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Abstract
We study two ideals which are naturally associated to independent families. The first
of them, denoted JA, is characterized by a diagonalization property which allows
along a cofinal sequence (the order type of which of uncountable cofinality) of stages
along a finite support iteration to adjoin a maximal independent family. The second
ideal, denoted id(A), originates in Shelah’s proof of i < u in Shelah (Arch Math Log
31(6), 433–443, 1992). We show that for every independent family A, id(A) ⊆ JA
and define a class of maximal independent families, to which we refer as densely
maximal, for which the two ideals coincide. Building upon the techniques of Shelah
(1992) we characterize Sacks indestructibility for such families in terms of properties
of id(A) and devise a countably closed poset which adjoins a Sacks indestructible
densely maximal independent family.

Keywords Independent families · Sacks indestructibility · Constellations of cardinal
characteristics

Mathematics Subject Classification 03E17 · 03E35

1 Introduction

The study of various combinatorial sets of reals, amongwhichmaximal almost disjoint
families, maximal cofinitary groups and towers, occupy a central place in modern
set theory. In this article we study maximal independent families. The concept of
independence first appeared in a paper of Fichtenholz and Kantorovic titled Sur les
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opérations linéaries dans l’espace des fonctions bornées [6] in which they study
properties of linear functionals in the space of bounded measurable functions and
define the notion of independence for measurable subsets of the unit interval. The
contemporary terminology is as follows:

Definition 1 (Notation) Let A be a family of infinite subsets of ω:

• We call FF(A) the family of finite partial functions from A to 2.
• Given h ∈ FF(A), Ah = ⋂{Ah(A) : A ∈ A ∩ dom(h)}, where Ah(A) = A if

h(A) = 0 and Ah(A) = ω\A otherwise.
• We refer to {Ah : h ∈ FF(A)} is the family of Boolean combinations of A.

Definition 2 A family A ⊆ [ω]ω is called independent if for for every h ∈ FF(A),
the set Ah is infinite. An independent family A is said to be maximal independent if
it is not properly contained in another independent family.

Fichtenholz andKantorovic also prove in [6] (Lemma II) that there is an independent
family of size c (see also [10] to find many different examples of such objects). This
result was generalized byHausdorff in [13], who showed that for every infinite cardinal
κ , there is an independent family of size 2κ . Clearly, Zorn’s lemma guarantees then
the existence of maximal independent families of size 2κ for all κ . Particular interest
has been given to the independence number i, which is defined as the minimum size
of a maximal independent family.1 Well-known lower bounds of the independence
number are r, d, the reaping and the dominating numbers respectively (see [2,12]).
However, there are not known upper bounds, except for the trivial one c. The value of
the independence number has been calculated in many well-known forcing extensions
(see [2] for details), for instance, in generic extensions in which we cofinally add
λ-many Cohen reals, we have that i ≥ λ because Cohen reals split the ground model,
forcing the value of r to be ≥ λ. As consequence, in the Cohen, Hechler, Random
(with finite support) and Mathias extensions the value of i is c. On the other hand, in
classical models obtained as countable support iterations we have the following: In
the Miller and the Laver extensions i = c, in the first case this is a consequence of the
fact that Miller functions are unbounded, so d = c, and in the second we know that
Laver reals are dominating, so b = c. In the Sacks model, however, the value of i is
small (namely ℵ1), this fact is due to unpublished work of Shelah and Eisworth (for
an indirect proof see [5]). In this paper, we present a direct proof of this assertion (see
Theorem 29). Among other things, the analysis we offer leads to the construction of
a co-analytic Sacks indestructible maximal independent family (see [4]).

More generally, in this paper, we study two ideals which are naturally associated to
independent families. The first (see Definition 4) is characterized by a diagonalization
property, which allows along finite support iterations of ccc posets, the length of
which is of uncountable cofinality, to iteratively construct, and so adjoint to the initial
ground model, a maximal independent family of arbitrary size. More precisely, given
an independent family A, one can construct an ideal JA and a ccc poset, to which
we will refer as independence diagonalization poset, which adjoins a real σ with the
following two properties:

1 For a study of the possible sizes of maximal independent families see [7].
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Ideals of independence 769

(1) {σ } ∪ A is independent;
(2) for all x ∈ [ω]ω\A ifA∪{x} is independent, thenA∪{x, σ } is not independent.

Analogous weak2 diagonalization properties are well-known for maximal almost
disjoint families (see [14]), maximal cofinitary groups (see [9]), and towers (see [8]).
Thus along a finite support iterations of length λ such that cof(λ) = κ > ω, one
can iteratively adjoin a maximal independent family of size κ . The maximality of the
iteratively constructed independent family is provided by property (2) and the well-
known fact that along finite support ccc iterations Cohen reals are added at stages of
countable cofinalities.

Even though the diagonalization ideals are not unique, they all contain another ideal
which is naturally associated to the independent families, the density independence
ideal introduced in Lemma 11. The study of the density independence ideal originates
in Shelah’s proof of the consistency of i < u in [15]. In fact, building upon the tech-
niques developed in [15], we introduce a countably closed poset (see Definition 13),
which naturally adjoins a Sacks indestructible (i.e. indestructible under the countable
support iterations of Sacks forcing) maximal independent family (see Theorem 29).

A careful analysis of the construction and the relevant preservation properties shows
that the Sacks indestructibility of the generic familyAG is captured by a combinatorial
property, denoted (�) in the proof of Theorem 29 and the fact that the dual filter
of id(A) is Ramsey. Property (�) expresses in particular the following maximality
property of id(A): for all h ∈ FF(A) and all X ⊆ ω such that X ⊆ Ah, either
the set Ah\X is negligible and is in the ideal id(A), or there is an entire boolean
combination contained in Ah\X . In Sect. 5, we proceed by comparing the ideals of
diagonalization anddensity.Weprove theminimality of the density independence ideal
mentioned above. Namely, we show that for arbitrary independent familyA and every
diagonalization ideal JA, id(A) ⊆ JA (see Lemma 31). We point out that the ideals
are not necessarily equal (see Lemma 32) and that the density ideal is not necessarily
a diagonalization ideal. However, for the following class of maximal independent
families, these two types of ideals do coincide. We define an independent familyA to
be densely maximal (seeDefinition 33) if for every X ∈ [ω]ω\A and every h ∈ FF(A),
there is h′ ∈ FF(A) for which either X ∩ Ah′

or Ah′ \X is finite. That is, a maximal
independent family is densely maximal if examples of maximality occur densely along
the tree of boolean combinations.We show that for infinite independent families, dense
maximality is equivalent to property (�) stated above (see Lemma 34) and that for a
densely maximal independent family A, the density ideal id(A) contains any ideal
disjoint from the boolean hull of the family A. The latter fact implies in particular,
that for densely maximal independent families the density and diagonalization ideals
coincide (seeCorollary 36).Our proof ofTheorem29 implies that a sufficient condition
for a densely maximal independent family to be preserved under the countable support
iteration of Sacks forcing is that the dual ideal of its density ideal is generated by a
Ramsey filter and the co-finite sets.

