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Abstract
Complex systems are difficult to manage, operate and maintain. This is why we see teams of highly specialised engineers in 
industries such as aerospace, nuclear and subsurface. Condition based monitoring is also employed to maximise the efficiency 
of extensive maintenance programmes instead of using periodic maintenance. A level of automation is often required in such 
complex engineering platforms in order to effectively and safely manage them. Advances in Artificial Intelligence related 
technologies have offered greater levels of automation but this potentially pivots the weight of decision making away from 
the operator to the machine. Implementing AI or complex algorithms into a platform can mean that the Operators’ control 
over the system is diminished or removed altogether. For example, in the Boeing 737 Air Max Disaster, AI had been added 
to a platform and removed the operators’ control of the system. This meant that the operator could not then move outside the 
extremely reserved, algorithm defined, “envelope” of operation. This paper analyses the challenges of AI driven condition 
based monitoring where there is a potential to see similar consequences to those seen in control engineering. As the future 
of society becomes more about algorithm driven technology, it is prudent to ask, not only whether we should implement AI 
into complex systems, but how this can be achieved ethically and safely in order to reduce risk to life.
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1 A physical boundary would be classed as the failure of the compo-
nent whereas the regulatory boundary will often exist at a much lower 
level as it is calculated from the physical boundary with a calculated 
safety factor and has no related physical consequence.
2 Subsurface industries deal with operations that take place under the 
surface of the earth or oceans.

1 Introduction

Maintaining a system of component parts is an extremely 
complex undertaking, not least because the component 
parts can be affected by the raw material, running hours, 
shock events, environmental conditions or how far they are 
pushed to work within their physical, not regulatory, bound-
aries1 (Takata et al. 2004; Frangopol et al. 2012). A system 
inevitably has to be closed down, partially or fully, in order 
to fix the required component part. Due to breakage or decay 

of a component, further linked components or other system 
parts may also need to be replaced at the same time. This 
leads to lost revenue or capability due to shutdown times 
lengthening as systems become more complex (Goossens 
and Basten 2015). With an increasing complexity and inter-
dependency of systems comes a challenging importance to 
maximise the efficiency of maintenance. Many industries are 
affected by maintenance efficiency issues, particularly where 
redundancy is difficult or expensive to achieve; some of the 
most critical are aerospace (Dalal et al. 1989), nuclear (Stott 
et al. 2018) and subsurface2 (Dui et al. 2020).

An example of this would be the Royal Navy’s Nuclear 
Subsurface Vessels. Due to the expense of single assets, 
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they are few in number and, in addition, they are highly 
complex engineering platforms. These platforms lack redun-
dancy in onboard systems due to space limitations. Here the 
operational output is heavily reliant on the efficiency of its 
maintenance. Due to the complexity of the engineering, the 
highly trained and specialised manpower required to both 
operate and maintain such an asset is significantly greater 
in comparison with many other engineering industries. In 
this example the operators are highly trained engineers. The 
operators3 are so highly attuned that they know the ‘feel’ 
of the vessel and every valve and connection in the system. 
Similarly, Captain Sullenberger states that “pilots must be 
capable of absolute mastery of the aircraft and the situation 
at all times, a concept pilots call airmanship” (Sullenberger 
2019). In the same way we could feel that something was 
wrong with our car when we had manual steering columns, 
an operator knows their system. This, however, is subject to 
the level of competence of the operator where many human 
factors need to be considered. This is mitigated by operators 
being heavily trained. Nonetheless, in some spheres, human 
error is what drives the argument for greater automation 
(Brown 2016). This paper aims to address the potential risks 
of greater automation in engineering rather than address-
ing the competition inherent in human - computer decision 
making.

Due to having complex systems to work with, the Royal 
Navy requires time and work to rectify defects, thereby 
preventing more crucial operations from being carried out 
(Widodo and Yang 2007; Mobley 1990). The Royal Navy’s 
current fleet of Vanguard Class SSBN submarines are being 
extended beyond their original design life. This generates 
significant engineering challenges as defects begin to domi-
nate the maintenance workload for these ageing platforms. 
The increasing frequency of sudden failures, which can 
induce significant programme pressures, raises important 
questions about the performance of the current reliability 
centred maintenance (RCM) philosophies, of which Condi-
tion Based Monitoring (CBM) is a core component.

New artificial intelligence (AI) systems in condition 
based monitoring aim to eliminate or optimise the shutdown 
time and loss of revenue as well as ensure platforms work 
within their ‘regulatory envelope’ (see details in Sect. 5). 
In this paper it is discussed whether we can indeed use the 
successes of AI on simpler systems and apply this technol-
ogy to more complex platforms without further risk. From 
the authors’ perspective the impacts of introducing AI into 
predictive maintenance has not been fully addressed. Whilst 

many papers are currently examining technical progression 
in this area, here we aim to address some of the potential 
ethical risks and difficulties in the practical application in 
complex systems.

