Fα′); since (2) holds for α′ by induction, M(Fα′) preserves
the unboundedness of B, hence the same is true for MADα , as desired.

In case α is a limit ordinal, we use the fact that MADα is the finite support iteration
of c.c.c. forcings, aswell as that (1) holds for eachα′ < α; sowe can applyTheorem2.6
to conclude (1) for α.

Proof of (2):
In case α < ω1, just note that Fα is countably generated; so, by Lemma 2.4, Fα is

B-Canjar, as desired.
In case α ≥ ω1, we proceed as follows (this is going to be the main technical part

of the proof): in order to show that Fα is B-Canjar, it is sufficient to establish the
hypothesis of Lemma 2.5.

Let W be the extension of V by MADα; note that Fα , which is generated by the
Fréchet filter and {ω \ aβ | β < α}, lies in W . Now observe that we have already
proven (1) for α (without having used (2) for α), i.e., we know that B is unbounded
in W .

Now suppose that 〈Xn | n ∈ ω〉 ⊆ (Fα
<ω)+ is given. We will find 〈sn | n ∈ ω〉 and

V ′ with V ⊆ V ′ ⊆ W such that Lemma 2.5(1)–(3) hold. Since the Xn’s are essentially
reals and the forcing MADα has the c.c.c., we can pick a countable “support” C ⊆ α,
i.e., a set C such that 〈Xn | n ∈ ω〉 belongs to the extension by MADC (which is a
complete subforcing of MADα by Lemma 4.4); let V ′ be the extension by MADC ;
clearly, V ⊆ V ′ ⊆ W .

Enumerate C by {γ |  < ω} and let c := ω \aγ
for each  ∈ ω. For each n ∈ ω,

we have
⋂

≤n c
 \ n ∈ Fα and Xn ∈ (Fα

<ω)+; therefore, for each n, there exists an
s ∈ Xn such that s ⊆ ⋂

≤n c
 \ n. The same holds in V ′ since Xn ∈ V ′ for each n

and c ∈ V ′ for each . Since 〈Xn | n ∈ ω〉 ∈ V ′ and 〈c |  ∈ ω〉 ∈ V ′, we can pick
a sequence 〈sn | n ∈ ω〉 ∈ V ′ such that sn ∈ Xn and sn ⊆ ⋂

≤n c
 \ n for every n.

It remains to show that Lemma 2.5(3) holds true. So fix D ∈ [ω]ω ∩V ′; we have to
prove that each element of Fα contains (as a subset) an sn for some n ∈ D, i.e., that
the following holds for each finite sequence 〈βi | i < N 〉 ⊆ α:
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∀k ∈ ω ∃n ∈ D sn ⊆
⋂

i<N

(ω \ aβi ) \ k. (2)

We first observe that (2) holds in case that {βi | i < N } ⊆ C : fix k ∈ ω, and note
that there is m ∈ ω such that for each n ≥ m, we have

sn ⊆
⋂

≤n

c \ n ⊆
⋂

i<N

(ω \ aβi ) \ k,

hence there is such an n in the infinite set D, as desired.
We now show (2) for arbitrary {βi | i < N } ⊆ α, using a genericity argument. Let

NC := {i ∈ N | βi ∈ C}, and Nα\C := {i ∈ N | βi /∈ C}, so N = NC ∪̇ Nα\C .
Fix k ∈ ω, and work in V ′, the extension by MADC (note that D ∈ V ′); observe

that the aβi ’s for i ∈ Nα\C are added by the quotient forcing MADα/MADC . We
finish the proof by showing that the set

{q ∈ MADα/MADC | ∃n ∈ D q � sn ⊆
⋂

i<N

(ω \ aβi ) \ k}

is dense. Let p ∈ MADα/MADC ; we can assume that βi ∈ dom(p) for each i ∈ N .
For i ∈ Nα\C , let p(βi ) =: (s pβi , h

p
βi

). Let L := max({k} ∪ {|s pβi | | i ∈ Nα\C }).
Since (2) holds for βi ’s in C (as shown above), we can pick n ∈ D such that

sn ⊆
⋂

i∈NC

(ω \ aβi ) \ L.

