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Abstract When formalizing mathematics in constructive type theories, or more prac-
tically in proof assistants such as Coq or Agda, one is often using setoids (types with
explicit equivalence relations). In this note we consider two categories of setoids with
equality on objects and show, within intensional Martin-Löf type theory, that they are
isomorphic. Both categories are constructed from a fixed proof-irrelevant family F of
setoids. The objects of the categories form the index setoid I of the family, whereas the
definition of arrows differs. The first category has for arrows triples (a, b, f : F(a)

�� F(b)) where f is an extensional function. Two such arrows are identified if
appropriate composition with transportation maps (given by F) makes them equal. In
the second category the arrows are triples (a, b, R ↪→ �(I, F)2) where R is a total
functional relation between the subobjects F(a), F(b) ↪→ �(I, F) of the setoid sum
of the family. This category is simpler to use as the transportation maps disappear.
Moreover we also show that the full image of a category along an E-functor into an
E-category is a category.
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52 E. Palmgren

1 Introduction

When formalizingmathematics in (generalized predicative) constructive type theories,
such as Martin-Löf type theory, or more practically in proof assistants such as Coq or
Agda, one is often using setoids. A setoid is a type with an explicitly given equivalence
relation, and an extensional function between two setoids is a type-theoretic function
which respects the equivalence relations of the setoids. Setoids are in fact close to
what Bishop [3] called sets in his influential monograph of foundations of constructive
analysis. The setoids form a category which has many properties in common with the
category of sets. In standard intensional Martin-Löf type theory [7], the theory we
shall be concerned with, there is however no natural internal notion of equality on
the totality of setoids, as for sets in set theory. Categories of setoids with equality
on objects have to be constructed explicitly [8–10]. We shall here introduce a new
such construction and show it is isomorphic to the previously known. (To avoid a
possible misunderstanding, it is possible to construct categories of setoids from the
syntactic expressions of type theory, and there the equality of objects is obtained from
the definitional equality of types [4,6]. This gives only a category in a meta theory
of type theory, and while it gives many interesting results, it does not give us the
desired construction inside standard intensional type theory. Meta theories based on
mild extensions of intensional theory have been considered [1].)

Many arguments of category theory do not require the consideration of equality
of two objects. However when studying categories internally to some category, or
when making constructions involving strings of composable arrows (such as the nerve
of a category), a notion of equality on objects seems ubiquitous. In set theory there
is a global notion of equality on all entities which also equips objects of a category
with a standard equality. In type theory we have a choice whether categories should
be equipped with an equality on objects or not. Categories without such equality are
known as E-categories. In standard intensionalMartin-Löf type theory one encounters
problems to construct rich categories of setoids with equality on objects. This is basi-
cally due to the fact that the propositional identity relation (the identity type) in this
theory induces a groupoid structure on all types [5]. A consequence is that families
of types do not extend nicely to families of setoids; see [8]. However by restricting
to so called proof-irrelevant families of setoids, which avoid the unwanted groupoid
structure, we obtain a notion of family which is close to that of ordinary set theory.
A simple example of such a well-behaved family is the one given by the fibers of an
extensional function between setoids f : Y �� X ,

f −1(x) (x ∈ X)

See Example 2.1 below for details. From any proof-irrelevant family of setoids F over
a setoid A arises a category C(A, F) of setoids as shown in [9,10]. This is perhaps the
category which is closest to the type-theoretic language: the setoid A constitutes the
objects, a morphism (a, b, f ) consists of an extensional function f : F(a) �� F(b)
where a, b ∈ A. Composition with another morphism (b′, c, g) is possible if b =A b′
and is defined using a transportation function F(p) : F(b) �� F(b′) associated with
the proof p : b =A b′. Equality of two morphisms (a, b, f ) and (a′, b′, f ′) is taken
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Constructions of categories of setoids from proof-irrelevant. . . 53

to mean that there are proofs p : a =A a′ and q : b =A b′ such that

F(a′) F(b′)
f ′

��

F(a)

F(a′)

F(p)
��

F(a) F(b)
f �� F(b)

F(b′)

F(q)

��

commutes. This equality is a slightly cumbersome notion when working with this
category. We show (Theorem 3.2) that this category is isomorphic to another category
S(A, F) where the morphisms corresponds to functional relations on �(A, F), the
setoid-sum of the family. In this category the transportation functions are invisible,
which makes for a smoother treatment of the category of setoids akin to a category of
sets in set theory; see Example 3.1 below. As shown in [9] we may choose F so that
C(A, F) is isomorphic to a category of sets in a model of constructive set theory CZF,
thus ensuring rich properties of the category.