In this paper CBM is first introduced and then discussed 
in terms of its relevance to maintenance of complex engi-
neering platforms. Section 3 explores the analytical work 
that may potentially introduce AI into predictive mainte-
nance. The complex issues that may be discovered in the 
introduction of such technologies into real systems are then 
discussed. In Sect. 4 examples of advanced condition based 
monitoring employed in industry are investigated. Analysis 
in this section illustrates how we can drive greater data cap-
ture through advanced technologies. In Sect. 5 the impor-
tance of context in which new technology could operate is 
examined. The importance of the operator and their ability 
to recognise contexts where the rules have to be applied with 
discretion is analysed. Section 6 presents examples of the 
risks of the removal of an operator from decision making. 
This also considers operator-algorithm disconnect. Section 7 
examines the potential risks of AI solutions. In particular 
the risk to maintenance of subsurface nuclear vessels is 
explored. Section 8 contains a summary of the paper, the 
conclusions and directions for further work

2  Condition based monitoring

RCM has been widely adopted in engineering industries 
since the extensive studies in the US aviation maintenance 
during the 1960/70s which examined the various failure 
modes that exist in engineering assets, (Allen 2001). RCM 
is a methodology that aims to formulate the most effective 
maintenance strategy for each individual asset based on its 
failure modes. In effect the its overall aim is to maximise the 
efficiency of maintenance and as such where it is effective, 
condition based maintenance should be adopted (Fig. 1).

Under a condition based maintenance philosophy, mainte-
nance is only conducted when there is objective and observ-
able evidence to suggest that impending failure will occur. 
There have been a number of studies that have compared the 
two and the factors that dictate the effectiveness of CBM 
(Mann et al. 1995; Jonge et al. 2017; Engeler et al. 2016). 
Ideally, the closer repair action can be taken prior to failure, 

Fig. 1  Gearbox diagram (Jing et al. 2017)

3 Here we use operator as the end operator of a system and user 
where the interaction is passive rather than active, i.e an operator may 
be a pilot and a user might be someone at the end of a decision on a 
credit card.
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the more efficient the maintenance action is. This is one of 
the main objectives of CBM. However, for condition-based 
maintenance strategy to be feasible the three following crite-
ria need to be met according to Mokashi et al. (2002):

• A clear potential failure condition can be defined.
• The P-F interval (as drawn below) should be reasonably 

consistent. The P-F interval is the time between where 
the condition deterioration can be detected and point at 
which functional failure occurs.

• The asset can be monitored/inspected at time intervals 
less than the P-F interval.

With advances in both sensor and analytic technologies, 
it appears hopeful that these conditions can be increasingly 
met across a wider range of engineering assets. Some of the 
advances in sensor technologies that exist will be explored in 
Sect. 4, where we will see that an increasing and continuous 
monitoring techniques are explored. This paper will, how-
ever, examine the implementation of advanced analytics and 
AI to predict the remaining useful life (RUL) of engineering 
assets and in particular the risks that exist, including the 
human interface with such systems.

3  How AI is being developed to implement 
CBM systems: a gearbox example

Various methods can be used to monitor equipment and its 
components in order to observe degradation. When utilising 
conditioning monitoring data provided by equipment sensors 
or inspection it is necessary to have a reliable method of 
interpreting that data to assess the equipment reliability. A 
variety of degradation models exist that are used in CBM, 
such as the Weiner process, Gamma process, inverse Gauss-
ian process, general path and random coefficient models 
(Jonge et al. 2017; Wu et al. 2015).

As shown in Jing et al. (2017) a convolutional neural net-
work based feature learning and fault diagnosis method can 

be used for the condition based monitoring of a gearbox. A 
gearbox is a much simpler system than those found in a ves-
sel or airplane and this gearbox is analysed in isolation from 
the wider system it would normally be a part of.

Many studies of the use of neural networks have been 
undertaken, (Kane and Andhare 2016, 2020; Tran et al. 
2018; Li et al. 2018a). Various methods of the application of 
neural networks can be seen. For example, Li et al. (2018a) 
applied a deep belief neural network to diagnose gearboxes 
and bearings using statistical features in time, frequency and 
time-frequency domains. In Chen et al. (2012), several time 
and frequency features were extracted and a convolutional 
neural network (CNN) was employed to classify different 
health conditions of a gearbox.

In the following, we discuss the deep learning algorithm 
developed by Jing et al. (2017) to highlight in detail the gap 
between academic research and the needs of operators of 
complex systems.

