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Abstract. We present a construction of a private-key functional encryption scheme
for any family of randomized functionalities based on any such scheme for determin-
istic functionalities that is sufficiently expressive. Instantiating our construction with
existing schemes for deterministic functionalities, we obtain schemes for any family
of randomized functionalities based on a variety of assumptions (including the LWE
assumption, simple assumptions onmultilinear maps, and even the existence of any one-
way function) offering various trade-offs between security and efficiency. Previously,
Goyal et al. (Proceedings of the 12th theory of cryptography conference (TCC), pp
325–351, 2015) constructed a public-key functional encryption scheme for any family
of randomized functionalities based on indistinguishability obfuscation. One of the key
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insights underlying our work is that, in the private-key setting, a sufficiently expressive
functional encryption scheme may be appropriately utilized for implementing proof
techniques that were so far implemented based on obfuscation assumptions [such as the
punctured programming technique of Sahai andWaters (Proceedings of the 46th annual
ACM symposium on theory of computing (STOC), pp. 475–484, 2014)]. We view this
as a contribution of independent interest that may be found useful in other settings as
well.

Keywords. Functional encryption, Randomized functionalities, Punctured program-
ming.

1. Introduction

The cryptographic community’s vision of functional encryption [15,27,30] is rapidly
evolving.Whereas traditional encryption schemesoffer an all-or-nothingguaranteewhen
accessing encrypted data, functional encryption schemes offer tremendous flexibility.
Specifically, such schemes support restricted decryption keys that allow users to learn
specific functions of the encrypted data and nothing else.
Motivated by the early examples of functional encryption schemes for specific func-

tionalities (such as identity-based encryption [7,17,28]), extensive research has recently
been devoted to the construction of functional encryption schemes for rich and expres-
sive families of functions (see, for example, [4–6,11,14,15,18,20,21,24,25,27,32] and
the references therein).
Until very recently, research on functional encryption has focused on the case of

deterministic functions.More specifically, in a functional encryption scheme for a family
F of deterministic functions, a trusted authority holds a master secret key msk that
enables to generate a functional key sk f for any function f ∈ F . Now, anyone holding
the functional key sk f and an encryption of some value x can compute f (x) but cannot
learn any additional information about x . In many scenarios, however, dealing only with
deterministic functions may be insufficient, and a more general framework allowing
randomized functions is required.

Functional Encryption for Randomized Functionalities Motivated by various real-
world scenarios, Goyal et al. [23] have recently put forward a generalization of func-
tional encryption to randomized functionalities. In this setting, given a functional key
sk f for a randomized function f and given an encryption of a value x , one should
be able to obtain a sample from the distribution f (x). As Goyal et al. pointed out,
the case of randomized functions presents new challenges for functional encryption.
These challenges arise already when formalizing the security of functional encryption
for randomized functions,1 and then become even more noticeable when designing such
schemes.

1For example, an adversary holding a functional key sk f and an encryption of a value x should not
be able to tamper with the randomness that is used for sampling from distribution f (x). This is extremely
well motivated by the examples provided by Goyal et al. in the contexts of auditing an encrypted database
via randomized sampling, and of performing differentially private analysis on an encrypted database via
randomized perturbations. We refer the reader to [23] for more details.
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Goyal et al. [23] presented a realistic framework formodeling the security of functional
encryption schemes for randomized functionalities. Even more importantly, within their
framework they constructed a public-key functional encryption scheme supporting the
set of all randomized functionalities (that are computable by bounded-size circuits).
Their construction builds upon the elegant approach of punctured programming due
to Sahai and Waters [31], and they prove the security of their construction based on
indistinguishability obfuscation [8,20].

Identifying the Minimal Assumptions for Functional Encryption The work of Goyal et
al. [23] naturally gives rise to the intriguing question of whether functional encryption
for randomized functionalities can be based on assumptions that are seemingly weaker
than indistinguishability obfuscation. On the one hand, it may be the case that functional
encryption for randomized functionalities is indeed a significantly more challenging
primitive than functional encryption for deterministic functionalities. In this case, it
would be conceivable to use the full power of indistinguishability obfuscation for con-
structing such schemes. On the other hand, however, it may be possible that a functional
encryption scheme for randomized functions can be constructed in a direct black-box
manner from any such scheme for deterministic functions.
This question is especially interesting since various functional encryption schemes for

(general) deterministic functionalities are already known to exist based on assumptions
that seem significantly weaker than indistinguishability obfuscation (such as Learning
with Errors assumption or even the existence of any one-way function) offering various
trade-offs between security and efficiency (see Sect. 2.2 for more details on the existing
schemes).