For the purpose of the final result we consider two different versions of categories
with equality on objects as formalized in type theory. One is the algebraic formu-
lation, or rather essentially algebraic formulation, in which the objects, arrows and
composable arrows, respectively, forms setoids, and all the operations are extensional
functions. In this axiomatization no dependent families occur. The other is the hom-
family formulation in which the Hom-sets are regarded as a proof-irrelevant family
over the setoid of pairs of objects

Hom(a, b) ((a, b) ∈ Ob × Ob).

Just as for sets one can pass between the formulations; see “Appendix”. The second
formulation is then used to prove the second main result Theorem 4.1, that the full
image of a category along an E-functor into an E-category is a category.

2 Families of setoids

Here and in the rest of the paper we work in standard intensional Martin-Löf type
theory [7]. This means in particular that we do not use the extensional identity type,
or any of its consequences such as Streicher’s K-axiom [5,10]. We shall also use one
type universe. By staying in this fragment of the theory, the results can be transferred
to computer-aided proof systems such as Agda and Coq.

Recall from, for instance [8] or [9], that a good notion of a family of setoids over
a setoid is the following. A proof-irrelevant family F of setoids over a setoid A —
or just a family of setoids — consists of a setoid F(x) = (|F(x)|,=F(x)) for each
x ∈ A, and for p : (x =A y) an extensional function F(p) : F(x) �� F(y) (the
transportation function) which satisfies the three conditions:

(F1) F(r(x)) =ext idF(x) for x ∈ A. Here r(x) is the canonical proof object for
x =A x and =ext denotes the extensional equality of functions.

(F2) F(p) =ext F(q) for p, q : x =A y and x, y ∈ A. Since F(p) does not depend
on p, this is the so-called proof-irrelevance condition.
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54 E. Palmgren

(F3) F(q) ◦ F(p) =ext F(q ◦ p) for p : x =A y, q : y =A z and x, y, z ∈ A.

Example 2.1 A typical example of a proof-irrelevant family arises from the fibers of
an extensional function f : Y �� X . Define F(x) to be the setoid with underlying
type (�y ∈ Y )( f (y) =X x) andwhere two elements (y, q) and (y′, q ′) are considered
equal just in case y =Y y′. The transportation function F(p) for p : x =X x ′, takes
(y, q) to (y, q ◦ p), where q ◦ p is the proof of f (y) =X x ′ obtained by transitivity
from q : f (y) =X x and p.

Proof-irrelevant families may also arise as functions I �� P(A) from the index
setoid I into the collection of subsetoids of a fixed setoid A in the following way.

We first define some basic notions. Let A be the fixed setoid. Let P(A) denote the
following preorder. Its elements are injections m : U �� A, where U is a setoid. Let
n : V �� A be another injection. We say that it includes m : U �� A, in symbols
(U,m) ⊆̇ (V, n), if there is a function k : U �� V such that n ◦ k = m. (Note that k
is unique and an injection.) Now define m : U �� A and n : V �� A to be equal, or
in symbols (U,m) =̇ (V, n), if (U,m) ⊆̇ (V, n) and (V, n) ⊆̇ (U,m). Thus P(A) has
an equivalence relation. Indeed, defining for x ∈ A and (U,m) ∈ P(A), a membership
relation

x ∈̇ (U,m) ⇐⇒def (∃u ∈ U )x =A m(u),

we get using unique choice

(U,m) ⊆̇ (V, n) iff (∀x ∈ X)(x ∈̇ (U,m) ⇒ x ∈̇ (V, n)).

Thus we see that (U,m) =̇ (V, n) is the extensional equality. If Q(x) is any property
on A which respects equality, i.e. Q(x) and x =A y implies Q(y), we can form a
subsetoid {x ∈ A : Q(x)} of A which is given by the injection

(x, q) �→ x : ((�x ∈ A)Q(x),∼) �� A

where (x, q) ∼ (x ′, q ′) iff x =A x ′. Then for x ∈ A

x ∈̇ {x ∈ X : Q(x)} ⇐⇒ Q(x).

Using this method we can define standard set-theoretic operations, domain and range
of a relation R ∈ P(X × Y ). E.g

ran(R) =def {y ∈ Y : (∃x ∈ X)(x, y) ∈̇ R}.

A family of subsetoids of A indexed by a setoid I is an extensional function F : I
�� P(A). Write F(i) = (F̂(i),mi ). We may now extend F̂ to a proof-irrelevant

family in a canonical way: for a proof p of i =I j , we have F(i) =̇ F( j) so there is
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a unique f such that the following diagram commutes

F̂(i)

A

��

mi ���
��

��
��

F̂(i) F̂( j)
f �� F̂( j)

A

��

m j����
��

��
�

We let F̂(p) =def f . By the above it is unique and independent of p, so (F2) holds. If
i = j definitionally, then f is extensionally equal to the identity on F̂(i). This verifies
(F1). The condition (F3) of F̂ is easy to check using uniqueness.