Finally, we show that for an arbitrary independent familyA, neither JA, nor id(A)

is maximal (see Proposition 38).We conclude by pointing out that Sacks indestructible

2 For mad families, as well as towers, there is a natural strengthening of this property, leading to the
preservation of mad families and towers along appropriate 2D-iterations, see respectively [3,8].
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densely maximal independent families can be inductively constructed under CH, by
making some further general remarks and stating some open questions.

2 Adjoining an independent real

Lemma 3, as well Definition 5 and Lemma 6 can be found in [12].

Lemma 3 Let A be an independent family. Then there is an ideal JA on ω with the
following properties:

(1) JA ∩ {Ah : h ∈ FF(A)} = ∅.
(2) For every X ∈ [ω]ω there is h ∈ FF(A) such that either X ∩Ah or Ah\X belongs

to JA.

Proof Let {Xα}α∈c be an enumeration of [ω]ω. Inductively, construct an increasing
sequence of ideals J̄ = 〈Jα : α ∈ c〉 as follows. Let J0 = [ω]<ω and suppose
Jα has been constructed. Consider Xα . If there is h ∈ FF(A) and Y ∈ Jα such
that Ah ⊆ Xα ∪ Y , then take Jα+1 = Jα . Otherwise, define Jα+1 to be the ideal
generated by Jα ∪{Xα}. Finally, if α < c is a limit ordinal, put Jα = ⋃

β<α Jβ . Once
this inductive construction finishes, we define JA as JA = ⋃

α∈c Jα .
To verify property (1) above, suppose by way of contradiction that there is h0 ∈

FF(A) such that Ah0 ∈ JA. Since Ah0 is infinite, JA �= J0. Take β > 0 minimal
such thatAh0 ∈ Jβ . Then β = α + 1 is a successor,Ah0 /∈ Jα and sinceAh0 ∈ Jα+1
we must have Jα �= Jα+1. Then, by construction of Jα+1, for all h ∈ FF(A) and all
Y ∈ Jα ,Ah � Y ∪ Xα . On the other hand, sinceAh0 ∈ Jα+1\Jα = 〈Jα ∪{Xα}〉\Jα ,
there must be Y0 ∈ Jα such that Ah0 ⊆ Y0 ∪ Xα , which is clearly a contradiction.

To verify property (2), consider any X ∈ [ω]ω. Again X = Xα for some minimal
α < c. If Jα = Jα+1 then there are h′ ∈ FF(A) and Y ∈ Jα such thatAh′ ⊆ Xα ∪ Y .
But then, Ah′ \Xα ⊆ Y , which implies that Ah′ \Xα ∈ JA. Otherwise, Xα ∈ Jα+1
and so property (2) trivially holds, since for each h ∈ FF(A), Xα ∩ Ah ⊆ Xα ∈ JA
and so, clearly it belongs to JA. �
Definition 4 Whenever A is an independent family and JA is an ideal satisfying
properties (1) and (2) of Lemma 3, we say thatJA is an independence diagonalization
ideal associated to A.

More properties of these ideals will be presented in the upcoming sections.
Note The ideal JA constructed above is not unique and depends on the chosen

enumeration of P(ω). Suppose for instance that A is not maximal and take X0 to be
a subset of ω such that for all boolean combinations h ∈ FF(A) the sets Ah ∩ X and
Ah\X are infinite.

Now consider an enumeration of [ω]ω, π0 for which π0(0) = X0 and denote by
J 0 the ideal associated to the family A with respect to π0 and J 0

α its corresponding
approximations for all α < c. Then by the definition we get X0 /∈ J 0

1 (the first step
in the inductive construction relative to π0) because Ah � X0 ∪ Y for all h ∈ FF(A)

and Y ∈ J 0
0 = [ω]<ω. In other words, Ah �∗ X0 for all h ∈ FF(A).
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Ideals of independence 771

On the other hand, if π1 is another enumeration of [ω]ω such that π1(0) = Ag\X0
for some g ∈ FF(A) and we denote J 1 to be the ideal associated to A with respect
to π1. Likewise, denote J 1

α to be the corresponding inductive approximations of J 1,
for all α < c. Thus, we must have Ag\X0 ∈ J 1

1 . Given h ∈ FF(A), Ah\(Ag \ X) =
(Ah ∩ (ω\Ag))∪ (Ah ∩ X) and the latter setAh ∩ X0 is always infinite. But then, this
implies that X0 /∈ J 1, because otherwise (Ag\X0) ∪ X0 would also be an element of
J 1 and this contradicts that Ag /∈ J 1

A.
The poset below adjoins a new real to a given independent family, and furthermore

weakly diagonalizes the ground model with respect to the independent family A as
described in Lemma 6.

Definition 5 Let A be an independent family and let JA be an independence diago-
nalization ideal associated to it. The poset B(JA) consists of all pairs (s, E) where
s ∈ [ω]<ω, E ∈ [JA]<ω with extension relation defined as follows: (t, F) ≤ (s, E)

if and only if t ⊇ s, F ⊇ E and (t\s) ∩ ⋃
E = ∅.

Throughout the paper, unless otherwise specified, V denotes the ground model.
Note that the poset B(JA) is σ -centered, so it preserves cardinals. Additionally it has
the following weak diagonalization property:

Lemma 6 Let G be a B(JA) generic filter. Then xG := ⋃{s : ∃F(s, F) ∈ G} is
an infinite subset of ω such that in V [G], A ∪ {xG} is independent, while for every
Y ∈ ([ω]ω\A) ∩ V , the family A ∪ {xG , Y } is not independent.

Proof First, to see thatA∪ {xG} is independent notice that given a condition (s, F) ∈
B(JA), h ∈ FF(A) and n ∈ ω, we can extend the condition (s, F) to (t, G) such that
both t ∩ Ah and

⋃
G ∩ Ah have size greater than n because Ah is an infinite set for

which Ah\⋃
F is infinite.

Second, let Y ∈ ([ω]ω\A) ∩ V . Without loss of generality assume that A ∪ {Y } is
independent and consider an arbitrary (s, E) ∈ B(JA). By definition of JA there is
h′ ∈ FF(A) such that either Y ∩ Ah′

or Y\Ah′
is in JA. In the former case note that

(s, E ∪ {Y ∩ Ah′ }) is an extension of (s, E) forcing that xG ∩ Y ⊆ s, while in the
second case (s, E ∪ {Y\Ah′ }) is an extension of (s, E) forcing that xG ∩ Y\Ah′ ⊆ s.

�
As a corollary we obtain:

Theorem 7 (GCH) Let κ < λ be regular uncountable cardinals. There is a ccc generic
extension in which i = d = κ < c = λ.

Proof Let γ be the ordinal product λ · κ . Then |γ | = λ and cof(γ ) = κ . Let E be
a cofinal subset of γ of cardinality κ consisting of successor ordinals. Define a finite
support iteration 〈Pα, Q̇β : α ≤ γ, β < γ 〉 as follows. Suppose we have defined
Pβ for each β < α, as well as an increasing sequence of {Aβ}β<α of independent
families, where Aβ ∈ V Pβ . If α is a limit, define Pα to be the finite support iteration
of 〈Pβ : β < α〉 and Aα = ⋃

β<α Aβ . Now, suppose α is a successor, α = ξ + 1.

