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Abstract

We show it is consistent that there is a Souslin tree S such that after forcing with S,
S is Kurepa and for all clubs C C w;, S | C is rigid. This answers the questions in
Fuchs (Arch Math Logic 52(1-2):47-66, 2013). Moreover, we show it is consistent
with <> that for every Souslin tree T there is a dense X € T which does not contain a
copy of T. This is related to a question due to Baumgartner in Baumgartner (Ordered
sets (Banff, Alta., 1981), volume 83 of NATO Adv. Study Inst. Ser. C: Math. Phys.
Sci., Reidel, Dordrecht-Boston, pp 239-277, 1982).
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1 Introduction

Recall that an w;-tree is said to be Souslin if it has no uncountable chain or antichain.
In [2, 3], Fuchs and Hamkins considered various notions of rigidity of Souslin trees
and studied the following question: How many generic branches can Souslin trees
introduce, when they satisfy certain rigidity requirements? In [2], Fuchs asks a few
questions which motivate the following theorem.

Theorem 1.1 It is consistent with GCH that there is a Souslin tree S such that I-g “S
is Kurepa and S | C is rigid for every club C C w1 ”.

Theorem 1.1 answers all questions in [2]. We refer the reader to [2, 3] for motivation
and history.

In [1], Baumgartner proves that under <>* there is a lexicographically ordered
Souslin tree which is minimal as a tree and as an uncountable linear order. At the
end of his construction he asks the following question: Does there exist a minimal
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Aronszajn line if < holds? This question is not settled here but motivates the following
proposition.

Proposition 1.2 [t is consistent with < that if S is a Souslin tree then there is a dense
X C S which does not contain a copy of S.

Proposition 1.2 shows it is impossible to follow the same strategy as Baumgartner’s in
[1], in order to show <> implies that there is a minimal Aronszajn line. More precisely,
it is impossible to find a lexicographically ordered Souslin tree which is minimal as a
tree and as an uncountable linear order.

This paper is organized as follows. In the next section we prove Proposition 1.2. In
the third section we introduce a Souslin tree which makes itself a Kurepa tree. This
tree is used in the last section, where we prove Theorem 1.1.

Let’s fix some definitions, notations and conventions. Assume 7', S are trees and
f : T — S is injective. Then f is said to be an embedding when t <1 s <
f(t) <s f(s). T is called an w;-tree if its levels are countable and ht(T) = w;.
T is said to be pruned if for all t € T and @ € w \ ht(¢) there is s > ¢ such that
ht(s) = . If t € T and ¢ < ht(t), t | « refers to the <7 predecessor of ¢ in
level w. C C T is called a chain if it consists of pairwise comparable elements. A
chain b C T is called a branch if it intersects all levels of T. An w;-tree U is called
minimal if for every uncountable X C U, U embeds into X. If T is a tree and « is
anordinal, T(a) = { € T : ht(t) = a}and T(< @) = {t € T : ht(¢) < «a}. If
Aisasetof ordinals, T | A={t € T : ht(¢t) € A}.Ift € Tand U C T then
Ui =1{u € U :t <7t u}. Assume Q is a poset and 6 is a regular cardinal. We say
M < Hy is suitable for Q if Q and the power set of the transitive closure of Q are in
M.

2 Minimality of Souslin trees and <

This section is devoted to the proof of Proposition 1.2. We will use the following
terminology and notation in this section. By N we mean the set of all count-
able infinite successor ordinals, and P refers to the countable support iteration
(P;, Qj ti < wy, j < wy), where Q; =2=%! for each j € w;.

Lemma 2.1 Assume U = (w1, <) isa Souslintree, p € P, X is the canonical P -name
for the generic subset of w1, p IF “f is an embedding from U to X and for every
t € U define p(p,t) ={s € U :3p < p pIF f(t) = s}. Then there is an a € w;
such that forallt € U \ U(< ), ¢(p, t) is not a chain.

Proof Let Y, = {y € U : ¢(p,y)isachain}. ¥, is downward closed and if it
is countable we are done. Fix p € P and assume for a contradiction that Y, is
uncountable. Let A, = {tr e U : p -t € Xorp -1t ¢ X} A, is countable.
Fix o > sup{ht(a) : a € Ap}and y € ¥, \ U(Z ). Since U is an Aronszajn tree
and ¢(p, y) is a chain, we can choose 8 € w; \ supfht(s) : s € ¢(p, y)}. For all
s € o(p,y), a <ht(s) < B since @ IF ht(y) < ht(f(y)). Then we can extend p to g
such that ¢ I+ X N (U (< B) \ U(< «)) = @, which contradicts p I+ f(y) € ¢(p, y).