The model in Jing et al. (2017) constructs feature pro-
files based on frequency data from vibrational signals and 
is testing the performance of feature learning from raw data, 
frequency spectrum and combined time-frequency data; the 
authors describe a deep learning algorithm, or deep neu-
ral network that uses “multiple levels of abstraction” by 
employing a “hierarchical structure with multiple neural 
layers” Jing et al. (2017). Features are firstly extracted by 
various signal analysis methods and these features are used 
to train and test the neural network (Jing et al. 2017). Fig-
ure 2 shows how the data passes through the CNN model 
from Jing et al. (2017).

The system works in a similar way to image processing; a 
1D segment of raw data is used as the input (Jing et al. 2017). 
Jing et al. state that “deep learning with a deep architecture 
achieves better performance than shallow architecture”(Jing 
et al. 2017) but do not give any reasons for the methodology 
chosen except to say that the method used is based on image 
processing. They further state that a deeper neural network 
becomes extremely complex to build and architect, leading 
to the decision to examine the data and then based on this, to 
choose the parameters of the network, data segments, size of 

Fig. 2  Flowchart of the proposed method (marked in red) and its comparative methods (Jing et al. 2017)
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filters and number of nodes and layers; thus, the configura-
tion of best performance is chosen. When best performance 
is chosen as a metric, however, with context and operational 
knowledge, the best performance model may not be the most 
useful for implementation in a real system.

Jing et al. (2017) then move onto evaluating the chosen 
model for the study and, to compare the results of the pro-
posed method, multiple further models are used: a fully 
connected neural network, a support vector machine and a 
random forest method. It is stated that these methods are 
widely used and have achieved success.

In general, academic studies are performed on non-com-
plex isolated systems. Developing systems in isolation such 
as discussed could be particularly vulnerable to environmen-
tal changes that would exist in reality. This is because, in a 
more complex system, there are dependencies, interactions 
and environmental functions to consider. Gearbox vibrations 
in a submarine engine room for example may be influenced 
by the condition of the various drive train components, lubri-
cation oil and compartment temperatures and humidity. How 
such factors impact the condition monitoring needs to be 
understood, otherwise the model may become ineffectual, 
perhaps unknowingly. This can mean that if the final inte-
gration with whole systems and users and operators is not 
considered at the outset, the implementation can fail. In real-
ity, the academic studies and resulting models would need 
to be developed in collaboration with the operator in order 
to be integrated into larger, more complex systems, with 
operational restrictions. In addition, the operator should be 
able to understand and clearly see how the model works and 
how the recommendations are formed by the model. Most 
importantly there must be the means and awareness for the 
operator to override the models decisions as the operator 
sees fit.

It is difficult for both the developer, operator and the 
user when many studies in this area begin in the mechani-
cal sphere and then become opaque. This makes it difficult 
for interdisciplinary work to take place, as the operator will 
typically not be a skilled neural network developer with deep 
prior knowledge. The data that is collected to run the AI 
must be collected rigorously and be contextually relevant. 
An operator or user would be best placed to inform this.

With the analysis and monitoring being remote from the 
operator, this would mean that the operator is detached from 
the in-depth technology Borth,Hendriks (2016). This would 
remove the opportunity for the operator to be able to monitor 
the system themselves or indeed override decisions. There-
fore incorrect decisions could be made out of context within 
the AI and the operator may not know that this has happened 
(Berente et al. 2019).

In the next section, we examine the advances in degrada-
tion measuring techniques in industry and how input data is 
a significant factor in AI or non-AI models. The AI systems 

that we have seen use data to operate and the quality and 
depth of this data is crucial to building models that work 
for the operator.

4  Degradation measuring techniques 
and the move towards algorithmic based 
systems of maintenance

In order for CBM to be effective, there needs to be a means 
to accurately measure or infer component degradation. As 
identified in Sect. 2, for CBM to be feasible the asset is 
required to be monitored/inspected at time intervals less than 
the P-F interval. Thus, live monitoring is desirable but cre-
ates large data which requires analysing. With the advances 
in sensor technology to offer remote and continuous condi-
tion monitoring, that if failure can be accurately predicted 
there is significant promise for a highly developed mainte-
nance strategy. In this section, we will explore some of the 
successes achieved in sensor technology and data gathering.

One field that has made significant strides towards the 
adoption of a modern condition based maintenance strategy 
is the wind turbine industry. This is motivated by the fact 
that the locations are often remote, particularly off-shore 
wind, and the numbers of turbines are significant. Therefore, 
inspection costs including non-operating time can become 
inflated (Zhang et al. 2018; Coronado 2014; Yang et al. 
2014). This section explores current methods of measuring 
degradation without application to predictive models.