If α ∈ E , in V Pξ fix an independence diagonalization ideal Jξ = JAξ
associated

to the independent family Aξ and take Q̇ξ to be a Pξ -name for B(Jξ ). Let xξ be the
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generic adjoined by Qξ over V Pξ and define Aα = Aξ ∪ {xξ }. If α /∈ E , let Q̇α be a
Pα name for the Cohen poset C,Aα = Aξ . With this the inductive definition of Pγ is
complete.

Recall that the iteration defined above is ccc. Also, since cof(γ ) = κ , the Cohen
reals added along a cofinal in γ sequence of length κ form an unbounded family in
V Pγ and so V Pγ � κ ≤ d.

The familyA = Aγ is clearly independent, as the increasing union of independent
families. Suppose there is Y ∈ V Pγ ∩[ω]ω, which is not inA, yetA∪{Y } is indepen-
dent. There is α = ξ +1 ∈ E such that Y ∈ V Pξ . Then V Pξ � Aξ ∪{Y } is independent
and so by Lemma 6 V Pα � Aα ∪ {Y } is not independent, which is a contradiction.
Thus V Pγ � A is maximal and so V Pγ � κ ≤ d ≤ i ≤ κ . �

The following lemma shows that the increasing enumeration function of the generic
real added by B(JA) is unbounded over the ground model reals.

Lemma 8 Let G be B(JA) generic filter and let σG be the enumerating increasing
function of xG. Then for all g ∈ ωω ∩ V , V [G] � ∃∞n(g(n) < σG(n)).

Proof It is sufficient to show that for each n ∈ ω and each g ∈ ωω ∩ V the set

Dn = {(s, F) : ∃m > n((s, F) � σG(m) > g(m))}

is dense. Fix n ∈ ω, (s, F) ∈ B(JA). Let K := ω\(⋃ F ∪ s). Consider K with its
increasing enumeration and take an initial segment �0 of K such that s ∪ �0 is an
initial segment of K ∪ s and |s ∪ �0| = m for some m > n. Note that (s ∪ �0, F)

forces that the enumerating function of s ∪ �0 is equal to σG � m. Now, take �1 =
(K\�0)∩(g(m)+1) and let k∗ = min K\(�0∪�1). Thenq := (s∪�0∪{k∗}, F∪�1)

extends (s ∪ �0, F) and forces σG(m) = k∗. Thus in particular, q ≤ (s, F) and
q � σG(m) > g(m). �

Anatural question to ask iswhether the diagonalization poset also adds a dominating
real. Below, we present a sufficient condition for B(JA) to adjoin a dominating real
and in Sects. 5 and 6 we will point out the existence of maximal independent families
for which these conditions are satisfied.

Lemma 9 Let A be an independent family in V and let JA be an independence
diagonalization ideal associated to it. Suppose there is a family {Xg : g ∈ ωω ∩
V and g is increasing} ⊆ V ∩ P(ω) such that for each g:

(1) Xg ⊆ [g(0), ω);
(2) ω\Xg ∈ JA;
(3) for all but finitely many n, |Xg ∩ [g(n), g(n + 1))|≤ 1.

Let G be B(JA) generic over V and let σG be the increasing enumerating of xG. Then
σG dominates ωω ∩ V .

Proof Let g ∈ ωω ∩ V , (s, F) ∈ B(JA) and m minimal such that for all n ≥ m,

|Xg ∩ [g(n), g(n + 1))|≤ 1 and n ≥ max(s).
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Ideals of independence 773

Fix �0 ⊆ K = ω\(⋃ F ∪ s) so that s ∪ �0 is an initial segment of K ∪ s and
|s ∪ �0|= m. Let u be the increasing enumeration of �0 ∪ s.

Thus (s ∪ �0, F) � u = σ̇G � m and putting H = F ∪ {ω\Xg, [0, g(m))} (which
by hypothesis is a finite subset of JA), we obtain (s ∪ �0, H) ≤ (s ∪ �0, F) and
(s∪�0, H) � ∀n ≥ m(σ̇G(n) /∈ F ∪{ω\Xg, [0, g(m))}). In particular, (s∪�0, H) �
∀n ≥ m(σ̇G(n) ∈ Xg ∩ [g(m), ω)), which implies (s ∪ �0, H) � ∀n ≥ m(σ̇G(n) ≥
g(n)). �
Definition 10 A filter F on ω is a Ramsey, if for every partition {An : n ∈ ω} such
that ω\An ∈ F , there is a sequence {kn : n ∈ ω} ∈ F with kn ∈ An , for all n ∈ ω.

The lemma above suggests that ideals of the form JA such that the corresponding
filters FA = P(ω)\JA are Ramsey are good candidates for domination. In Sect. 5,
we will see that independent families the diagonalization ideal of which has the above
property do exist.

3 A generic maximal independent family

In [15] Shelah constructs a maximal independent family which remains a witness to
i = ℵ1 in a model of u = ℵ2. We show that, over a model of GCH for example, his
construction naturally gives rise to the existence of a countably closed, ℵ2-cc poset P
which generically adjoins a maximal independent family, which as shown in the next
section is Sacks indestructible.

Lemma 11 Let A be an independent family and let D(X) to be the set of all functions
h ∈ FF(A) for which X ∩ Ah is finite. Then

(1)

id(A) = {X ⊆ ω : ∀h ∈ FF(A)∃h′ ⊇ h(Ah′ ∩ X) is finite}
= {X ⊆ ω : D(X) is dense in FF(A)}

is an ideal on ω, to which we refer as the independence density ideal associated to
A. Here when we say “dense” in FF(A), we mean dense respect to the inclusion
relation.

(2) If A0, A1 are independent families such that A0 ⊆ A1, then id(A0) ⊆ id(A1).

Proof Straightforward. �
Remark 12 IfA is an infinite independent family, X ⊆ ω, and h ∈ FF(A) is such that
Ah ∩ X is finite, then there is h1 ∈ FF(A) such that h1 ⊇ h and Ah1 ∩ X = ∅.
Definition 13 LetP be the poset of all pairs (A, A)whereA is a countable independent
family, A ∈ [ω]ω such that for all h ∈ FF(A) the setAh ∩ A is infinite. The extension
relation on P is given by: (B, B) ≤ (A, A) if and only if B ⊇ A and B ⊆∗ A.

The following shows that the sets in id(A) are indeed negligible sets.
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774 V. Fischer, D. C. Montoya

Lemma 14 Let (A, A) ∈ P and let X ∈ id(A). Then (A, A\X) ∈ P.

Proof Sufficient to show that for each h ∈ FF(A), the setAh ∩ (A\X) is infinite. Fix
h ∈ FF(A). Since X ∈ id(A), there is h′ ⊇ h, h′ ∈ FF(A) such that Ah′ ∩ X = ∅,
which implies Ah′ ⊆ ω\X . Then Ah′ ∩ (A\X) = Ah′ ∩ A, and so Ah′ ∩ (A\X) is
infinite. However Ah′ ∩ (A\X) ⊆ Ah ∩ (A\X), which implies that Ah ∩ (A\X) is
also infinite. Thus (A, A\X) is indeed a condition. �

Another straightforward observation following the above Lemma is that for each
X ∈ id(A), the set of conditions (B, B) in P such that X ∩ B = ∅ is dense below
(A, A). The poset P has the following properties (see also [15, Claim 2.2]).

Proposition 15 The poset P is σ -closed. Furthermore, ifCH holds and 2ℵ1 = ℵ2, then
P is ℵ2-cc.