Conversely, from every proof-irrelevant family F on I we get a family F̌ : I
�� P(A) for a canonical A; see Proposition 2.2 below. To prove this we introduce the

setoid-sum construction. Let F be a family of setoids over the setoid I . The disjoint
sum of the family exists in Setoids and may be explicitly given by

�(I, F) =def
(
(�x : |I |)|F(x)|,∼)

where the equivalence is given by

(x, y) ∼ (x ′, y′) iff (∃p : x =I x ′)(F(p)(y) =F(x ′) y′).

The injections

F(x)
ιx �� �(I, F)

are given by ιx (y) = (x, y), and satisfy

ιx ′ ◦ F(p) =ext ιx for p : x =I x
′. (1)

This construction satisfies the universal property that if C is a setoid and jx : F(x)
�� C (x ∈ I ) are extensional functions with jx ′ ◦ F(p) =ext jx for all p : x =A x ′,

then there is a unique extensional k : �(I, F) �� C with k ◦ ιx =ext jx for all x ∈ I .

Proposition 2.2 Let F be a proof-irrelevant family of setoids indexed by the setoid I .
Then F induces an extensional function

F̌ : I �� P(�(I, F))

where F̌(x) = (F(x), ιx ) and ιx : F(x) �� �(I, F) is the canonical injection.

Proof It follows from (1) that p : x =I y, implies F̌(x) ⊆̇ F̌(y) and similarly
p−1 : y =I x implies F̌(y) ⊆̇ F̌(x). Thus F̌(x) =̇ F̌(y). �
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56 E. Palmgren

3 Two categories of setoids and their isomorphism

We provide some more details to the construction sketched in the introduction; see [9]
for full details. A family F of setoids over a setoid I gives rise to a category of setoids
C = C(I, F) as follows. The objects are given by the index setoid C0 = I , and are
thus equipped with an equality, and the setoid of arrows C1 is

((�i, j : |I |)Ext(F(i), F( j)),∼).

Here Ext(F(i), F( j)) denotes the setoid of all extensional functions from F(i) to
F( j), and where the equality is extensional equality. C1 consists of triples (i, j, f )
where f : F(i) �� F( j) is an extensional function, and where we define two arrows
to be equal (i, j, f ) ∼ (i ′, j ′, f ′) if, and only if, there are proof objects p : i =I i ′
and q : j =I j ′ such that the diagram

F(i ′) F( j ′)
f ′

��

F(i)

F(i ′)

F(p)
��

F(i) F( j)
f �� F( j)

F( j ′)

F(q)

��
(2)

commutes. The domain of the arrow (i, j, f ) is i and its codomain is j . Arrows (i, j, f )
and ( j ′, k, g) are composable if there is p : j =I j ′ and their composition is

(i, k, g ◦ F(p) ◦ f ).

Note that F(p) and hence the composition is independent of p. The setoid C2
of composable arrows consists of such triples ((i, j, f ), ( j ′, k, g), p). Then C is a
category in the essentially algebraic sense as shown in [9]. (See “Appendix” for the
formal definition of essentially algebraic category.)

The second category construction is as follows. Define a category S(I, F) whose
setoid of objects is I , and whose arrows1 are triples (i, j, R) where R is one-valued
binary relation (i.e. a functional relation) on S = �(I, F) with dom(R) =̇ F(i) and
ran(R) ⊆̇ F( j). Two arrows (i, j, R) and (i ′, j ′, R′) are equal when i =I i ′, j =I j ′
and R =̇ R′. The domain and codomain of (i, j, R) are i and j respectively. The
composition of (i, j, R) and ( j ′, k, Q) is (i, k, Q ◦ R) when j =I j ′. Here Q ◦ R
denotes the relational composition.

Example 3.1 The category S simplifies reasoning considerably. Suppose that f =
(a, b, f ) and g = (a′, b′, g) are two parallel arrows in C, and that h = (c, d, h) is
third arrow composable with both these on the left. To prove h ◦ f = h ◦ g, we need to
exhibit proof objects p : a = a′, q : b = c, q ′ : b′ = c and r : d = d , and to show

F(r) ◦ h ◦ F(q) ◦ f = h ◦ F(q ′) ◦ g ◦ F(p).

1 The triples may be considered to form a setoid since they can be represented by graphs of functions, as
the isomorphism Theorem 3.2 will show later.