CBM has encompassed a wide range of continuous sensor 
and fault detection techniques, such as vibration analysis, 
oil analysis, temperature measurement, strain measurement 
and thermography (Yang et al. 2014; Tchakoua et al. 2014). 
The operational life of a wind turbine can vary significantly 
based on the weather conditions. Considering this, Rommel 
et al. (2020) demonstrate how monitored load profiles and 
environmental conditions can be employed to provide a more 
informed calculation of the RUL of the wind turbine com-
ponents. Similarly, Zang et al. (2019) highlight that direct 
measurement of component condition through vibration 
analysis, a key health monitoring tool in rotating machinery, 
can be skewed by operational and environmental variations.

Below offers some further examples of continuous and 
advanced condition monitoring techniques that have been 
adopted:

• Advances in acoustic monitoring techniques and fault 
detection also present opportunities over a wide range 
of mechanical applications, and in most circumstances 
sensing equipment, not integral to the asset, can be easily 
retrofitted.

•  Prateepasen et al. (2011) demonstrate that leakage and 
flow rate of air through a valve can be accurately measured 
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through the turbulent flow and resulting acoustic emissions, 
at relatively low cost.

• In Albarbar et al. (2010), the air-borne acoustic signals 
from a diesel engine fuel injection system is analysed. 
Their findings indicated that deviation from default set-
tings could be detected through high and low speeds, which 
could be effective in detecting injector spring faults (Albar-
bar et al. 2010).

• A wide range of vibro-acoustic monitoring techniques used 
to detect and analyse both airborne and structural borne 
emissions from internal combustion engines are reviewed 
in  Delvecchio et al. (2018). Additionally, a wide range 
of engine faults can be detected through vibration and/or 
sound pressure emissions, but the time of detection in rela-
tion to failure varied significantly depending on the fault 
and emission type (Delvecchio et al. 2018).

Although not prognostic tools, the above techniques demon-
strate a significant maturity in fault detection and diagnostic 
capabilities of modern maintenance systems. These develop-
ments can significantly aid engineering decision making in 
maintenance.

In summary, it is clear that there has been significant 
advances in the uses of CBM techniques, that can provide 
non-invasive symptomatic data that can be used to inform 
RUL analysis. Greater condition information and data allow 
the opportunity to potentially employ advanced analytical 
tools and AI in order to predict RUL, relying less on engi-
neering judgement. However, degradation measurement and 
prediction can be vulnerable to measurement errors, shock 
events and operational, environmental and endogenous 
factors. To consider such factors in any RUL modelling 
increases the complexity of the models, but ultimately the 
greater the affect of these are, the poorer the understand-
ing is in the P-F interval. For example, where single shock 
events tend to dominate the degradation process of a com-
ponent, CBM is ineffectual (Jonge et al. 2017).

If we consider the wind turbine industry where risk is 
reduced due to operator separation and redundancy in vol-
ume is high, as long as maintenance efficiency across all 
assets is calculably improved it may be beneficial to accept 
the potential errors. In the following sections, we will 
explore the risk of removing the operator decision making 
and the dangers in the human interface particularly where 
explainability is absent.

5  The effect of operational restrictions 
on system management

When working with a complex system there are several 
limits of the components: the physical limit, the regulatory 
limit and the engineering limit (Kadak and Matsuo 2007). 

To provide example of the potential hazards in removal of 
the operator from the decision making in automated systems, 
we will examine examples in control engineering. Gener-
ally speaking, the hazards induced by errors in control engi-
neering are inherently more acute than in maintenance, but 
the potential vulnerabilities in the engineer/operator and 
machine interface are intrinsically the same.

The physical limit is one that operators such as pilots, 
submarine engineers or other operators of complex systems 
are aware of. A pilot may have to use this knowledge in a 
sudden emergency where his own experience is crucial to 
survival. This may lead to manoeuvres outside the regula-
tory envelope that are nevertheless safe and necessary. This 
physical limit of the system is where the component breaks. 
Systems are often designed and regulated in isolation in the 
scope of the ‘foreseeable operating conditions’. However, 
the true operating context has infinite possibilities and the 
responsibility is on the operator when they are working out-
side of the normal operating conditions. This means that 
wider considerations need to be met and some safety aspects 
may need to be prioritised over another. In the context of the 
nuclear submarine, this may require whole boat safety (i.e. 
threat of sinking) to be put above the safety of the nuclear 
plant and recognising when to do so.

The regulatory limit is almost always the most risk averse 
compared to the physical and engineering limits. Regula-
tors and system design authorities use limits that academi-
cally might be reasonable but practically can prevent normal 
operations.

The engineering limit is more risk aware than the regula-
tory limit. This is the limit which may be beyond the regu-
latory limit and is certainly beyond the normal operating 
zone, but still within a tolerable limit for the platform. This 
is about understanding how far you can push the system 
without damage or detriment.

