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Abstract
We show it is consistent that there is a Souslin tree S such that after forcing with S,
S is Kurepa and for all clubs C ⊂ ω1, S � C is rigid. This answers the questions in
Fuchs (Arch Math Logic 52(1–2):47–66, 2013). Moreover, we show it is consistent
with ♦ that for every Souslin tree T there is a dense X ⊆ T which does not contain a
copy of T . This is related to a question due to Baumgartner in Baumgartner (Ordered
sets (Banff, Alta., 1981), volume 83 of NATO Adv. Study Inst. Ser. C: Math. Phys.
Sci., Reidel, Dordrecht-Boston, pp 239–277, 1982).
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1 Introduction

Recall that an ω1-tree is said to be Souslin if it has no uncountable chain or antichain.
In [2, 3], Fuchs and Hamkins considered various notions of rigidity of Souslin trees
and studied the following question: How many generic branches can Souslin trees
introduce, when they satisfy certain rigidity requirements? In [2], Fuchs asks a few
questions which motivate the following theorem.

Theorem 1.1 It is consistent with GCH that there is a Souslin tree S such that �S “S
is Kurepa and S � C is rigid for every club C ⊂ ω1”.

Theorem 1.1 answers all questions in [2]. We refer the reader to [2, 3] for motivation
and history.

In [1], Baumgartner proves that under ♦+ there is a lexicographically ordered
Souslin tree which is minimal as a tree and as an uncountable linear order. At the
end of his construction he asks the following question: Does there exist a minimal
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Aronszajn line if♦ holds? This question is not settled here but motivates the following
proposition.

Proposition 1.2 It is consistent with ♦ that if S is a Souslin tree then there is a dense
X ⊂ S which does not contain a copy of S.

Proposition 1.2 shows it is impossible to follow the same strategy as Baumgartner’s in
[1], in order to show ♦ implies that there is a minimal Aronszajn line. More precisely,
it is impossible to find a lexicographically ordered Souslin tree which is minimal as a
tree and as an uncountable linear order.

This paper is organized as follows. In the next section we prove Proposition 1.2. In
the third section we introduce a Souslin tree which makes itself a Kurepa tree. This
tree is used in the last section, where we prove Theorem 1.1.

Let’s fix some definitions, notations and conventions. Assume T , S are trees and
f : T −→ S is injective. Then f is said to be an embedding when t <T s ⇐⇒
f (t) <S f (s). T is called an ω1-tree if its levels are countable and ht(T ) = ω1.
T is said to be pruned if for all t ∈ T and α ∈ ω1 \ ht(t) there is s ≥ t such that
ht(s) = α. If t ∈ T and α ≤ ht(t), t � α refers to the ≤T predecessor of t in
level α. C ⊂ T is called a chain if it consists of pairwise comparable elements. A
chain b ⊂ T is called a branch if it intersects all levels of T . An ω1-tree U is called
minimal if for every uncountable X ⊂ U , U embeds into X . If T is a tree and α is
an ordinal, T (α) = {t ∈ T : ht(t) = α} and T (< α) = {t ∈ T : ht(t) < α}. If
A is a set of ordinals, T � A = {t ∈ T : ht(t) ∈ A}. If t ∈ T and U ⊂ T then
Ut = {u ∈ U : t ≤T u}. Assume Q is a poset and θ is a regular cardinal. We say
M ≺ Hθ is suitable for Q if Q and the power set of the transitive closure of Q are in
M .

2 Minimality of Souslin trees and♦
This section is devoted to the proof of Proposition 1.2. We will use the following
terminology and notation in this section. By N we mean the set of all count-
able infinite successor ordinals, and P refers to the countable support iteration
〈Pi , Q̇ j : i ≤ ω2, j < ω2〉, where Q j = 2<ω1 for each j ∈ ω2.