123



Constructions of categories of setoids from proof-irrelevant. . . 57

In more complicated diagrams, the proliferation of transportation maps F(p) is
considerable, and leads to an excess of equations, which can be difficult to manage in
a formal proof system. In the category S we need only to check that the proof objects
exists, and then check that the relational equation

Rh ◦ R f =̇ Rh ◦ Rg.

holds, which is familiar from set theory.

Now define a functor M : C(I, F) �� S(I, F) by letting M be the identity on
objects, M(i) = i , and for an arrow (i, j, f ) letting M(i, j, f ) = (i, j,G f ) where G f

is the graph of f on S × S defined by

(u, v) ∈̇G f ⇐⇒def (∃x ∈ F(i))[u =S 〈i, x〉 ∧ v =S 〈 j, f (x)〉] (3)

We show that M is well-defined on arrows: Suppose that (i, j, f ) and (i ′, j ′, f ′)
are equal arrows in C(I, F), that is, there are p : i =I i ′ and q : j =J j ′ such
that the diagram (2) commutes. Note that for x ∈ F(i), 〈i, x〉 =S 〈i ′, F(p)(x)〉 and
〈 j, f (x)〉 = 〈 j ′, F(q)( f (x))〉. Inserting this in (3), substituting x = F(p−1)(x ′) and
then using the commutative square we get

(u, v) ∈̇G f ⇐⇒ (∃x ∈ Fi)[u =S 〈i ′, F(p)(x)〉 ∧ v =S 〈 j ′, F(q)( f x)〉]
⇐⇒ (∃x ′ ∈ Fi ′)[u =S 〈i ′, F(p)(F(p−1)(x ′)))〉 ∧

v =S 〈 j ′, F(q)( f (F(p−1)(x ′)))〉]
⇐⇒ (u, v) ∈̇G f ′

Thus M is well-defined.
For objects (i, j, f ) and ( j ′, k, g) with p : j =I j ′ we check functoriality by

verifying that

Gg ◦ G f =̇ Gg◦F(p)◦ f (4)

and that

GidF(i) (5)

is the identity relation on the subset F̌(i). To see (4) expand the definition and use that
F(p) = F(q) for q : j =I j ′:

(∗) (u, v) ∈̇Gg ◦ G f ⇐⇒ (∃x ∈ Fi)(∃y ∈ F j ′)
(u = 〈i, x〉 ∧ 〈 j ′, y〉 = 〈 j, f x〉 ∧ v = 〈k, gy))

⇐⇒ (∃x ∈ Fi)(∃y ∈ F j ′)(∃q : j =I j ′)
(u = 〈i, x〉 ∧ F(q)( f x) =F j ′ y ∧ v = 〈k, gy))

⇐⇒ (∃x ∈ Fi)(∃y ∈ F j ′)
(u = 〈i, x〉 ∧ F(p)( f x) =F j ′ y ∧ v = 〈k, gy))
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58 E. Palmgren

⇐⇒ (∃x ∈ Fi)

(u = 〈i, x〉 ∧ v = 〈k, g(F(p)( f x))〉)
⇐⇒ (u, v) ∈̇Gg◦F(p)◦ f

Further

(∗∗) (u, v) ∈̇GidFi ⇐⇒ (∃x ∈ Fi)[u =S 〈i, x〉 ∧ v =S 〈i, idFi (x))〉]
⇐⇒ u =S v ∧ (∃x ∈ Fi)u =S 〈i, x〉

which is the identity relation on F̌(i). Call this relation IF̌(i) for later use.
Define in the opposite direction a functor N : S(I, F) �� C(I, F) by letting it

be the identity on objects, and for a morphism (i, j, R) let f : F(i) �� F( j) be the
unique extensional function such that

G f =̇ R. (6)

Let

N (i, j, R) =def (i, j, f ).

Existence of f : Suppose (i, j, R) is a morphism. Hence

(∀x ∈ Fi)(∃!y ∈ F j)(〈i, x〉, 〈 j, y〉) ∈̇ R.

Thus by the type-theoretic axiom of choice there is a unique extensional f : F(i)
�� F( j) such that

(∀x ∈ Fi)(〈i, x〉, 〈 j, f (x)〉) ∈̇ R. (7)

If (u, v) ∈̇G f , then by (3) there is an x ∈ F(i) such that

u =S 〈i, x〉 ∧ v =S 〈 j, f (x)〉.

Thus by (7): (u, v) ∈̇ R. Conversely, suppose (u, v) ∈̇ R. Then since dom(R) =
F̌(i) and ran(R) ⊆̇ F̌( j), there are x ∈ F(i) and y ∈ F( j), with u =S 〈i, x〉 and
v =S 〈 j, y〉. By uniqueness in (7), y = f (x), so indeed (u, v) ∈̇G f . Thus (6) holds.