In aircraft the distinction between these limits is crucial 
for operation. “In aerodynamics, the flight envelope defines 
operational limits for an aerial platform with respect to max-
imum speed and load factor given a particular atmospheric 
density. The flight envelope is the region within which an 
aircraft can operate safely. If an aircraft flies “outside the 
envelope’ it may suffer damage; the limits should therefore 
never be exceeded. The term has also been adopted in other 
fields of engineering when referring to the behaviour of a 
system which is operating beyond its normal design specifi-
cation, i.e. “outside the flight envelope’ (even if the system 
is not even actually flying)” (Knowledgebase 2019).

This is illustrated in Fig. 3 where we can see a basic V-n 
(airspeed and load variation) diagram. The diagram does 
not belong to a specific airframe. The diagram may vary 
between aircraft.

The green area shows the normal operating limit deter-
mined by the regulator. The yellow and orange area are 
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included in the operating limit. This is because, due to 
experience, the operator may be aware that some structural 
damage would occur but would not necessarily cause failure. 
Also, this failure may be preferable to catastrophic failure if 
action is not taken. The failure may be tolerated when there 
are more urgent risks that require equipment to be oper-
ated outside its normal limits. The red limit represents the 
physical limit of the system or components. It is vital that 
the operator understands these limits and is able to use them 
intelligently.

Where this system is disrupted by an AI or algorithm 
driven system that is programmed within the regulatory 
limit, the operator loses a significant portion of control over 
the system. This control would be most important where 
there was an emergency and the operator needed to respond 
outside the regulatory envelope but the system prevented 
the operator from doing so. AI driven machines are bounded 
by their inability to correctly frame a problem due to the 
lack of context. They are purely driven to identify patterns 
from data rather than, in the case of an engineer, identifying 
reasoning and applying engineering logic to the observed 
data. An engineer can understand the wider context of the 
operating environment and will apply engineering logic to 
changes and variables and will apply assumptions but will 
also, sometimes more importantly, understand when these 
conditions are absent. The potential consequences of AI and 

automated systems being unable to adapt to changes in the 
wider context are explored in the next section.

6  Risks of operator removal in system 
management

In this section we discuss the example of operator control 
of a system being removed. The discussion of operator 
removal from control systems raises a fundamental point 
that operator removal from engineering systems induces 
risk. We use the Boeing 737 Air Max Disaster to illustrate 
this. We also discuss where confusion between an AI system 
and the Operator, in the Air France Disaster caused similar 
devastation.

In the Air France disaster of 2009 a barrage of confusion 
took place with the central element being interoperability 
between the operator and automated system. “According to 
a report issued on 5 July 2012, the Bureau of Investigation 
and Analysis found that ice crystals had misled the plane’s 
airspeed sensors and that the autopilot had disconnected. 
Confusion heightened when faulty instructions emerged 
from an automated navigational aid called the flight direc-
tor.” Amid a barrage of alarms, the crew struggled to con-
trol the plane manually, but they never understood that the 
aircraft was in a stall and never undertook the appropriate 

Fig. 3  Typical V-n diagram (Knowledgebase 2019)
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recovery maneuvers. In fact, they followed the flight direc-
tor’s instructions and went into a climb instead of into a dive, 
as they should have to correct a stall” (Fred 2012). This is 
highlighted further in the Boeing 737 Air Max disasters.

The Air Max series of disasters are the most prominent in 
public perception when we discuss AI and its implementa-
tion in Aerospace. After these disasters many issues were 
found such as lack of training of flight crew, lack of control 
over the AI system and faulty AI (Herkert et al. 2020). The 
unfortunate set of circumstances surrounding the loss of 
both Lion Air Flight 610 and Ethiopian Airlines Flight 302 
led to the immediate grounding of the advertised “incredibly 
fuel-efficient” Boeing 737-MAX (Cioroianu et al. 2021).

In October 2018 and March 2019, Boeing 737 MAX pas-
senger jets crashed minutes after takeoff; these two accidents 
claimed nearly 350 lives (Herkert et al. 2020). This led to 
Boeing 737 Air Max platforms being grounded across the 
globe. The crashes were said to be caused by by a failure 
of an Angle of Attack (AOA) sensor and the subsequent 
activation of new flight control software, the Maneuvering 
Characteristics Augmentation System (MCAS) (Herkert 
et al. 2020).

Instead of purchasing new platforms, Boeing decided to 
mount large, more fuel efficient engines onto the existing 
air frame. This meant the engines had to be mounted higher 
and farther forward on the wings than for previous models of 
the 737. This significantly changed the aerodynamics of the 
aircraft and created the possibility of a nose-up stall under 
certain flight conditions (Glanz et al. 2019). This was not 
coherent with the existing automatic software. There were 
multiple explanations for the crashes but only one was a 
design flaw; which was within the MAX’s new flight control 
software system designed to prevent stalls. The remaining 
explanations were ethical and political: internal pressure to 
keep pace with Boeing’s chief competitor, Airbus; Boeing’s 
lack of transparency about the new software; and the lack 
of adequate monitoring of Boeing by the Federal Aviation 
Authority (FAA), especially during the certification of the 
MAX model and following the first crash (Herkert et al. 
2020).