Lemma 2.1 Assume U = (ω1,<) is a Souslin tree, p ∈ P, Ẋ is the canonicalP1-name
for the generic subset of ω1, p � “ ḟ is an embedding from U to Ẋ” and for every
t ∈ U define ϕ(p, t) = {s ∈ U : ∃ p̄ ≤ p p̄ � ḟ (t) = s}. Then there is an α ∈ ω1
such that for all t ∈ U \ U (< α), ϕ(p, t) is not a chain.

Proof Let Yp = {y ∈ U : ϕ(p, y) is a chain}. Yp is downward closed and if it
is countable we are done. Fix p ∈ P and assume for a contradiction that Yp is
uncountable. Let Ap = {t ∈ U : p � t ∈ Ẋ or p � t /∈ Ẋ}. Ap is countable.
Fix α > sup{ht(a) : a ∈ Ap} and y ∈ Yp \ U (≤ α). Since U is an Aronszajn tree
and ϕ(p, y) is a chain, we can choose β ∈ ω1 \ sup{ht(s) : s ∈ ϕ(p, y)}. For all
s ∈ ϕ(p, y), α < ht(s) < β since ∅ � ht(y) ≤ ht( ḟ (y)). Then we can extend p to q
such that q � Ẋ ∩ (U (≤ β) \ U (< α)) = ∅, which contradicts p � ḟ (y) ∈ ϕ(p, y).

��
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On the rigidity of Souslin trees and their generic branches 421

Lemma 2.2 Assume U ∈ V is a pruned Souslin tree and G ⊂ P is V-generic. Then in
V[G], there is a dense X ⊂ U which does not have a copy of U.

Proof Let Ẋ be as in Lemma 2.1. Since U is pruned, 1P � Ẋ ⊂ U is dense. We
will show 1P � Ẋ has no copy of U . Assume for a contradiction that p �P ḟ
is an embedding from U to Ẋ . Fix a regular cardinal θ and a countable M ≺ Hθ

which containsU , p, ḟ , 2P. Also let 〈Dn : n ∈ ω〉 be an enumeration of all dense open
subsets of P in M , δ = M ∩ω1 and t ∈ U (δ). For each σ ∈ 2<ω, find pσ ∈ D|σ | ∩ M ,
sσ and t|σ | < t , such that:

(1) if σ � τ then pτ ≤ pσ and sσ ≤ sτ ,
(2) if σ ⊥ τ then sσ ⊥ sτ ,
(3) pσ � ḟ (t|σ |) = sσ .

In order to see how these sequences are constructed, let t0 < t be arbitrary and
p∅, s∅ be such that p∅ � “ ḟ (t0) = s∅” and p∅ ∈ D0 ∩ M . Assuming these sequences
are given for all σ ∈ 2n , use Lemma 2.1 to find tn+1 < t such that ϕ(pσ , tn+1)

is not a chain, for all σ ∈ 2n . Let sσ
0, sσ
1 be in ϕ(pσ , tn+1) ∩ M such that
sσ
0 ⊥ sσ
1. Now find pσ
0, pσ
1 in M ∩ Dn+1 which are extensions of pσ such
that pσ
i � “ ḟ (tn+1) = sσ
i”, for i = 0, 1.

For each r ∈ 2ω, let pr be a lower bound for {pσ : σ � r} and let br ⊂ U ∩ M
be a downward closed chain such that pr � ḟ [{s ∈ U : s < t}] ⊂ br . Note that
br intersects all the levels of U below δ. It is obvious that pr is an (M,P)-generic
condition below p. Moreover, if r , r ′ are two distinct real numbers then br �= br ′ .
Let r ∈ 2ω such that U has no element on top of br . Then pr forces that ḟ (t) is not
defined, which is a contradiction. ��

Nowwe are ready for the proof of Proposition 1.2. LetV be a model of ZFC+GCH
and G ⊂ P beV-generic. Since P is a countable support iteration of σ -closed posets of
size ℵ1, it preserves all cardinals. The same argument as in Theorem 8.3 in [4] shows
that ♦ holds in V[G].