Uniqueness of f : Suppose that G f ′ =̇ R for some f ′ : F(i) �� F( j). Then
(∀x ∈ Fi)(〈i, x〉, 〈 j, f ′x〉) ∈̇ R. By uniqueness in (7), f ′ = f .

We show that N is well-defined on arrows: Suppose (i, j, R) and (i ′, j ′, R′) are
equal morphisms with N (i, j, R) = (i, j, f ) and N (i ′, j ′, R′) = (i ′, j ′, f ′). Thus
p : i =I i ′ and q : j =J j ′ and R =̇ R′, and hence

G f =̇ G f ′ .
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We show that (2) commutes. Let x ∈ F(i). Then by definition of the graph G f ,
we get (〈i, x〉, 〈 j, f (x)〉) ∈̇G f , and hence also (〈i, x〉, 〈 j, f (x)〉) ∈̇G f ′ . Again by the
definition of a graph:

(∃x ′ ∈ Fi ′)[〈i, x〉 =S 〈i ′, x ′〉 ∧ 〈 j, f x〉 =S 〈 j ′, f ′x ′〉].

Thus for some x ′ ∈ Fi ′, p′ : i =I i ′ and some q ′ : j =I j ′ we have

F(p′)(x) =Fi ′ x
′ F(q ′)( f x) =F j ′ f ′x ′.

Hence

F(q ′)( f x) =F j ′ f ′(F(p′)(x)),

and since F(q) = F(q ′) and F(p) = F(p′), we are done proving that the diagram
commutes.

We check that N is functorial: Suppose that N (i, j, R) = (i, j, f ) and
N ( j ′, k, Q) = ( j ′, k, g) with p : j =I j ′. Then

N ( j ′, k, Q) ◦ N (i, j, R) = (i, k, g ◦ F(p) ◦ f ).

Now

N (( j ′, k, Q) ◦ (i, j, R)) = N (i, k, Q ◦ R) = (i, k, h)

where h : F(i) �� F(k) is unique such that Gh =̇ Q ◦ R. Moreover f : F(i)
�� F( j) is unique such that G f =̇ R, and g : F( j ′) �� F(k) is unique such that

Gg =̇ Q. By (*) above we have

Q ◦ R =̇ Gg ◦ G f =̇ Gg◦F(p)◦ f .

Hence h = g ◦ F(p) ◦ f as required.
Suppose N (i, i, IF̌(i)) = (i, i, f ) where f : F(i) �� F(i) is unique such that

G f =̇ IF̌(i).

By (**) above

GidF(i) =̇ IF̌(i).

Hence f = idF(i) as required.
The functors M and N form an isomorphism of categories. This is clear for objects.

Let (i, j, R) be an arrow of S(I, F). Then N (i, j, R) = (i, j, f ) where f : F(i)
�� F( j) is unique such that G f =̇ R. Now

M(N (i, j, R)) = M(i, j, f ) = (i, j,G f ) = (i, j, R).
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60 E. Palmgren

Conversely

N (M(i, j, f )) = N (i, j,G f ) = (i, j, f ).

Thus we have established:

Theorem 3.2 S(I, F) ∼= C(I, F).

The category on the left uses a universe to define the arrows, so it is in a predicative
sense large, but the isomorphism shows that the arrows can be represented by a set in
the universe.

4 Full images of categories in E-categories

The construction of C(I, F)may actually be constructed as a full image of F regarded
as an E-functor from I (as discrete category) into the E-category of setoids. This
follows from a general full image construction (Theorem 4.1). To prepare for a formal
proof of this we need to present some further notions.

An equivalent formulation of a category is the following (see “Appendix” for a proof
of equivalence). A hom family presented category C (or just HF-category) consists of
a setoid Ob C = Ob and a (proof-irrelevant) family Hom = HomC of setoids indexed
by the setoid Ob × Ob. Note that for p : a =Ob c and q : b =Ob d there is thereby a
transportation map

Hom(p, q) : Hom(a, b) �� Hom(c, d).

We often write, as is usual, C(a, b) for HomC(a, b). For each a ∈ Ob, there is
an element ida ∈ Hom(a, a). Moreover for all a, b, c ∈ Ob there is an extensional
function

◦a,b,c = ◦ : Hom(b, c) × Hom(a, b) �� Hom(a, c).