Travis (2019), a qualified Pilot and software engineer, 
states the following: “Neither such coders nor their managers 
are as in touch with the particular culture and mores of the 
aviation world as much as the people who are down on the 
factory floor, riveting wings on, designing control yokes, and 
fitting landing gears. Those people have decades of institu-
tional memory about what has worked in the past and what 
has not worked. Software people do not”. The apparent gap 
in communication in the development of software systems 
that are then added onto complex platforms is concerning. 
Historically, system testing would have been done by opera-
tors and training would have been supplied, while in the Air 
Max disasters the operator was deemed to be quite separate 

from the software. Moreover, “The existence of the soft-
ware, designed to prevent a stall due to the reconfiguration 
of the engines, was not disclosed to pilots until after the 
first crash. Even after that tragic incident, pilots were not 
required to undergo simulation training on the 737 MAX” 
(Herkert et al. 2020). Additionally, MCAS was not identified 
in the original documentation/training for 737 MAX pilots 
(Glanz et al. 2019).

There are ethical considerations when rules are con-
structed for operation of complex platforms. Travis (Travis 
2019) discusses the similarities between the Air Max and 
the Challenger4 disaster in terms of the operational process. 
“The Challenger accident came about not because people 
didn’t follow the rules but because they did. In the Chal-
lenger case, the rules said that they had to have prelaunch 
conferences to ascertain flight readiness. It didn’t say that a 
significant input to those conferences couldn’t be the politi-
cal considerations of delaying a launch. The inputs were 
weighed, the process was followed, and a majority consensus 
was to launch. And seven people died” (Travis 2019).

In the Air Max case the system was also following rules. 
Travis (2019) states that “The rules said you couldn’t have a 
large pitch-up on power change and that an employee of the 
manufacturer, a DER5, could sign off on whatever you came 
up with to prevent a pitch change on power change. The 
rules didn’t say that the DER couldn’t take the business con-
siderations into the decision-making process and 346 people 
are dead. It is likely that MCAS, originally added in the 
spirit of increasing safety, has now killed more people than 
it could have ever saved. It doesn’t need to be “fixed” with 
more complexity, more software. It needs to be removed 
altogether”.

The authority that the AI software system was given in 
the Air Max disaster effectively overruled and overwhelmed 
the pilots completely. There was no way to even physically 
pull the stick back and take manual control because the sys-
tem was always on even when it was off (Travis 2019). Such 
was the adherence of the AI system to the rule book; as a 
consequence, two planes were downed.

This shows the crucial part that both operators and users 
play in the development of models, software and AI. The 
developer cannot develop and implement a system without 
knowing by whom it will be used and in what circumstances. 

4 The Space Shuttle Challenger disaster was a fatal incident in the 
United States’ space program that occurred on January 28, 1986, 
when the Space Shuttle Challenger (OV-099) broke apart 73 seconds 
into its flight, killing all seven crew members aboard.
5 Designated Engineering Representative (DER). This is an indi-
vidual who holds an engineering degree or equivalent, possesses the 
necessary technical knowledge and experience, and meets specific 
qualification requirements.
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It is inappropriate to design the system such that the regula-
tory rules within the system are opposed to general opera-
tional practises. By trying to be safer it can inadvertently 
happen that the platform becomes less safe as a result of two 
competing operators ( Wang et al. 2020).

At this time there are roadmaps to AI in aviation such 
as the EASA Roadmap ( Roadmap 2020) and analysis of 
explainable AI in aviation (Shukla et al. 2020). This is 
attracting much discussion but also indicates that the devel-
opment of AI in aviation still has significant challenges to 
overcome.

The design of any AI in complex systems needs to con-
sider the operator and their ability to interact with the system 
and override if necessary. Ultimately the operators input is 
imperative to the safety of the platform. As can be seen if 
the AI is programmed to regulatory standards but the opera-
tor needs to avert crisis by using engineering limits then 
this would not be possible if there is no override for the AI 
system. Therefore, the AI could force a platform into cata-
strophic situation by following the rulebook (Travis 2019). 
Whilst the introduction of AI or algorithms into maintenance 
may appear to have a less acute risk, the lessons are appar-
ent. Operator control and understanding of the systems is 
currently fundamental to safe and effective operation of the 
system.