Now extend p to q by extending all the s pβi with i ∈ Nα\C with 0’s up to the maximum

of sn (recall that we can always3 extend with 0’s, because this does not harm the
requirement related to almost disjointness). So we get that q forces m ∈ ω \ aβi for
all i ∈ Nα\C and all m ∈ sn , and hence

q � sn ⊆
⋂

i∈Nα\C
(ω \ aβi ) ∩

⋂

i∈NC

(ω \ aβi ) \ L ⊆
⋂

i∈N
(ω \ aβi ) \ k,

as desired. ��

5 Conclusion

In this section,we present some facts about cardinal characteristicswhich easily follow
from our analysis of TOWλ and MADλ.

3 This technical part of the genericity argument is easier than in case of the tower forcing, because it is
enough to extend the s’s by 0’s. In the case of tower forcing, on the other hand, we have to add 1’s, which
needs some preparation.
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First note that any unbounded scale, i.e., any unbounded set B = { fi | i < κ} such
that fi ≤∗ f j for i ≤ j , is countably directed, because its length κ has uncountable
cofinality. Therefore, by Theorems 3.7 and 4.7, any unbounded scale of the ground
model remains unbounded in the extension by TOWλ and MADλ, respectively. It is
easy to see that there exists always an unbounded scale of length b. Assume V |�
“b = κ”. Then V TOWλ |� “there exists an unbounded scale of length κ and there
exists a tower of length λ”. In particular, this implies that V TOWλ |� “b ≤ κ”. The
same argument works for MADλ, therefore VMADλ |� “b ≤ κ and there exists an
unbounded scale of length κ and a mad family of size λ”.

Note that the above shows that b = ω1 holds in the extension by TOWλ (or
MADλ) provided that b = ω1 holds in the ground model. But in fact the following
argument shows that no assumption about b in the ground model is necessary for this
conclusion. The forcingTOWλ can be decomposed intoTOWω1∗(TOWλ/TOWω1).
By Sect. 3.2,TOWω1 is equivalent to an iteration of lengthω1 ofMathias forcingswith
respect to countably generated filters, therefore it is equivalent to the Cohen forcing
which addsω1 manyCohen reals. Since theseω1 manyCohen reals forman unbounded
family, it follows thatVTOWω1 |� “b = ω1”. InV

TOWω1 , letB be an unbounded family
of size ω1 which is countably directed. The quotient TOWλ/TOWω1 is equivalent to
a finite support iteration of Mathias forcings with respect to filters which are B-Canjar
(which follows as in the proof of Theorem 3.7), therefore B is unbounded in V TOWλ ,
thus, using that t ≤ b, we get the following:

Corollary 5.1 Let λ be a regular uncountable cardinal. Then the following holds
in VTOWλ :

(1) t = b = ω1.
(2) There exist towers4 of length ω1 and of length λ.
(3) There exist unbounded scales of length ω1 and of length bV (and of any length κ

for which there exists an unbounded scale in the ground model V ).

The analogous argument works for MADλ, so we get the following:

Corollary 5.2 Let λ be a regular uncountable cardinal. Then the following holds
in VMADλ :

(1) t = b = ω1.
(2) There exists5 a mad family of size λ.
(3) There exist unbounded scales of length ω1 and of length bV (and of any length κ

for which there exists an unbounded scale in the ground model V ).

6 Questions

Finally, let us list a few questions, which the anonymous referee suggested to add
to the paper. Note that TOWλ and MADλ are forcing equivalent in case λ ≤ ω1,

4 The generic object added by TOWω1 is a tower of length ω1 in VTOWω1 , but it is clearly not a tower in

VTOWλ any more.
5 Of course, there also exists a tower of length ω1, as in VTOWλ .
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because in this case both can be written (see Sects. 3.2, 4.2) as finite support iterations
of Mathias forcings with respect to countably generated filters (which are just Cohen
forcing). We strongly conjecture, however, that this is not the case for larger λ:

Question 6.1 Are TOWλ and MADλ forcing equivalent for λ > ω1?

The above question could be settled by showing that MADλ adds an object which
is not added by TOWλ, or vice versa:

Question 6.2 Let λ > ω1. Does TOWλ add a mad family of size λ? Does MADλ add
a tower of length λ?

For regular uncountable λ, both TOWλ and MADλ force t = b = ω1 (see Corol-
lary 5.1 and Corollary 5.2).

Question 6.3 Does TOWλ force a = ω1? Does MADλ force a = ω1?
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