1.1. Our Contributions

In this work, we consider functional encryption in the private-key setting, where the
master secret key is used both for generating functional keys and for encryption. In
this setting, we provide an answer to the above question: We present a construction of
a private-key functional encryption scheme for any family F of randomized functions
based on any private-key functional encryption scheme for deterministic functions that is
sufficiently expressive.2 Inspired by theworkofGoyal et al. [23] in the public-key setting,
we prove the security of our construction within a similarly well-motivated framework
for capturing the security of private-key functional encryption for randomized functions.

Instantiations Our resulting scheme inherits the flavor of security guaranteed by the
underlying scheme (e.g., full vs. selective security, and one-key vs. many-keys secu-
rity) and can be instantiated by a variety of existing functional encryption schemes.
Specifically, our scheme can be based either on the Learning with Errors assumption, on
obfuscation assumptions, on multilinear maps assumptions, or even on the existence of
any one-way function (offering various trade-offs between security and efficiency—we
refer the reader to Sect. 2.2 for more details on the possible instantiations).

2Our only assumption on the underlying scheme is that it supports the familyF (when viewed as a family
of single-input deterministic functions), supports the evaluation procedure of a pseudorandom function family,
and supports a few additional basic operations (such as conditional statements).
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Applicable Scenarios Following-up on the motivating applications given by Goyal et
al. [23] in the contexts of auditing an encrypted database via randomized sampling and
of performing differentially private analysis on an encrypted database via randomized
perturbations, we observe that these two examples are clearly valid in the private-key
setting as well. Specifically, in both applications, the party that provides functional keys
is more than likely the same one who encrypts the data.

Obfuscation-Based Techniques via Function Privacy One of the key insights underly-
ing our work is that in the private-key setting, where encryption is performed honestly
by the owner of the master secret key, the power of indistinguishability obfuscation
may not be needed. Specifically, we observe that in some cases one can instead rely on
the weaker notion of function privacy [1,12,14,29]. Intuitively, a functional encryption
scheme is function private if a functional key sk f for a function f reveals no “un-
necessary” information on f . For functional encryption in the private-key setting, this
essentially means that encryptions of messages m1, . . . ,mT together with functional
keys corresponding to functions f1, . . . , fT reveal essentially no information other than
the values { fi (m j )}i, j∈[T ]. Brakerski and Segev [14] recently showed that a function
private scheme can be obtained from any private-key functional encryption scheme.
Building upon the notion of function privacy, we show that any private-key functional

encryption scheme may be appropriately utilized for implementing some of the proof
techniques thatwere so far implemented based on indistinguishability obfuscation. These
include, in particular, the punctured programming approach of Sahai and Waters [31].
We view this as a contribution of independent interest that may be found useful in other
settings as well. This proof technique has been recently used by Brakerski et al. [10] to
present a construction of a private-key multi-input functional encryption scheme based
on any private-key single-input functional encryption scheme.

1.2. Additional Related Work

A related generalization of functional encryption is that of functional encryption for
multiple-input functions due to Goldwasser et al. [19]. A multiple-input functional en-
cryption scheme for a function family F allows generating a functional key sk f for any
function f ∈ F , and this enables to compute f (x, y) given an encryption of x and an
encryption of y, while not learning any additional information. Although capturing the
security guarantees that can be provided by such schemes is quite challenging, multiple-
input functional encryption might be useful for dealing with single-input randomized
functionalities: One can view a randomized function f (x; r) as a two-input function,
where its first input is the actual input x , and its second input is the randomness r (that
is possibly derived by a PRF key). However, the construction of Goldwasser et al. is
based on indistinguishability obfuscation, and our goal is to rely on weaker assump-
tions. In addition, it is not clear that the notion of security of Goldwasser et al. suffices
for capturing our notion of “best-possible” message privacy which allows for an a priori
non-negligible advantage in distinguishing the output distributions of two randomized
functions (see Sects. 1.3 and 3 for our notion of privacy).
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Our construction relies on the notion of function privacy for functional encryption
schemes, first introduced by Boneh et al. [12,13] in the public-key setting, and then
studied by Agrawal et al. [1] and by Brakerski and Segev [14] in the private-key set-
ting (generalizing the work on predicate privacy in the private-key setting by Shen et
al. [29]). As discussed in Sect. 1.1, for functional encryption in the private-key setting,
function privacy essentially means that encryptions of messages m1, . . . ,mT together
with functional keys corresponding to functions f1, . . . , fT reveal essentially no infor-
mation other than the values { fi (m j )}i, j∈[T ]. In terms of underlying assumptions, we
rely on the fact that Brakerski and Segev [14] showed that a function private scheme can
be obtained from any private-key functional encryption scheme.
Lastly, Alwen et al. [2] studied the relationship between functional encryption and

fully homomorphic encryption. In their work, they define the notion of a public-key
multi-input functional encryption scheme for randomized functionalities and construct
such a scheme assuming a public-key multi-input function encryption scheme for deter-
ministic functionalities. This result is somewhat incomparable to ours since public-key
multi-input functional encryption seems significantly stronger than the assumptions un-
derlying our approach (e.g., it is known to imply indistinguishability obfuscation [19]).