LetU be a Souslin tree inV[G]. For some α ∈ ω2,U ∈ V[G ∩ Pα] since |U | = ℵ1.
Let Ṙ be the canonical Pα-name such that P = Pα ∗ Ṙ. Then 1Pα � Ṙ is isomorphic
to P. By Lemma 2.2, there is a dense X ⊂ U in V[G] which has no copy of U , as
desired.

3 A Souslin tree withmany generic branches

Definition 3.1 The poset Q is the set of all p = (T p,�p) such that:

(1) �p ∈ ω1 and T p = (�p,≤p) is a countable binary tree of height αp such that
for all t ∈ T p and for all β ∈ αp \ htT p (t) there is s ∈ T p(β) with t <T p s.

(2) �p = 〈π p
ξ : ξ ∈ Dp〉 where Dp ⊂ ω2 is countable and for each ξ ∈ Dp there

are x, y of the same height in T p such that π
p
ξ : (T p)x −→ (T p)y is a tree

isomorphism.

We let q ≤ p if T q end-extends T p, Dp ⊂ Dq and for all ξ ∈ Dp, π
q
ξ � T p = π

p
ξ .
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422 H. Lamei Ramandi

Lemma 3.2 Q is σ -closed. Moreover if CH holds, Q has the ℵ2-cc.

Proof The first part of the lemma is obvious. Assume A ∈ Qℵ2 . By thinning A out,
we can assume that for all p, q in A, T p = T q , {Dp : p ∈ A} is a �-system with root
R and |{〈π p

ξ : ξ ∈ R〉 : p ∈ A}| = 1. Now all p, q in A are compatible. ��
Lemma 3.3 If T = ⋃

p∈G T p for a generic G ⊂ Q, then T is Souslin.

Proof Obviously T is an ω1-tree. Let τ be a Q-name and p �Q “τ ⊂ T is a maximal
antichain”. We show p � τ is countable. Let M ≺ Hθ be countable, θ regular
and 2Q, τ be in M . Let 〈pn = (Tn,�n) : n ∈ ω〉, be a descending (M, Q)-generic
sequence with p0 = p. Let π pn

ξ = πn
ξ , δ = M ∩ω1, and R = ⋃

n∈ω Tn . So ht(R) = δ

and M ∩ ω2 = ⋃
n∈ω Dpn . Let F be the set of all finite compositions of functions of

the form
⋃

n∈ω πn
ξ with ξ ∈ M ∩ ω2. Let 〈 fn : n ∈ ω〉 be an enumeration of F with

infinite repetition and A = {t ∈ R : ∃n ∈ ω (pn � t ∈ τ)}. Observe that for all t ∈ R
there is a ∈ A such that a, t are comparable.

Let 〈αm : m ∈ ω〉 be an increasing cofinal sequence in δ. For each t ∈ R we build
an increasing sequence t̄ = 〈tm : m ∈ ω〉 as follows. Let t0 = t . Assume tm is given. If
Rtm ∩ dom( fm) = ∅, choose tm+1 > tm with ht(tm+1) > αm . If Rtm ∩ dom( fm) �= ∅,
let s ∈ dom( fm) ∩ Rtm . Let a ∈ A such that a, fm(s) are comparable. Let x =
max{ fm(s), a} and tm+1 > f −1

m (x) with ht(tm+1) > αm . Let bt be the downward
closure of t̄ .

Let B = { fn[bt ] : t ∈ R and n ∈ ω}. Let q be the lower bound for 〈pn : n ∈ ω〉
described as follows. T q = R ∪ T q(δ) and for each cofinal branch c ⊂ R there
is a unique y ∈ T q(δ) above c if and only if c ∈ B. For each ξ ∈ M ∩ ω2, let
π

q
ξ � R = ⋃

n∈ω πn
ξ . Note that this determines π

q
ξ on T q(δ) as well and π

q
ξ (y) is

defined for all y ∈ T q(δ).
The condition q forces that for each y ∈ T (δ) = T q(δ) there is a ∈ A with

a < y. In other words q forces that τ = A. Since p was arbitrary, 1Q forces that every
maximal antichain has to be countable. ��

From now on T is the same tree as in Lemma 3.3. For each ξ ∈ ω2 let πξ =⋃
p∈G π

p
ξ , where G ⊂ Q is generic. Observe that if x ∈ dom(πξ ) ∩ dom(πη) and

ξ �= η are ordinals then there is α > ht(x) such that for all y ∈ T (α) ∩ Tx , πξ (y) �=
πη(y). So forcing with T makes T Kurepa.