Whilst the direct consequences of removing the engi-
neer’s decision making ability through the adoption of AI 
may be somewhat different in maintenance than control 
engineering, the ability to way up the decision to replace/
maintain against operational conditions, potential safety 
consequences, cost and effort are vitally important. If we 
reconsider the regulatory envelopes, any AI adopted in 
maintenance engineering would presumably be designed 
against these limits. Without the explainability in the AI, the 
engineer may be unable to challenge decisions even where 
it may be appropriate to considering the wider operational 
context. In the next section we discuss possible implementa-
tion of AI driven maintenance on sub-surface nuclear vessels 
and how wider context may impact AI performance and be 
neglected within design.

7  The issues of predictive maintenance 
on complex platforms

In this section we discuss the complexities of subsurface 
nuclear vessels and the necessary conditions for the safe 
potential implementation of AI-based CBM.

If we consider a gearbox on a naval platform, for example, 
there are added complexities due to the complexity of the 
system it interfaces with. Other factors include intermittent 
and variable load condition as well external shock and vary-
ing environmental conditions.

The authors in  Cipollini et al. (2018) analysed several 
machine learning models applied to a Naval Propulsion Sys-
tem. They concluded that unsupervised AI models could 
achieve accurate modelling with less data points than current 
supervised models. However, the assumptions in this study 
are highly significant to applicability. Data was collected 
from a frigate simulator, assuming calm waters with no 
measurement uncertainties. If we consider the true operating 
context, measurement errors and environmental variables 
are not insignificant in degradation modelling, as discussed 
below.

System CBM relies on a measurement technique (eg. 
vibration analysis, acoustic emissions, IRs, etc.) which is 
used to infer degradation. Inspection and measurement of the 
system condition, particularly when taken in an indirect way 
(eg. sensors) will induce measurement errors. Inspection 
quality will vary significantly dependent on the measure-
ment methodology. Whilst degradation is considered to be 
monotonic, measurement errors are generally considered as 
white noise and should not be seen to accumulate over time 
(Ye and Xie 2015). Equally, the possibility of not detecting 
failure and false positives6 are also an important considera-
tion in CBM (Alaswad and Xiang 2017). The probability 
of false negatives (i.e. non-detection) are dependent on the 
failure cause (Badıa et al. 2002) and if remaining unrevealed, 
may lead to unexpected functional or catastrophic failure. 
False positives, on the other hand, may lead to unnecessary 
maintenance and can increase the likelihood of imperfect 
and worse maintenance (Berrade et al. 2013). The inclusion 
of measurement errors in modelling is often assumed to be 
constant, but in reality, are dependent on degradation pro-
cesses. However, this is very difficult to model effectively 
due to the mathematical complexities involved (Alaswad and 
Xiang 2017).

The degradation rate of systems is largely dependent on 
the influencing environmental factors, such as temperature, 
humidity, voltage, vibration, etc. Therefore, these should 
not and cannot be ignored, particularly where they are so 
dominant. There are also additional environmental factors to 
consider. If we consider the submarine operating conditions 
for example, equipment can be exposed to significant varia-
tions in atmosphere, vibrations and operations. The level of 
impact will be equipment dependent. Additionally, measure-
ment errors are often applied as mutually independent terms 
in modelling, but the reality may be far more complex, as 
correlation in measurement errors can often be found with 
cyclic ambient environmental factors and the degradation 
process itself (Li et al. 2018b).

6 a test result which wrongly indicates that a particular condition or 
attribute is present.
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The studies on wind turbines showed the importance of 
the context (Rommel et al. 2020; Zhang et al. 2018); conse-
quently, to build on their success and transfer their learned 
lessons for more complex systems, the significance of con-
text needs to be acknowledged. Moreover, the validity of the 
model needs to be verified in different contexts (e.g. under 
different weather conditions); this would be difficult with 
black-box, explainable models. This raises the question of 
the usefulness of black-box highly accurate models trained 
with simulated data and indicates that there is a need for: (a) 
training models with realistic data under a variety of chang-
ing environmental conditions, and (b) explainable models, 
that enable an operator to understand a decision made by the 
system, and, if necessary, override it. The importance of the 
last point has been showed by the unfortunate examples from 
the aerospace industry which were detailed in the previous 
section. Context is significant and models should be explain-
able, such that when the context changes the operator or user 
understand the validity of the model.

Assuming that CBM measurements and modelling is rea-
sonably accurate, the benefits can be significant over a pre-
ventive based maintenance approach However, the authors 
in Xia et al. (2013) suggest that even a small measurement 
error, may mean that CBM is no better than a periodic pre-
ventive maintenance approach.