O
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Lemma 2.2 Assume U € V is a pruned Souslin tree and G C P is V-generic. Then in
VIG], there is a dense X C U which does not have a copy of U.

Proof Let X be as in Lemma 2.1. Since U is pruned, 1p IF X C U is dense. We
will show 1p IF X has no copy of U. Assume for a contradiction that p IFp f
is an embedding from U to X. Fix a regular cardinal # and a countable M < Hy
which contains U, p, f ,2F Alsolet (D, : n € w)be an enumeration of all dense open
subsets of Pin M,5 = M Nw; andt € U(5). Foreacho € 2=, find p; € DN M,
so and #j5| < t, such that:

(1) ifo C t then p; < p, and s, < 57,
) ifo L T then s, L s,
(3) po IF f(t\a\) = So-

In order to see how these sequences are constructed, let 7o < ¢ be arbitrary and
Py, Sg be such that py |- “f(to) = s¢” and py € Dy N M. Assuming these sequences
are given for all o € 2", use Lemma 2.1 to find #,41 < ¢ such that ¢(pg, t,41)
is not a chain, for all o € 2". Let 550, So~1 be in ¢(ps, th+1) N M such that
So~0 L S5~1. Now find ps—~0, po~1 in M N Dy 1 which are extensions of p, such
that py—; |- “f(tny1) = So~i”, fori =0, 1.

For each r € 2%, let p, be a lower bound for {p, : 0 C r}andletb, CUNM
be a downward closed chain such that p, I f[{s € U : s < t}] C by. Note that
b, intersects all the levels of U below 4. It is obvious that p, is an (M, IP)-generic
condition below p. Moreover, if r, ¥’ are two distinct real numbers then b, # b,
Let r € 2¢ such that U has no element on top of b,. Then p, forces that f(¢) is not
defined, which is a contradiction. O

Now we are ready for the proof of Proposition 1.2. Let V be a model of ZFC + GCH
and G C P be V-generic. Since [P is a countable support iteration of o' -closed posets of
size N1, it preserves all cardinals. The same argument as in Theorem 8.3 in [4] shows
that <> holds in V[G].

Let U be a Souslin tree in V[G]. Forsome @ € wy, U € V[G N P,]since |U| = V.
Let R be the canonical P,-name such that P = P, % R. Then 1 p, IF R is isomorphic
to P. By Lemma 2.2, there is a dense X C U in V[G] which has no copy of U, as
desired.

3 A Souslin tree with many generic branches

Definition 3.1 The poset Q is the set of all p = (T'?, I1,,) such that:

(1) Ay € wy and TP = (A, <p) is a countable binary tree of height o, such that
forallr € T? and for all B € o), \ htyp(¢) thereis s € TP (B) witht <7p s.

) I, = (né’ :& € Dp) where D, C w; is countable and for each § € D), there
are x, y of the same height in 77 such that nsp : (ITP)y — (TP), is a tree
isomorphism.

Weletg < pif T9 end-extends T?, D, C D, and forall £ € D, ng | TP = nsp.
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Lemma 3.2 Q is o-closed. Moreover if CH holds, Q has the N>-cc.

Proof The first part of the lemma is obvious. Assume A € Q™. By thinning A out,
we can assume that forall p,gin A, T? =T9,{D, : p € A}is a A-system with root
R and |{(JTSP &£ €R):pe A}l =1.Nowall p, g in A are compatible. m]

Lemma33 IfT = UpeG T? for a generic G C Q, then T is Souslin.

Proof Obviously T is an w-tree. Let T be a Q-name and p I-g “r C T is a maximal
antichain”. We show p IF t is countable. Let M < Hp be countable, 6 regular
and 22, 7 be in M. Let (pn = (T, 1) : n € w), be a descending (M, Q)-generic
sequence with pg = p. Let né’" = ng, §=MNwi,and R = Unew T,.Soht(R) =§
and M N w2 = J,c,, Dp,- Let F be the set of all finite compositions of functions of
the form ( J,,c,, né" with & € M N wy. Let (f, : n € w) be an enumeration of F with
infinite repetitionand A = {t € R : 3n € w (p, It € 7)}. Observe that for all € R
there is @ € A such that a, ¢ are comparable.