4 Highly rigid dense subsets of T

In this section we show the tree T , in the forcing extensions by P = (2<ω1 ,⊃), has
dense subsets which are witnesses for Theorem 1.1.

Lemma 4.1 Let U = (ω1,<) be a pruned Souslin tree and S ⊂ ω1 be generic for P.
Then in V[S] the following hold.

(1) S is a Souslin tree when it is considered with the inherited order from U.
(2) S ⊂ U is dense.
(3) For all clubs C ⊂ ω1, S � C is rigid.
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On the rigidity of Souslin trees and their generic branches 423

Proof In order to see that S is Souslin, note thatσ -closed posets do not add uncountable
antichains to Souslin trees. Moreover by standard density arguments S ⊂ U is dense.

Assume for a contradiction p �P “ ḟ : Ṡ � Ċ −→ Ṡ � Ċ is a nontrivial tree
embedding.” Let 〈Mξ : ξ ∈ ω + 1〉 be a continuous ∈-chain of countable elementary
submodels of Hθ where θ is regular and p, ḟ , 2U are in M0. For each ξ ≤ ω, let δξ =
Mξ ∩ω1 and t ∈ U (δω). Let tn = t � δn . For each σ ∈ 2<ω we find qσ ∈ M|σ |+1 ∩ P ,
sσ such that:

(1) q0 ≤ p, and if σ ⊂ τ then qτ ≤ qσ ,
(2) qσ is (M|σ |, P)-generic and qσ ⊂ M|σ |,
(3) qσ forces that ḟ (t|σ |−1) = sσ ,
(4) if σ ⊥ τ then sσ ⊥ sτ ,
(5) if σ ⊂ τ then qτ forces that t|σ | ∈ Ṡ � Ċ .

Assuming qσ and sσ are given for all σ ∈ 2n , we find qσ
0, qσ
1, sσ
0, and sσ
1. Let
q̄σ = qσ ∪{(tn, 1)}. Obviously, q̄σ � tn ∈ Ṡ � Ċ and for all σ ∈ 2n , {s ∈ U : ∃r ≤ q̄σ

r � ḟ (tn) = s} is uncountable. In Mn+1, find r0, r1 below q̄σ and sσ
0, sσ
1 such
that sσ
0 ⊥ sσ
1 and ri � “ ḟ (tn) = sσ
i .” Let qσ
i < ri be (Mn+1, P)-generic
with qσ
i ⊂ Mn+1, and qσ
i ∈ Mn+2.

Let r ∈ 2ω such that {sσ : σ ⊂ r} does not have an upper bound in U . Let pr be
a lower bound for {pσ : σ ⊂ r}. Then pr forces that ḟ (t) is not defined which is a
contradiction. ��
Lemma 4.2 Suppose M is suitable for Q and δ = M ∩ ω1. Let 〈qn : n ∈ ω〉 be a
decreasing (M, Q)-generic sequence. Define a condition q ∈ Q by setting T q =⋃

n∈ω T qn , Dq = ⋃
n∈ω Dqn and for each ξ ∈ Dq let π

q
ξ = ⋃

n∈ω π
qn
ξ . Also let

�q = 〈πq
ξ : ξ ∈ Dq〉. Let F be the set of all finite compositions of functions of the

form π
q
ξ with ξ ∈ Dq. Assume m ∈ ω and 〈bi : i ∈ m〉 are branches through T q . Then

there is an extension q ′ ≤ q such that αq ′ ≥ δ + 1 and for all branches c ⊂ T q, c has
an upper bound iff for some f ∈ F and i ∈ m, f (bi ) is cofinal in c.