Proof To verify that P is σ -closed, consider a decreasing chain of conditions,
{(An, An) : n ∈ ω}. Without loss of generality, we can assume that for all n ∈ ω,
An+1 ⊆ An . Let A = ⋃

n∈ω An . Now, for each n, let {hn,l : l ∈ ω} enumerate
FF(An). If m ≤ n, then Am ⊆ An and so FF(Am) ⊆ FF(An). Now, for each n ∈ ω

pick {kn,m,l : m ≤ n, l ≤ n} such that kn,m,l ∈ An ∩ Ahm,l
n .

Finally, let A = {kn,m,l : n ∈ ω, m ≤ n, l ≤ n}. Note that A\An = {ki,m,l : i <

n, m ≤ i, l ≤ i} is finite and so A is a pseudo-intersection of the An’s meeting each
Ah for h ∈ FF(A) on an infinite set.

Assuming CH given a set of ℵ2-many conditions in P, X = {(Aα, Aα) : α < ℵ2},
we can assume that Aα = Aβ for all α, β < ℵ2. If 2ℵ1 = ℵ2, then there are just
ℵ1-many countable subsets of ℵ1. So there must be an uncountable set of compatible
conditions in X . �

For convenience, we will introduce some terminology:

Definition 16 Let E be a partition of ω and A ∈ [ω]ω. We will say that χ(E, A) holds,
if either there is E ∈ E such that A ⊆ E , or for each E ∈ E we have |E ∩ A| ≤ 1.
Whenever the latter option holds, we will say that A is a semiselector for E .
Lemma 17 If (A, A) ∈ P, then there is B /∈ A, B ⊆ A such that (A ∪ {B}, A) ≤
(A, A).

Proof Let {hn : n ∈ ω} be a fixed enumeration of FF(A). Since Ah0 ∩ A is infinite,
we can find distinct k0,0, k0,1 in it. Proceed inductively. Suppose we have defined
{ki, j : i ∈ n, j ∈ 2} all distinct. Since Ahn ∩ A is infinite, we can find distinct kn,0
and kn,1 in Ahn ∩ A\{ki, j : i ∈ n, j ∈ 2}. Finally, take B = {ki,0 : i ∈ ω}. Clearly,
B ⊆ A. To see thatA∪{B} is independent, consider an arbitrary h ∈ FF(A). Note that
∃∞m(h ⊆ hm). But then for infinitely many m, we have km,0 ∈ Ahm ∩ B ⊆ Ah ∩ B
and km,1 ∈ Ahm \B ⊆ Ah\B, which implies that bothAh ∩ B andAh\B are infinite.

�
Lemma 18 If (A, A) ∈ P, E is a partition of ω and h0 ∈ FF(A), then there exist
h1 ⊇ h0, B ⊆ A such that (A, B) ≤ (A, A) and χ(E,Ah1 ∩ B). Moreover, if
|E | < ω for each E ∈ E , then Ah1 ∩ B is a semiselector for E .
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Ideals of independence 775

Proof Let {hn : n ∈ ω} enumerate {h ∈ FF(A) : h0 ⊆ h}, where h0 is the given
finite function h0. Suppose we can inductively construct a sequence {kn : n ∈ ω}
such that for each n, kn ∈ (Ahn ∩ A)\(⋃{E(kl) : l < n}), where E(kl) is the unique
E ∈ E such that kl ∈ E . Then, take B = {kn : n ∈ ω} ∪ (A\Ah0) and notice
that B ⊆ A; we claim that A ∪ {B} is independent. Indeed: Fix h ∈ FF(A). If h
and h0 are compatible, consider h′ = h ∪ h0. Then for infinitely many m, we have
km ∈ Ahm ⊆ Ah′

and soAh ∩ B is infinite. If h and h0 are incompatible, then there is
C ∈ dom(h) ∩ dom(h0) such that h(C) �= h0(C). Without loss of generality, assume
h(C) = 0. Then Ah = Ah′ ∩ C , where h′ = h � dom(h)\{C}. On the other hand,
Ah0 ⊆ ω\C and so A\Ah0 ⊇ A ∩ C . Therefore

Ah ∩ B ⊇ (Ah′ ∩ C) ∩ A ∩ C ⊇ Ah ∩ A.

However (A, A) is a condition and soAh ∩ A is infinite. ThusAh ∩ B is also infinite.
Otherwise, we can finite a finite sequence {kl : l < n} such that for each l < n,

kl ∈ (Ahl ∩ A)\⋃{E(k j ) : j < l}, but Ahn ∩ A ⊆ ⋃{E(kl) : l < n}. By induction
on l ≤ n, try to find hn,l ∈ FF(A) such that hn,0 = hn , hn,l ⊆ hn,l ′ for l < l ′ and
A ∩ Ahn,l+1 ∩ E(kl) is finite. If we succeed to do this for each l < n, then Ahn,n ∩ A
will be covered by a finite set, which is a contradiction. Therefore there is l such that
0 ≤ l < n and for each h ⊇ hn,l the set Ah ∩ A ∩ E(kl) is infinite. Take h1 = hn,l ,
B = (A ∩ Ah1 ∩ E(kl)) ∪ A\Ah1 . Then clearly Ah1 ∩ B ⊆ E(kl). It remains to
show that A ∩ {B} is independent. Fix h ∈ FF(A). If h is compatible with h1, then
h′ = h1 ∪ h extends h1 and so by the choice of hn,l , Ah′ ∩ B = Ah′ ∩ A ∩ E(kl) is
infinite. If h and h1 are incompatible, then there is C ∈ dom(h) ∩ dom(h1) such that
h(C) �= h1(C). Without loss of generality, h(C) = 0. Then Ah ∩ B ⊇ A ∩ C , since
A\Ah1 ⊇ A ∩ C , and so Ah ∩ B is infinite. �
Corollary 19 Let E be a partition of ω.

(1) The set of (A, A) ∈ P such that for all h ∈ FF(A)∃h′ ∈ FF(A) such that χ(E,Ah′
)

is dense in P.
(2) If E is a partition into finite sets, then the set of (A, A) ∈ P such that A is a

semiselector for E is dense in P.

Proof (1) Given (A, A) and an h0 ∈ FF(A), by Lemma 18 we can find h1 ⊇ h0,
B ⊆ A such that (A, B) ≤ (A, A) and χ(E,Ah1 ∩ B). Now, by Lemma 17, there
is B ′ ⊆ B such that (A ∪ {B ′}, B) ≤ (A, B) and so h2 = h1 ∪ {(B ′, 0)} extends
h0, and χ(E,Ah2

1 )whereA1 = A∪{B ′}. Repeat countably many times the above
argument, to obtain a countable decreasing sequence of conditions {(An, An)}n∈ω

such thatAω = ⋃An is closed with respect to the above property and take Aω to
be a pseudointersection of the An’s. Then (Aω, Aω) is as desired.