Let («;, : m € w) be an increasing cofinal sequence in §. For each r € R we build
an increasing sequence 7 = {f,, : m € w) as follows. Let 7y = ¢. Assume 1y, is given. If
R, Ndom(f,,) = ¥, choose t,,+1 > t,, with ht(t,,41) > o, If R, Ndom(fi) # 9,
let s € dom(f,) N R;,. Let a € A such that a, f,,(s) are comparable. Let x =
max{ f,(s),a} and t,,, 41 > f,;l(x) with ht(#,+1) > a,. Let b; be the downward
closure of 7.

Let B = {f,[b:] : t € Randn € w}. Let g be the lower bound for (p, : n € w)
described as follows. 79 = R U T9(8) and for each cofinal branch ¢ C R there
is a unique y € T9(8) above c if and only if ¢ € B. For each § € M N wy, let
ng 'R = U,ew ng'. Note that this determines ng on T4(5) as well and ng (y) is
defined for all y € T9(6).

The condition ¢ forces that for each y € T(§) = T7(8) there is a € A with
a < y.In other words g forces that T = A. Since p was arbitrary, 1 forces that every
maximal antichain has to be countable. m|

From now on T is the same tree as in Lemma 3.3. For each § € w; let mg =
U peG nsp , where G C Q is generic. Observe that if x € dom(wg) N dom(sr,) and
& # n are ordinals then there is o > ht(x) such that for all y € T () N T, we(y) #
7y (y). So forcing with 7 makes 7" Kurepa.

4 Highly rigid dense subsets of T
In this section we show the tree T, in the forcing extensions by P = (2<“1, D), has
dense subsets which are witnesses for Theorem 1.1.

Lemma 4.1 Let U = (w1, <) be a pruned Souslin tree and S C w1 be generic for P.
Then in V[S] the following hold.

(1) S is a Souslin tree when it is considered with the inherited order from U.
(2) S C U is dense.
(3) Forall clubs C C wy, S | C is rigid.
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Proof In order to see that S is Souslin, note that o -closed posets do not add uncountable
antichains to Souslin trees. Moreover by standard density arguments S C U is dense.

Assume for a contradiction p IFp f : S| C — S| C is anontrivial tree
embedding.” Let (Mg : § € w + 1) be a continuous €-chain of countable elementary
submodels of Hy where 6 is regular and p, f ,2U arein My. Foreach§ < w,letds =
M:Nwiandt € U(8y). Lett, =t | §,. Foreacho € 2= we find go € Mi5|+1 N P,
S such that:

(1) go < p,andifo C 7 then ¢; < ¢,

(2) g5 i1s (M|s|, P)-generic and g, C M|,
(3) g, forces that f(tm_l) =Sy,

@) ifo L tthens, L s,

(5) if o C 7 then g, forces that #|,| € S I C.

Assuming ¢, and s, are givenforallo € 2", we find g5 —~0, g5 ~1, S6~0, and s, 1. Let
qo = qo I{(ty, 1)}. Obviously, g, I 1, € S i Candforallo € 2", {seU:3r <qg,
r - f(tn) = s} is uncountable. In M1, find ¢, r| below g, and s5 0, S¢~1 such
that so ~9 L sy ~1 and r; IF “f(tn) = Sg~i. Let go~; < ri be (M, 11, P)-generic
with g5 ~; C My 41, and go~; € My 2.

Let r € 2% such that {s, : o C r} does not have an upper bound in U. Let p, be
a lower bound for {p, : o C r}. Then p, forces that f (1) is not defined which is a
contradiction. O

Lemma 4.2 Suppose M is suitable for Q and 5§ = M N w;. Let (g, : n € w) be a
decreasing (M, Q)-generic sequence. Define a condition q € Q by setting T?1 =
Unew T?, Dy = U, ep, Dg, and for each & € Dy let n'g = Upew ng". Also let
I, = (ng :& € Dy). Let F be the set of all finite compositions of functions of the
form ng withé € Dy. Assumem € w and (b; : 1 € m) are branches through T9. Then
there is an extension q' < q such that oy > § + 1 and for all branches ¢ C T4, ¢ has
an upper bound iff for some f € F andi € m, f(b;) is cofinal in c.