Proof Note that Dq = M ∩ ω2 and αq = δ. Let T q ′ � δ = T q . Let B = { f (bi ) : i ∈
m and f ∈ F}. Obviously B is countable and we can fix an enumeration of B with
n ∈ ω. Let T q ′

(δ + 1) = [δ, δ + ω) and put δ + n on top of the n’th element in B. It
is obvious how we should extend �q to �q ′ with Dq = Dq ′ . ��
Lemma 4.3 Let G ⊂ Q be V-generic, p ∈ P and Ṡ be the canonical P-name for
the generic subset of ω1. Let ḟ , Ċ be P ∗ T -names in V[G] and t, x, y be pairwise
incompatible in T . Suppose (p, t) forces ḟ is an embedding from Ṡx � Ċ to Ṡy � Ċ.
For every u ∈ Tx define ψ(p, t, u) = {s ∈ T : ∃t ′ > t ∃ p̄ ≤ p ( p̄, t ′) � [u ∈ Ṡx �
Ċ ∧ ḟ (u) = s]}. Then for any u ∈ Tx there is u′ > u such that ψ(p, t, u′) is not a
chain.

Proof Fix p, t, u as above and assume for a contradiction that for all u′ > u in T ,
ψ(p, t, u′) is a chain. Since T is ccc, without loss of generality we can assume that for
all q ∈ P and α ∈ ω1, there is q̄ ≤ q such that (q̄, 1T ) decides the statement α ∈ Ċ .
For each q ∈ P, r ∈ T , v ∈ T let αq,r ,v = sup{htT (s) : s ∈ ψ(q, r , v)}. Note that if
q̄ ≤ q and r̄ ≥ r then ψ(q̄, r̄ , v) ⊆ ψ(q, r , v) and αq̄,r̄ ,v ≤ αq,r ,v .
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424 H. Lamei Ramandi

Let M0, M1 be countable elementary submodels of Hθ , θ be a regular cardinal
and {p, t, u, x, y, ḟ , Ċ} ∈ M0 ∈ M1. Suppose 〈pn : n ∈ ω〉 is an (M0, P)-generic
sequence which is in M1 and p0 ≤ p. Let p′ = ⋃

n∈ω pn and δi = Mi ∩ω1, for i ∈ 2.
Note that p′ � δ0 ∈ Ċ .

Let p̄ < p′ such that:
(1) p̄ � ∀v ∈ Tx ∩ (M1 \ M0) [v ∈ Ṡ]
(2) p̄ � ∀v ∈ Ty ∩ (M1 \ M0) [v /∈ Ṡ].

Let u0 > u be in T (δ0). Since p̄ is (M0, Q)-generic, it forces that δ0 ∈ Ċ ∧ u0 ∈
Ṡ ∧ ht Ṡ(u0) = δ0. In particular, by elementarity of M0 and basic facts on ordinal
arithmetic, p̄ � u0 ∈ Ṡx � Ċ .

Suppose q < p̄, r > t such that (q, r) decides ḟ (u0). Then the condition (q, r)

forces that ht( ḟ (u0)) ≥ δ1. So, δ1 ≤ α p̄,t,u0 ≤ αp′,t,u0 ∈ M1. But this is a contradic-
tion. ��

In the next lemma we use the following standard fact: If U is a Souslin tree and
X ⊂ U is uncountable and downward closed, then there is x ∈ U such that Ux ⊂ X .
In order to see this assume for all v ∈ U , Uv is not contained in X . Let A be the set of
all minimal a outside of X . Observe that A is an uncountable antichain, contradicting
the fact that U was Souslin. Lemma 4.4 finishes the proof of Theorem 1.1.

Lemma 4.4 Assume G ∗ S ∗ b is V-generic for Q ∗ P ∗ Ṫ . Let x, y be incomparable
in T . Then in V[G ∗ S ∗ b] for all clubs C ⊂ ω1, Sx � C does not embed into Sy � C.