These satisfy the usual equations of identity and associativity.
Moreover, for p : a =Ob a′,

ida′ = Hom(p, p)(ida) (8)

and for p : a =Ob a′, q : b =Ob b′ and r : c =Ob c′ this diagram commutes:

Hom(b′, c′) × Hom(a′, b′) Hom(a′, c′)◦a′,b′,c′
��

Hom(b, c) × Hom(a, b)

Hom(b′, c′) × Hom(a′, b′)

Hom(q,r)×Hom(p,q)

��

Hom(b, c) × Hom(a, b) Hom(a, c)
◦a,b,c �� Hom(a, c)

Hom(a′, c′)

Hom(p,r)
��

(9)
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The Eqs. (8) and (9) are coherence conditions for the transportation maps of the hom-
family.

A weaker notion is that of an E-category,where we require in the above instead that
Ob is a type, and thatHom is a family of setoids indexed by the typeOb×Ob.Moreover
we drop Eqs. (8) and (9). Any HF-category may be considered as an E-category by
omitting the equality on objects.

A functor F from theHF-categoryC to theHF-categoryD consists of an extensional
function F0 : Ob C �� Ob D and for each pair of objects a, b ∈ Ob C, an extensional
function Fa,b : HomC(a, b) �� HomD(F0(a), F0(b)) satisfying the usual functori-
ality equations. Moreover it is required that for p : a =Ob C a′, q : b =Ob C b′, the
diagram

Hom(a′, b′) Hom(F0(a′), F0(b′))
Fa′,b′

��

Hom(a, b)

Hom(a′, b′)

Hom(p,q)

��

Hom(a, b) Hom(F0(a), F0(b))
Fa,b �� Hom(F0(a), F0(b))

Hom(F0(a′), F0(b′))

Hom(ext(F0,p),ext(F0,q))

��
(10)

commutes. Here ext(F0, r) denotes the canonical proof that F0(c) =Ob D F0(c′) for
r : c =Ob C c′. (Because of the proof-irrelevance of Hom, it does not matter what this
proof object actually is the diagram above.)

For an E-functor between E-categories the condition that F0 is extensional is omit-
ted, and the coherence condition (10) is dropped.

We may construct the full image of an E-functor as an HF-category if the source
category is an HF-category.

Theorem 4.1 Let F : C �� D be an E-functor from an HF-category C to an E-
category D. Then for the HF-category S with objects Ob S =def Ob C and

S(a, b) =def D(F(a), F(b)),

and where

idSa =def id
D
F(a), ◦Sa,b,c =def ◦DF(a),F(b),F(c),

there is a functor G : C �� S given by G(a) =def a and Ga,b( f ) =def Fa,b( f )
which is surjective on objects. The HF-category S is a full E-subcategory of D.

Proof It is clear that S is an E-category. We show it is an HF-category as well. For
p : a =Ob S a′ and q : b =Ob S b′, we need to define the transportation map

S(p, q) : S(a, b) �� S(a′, b′)

From the transportation maps of C, we have C(p, r(a)) : C(a, a) �� C(a′, a)

and C(r(b), q) : C(b, b) �� C(b, b′) so C(p, r(a))(ida) ∈ C(a′, a) and
C(r(b), q)(idb) ∈ C(b, b′). Thus let

S(p, q)( f ) = F(C(r(b), q)(idb)) ◦ f ◦ F(C(p, r(a))(ida)).
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It is clear that S(p, q) is extensional. We also have S(p, q) =ext S(p′, q ′) for all
p, p′ : a =S a′ and all q, q ′ : b =S b′, since C is a proof-irrelevant family. Moreover

S(r(a), r(b))( f ) = idb ◦ f ◦ ida = f.

For q : b =S b′, q ′ : b′ =S b′′, p : a =S a′, p′ : a′ =S a′′,

S(p′ ◦ p, q ′ ◦ q)( f ) = F(C(r(b), q ′ ◦ q)(idb)) ◦ f ◦ F(C(p′ ◦ p, r(a))(ida)).

By using the coherence conditions for hom-setoids we obtain

C(r(b′), q ′)(idb′) ◦ C(r(b), q)(idb)
(8)= C(r(b′), q ′)(C(q, q)(idb)) ◦ C(r(b), q)(idb)

(F3)= C(r(b′) ◦ q, q ′ ◦ q)(idb) ◦ C(r(b), q)(idb)

= C(q, q ′ ◦ q)(idb) ◦ C(r(b), q)(idb)
(8)= C(r(b), q ′ ◦ q)(idb ◦ idb) = C(r(b), q ′ ◦ q)(idb).

Similarly,

C(p, r(a))(ida) ◦ C(p′, r(a′))(ida′)
(8)= C(p, r(a))(ida) ◦ C(p′, r(a′))(C(p, p)(ida))

(F3)= C(p, r(a))(ida) ◦ C(p′ ◦ p, r(a′) ◦ p)(ida)
(9)= C(p′ ◦ p, r(a))(ida).