Proof Note that D, = M N w; and o, = §. Let T4 [6=T9. LetB={f(b;):i €
m and f € F}. Obviously B is countable and we can fix an enumeration of B with
n € w. Let T‘/(S + 1) =[§, 5 + w) and put § + n on top of the n’th element in B. It
is obvious how we should extend I, to [T, with Dy = D,. o

Lemma4.3 Letr G C Q be V- -generic, p € P and S be the canonical P-name for
the generic subset of wy. Let f,C be P x T-names in V[G and t, x, y be pairwise
incompatible in T. Suppose (p, t) forces f is an embedding from Sy | C to S ) C.
For every u € Ty define Y (p,t,u) ={s € T : I >t3Ip<p(Pp.t)IF-[ue S|
C A f(u) = s1}. Then for any u € Ty there is u' > u such that ¥ (p, t,u’) is not a
chain.

Proof Fix p,t,u as above and assume for a contradiction that for all ¥’ > u in T,
¥(p,t,u’)isachain. Since T is ccc, without loss of generality we can assume that for
allg € P and « € wy, there is § < ¢ such that (g, 17) decides the statement « € C.
Foreachqg € P,r € T,v € T letay , = supthtr(s) : s € ¥ (q, r, v)}. Note that if
g <qandr >rtheny(q,7,v) C¥(g,r,v)and a7y < ag r .
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Let My, M; be countable elementary submodels of Hp, 6 be a regular cardinal
and {p,t,u,x,y, f, C} € My € M. Suppose (p, : n € w) is an (Mg, P)-generic
sequence whichisin My and pg < p.Let p’ =, ¢, pn and §; = M; Nwy, fori € 2.
Note that p’ I 8y € C.

Let p < p’ such that:

(1) pl-Yve TN (M \ My) [v € $]
() pIFYveTyn (M \ Mo) [v ¢ 5.

Let up > u be in T (§p). Since p is (Myp, Q)-generic, it forces that §y € C A uy €
S A ht s(ug) = do. In. parti.cular, by elementarity of M and basic facts on ordinal
arithmetic, p IFug € Sy | C.

Suppose g < p,r > t such that (g, r) decides f (up). Then the condition (g, r)
forces that ht(f(uo)) > 81.50,81 < dpruy < Apruy € Mi. But this is a contradic-
tion. O

In the next lemma we use the following standard fact: If U is a Souslin tree and
X C U is uncountable and downward closed, then there is x € U such that U, C X.
In order to see this assume for all v € U, U, is not contained in X. Let A be the set of
all minimal a outside of X. Observe that A is an uncountable antichain, contradicting
the fact that U was Souslin. Lemma 4.4 finishes the proof of Theorem 1.1.

Lemma 4.4 Assume G x S % b is V-generic for Q * P % T. Let x, y be incomparable
inT. Thenin V[G * § * b] for all clubs C C wy, Sx | C does not embed into Sy | C.

Proof Assume for a contradiction that (gg, po, fo) is a condition in Q * P * T which
forces f : 8, | C —> S'y | C is a tree embedding and x, y are incompatible in 7.
Note that f (Sx) is an uncountable subset of T'y and T is a Souslin tree in VI[G][S]. So
the downward closure of f (S’x) contains TZ for some z > y. Therefore, by extending
x, ¥, (qo, po, to) if necessary, we can assume that f(Sx) is dense in Sy.

Again by extending x, y, (g0, po, fo) we may assume (qo, po, fo) IF [x, y are in
S| Cand f(x) = y]. Furthermore, by extending f if necessary we can assume that
ht(#p) > ht(y) and x, y, fo are pairwise incomparable. Since T is a ccc poset we can
assume that for all « € wy, for all u, v in T and for all (a,b) € P * Q we have
(a,b,u)lFa e C <« (a,b,v) IFaeC.

Let M be a countable elementary submodel of Hp such that 6 is regular and
(g0, po, to), f are in M. Let (g, : n € w) be a decreasing (M, Q)-generic sequence.
Define g € Q asin Lemma4.2. Let F be the set of all finite compositions of functions
of the form ng with & € M Nwy. Let T, = (ng 1€ € M Nw,). Obviously, ¢ is
an (M, Q)-generic condition. Let (g, : n € w) be an enumeration of F with infinite
repetition. Let (), : n € ®) be an increasing cofinal sequence in § = M N w; with
70 =0.

We find a decreasing sequence (p, € PN M : n € w) and increasing sequences
Bpned:new),{t, eT! :new),(u, €T? :n € w) (s, € T? : n € w) such that:

(1) 6, =y, foralln € w,

(2) (g, pn-tw) Ik min{htg(sy), htg(u,), dom(p,)} = 8y,
(3) htre(tp) = htra(sy) + 1,

@) (g, pn, 119) IF 8, € C,
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(5) (g, pn> 1) IF [ (un) = s,
(6) ifn €e w\ 1 and t,—1 € dom(g,) then g,(t,) L sy,
(7) ifn e w\ 1 and u,—1 € dom(gy) then g, (u,) L s,.