Proof Assume for a contradiction that (q0, p0, t0) is a condition in Q ∗ P ∗ Ṫ which
forces ḟ : Ṡx � Ċ −→ Ṡy � Ċ is a tree embedding and x, y are incompatible in T .
Note that ḟ (Ṡx ) is an uncountable subset of Ṫy and Ṫ is a Souslin tree in V[G][S]. So
the downward closure of ḟ (Ṡx ) contains Ṫz for some z > y. Therefore, by extending
x, y, (q0, p0, t0) if necessary, we can assume that ḟ (Ṡx ) is dense in Ṡy .

Again by extending x, y, (q0, p0, t0) we may assume (q0, p0, t0) � [x, y are in
Ṡ � Ċ and ḟ (x) = y]. Furthermore, by extending t0 if necessary we can assume that
ht(t0) > ht(y) and x, y, t0 are pairwise incomparable. Since T is a ccc poset we can
assume that for all α ∈ ω1, for all u, v in T and for all (a, b) ∈ P ∗ Q we have
(a, b, u) � α ∈ Ċ ←→ (a, b, v) � α ∈ Ċ .

Let M be a countable elementary submodel of Hθ such that θ is regular and
(q0, p0, t0), ḟ are in M . Let 〈qn : n ∈ ω〉 be a decreasing (M, Q)-generic sequence.
Define q ∈ Q as in Lemma 4.2. LetF be the set of all finite compositions of functions
of the form π

q
ξ with ξ ∈ M ∩ ω2. Let �q = 〈πq

ξ : ξ ∈ M ∩ ω2〉. Obviously, q is
an (M, Q)-generic condition. Let 〈gn : n ∈ ω〉 be an enumeration of F with infinite
repetition. Let 〈γn : n ∈ ω〉 be an increasing cofinal sequence in δ = M ∩ ω1 with
γ0 = 0.

We find a decreasing sequence 〈pn ∈ P ∩ M : n ∈ ω〉 and increasing sequences
〈δn ∈ δ : n ∈ ω〉, 〈tn ∈ T q : n ∈ ω〉, 〈un ∈ T q : n ∈ ω〉 〈sn ∈ T q : n ∈ ω〉 such that:
(1) δn ≥ γn for all n ∈ ω,

(2) (q, pn .tn) � min{ht Ṡ(sn), ht Ṡ(un), dom(pn)} ≥ δn ,
(3) htT q (tn) ≥ htT q (sn) + 1,
(4) (q, pn, 1T q ) � δn ∈ Ċ ,
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On the rigidity of Souslin trees and their generic branches 425

(5) (q, pn, tn) � ḟ (un) = sn ,
(6) if n ∈ ω \ 1 and tn−1 ∈ dom(gn) then gn(tn) ⊥ sn ,
(7) if n ∈ ω \ 1 and un−1 ∈ dom(gn) then gn(un) ⊥ sn .

We let u0 = x, s0 = y, δ0 ∈ ω1 such that (q, p0, t0) forces thatmin{ht Ṡ(x), ht Ṡ(y),

αpn } = δ0. It is easy to see that this choice together with p0, t0 will satisfy the corre-
sponding conditions. For given pn, tn, sn, un, δn we introduce pn+1, tn+1, sn+1, un+1,

δn+1.
If tn /∈ dom(gn+1) let v = sn . If tn ∈ dom(gn+1), let v ≥ sn such that v ⊥ gn+1(tn).

Such a v exists because ht(tn) > ht(sn), gn+1 is level preserving and the tree T q is
binary.