(2) Let {hn : n ∈ ω} enumerate FF(A). Inductively construct a sequence {kn,i : n ∈
ω, i ∈ 2} of distinct numbers such that for each n, i , kn,i ∈ (Ahn ∩ A)\(⋃{E(kl,i ) :
l < n, i ∈ 2}), where E(kl,i ) is the unique E ∈ E such that kl,i ∈ E . Then, take
B = {kn,0 : n ∈ ω}. Then B ⊆ A and we claim that A ∪ {B} is independent.
Indeed. Fix h ∈ FF(A). Then for infinitely many m, we have km,i ∈ Ahm ⊆ Ah′

,
and so both Ah ∩ B, as well as Ah\B are infinite. �
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Corollary 20 Let G be P-generic over V . ThenAG = ⋃{A : ∃A ∈ [ω]ω with (A, A) ∈
G} is a maximal independent family.

Proof Suppose X ∈ [ω]ω\AG and AG ∪ {X} is independent. Pick (A, A) ∈ G such
that

(A, A) � “AG ∪ {X} is independent and X /∈ A′′
G .

Consider (A, A). If for each h ∈ FF(A), |Ah ∩ X ∩ A| = |Ah ∩ A ∩ Xc| = ω, then
(A ∪ {X}, A) ≤ (A, A) and (A ∪ {X}, A) � “X ∈ A′′

G , which is a contradiction.
Otherwise, there is h ∈ FF(A) such that |Ah ∩ A ∩ X | < ω or |A ∩ A ∩ Xc| < ω.
However, by Lemma 17 there is B /∈ A such that B ⊆ A and (A∪ {B}, A) ≤ (A, A).
But then,

(A ∪ {B}, A) � “∃h ∈ FF(AG) such that Ah
G ∩ X or Ah

G\X is finite′′.

Therefore (A ∪ {B}, A) � “AG ∪ {X} is not independent′′, which is a contradiction.
�

Thus, forcing with P over a model of CH and 2ℵ1 = ℵ2 adjoins a maximal inde-
pendent family which is necessarily of size ℵ1 as the poset does not add any new
reals.

Lemma 21 �P id(AG) = ⋃{id(A) : ∃A(A, A) ∈ G}.
Proof The property follows from the countable closure of P. Indeed, suppose there is
p = (A, A) ∈ P and X ∈ [ω]ω ∩ V such that

p � X ∈ id(AG)\
(⋃

{id(A) : ∃A(A, A) ∈ G}
)

.

Consider(A, A), X and let h ∈ FF(A). Then

p � ∃h′ ∈ FF(AG)(h ⊆ h′ and Ah′ ∩ X = ∅).

Thus, there is (A′, A′) ∈ G extending (A, A) such that h′ ∈ FF(A′), h′ ⊇ h and
Ah′ ∩ X = ∅. Proceed inductively to construct a decreasing sequence {(An, An)} of
conditions below p, such that if Aω = ⋃

n∈ω An , then for all h ∈ FF(Aω) there is
h′ ∈ FF(Aω) such that h′ ⊇ h and Ah′ ∩ X = ∅. Thus X ∈ id(Aω). Take Aω to be
any pseudointersection of {An}n∈ω and let p′ := (Aω, Aω). Then p′ ≤ p and

p′ � X ∈
⋃

{id(A) : ∃A(A, A) ∈ G},

which is a contradiction. �
Corollary 22 Let G be a P-generic filter. Then in V [G] the density independence ideal
id(AG) is generated by {ω\A : ∃A(A, A) ∈ G}. That is �P id(AG) = 〈{ω\A :
∃A(A, A) ∈ G}〉.
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Proof Let G be a P generic filter. The lemma above gives us that in the generic
extension V [G], id(AG) = ⋃{id(A) : ∃A(A, A) ∈ G}, also let IG to be the ideal
generated by {ω\A : ∃A(A, A) ∈ G} in the extension. First we show that id(AG) ⊆
IG . Let X ∈ id(AG). Thus there is (A, A) ∈ G such that X ∈ id(A). However
DX = {(B, B) : X ∩ B = ∅} is dense below (A, A) and so there is (B, B) ∈ G such
that X ∩ B = ∅. That is, X ⊆ ω\B and so X ∈ IG .

To show that IG ⊆ id(AG), consider any X ∈ IG . Then there is a finite set
of conditions {(Ai , Ai )}i∈n in G such that X ⊆ ⋃

i∈n ω\Ai = ω\⋂
i∈n Ai . Note

that (B, B) ∈ G, where (B, B) = (
⋃

i∈n Ai ,
⋂

i∈n Ai ). Thus X ⊆ ω\B. Fix any
h ∈ FF(AG). Then, there is (C, C) ∈ G such that h ∈ FF(C). Without loss of
generality (C, C) ≤ (B, B). Since the set DB = {(C′, C ′) : ∃Y ∈ C(Y ⊆ B)} is
dense below (B, B), there is (C′, C ′) ∈ G such that for some Y ∈ C′, Y ⊆ B. Then
h′ = h ∪ {(Y , 0)} ∈ FF(AG) and Ah′

G ∩ X = ∅. Thus X ∈ id(AG). �
Definition 23 (1) We say that a family F ⊆ [ω]ω is a Q-set if for every partition E of

ω into finite sets, there is A ∈ F such that A is a semiselector for E .
(2) A filter F on ω is said to be a P-set, if every countable subfamily of F has a

common pseudointersection in F .3

(3) AfilterF onω is aRamsey, if for every partition {An : n ∈ ω} such thatω\An ∈ F ,
there is a sequence {kn : n ∈ ω} ∈ F with kn ∈ An , for all n ∈ ω.

Lemma 24 Let G be P-generic, let F0
G = {A : ∃A(A,A) ∈ G}. Then F0

G is a Q-set
and the filter FG generated by F0

G and the co-finite sets is a P-set. Thus, in particular
FG is Ramsey.

Proof By Corollary 18 F0
G is a Q-set. Indeed, if E be a partition of ω into finite sets

in V [G], then E is a ground model set and so there is (A, A) ∈ G such that A is a
semiselector for E . Clearly A ∈ F0

G .
To see that FG is closed under finite intersections, consider arbitrary compatible

conditions (A1, A1) and (A2, A2) in P. Let (C, C) be their common extension in
G. Then C ⊇ A1 ∪ A2 and C ⊆∗ A1 ∩ A2. Thus there is a finite K such that
C\K ⊆ A1 ∩ A2. Thus if A1, A2 are from F0

G , then one can find C ∈ FG as above,
and a finite K such that A1 ∩ A2 is a superset of C\K , and so A1 ∩ A2 ∈ FG .

It remains to show that every countable subfamily of FG has a common pseudoint-
ersection inFG . Note that it is sufficient to show that � (F0

G is a P-set). Suppose not.
Then there is a condition p ∈ P such that

p � ∃H′ ∈ [F0
G]ω s.t. ∀F ∈ F0

G∃H ∈ H′(F �∗ H).

Fix G a P-generic filter such that p ∈ G. Since P is countably closed, we can find
H′ ∈ V witnessing the above property. ThusH′ = {(An, An)}where each (An, An) ∈
G. Without loss of generality (A0, A0) extends p and (An+1, An+1) ≤ (An, An) for
each n. Take q = (Aω, Aω) to be a common extension of the elements in H′. Then
q ≤ p and q forces that Aω ∈ F0

G is a common pseudointersection of the sets in H′,
which is a contradiction. �
3 The names of P-set and Q-set come from the usual terminology for P-points and Q-points.
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Corollary 25 Let G be P-generic. Then the dual filterfil(A)of the density independence
ideal id(AG) is generated by F0

G and the co-finite sets, and so fil(AG) = FG.