Thus

S(p′ ◦ p, q ′ ◦ q)( f )

= FC(r(b′), q ′)(id′
b)) ◦ F(C(r(b), q)(idb)) ◦

f ◦ F(C(p, r(a))(ida)) ◦ F(C(p′, r(a′))(ida′))

= S(p′, q ′)(S(p, q)( f )).

Hence HomS is a proof-irrelevant family over Ob S × Ob S. The equations for
identity and associativity are clearly fulfilled, since they are inherited from D. The
coherence conditions (8) and (9) follows by functoriality of F : As for (8) suppose
p : a =Ob S a′. Then

S(p, p)(idSa ) = F(C(r(a), p)(ida)) ◦ idDF(a) ◦ F(C(p, r(a))(ida))

= F(C(r(a), p)(ida)) ◦ F(C(p, r(a))(ida))

= F(C(r(a), p)(ida) ◦ C(p, r(a))(ida))

= F(C(p, p)(ida)) = F(ida′) = idDF(a′) = idSa′ .
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Regarding the condition (9) suppose that p : a =Ob S a′, q : b =Ob S b′ and
r : c =Ob S c′ and that f ∈ S(b, c) and g ∈ S(a, b),

S(q, r)( f ) ◦ S(p, q)(g)

= F(C(r(c), r)(idc)) ◦ f ◦ F(C(q, r(b))(idb))

◦F(C(r(b), q)(idb)) ◦ g ◦ F(C(p, r(a))(ida))

= F(C(r(c), r)(idc)) ◦ f

◦ F(C(q, r(b))(idb) ◦ C(r(b), q)(idb)) ◦ g ◦ F(C(p, r(a))(ida))

= F(C(r(c), r)(idc)) ◦ f

◦ F(C(q, q)(idb)) ◦ g ◦ F(C(p, r(a))(ida))

= F(C(r(c), r)(idc)) ◦ f ◦ g ◦ F(C(p, r(a))(ida))

= S(p, r)( f ◦ g).

G is evidently an E-functor surjective on objects.We check the coherence condition
(10): Suppose that p : a =Ob C a′, q : b =Ob C b′ and that f ∈ C(a, b). Write
p′ = ext(G, p) and q ′ = ext(G, q).

S(p′, q ′)(G( f )) = F(C(r(b), q ′)(idb)) ◦ Ga,b( f ) ◦ F(C(p′, r(a))(ida))

= F(C(r(b), q ′)(idb)) ◦ F( f ) ◦ F(C(p′, r(a))(ida))

= F(C(r(b), q ′)(idb) ◦ f ◦ C(p′, r(a))(ida))

= F(C(r(b), q ′)(idb) ◦ C(r(a), r(b))( f ) ◦ C(p′, r(a))(ida))
(9)= F(C(r(a), q ′)(idb ◦ f ) ◦ C(p′, r(a))(ida))
(9)= F(C(p′, q ′)(idb ◦ f ◦ ida))

= F(C(p′, q ′)( f )) = G(C(p′, q ′)( f )).

Example 4.2 Let C be discrete category arising from a setoid A and let D = Setoids
be the E-category of setoids. Suppose that F is a proof-irrelevant family of setoids
indexed by A. Then F may be considered as an E-functor C �� Setoids, and the full
image S is essentially C(A, F).
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Appendix: Categories in type theory

Essentially algebraic formulation

The essentially algebraic formulationof a category is adapted for ease of internalization
in an another category (in fact it suffices that the host category has finite limits).
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Similarly to the standard definition, we define in type theory a category C as a
triple of setoids C0, C1, C2 consisting of objects, arrows and composable arrows,
equipped with extensional functions id : C0 �� C1, dom, cod : C1 �� C0 and
cmp, fst, snd : C2 �� C1 that satisfy the axioms

A2. dom(id(x)) = x, A3. dom(cmp(u)) = dom(fst(u)),

A2. cod(id(x)) = x, A4. cod(cmp(u)) = cod(snd(u)),

A4
1

2
.cod(fst(u)) = dom(snd(u))

and

A5. fst(u) = fst(v), snd(u) = snd(v) �⇒ u = v,
A6. dom( f ) = cod(g) �⇒ ∃u ∈ C2(snd(u) = f ∧ fst(u) = g),
A7. fst(u) = id(y) �⇒ cmp(u) = snd(u),
A8. snd(u) = id(x) �⇒ cmp(u) = fst(u),
A9. fst(w) = fst(v), snd(v) = fst(u), snd(u) = snd(z), snd(w) = cmp(u),

cmp(v) = fst(z) �⇒ cmp(w) = cmp(z).