Claim 4.5 There are t ′n > tn, p′
n < pn, u′

n > un such that if un ∈ dom(gn+1) then
(q, p′

n, t ′n) forces [u′
n ∈ dom( ḟ ) ∧ v < ḟ (u′

n) ∧ ḟ (u′
n) ⊥ gn+1(u′

n)].
Proof of Claim Assume un ∈ dom(gn+1). Recall that ḟ (Ṡx ) is forced to be dense in
Ṡy . Let p̄n ≤ pn, t̄n ≥ tn, a0 > un, v′ > v such that (q, p̄n, t̄n) � ḟ (a0) = v′. This is
possible becauseq is (M, Q)-generic. Let a > a0, t0n , t1n be extensions of t̄n , and p0n, p1n
be extensions of p̄n such that (q, pi

n, t i
n) � ḟ (a) = si

n where i ∈ 2 and s0n ⊥ s1n . Again,
this is possible because of Lemma 4.3 and the fact that q is (M, Q)-generic. Let a′ > a
such that ht(a′) > max{ht(s0n ), ht(s1n)}. Fix i ∈ 2 such that gn+1(a′) ⊥ si

n . Then for all
e > a′, (q, pi

n, t i
n) forces that if e ∈ dom( ḟ ) then ḟ (e) > si

n . Moreover it forces that
gn+1(e) ⊥ si

σ . Therefore, (q, pi
n, t i

n) � [∀e > a′ e ∈ dom( ḟ ) −→ gn+1(e) ⊥ ḟ (e)].
Let u′

n > a′, p′
n < pi

n and t ′n > t i
n such that (q, p′

n, t ′n) � [u′
n ∈ dom( ḟ )]. Then this

condition will also force ḟ (u′
n) ⊥ gn+1(u′

n) and v < ḟ (u′
n). ��

Fix p′
n, t ′n, u′

n as in the claim above. By extending p′
n if necessary, we can assume

that (q, p′
n, 1T q ) decides the γn+1’st element of Ċ \ δn and we let δn+1 be this ordinal.

Let un+1 > u′
n such that for some pn+1 < p′

n with dom(pn+1) ≥ δn+1, the condition
(q, pn+1, 1T q ) forces that un+1 ∈ Ṡ � Ċ and ht Ṡ(un+1) ≥ δn+1. Let r > t ′n . By
extending (q, pn+1, r) if necessary, we can assume this condition decides ḟ (un+1).
Let sn+1 ∈ T q such that (q, pn+1, r) � ḟ (un+1) = sn+1. Let tn+1 ≥ r such that
ht(tn+1) > ht(sn+1). We leave it to the reader to verify that all of the conditions above
hold.

Let b0, b1 be the downward closure of {un : n ∈ ω} and {tn : n ∈ ω} respectively.
By Lemma 4.2 there is q ′ < q such that αq ′ ≥ δ + 1 and for all branches c ⊂ T q ,
c has an upper bound in T q ′

if and only if gn(bi ) is cofinal in c for some n ∈ ω and
i ∈ 2. Fix such a q ′ for the rest of the argument.

We claim that 〈sn : n ∈ ω〉 does not have an upper bound in T q ′
. Suppose for a

contradiction that it has an upper bound. Then for some m ∈ ω, either

(1) {gm(tn) : n ∈ ω ∧ tn ∈ dom(gm)} is cofinal in the downward closure of {sn : n ∈
ω} or

(2) {gm(un) : n ∈ ω ∧ un ∈ dom(gm)} is cofinal in the downward closure of {sn :
n ∈ ω}.

Due to similarity of the arguments, let’s assume that the first alternative happens.
Since we enumerated the elements of F with infinite repetition, by increasing m if
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necessary, we can assume that tm ∈ dom(gm). But then gm(tm) ⊥ sm , meaning that
the first alternative cannot happen, which is a contradiction. Hence {sn : n ∈ ω} does
not have an upper bound in T q ′

.
Let t be the upper bound of 〈tn : n ∈ ω〉 in T q ′

, and u be the upper bound for
〈un : n ∈ ω〉 which has the lowest height δ. Let p be a lower bound for 〈pn : n ∈ ω〉
which forces that u ∈ Ṡ. It is easy to see that (q ′, p, t) � [δ ∈ Ċ∧u ∈ Ṡ∧ht Ṡ(u) = δ].
Also by (5), (q ′, p, t) forces ḟ (un) = sn for all n ∈ ω. Hence (q ′, p, t) forces that
ḟ (u) is an upper bound for 〈sn : n ∈ ω〉 which is a contradiction. ��
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