Proof Note that id(AG) is generated by {ω\A : ∃A(A, A) ∈ G} and the finite sets. �

4 Sacks indestructibility

In the following, we show that the above generic maximal independent family is Sacks
indestructible. The existence of a Sacks indestructible maximal independent family is
known (see for example [2] and [5]), however to the best knowledge of the authors
a proof of its existence prior to the current work did not appear in the literature.
Throughout the Section let V denote the ground model, while V0 = V P. In addition,
we assume that V is a model of CH and 2ℵ1 = ℵ2. Since P is countably closed, we
clearly have V ∩ [ω]ω = V0 ∩ [ω]ω. By A we denote the generic independent family
obtained in the previous section.

Lemma 26 Let S be Sacks forcing. Then for each X ∈ id(A)V S

0 there exists Y ∈
id(A)V0 such that X ⊆ Y .

Thus the density independence ideal ofA in V S

0 has the same generating set as the
density independence ideal of A in V0.

Proof Recall first that in Lemma 11, the setD(X)was defined and one can characterize
the density ideal using it. Namely, id(A) = {X ⊆ ω : D(X) is dense in FF(A)}.

We shall then prove that if Ḋ is a S-name for an open dense subset of ω<ω, then
there existsD′ ∈ V0, an open dense subset ofω<ω, such that there is a condition S ∈ S
forcing D′ ⊆ Ḋ. Note that this implies the result because given X ∈ (id(A))V S

0 we
get D(X) is dense in FF(A) which can be put in correspondence with ω<ω and so,
we can find D′ ∈ V0, D′ ⊆ D(X) open dense. Hence Y = ⋂

h∈D′(ω\Ah) ∈ V0 and
Y ∈ id(A)V0 .

Let T ∈ S be a condition forcing Ḋ ⊆ ω<ω is open dense and 〈sn : n ∈ ω〉 be an
enumeration of ω<ω. Inductively, we construct a fusion sequence 〈Sn : n ∈ ω〉 in S
and a sequence 〈Bn : n ∈ ω〉 of ground model objects (in V0) such that Bn ⊆ ω<ω

and the following is satisfied:

• For every n ∈ ω, Sn+1 ≤n Sn . Recall this means, Sn+1 ≤ Sn and splitn(Sn+1) =
splitn(Sn).

• Dn+1 ⊆ [sn] where [v] = {w ∈ ωω : w ⊇ v}.
• |Bn|= 2n .

Start with S0 = T and suppose we have already constructed the tree Sn . For each
u ∈ splitn(Sn) and i ∈ {0, 1} look at the condition (Sn)ui . Then there is a condition
Un,i ≤ (Sn)ui and tu,i ∈ ω<ω such that Un,i � tn,i ⊇ sn and [tn,i ] ⊆ Ḋ (this is
possible because T � Ḋ is open dense).

Put then Sn+1 = ⋃{Uu,i : u ∈ splitn(Sn) ∧ i ∈ {0, 1}} and Dn+1 = {tn,i : u ∈
splitn(Sn) ∧ i ∈ {0, 1}}. Clearly the conditions are satisfied (|split(Sn)|= 2n).
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Finally, let S be the fusion of the sequence 〈Sn : n ∈ ω〉 and D′ = ⋃
n∈ω Dn . Then

S � D′ ⊆ Ḋ and D′ is dense (without loss of generality open dense) in ω<ω as we
wanted. �

Furthermore, we have the following preservation theorem.

Theorem 27 (Shelah [16]) Let 〈Pα, Q̇α : α < ω2〉 be a countable support iteration

of Sacks forcing. Then for every dense open set D ∈ V
Pω2
0 , D ⊆ ω<ω there exists

D′ ∈ V0 open dense subset of ω<ω such that V Pω2 |� D′ ⊆ D.

Recall also the definition of Sacks property for a partial order:

Definition 28 (See Section 6.3.F in [1]) A forcing notion P has the Sacks Property
if for every condition p ∈ P and every P-name ḟ for an element in ωω there are a
condition q ≤ p and a slalom F : ω → [ω]<ω with |F(n)| ≤ n for all n ∈ ω such
that q � ḟ (n) ∈ F(n) for all n ∈ ω.

Note From now on, we will use (without proof) that Sacks forcing has the Sacks
property (see Lemma 7.3.2 in [1]) andmoreover, that the countable support iteration of
proper forcings with the Sacks property also has the Sacks property. For more details
of Sacks forcing and the Sacks property see [11].

Proof Of Theorem 27 This uses the fact that a countable support iteration of Sacks
forcing has the Sacks property together with the argument we gave for the single step
in Lemma 26. �
Theorem 29 The generic maximal independent family adjoined by P over a model of
CH and 2ℵ0 = ℵ1 remains maximal after the countable support iteration of Sacks
forcing S of length ω2.

Proof Let 〈Pα, Q̇α : α < ω2〉 denote the countable support iteration of S over V0 =
V P. We shall prove that the generic maximal independent family A adjoined by P is
still maximal in the V P∗Pω2 . To do this we will prove the following inductively for all
α < ω2:
(�)α: In V P∗Pα , for all h ∈ FF(A) and all X ⊆ ω such that X ⊆ Ah , either ∃B ∈
(id(A))V0 such that Ah\X ⊆ B, or ∃h′ ∈ FF(A) such that h ⊆ h′ and Ah′ ⊆ Ah\X .

In the following, let fil(A) denote the dual filter of id(A). Note that for h ∈ FF(A)

and X ⊆ Ah , there is B ∈ id(A) such thatAh\X ⊆ B if and only if there is F ∈ fil(A)

such that Ah ∩ F ⊆ X . Note also that fil(A) = {F ⊆ ω : ∀h ∈ FF(A)∃h′ ⊇
h such that Ah′ ⊆∗ F}.

Now, suppose (�)ω2 holds. IfA is notmaximal in V P∗Pω2 then there is X ∈ V P∗Pω2 ∩
[ω]ω such that for all h ∈ FF(A), bothAh∩X andAh\X are infinite. Fix h and consider
Y h = Ah ∩ X . Then Y h ⊆ Ah and so by (�)ω2 either there is B ∈ (id(A))V0 such
that Ah\Y h ⊆ B, or there is h′ ⊇ h such that Ah′ ⊆ Ah\Y h . In the latter case,
Ah′ ∩ Y h = Ah′ ∩ X = ∅, which is a contradiction to the choice of X . In the former
case, fix B ∈ (id(A))V0 such that Ah\Y h ⊆ B. Thus there is h′ ∈ FF(A) such that
h′ ⊇ h and Ah′ ∩ B = ∅, i.e. Ah′ ⊆ ω\B. However Ah\X = Ah\Y h ⊆ B and so
Ah′ \X ⊆ Ah\X ∩ ω\B = ∅, which is again a contradiction to the choice of X .
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We are left with the task of proving (�)α for all α ≤ ω2. Proceed inductively.