Weletug = x, 50 = y, 8o € w suchthat (g, po, to) forces thatmin{ht(x), ht;(y),
ap,} = do. It is easy to see that this choice together with py, 7o will satisfy the corre-
sponding conditions. For given py,, t,,, Sy, U, 8, we introduce p, 41, th+1, Sn+1, Un+1,
Sn_;,_] .

Ift, ¢ dom(g,+1)letv = s,.1f1, € dom(g,+1),letv > s, suchthatv L g,41(¢,).
Such a v exists because ht(#,) > ht(s,), g,+1 is level preserving and the tree 7 is
binary.

Claim 4.5 There are t], > t,, 1_7;1 < Pn, rt; > uy such that if u, € dom(gy+1) then
(q. py- 1) forces [u, € dom(f) Av < f(up) A fuy) L gny1(uy)]

Proof of Claim Assume u,, € dom(g,+1). Recall that f (Sy) is forced to be dense in
Sy. Let py < pp,tn > ty, ag > uy, v’ > v such that (q Pustn) IF f(ag) =V, Thisis
possible because g is (M, Q)-generic. Leta > ao,t,g, tn be extensions of t_n,and pn, pn
be extensions of p, suchthat (¢, p!, tn) I+ f(a) = s, wherei € 2ands 1L s . Again,
this is possible because of Lemma 4.3 and the fact thatq is (M, Q)- generlc Leta >a
such that ht(a’) > max({ht(s?), ht(s))}. Fixi € 2 such that g,H_l(a/) L s!. Then for all
e>ad,(q, pn, tn) forces that if e € dom( f ) then f (e) > s, Moreover it forces that
gn+1(e) L st Therefore (g, pn,t NI [Ve >a' e e dom(f) — gnt1(e) L f(e)]
Letu), > a', p/, < p' andt, > t! such that (¢, p,, 1, ) IF [u, € dom( f)]. Then this
condltlon will also force f(u ) L gns1(u)) andv < f(u ). O

Fix p),, t;, u,, as in the claim above. By extending p;, if necessary, we can assume
that (¢, p,,, qu) decides the y;,,+1 st element of C \ 8,, and we let §,,4 be this ordinal.
Let un41 > u,, such that for some Pnt1 < p;, with dom(p,41) > 8,41, the condition
(g, pn+is qu) forces that u,+| € S| C and hti(up41) = 8ut1. Let r > 1. By
extending (q, pn+1, r) if necessary, we can assume this condition decides f (un+1).
Let s,+1 € T? such that (g, pp+1,7) IF f(u,,+1) = Su+1. Let t,41 > r such that
ht(#,41) > ht(s,+1). We leave it to the reader to verify that all of the conditions above
hold.

Let by, b1 be the downward closure of {u, : n € w} and {#, : n € w} respectively.
By Lemma 4.2 there is ¢’ < ¢ such that o,y > 8 + 1 and for all branches ¢ C T9,
¢ has an upper bound in 74" if and only if g,(b;) is cofinal in ¢ for some n € @ and
i € 2. Fix such a ¢’ for the rest of the argument.

We claim that (s, : n € w) does not have an upper bound in T4, Suppose for a
contradiction that it has an upper bound. Then for some m € w, either

(D) {gm(ty) :n € wnt, €dom(g,)} is cofinal in the downward closure of {s, : n €
w} or

2) {gm(un) : n € w Au, € dom(gy,)} is cofinal in the downward closure of {s, :
n € w}.

Due to similarity of the arguments, let’s assume that the first alternative happens.
Since we enumerated the elements of F with infinite repetition, by increasing m if
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necessary, we can assume that #,, € dom(g,,). But then g, (#,,) L s,, meaning that
the first alternative cannot happen, which is a contradiction. Hence {s, : n € w} does
not have an upper bound in 79 ;

Let ¢ be the upper bound of (¢, : n € w) in T? ", and u be the upper bound for
(1, : n € w) which has the lowest height §. Let p be a lower bound for (p, : n € )
which forces thatu € . Itis easy to see that (. .p.)IF[8eChruce SAhtS(u) =34].
Also by (5), (¢, p, t) forces f(u,) = s, for all n € w. Hence (¢q’, p, t) forces that
f (u) is an upper bound for (s, : n € w) which is a contradiction. O
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