A functor F : B �� C is a triple of extensional functions Fk : Bk �� Ck ,
k = 0, 1, 2, such that all operations of the categories are preserved, that is

F1 ◦ id = id ◦ F0, F1 ◦ fst = fst ◦ F2,

F0 ◦ dom = dom ◦ F1, F1 ◦ snd = snd ◦ F2,

F0 ◦ cod = cod ◦ F1, F1 ◦ cmp = cmp ◦ F2.

Equivalence to the Hom family formulation

Let C be a category formulated in the essentially algebraic way. We define an HF-
category C. The setoid of objects of C is C0. For a, b ∈ C define the setoid

HomC(a, b) = (� f ∈ C1.dom( f ) =C0 a ∧ cod( f ) =C0 b,∼)

where ( f, r) ∼ ( f ′, r ′) if and only if f =C1 f ′. For p : a =C0 a′ and q : b =C0 b′,
define an extensional function

Hom(p, q) : Hom(a, b) �� Hom(a′, b′)

by letting

Hom(p, q)( f, r) = ( f, r ′),

where r ′ is some proof of dom( f ) = a′ ∧ cod( f ) = b′ obtained from r , p and g. As
the second component r ′ is irrelevant, Hom is a proof-irrelevant family of setoids on
C0 × C0.
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For a ∈ C0, let ida = (id(a), r) where r is some proof that dom(id(a)) =C0

a ∧ cod(id(a)) =C0 a. This uses (A1) and (A2). For p : a =C0 a
′

Hom(p, p)(ida) ∼ Hom(p, p)(id(a), r) ∼ (id(a), r ′′) ∼ (id(a′), r ′) ∼ ida′

as required by (8). Define composition

◦ : Hom(b, c) × Hom(a, b) �� Hom(a, c)

as follows. For (g, r) ∈ Hom(b, c) and ( f, s) ∈ Hom(a, b), we have cod( f ) =
dom(g) = b. By (A5) and (A6) there is a unique u ∈ C2 such that snd(u) = g
and fat(u) = f . Let h = cmp(u). By (A3) and (A4) follows then dom(h) = a and
cod(h) = c. Hence (h, r ′) ∈ Hom(a, c) for some r ′ (which is irrelevant). Let thus

(g, r) ◦a,b,c ( f, s) =def (h, r ′).

Since the second components are irrelevant (H1)–(H3) below follows easily from
(A7)–(A9).

(H1) idb ◦ f =Hom(a,b) f for f ∈ Hom(a, b),
(H2) f ◦ ida =Hom(a,b) f for f ∈ Hom(a, b),
(H3) f ◦ (g ◦ h) =Hom(a,d) ( f ◦ g) ◦ h for h ∈ Hom(c, d), g ∈ Hom(b, c) and

f ∈ Hom(a, b).

The irrelevance property of the second component also entails (9).
Conversely suppose that C is an HF-category. Define an essentially algebraic cate-

gory C, by letting C0 = Ob C. Then define C1 to be the setoid consisting of triples

(a, b, f )

where f ∈ HomC(a, b). Define a relation ∼ by letting

(a, b, f )∼(a′, b′, f ′) ⇐⇒def (∃p : a =C0 a
′)(∃q : b =C0 b

′)HomC(p, q)( f )= f ′.

This is an equivalence relation since HomC is a proof-irrelevant family. Define
dom(a, b, f ) = a and cod(a, b, f ) = b.

The setoid C2 of composable maps consists of triples

(f, g, p)

where f ∈ C1, g ∈ C1 and p : cod(f) =C0 dom(g). Define

(f, g, p) =C2 (f ′, g′, p′) ⇐⇒def f =C1 f
′ ∧ g =C1 g

′.

Define cmp : C2 �� C1 as follows

cmp((a, b, f ), (c, d, g), p) = (a, d, g ◦ F(p) ◦ f ).
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Here F(p) = Hom(r(b), p)(idb), where r(b) : b =C0 b. The conditions (A1) – (A9)
may be verified straightforwardly using identities such as

Hom(p, q)(idc) ◦ f =Hom(r(b), q ◦ p−1)( f ) (p : c=b, q : c=d, f ∈Hom(a, b))

g ◦ Hom(p, q)(idb)=Hom(p ◦ q−1, r(d))(g) (p : b=a, q : b=c, g∈Hom(c, d)).

and the fact that Hom is a proof-irrelevant family. Another useful fact is the following
relaxed version of extensionality of composition: for f ∈ Hom(a, b), g ∈ Hom(b, d),
f ′ ∈ Hom(a, c), g′ ∈ Hom(c, d) and p : b = c,

g′ = Hom(p, r(d))(g), f ′ = Hom(r(a), p)( f ) �⇒ g′ ◦ f ′ = g ◦ f

These properties follow from the coherence conditions on composition and identity.
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