Base case Fix h and X as in (�)0. IfAh\X /∈ id(A), then there is h0 ∈ FF(A) such that
for all h1 ∈ FF(A) extending h0, the setAh1∩(Ah\X) is infinite.Consider the partition
E = {Ah\X , ω\(Ah\X)} and the boolean combinationAh0 . By Corollary 19.(1) there
is h1 ⊇ h0 such that χ(E,Ah1). However ifAh1 ⊆ ω\(Ah\X), thenAh1 ∩(Ah\X) =
∅, which is a contradiction to the choice of h0. ThusAh1 ⊆ Ah\X , and soAh1∩X = ∅.
Successor case Let α = β + 1. Assume V P∗Pβ � (�)β and let G ∗ Ḡ be a P ∗ Pβ -
generic over V filter. Work in Vβ = V [G ∗ Ḡ]. Suppose there are p ∈ Qβ(= Sβ), and
a Pβ -name Ẋ for a subset of ω that is forced over Vβ by p to be a counterexample
for (�)α . Without loss of generality p is also a condition that forces the generic Sacks
real added at this step to decide the values of Ẋ ∩ (n + 1). Consider the following two
cases:

Case 1 Suppose that there is l ∈ ω so that, the set Yl = {m ∈ ω : ∃q ≤l+1 p such
that q � m /∈ Ẋ} does not belong to the filter fil(A). Since Yl belongs to V P∗Pβ and
V P∗Pβ |� Yl ⊆ Ah (otherwise, there is m ∈ Yl\Ah and so, we can find a condition
r ≤ p for which r � m ∈ Ẋ which is not possible) we can apply the inductive
hypothesis (�)β to it. Then we have the following two possibilities:

• Either there is Bl ∈ id(A) such that Ah\Yl ⊆ Bl , and now since Yl /∈ fil(A),
there is g ∈ FF(A) such that for all g′ ⊇ g, Yl\Ag′

is infinite. But then we must
have that both h and g are compatible, and so we can find h′ ∈ FF(A) a common
extension for which we will get Ag\Yl ⊆ Ah is infinite and belongs to id(A), a
contradiction.

• Hence, we must have that there exists h′ ⊇ h for whichAh′ ∩Yl = ∅. This implies
that, given m ∈ Ah′

for all conditions q ≤l+1 p we have q � m /∈ Ẋ and so,
p � Ẋ ∩Ah′ = ∅. However, this contradicts the assumption that p forces Ẋ to be
a counterexample to (�)α .

Case 2 For all l ∈ ω the sets Yl ∈ fil(A). Since fil(A) is a P-set, there is A j ∈ fil(A)

(in fact A j ∈ F0
G) such that A j ⊆∗ Yl . Let f be a real in ωω such that A j\Yl ⊆ f (l)

for each l ∈ ω. By the Sacks property, we can assume that f ∈ V .
Refine A j as follows: Take k0 = min(A j\ f (0)) and if we have already chosen

kn ∈ A j , let kn+1 ∈ A j such that kn+1 > f (l) for all l ≤ n. Let B = {kn}n∈ω. We can
see B as an interval partition E of A j (which bijectively we can put in correspondence
with ω.) Corollary 19. (2) implies that there is Aδ ∈ F0

G which is a semiselector for E .
Let {mn}n∈ω be an enumeration of Aδ . It is now enough to show that there is a

condition q ≤ p such that q � Aδ ⊆ Ẋ . For this purpose, we construct inductively a
fusion sequence 〈qn : n ∈ ω〉 ⊆ Qβ below p such that qn+1 � mn ∈ Ẋ , for all n ∈ ω.
Then the fusion of such sequence will force that Ẋ ∈ fil(A), contradicting the choice
of p as desired.

Start with q0 = p, and supposewe have constructed qn satisfying the conditions. To
complete the inductive construction of the sequence, notice that mn+1 ∈ Yn (mn+1 >

f (n)), and so we can choose qn+1 ≤n qn such that qn+1 � mn+1 ∈ Ẋ .

Limit case The limit case follows from Theorem [15, Lemma 3.2] of Shelah cited
below. For convenience we state the theorem immediately after the current proof, as
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Lemma 30. In addition, we explain why it can be used to complete the preservation
of (�)α , for α limit. Note that F = F0

G ∪ Fr and H = {ω\Ah : h ∈ FF(A)} satisfy
the conditions of Lemma 30. Note that by Lemma 24, F is Ramsey.

To see (2) consider any Z ∈ P(ω)\fil(A). Thus ω\Z /∈ id(A) and so there is
h ∈ FF(A) such that for al h′ ⊇ h, |Ah′ ∩ (ω\Z)| = |Ah′ \Z | = ω. Consider the
set Y = Ah\Z . Thus Y ⊆ Ah and so by (�)α either ∃B ∈ (id(A))V0 such that
Ah\Y ⊆ B and so Ah\Y ∈ id(A), or ∃h′ ⊇ h such that Ah′ ⊆ Ah\Y . In the latter
case,Ah′ ⊆ Ah\Y = Z ∩Ah and soAh′ \Z = ∅, which is a contradiction. Therefore
Ah\Y ∈ id(A) and so there is h′ ⊇ h such thatAh′ ∩Ah ∩ Z = Ah′ ∩ Z is finite and
so Z ⊆∗ ω\Ah′

. Take X = ω\Ah′
. �

Lemma 30 (Shelah, Lemma 3.2 in [15]). Let F and H be families of subsets of ω such
that:

(1) F contains all co-infinite sets, every element F is non-empty, F is closed under
finite intersections, every countable G ⊆ F has a pseudointersection in F and F
is Ramsey.

(2) H ⊆ P(ω)\〈F〉, where 〈F〉 is the filter generated by F and

P(ω)\〈F〉 ⊆ {Z ⊆ ω : there exists X ∈ H with Z ⊆∗ X}.

If 〈Pα, Q̇α : α < δ〉 is a countable support iteration of ωω-bounding proper posets
such that for all α < δ,

�Pα
(P(ω)\〈F〉) ⊆ {Z ⊆ ω : ∃X ∈ H such that Z ⊆∗ X}

then the same holds for α = δ.

The above proof clearly shows that the generic maximal independent family
adjoined by P over a model of GCH remains also maximal after the countable support
product of Sacks forcing.

5 Ideals and independence

Throughout the section, we study the relationship between the independence diago-
nalization ideal and the independence density ideals. For convenience, we restate their
definitions. Given an independent family A, an ideal JA ⊆ [ω]≤ω is said to be a
diagonalization ideal, if

(1) JA ∩ {Ah : h ∈ FF(A)} = ∅.
(2) For every X ∈ [ω]ω ∩ V there is h ∈ FF(A) such that X ∩Ah orAh\X belongs

to JA.

On the other hand, given an independent family A, we defined the independence
density ideal, id(A), as the set of all X ⊆ ω such that ∀h ∈ FF(A)∃h′ ⊇ h such that
Ah′ ∩ X is finite.

Lemma 31 Let A be an independent family. Then id(A) ⊆ JA.
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Proof Let 〈Jα : α < c〉 be an increasing sequence of ideals associated to a fixed
enumeration {Xα}α∈c of P(ω) and A as in Lemma 3, such that JA = ⋃

α<c Jα .
Suppose towards a contradiction that there is X ∈ id(A) and X /∈ JA. Clearly,
X /∈ [ω]<ω. Then for someα, Xα = X and since X /∈ Jα+1, theremust be h0 ∈ FF(A)

and Y ∈ Jα such thatAh ⊆ X ∪ Y . ThereforeAh\X ⊆ Y and soAh\X ∈ Jα ⊆ JA.
By hypothesis, X ∈ id(A) and so there is h′ ⊇ h such thatAh′ ∩ X is finite. However
Ah′ ⊆ Ah and so Ah′ \X ∈ JA. But then Ah′ = (Ah′ \X) ∪ (Ah′ ∩ X) ∈ JA, which
is a contradiction. �
Lemma 32 If A is an independent family which is not maximal, then id(A) � JA.