Condition monitoring is reliant on measurement tech-
niques applied to a system or component that can be used to 
infer equipment health, such as acoustic or vibration moni-
toring, lubricant analysis, electrical measurements, ther-
mography, torque measurements and pressure differentials 
(Yang et al. 2014; Ahmad and Kamaruddin 2012). In some 
circumstances system condition may be inferred from sys-
tem performance and operating data (Shorten 2012; Ahmad 
and Kamaruddin 2012; Wang et al. 2017). The effectiveness 
of AI modelling to assess RUL utilising CBM techniques 
will be largely system dependent. These dependencies will 
be determined by the predictive nature of its degradation, 
influenced by its susceptibility to environmental and opera-
tional factors as well as to external shocks and the reliability 
of the measurement techniques and its errors.

It is unclear whether truly effective methods exist for 
AI driven RUL models. However, we have seen significant 
advances in measurement of degradation as seen in the wind 
turbine industry. Consequently, the link between degradation 
measurements in CBM and RUL has to maintain operator 
input.

Indicated by the lessons from aerospace, the gap between 
system and operator is a significant one. There is still a sig-
nificant gap between research and practical application for 
AI driven CBM. For AI technology to be incorporated into 
engineering systems, especially complex systems, the opera-
tor would need to be considered along with the operators 
ability to override the system. The implementation of AI 

driven CBM would require extensive validation of any sys-
tem in the actual operational environment alongside involve-
ment of the operator, especially in complex systems.

8  Discussion and conclusions

In this paper we discussed the AI implementation on com-
plex platforms in relation to system monitoring and con-
trol. We looked at systems of varying complexity, from 
simple gearboxes and medium-complexity wind turbines 
to complex aircraft and subsurface nuclear vessels.

In the following we discuss several aspects that are 
essential to progress towards safe implementation of AI 
into complex platforms: interdisciplinary working; reliable 
data; wider system considerations; regulatory, engineering 
and physical limits; industry and academic collaborations 
(Shao et al. 2020); and measurement of success.

Implementation of remote and automated systems in 
industry has seen mixed results. From success in the wind 
industry to failure in aerospace. The complexity of the 
platforms becomes a significant issue when intertwined 
with AI. AI having significant control over the platform or 
systems and having the natural feel of the platform (Travis 
2019) removed from the human operator can cause unin-
tended and fatal consequences.

It is important to deploy robust systems that have been 
developed in context and with the operator and user at 
the heart of them (Oldfield et al. 2021; Oldfield and Haig 
2021).

It is key to be able to collect all the data as discussed 
in (Sect. 4) and understand which parameters both need to 
be collected and have importance to the system (Akerkar 
2014). This type of measurement may not be mature 
enough yet to enable the implementation of algorithmic 
based systems on complex platforms to compute RUL.

There are large differences between the regulatory limit, 
the engineering limit and the physical limit. The discrep-
ancy between the regulatory limit and operator limit can 
lead to conflict. For example, to conduct an operational 
manoeuvre to save the platform, and indeed lives, an 
operator may be close to the physical limit of the system 
or components as an experienced specialist can have the 
awareness of what can and cannot be achieved. The regula-
tory limit, if imposed through automation, takes away this 
discretion and does not allow for potentially life saving 
manoeuvres to occur or indeed permutations of potentially 
safe manoeuvres. This is partially because we cannot pro-
gram the AI with every eventuality it may face. Indeed 
operators are drilled in simulators on rare events but in a 
manner that follows regulation. In reality what they did 
based on multiple inputs might be extremely different. 
This indicates that we have far to go in developing systems 
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that are able to remove control from a human. Indeed, the 
question is if we even should remove total control from 
the human in a complex system (Riley 2018; Degani and 
Wiener 1997). This concerns the shift in the decision mak-
ing process and is a relevant lesson to the adoption of AI 
across all aspects of engineering including the potential 
implementation in maintenance.

As we see in academic studies, there is not necessarily 
the input from stakeholders, operators or users that would 
provide context to the initial idea, which indicates the need 
for collaboration between academia and industry. The gear-
box in the academic study is isolated whereas the gearbox 
in the submarine is connected to a mass of systems, many 
of which are interdependent. There is also the operational, 
environmental and safety contexts to consider. In this situa-
tion is is difficult to see how AI based maintenance systems 
could be applied without providing them with the knowledge 
and context of the operator. Indeed the user would require 
full knowledge of the system before implementations. This 
was a significant failure in the Boeing 737 Air Max AI 
implementation.

We can see within the studies in the wind turbine indus-
try that there is potential for advanced CBM to be a valu-
able method for maintenance. This data may also be used 
to underpin AI systems, as we have shown can be done in 
simple systems. In general, and specifically in more complex 
systems there seems to be a lack of understanding on how we 
could measure the success of the complex AI driven CBM 
systems and how we might implement it. There are substan-
tial risks associated with implementing AI systems at present 
that would not be acceptable, especially in systems such as 
those on board a subsurface nuclear vessel (Modarres 2009).
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