Proof Fix X ∈ [ω]ω\A such that {X} ∪ A is independent. By definition of JA, there
is h ∈ FF(A) such that X ∩ Ah of Ah\X is in JA. Since neither of them is in id(A),
we obtain the desired claim. �

The above Lemma implies in particular that the density ideal is not necessarily
a diagonalization ideal. However, for the following class of maximal independent
families, the density and diagonalization ideals coincide.

Definition 33 An independent family A is said to be densely maximal if for every
X ∈ [ω]ω\A and every h ∈ FF(A), there is h′ ∈ FF(A) for which either X ∩ Ah′

of
Ah′ \X is finite.

Lemma 34 An infinite independent family A is densely maximal if and only if the
following property holds:
(�) For all h ∈ FF(A) and all X ⊆ ω such that X ⊆ Ah, either ∃B ∈ id(A) such that
Ah\X ⊆ B, or ∃h′ ∈ FF(A) such that h ⊆ h′ and Ah′ ⊆ Ah\X.

Proof Suppose A satisfies property (�). Let X ∈ [ω]ω, h ∈ FF(A) and consider
Y = X ∩ Ah . Then by (�) either there is B ∈ id(A) such that Ah\Y = Ah\X ⊆
B, in which case Ah\Y belongs to id(A) itself and so there is h′ ⊇ h such that
Ah′ ∩(Ah\X) = Ah′ \X is finite, or there is h′′ ⊇ h such thatAh′′ ⊆ Ah\Y = Ah\X ,
which implies Ah′′ ∩ X = ∅. Thus, A is densely maximal.

Now, suppose A is densely maximal. Fix h ∈ FF(A) and X ⊆ Ah . We will show
that A satisfies property (�). Suppose, there is no B ∈ id(A) such that Ah\X ⊆ B.
Thus in particularAh\X /∈ id(A) and so there is h′ ∈ FF(A) such that for all h′′ ⊇ h′,
the setAh′′ ∩(Ah\X) is infinite. If h′ and h are incompatible (as conditions in FF(A)),
thenAh′ ∩ (Ah\X) = ∅, which is a contradiction. Therefore h′ and h are compatible.
Without loss of generality h′ ⊇ h and so we have that there is h′ ⊇ h such that
for all h′′ ⊇ h′, |Ah′′ \X | = ω. Apply the property of B being densely maximal to
Ah′ \X and h′. Thus there is h′′ ⊇ h′ such that either Ah′′ ∩ (Ah′ \X) = Ah′′ \X or
Ah′′ \(Ah′ \X) = Ah′′ ∩ X is finite. Therefore, the latter must hold. But then, there is
h′′′ ⊇ h′′ such that Ah′′′ ∩ X = ∅. That is, there is h′′′ ⊇ h such that Ah′′′ ⊆ Ah\X
and so (�) holds. �
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Lemma 35 Let A be a densely maximal independent family and let J be an ideal on
ω such that J ∩ {Ah : h ∈ FF(A)} = ∅. Then J ⊆ id(A).

Proof Let X ∈ J . Suppose X /∈ id(A). Then there is g ∈ FF(A) such that for all
g′ ⊇ g, the set Ag′ ∩ X is infinite. Applying dense maximality to X and g, we can
find g′ ⊇ g such that X ∩ Ag′

or Ag′ \X is finite. Thus Ag′ \X is finite. Since A is
infinite, there is g′′ ⊇ g′ such that Ag′′ ∩ (ω\X) = ∅, i.e. Ag′′ ⊆ X . Thus Ag′′ ∈ J ,
which is a contradiction. �

Corollary 36 If A is densely maximal independent, then JA ⊆ id(A) and so JA =
id(A).

As a corollary to Shelah’s [15, Lemma 3.2], we obtain:

Corollary 37 A densely maximal independent family A such that the dual filter of
its diagonalization ideal id(A) is generated by a Ramsey filter and the co-finite sets
remains maximal after the countable support iteration of Sacks forcing, as well as
after the countable support product of Sacks forcing.

Finally, we prove that neither the density, nor the diagonalization ideal is maximal.

Proposition 38 Given an independent family A the ideal JA is not maximal in the
following sense: There is a set X ∈ [ω]ω\{Ah : h ∈ FF(A)} such that neither X nor
ω\X belongs to JA.

Proof Let g ∈ FF(A), let x0 be a finite, non-empty set disjoint from Ag and let
X = Ag ∪ x0. Given h ∈ FF(A), denote by h⊥ the element in FF(A) with same
domain as h, and such that for all B ∈ dom(h), if h(B) = B then h⊥(B) = ω\B, and
if h(B) = ω\B, then h⊥(B) = B.

Note that X /∈ {Ah : h ∈ FF(A)}. Indeed, suppose there is h ∈ FF(A) for which
X = Ag ∪ x0 = Bh . Then h ⊆ g and h �= g. Let w = dom(g)\ dom(h) and define
h′ = h ∪ (g � w)⊥. But then, Ah′ = Ah ∩ A(g�w)⊥ = (Ag ∪ x0) ∩ A(g�w)⊥ =
A(g�w)⊥ ∩ x0 must be infinite, which is a contradiction. In addition, since JA is an
ideal and Ag /∈ JA, X /∈ JA. Finally note that Ag⊥ ⊆∗ ω\X and since Ag⊥

/∈ JA,
the set ω\X does not belong to JA. �

6 Final remarks

Shelah’s proof of i < u from [15] gives the existence, under CH, of a decreasing
sequence of conditions {(Aα, Aα)}α∈ω1 in the countably closed poset P from Sect. 3,
with the property that

• Aω2 = ⋃
α∈ω1

Aα satisfies property (�) and so in our terminology is densely
maximal and,

• the filter generated by the tower τ = {Aα}α∈ω is Ramsey.
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Furthermore, τ is the dual filter to id(Aω2).
4 Thus, in particular, CH implies the

existence of a Sacks indestructible maximal independent family. This approach will be
used in a forthcoming paper to show the existence of a co-analytic Sacks indestructible
maximal independent family and so the consistency of the existence of a co-analytic
maximal independent family with arbitrarily large continuum. Another immediate
consequence of Corollary 36 and Lemma 9 that is that CH implies the existence of a
maximal independent family for which the diagonalization partial order does adjoin
a dominating real.

We conclude with some open questions, which naturally follow from the presented
theory.
Question 1: If we define id to be the minimal size of a densely maximal independent
family, clearly i ≤ id . However of interest remains the following: Is it consistent that
i < id?
Question 2: Both of the constructions of denselymaximal independent families, which
we discussed in the paper relay on CH. Thus one may ask: Is is consistent that there
are no densely maximal independent families?
Question 3: Is there a Sacks indestructible independent family which is not densely
maximal?
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