1.3. Overview of Our Approach

Aprivate-key functional encryption scheme for a familyF of randomized functions con-
sists of four probabilistic polynomial-time algorithms (Setup,KG,Enc,Dec). The syn-
tax is identical to that of functional encryption for deterministic functions (see Sect. 2.2),
but the correctness and security requirements are more subtle. In this section, we begin
with a brief overview of our notions of correctness and security. Then, we provide a high-
level overview of our new construction, and the main ideas and challenges underlying
its proof of security.

Correctness and Independence of Decrypted Values Our notion of correctness fol-
lows that of Goyal et al. [23] by adapting it to the private-key setting. Specifically,
we ask that for any sequence of messages x1, . . . , xT and for any sequence of functions
f1, . . . , fT ∈ F , it holds that the distribution obtained by encrypting x1, . . . , xT and then
decrypting the resulting ciphertexts with functional keys corresponding to f1, . . . , fT
is computationally indistinguishable from the distribution { f j (xi ; ri, j )}i, j∈[T ] where the
ri, j ’s are sampled independently and uniformly at random. As noted by Goyal et al. [23],
unlike in the case of deterministic functions where is suffices to define correctness for a
single ciphertext and a single key, here it is essential to define correctness for multiple
(possibly correlated) ciphertexts and keys. We refer the reader to Sect. 3.1 for our formal
definition.

“Best-possible” Indistinguishability-BasedMessage Privacy As in functional encryp-
tion for deterministic functions, we consider adversaries whose goal is to distinguish
between encryptions of two challenge messages, x∗

0 and x
∗
1 , when given access to an en-

cryption oracle (as required in private-key encryption) and to functional keys of various
functions. Recall that in the case of deterministic functions, the adversary is allowed to
ask for functional keys for any function f such that f (x∗

0 ) = f (x∗
1 ).



Functional Encryption for Randomized Functionalities 65

When dealing with randomized functions, however, it is significantly less clear how
to prevent adversaries from choosing functions f that will enable to easily distinguish
between encryptions of x∗

0 and x
∗
1 . Our notions ofmessage privacy ask that the functional

encryption scheme under consideration will not add a non-negligible advantage to the
(possibly non-negligible) advantage that adversaries may already have in distinguishing
between the distributions f (x∗

0 ) and f (x∗
1 ). That is, given that adversaries are able

to obtain a sample from the distribution f (x∗
0 ) or from the distribution f (x∗

1 ) using
the functional key sk f , and may already have some advantage in distinguishing these
distributions, we ask for “best-possible” message privacy in the sense that essentially no
additional advantage can be gained.
Concretely, if the distributions f (x∗

0 ) and f (x∗
1 ) can be efficiently distinguished with

advantage at most � = �(λ) to begin with (where � does not necessarily have to be
negligible), then we require that no adversary that is given a functional key for f will
be able to distinguish between encryptions of x∗

0 and x∗
1 with advantage larger than

� + neg(λ), for some negligible function neg(·). More generally, an adversary that is
given functional keys for T = T (λ) such functions (and access to an encryption oracle)
should not be able to distinguish between encryptions of x∗

0 and x
∗
1 with advantage larger

than T ·�+neg(λ).Wenote that our approach for realistically capturingmessage privacy
somewhat differs from that of Goyal et al. [23], and we refer the reader to “Appendix 1”
for a brief comparison between the two approaches.3

We put forward two flavors of “best-possible” message privacy, a non-adaptive flavor
and an adaptive flavor, depending on the flavor of indistinguishability guarantee that is
satisfied by the function family under consideration. Details follow.
Our first notion addresses function familiesF such that for a randomly sampled f ←

F , no efficient adversary given f can output x0 and x1 and distinguish the distributions
f (x0) and f (x1) with probability larger than � (note again that � does not have to be
negligible). One possible example for such a function family is a function that on input
x samples a public-key pk for a public-key encryption scheme, and outputs pk together
with a randomized encryption of x . Our second notion addresses function families F
such that no efficient adversary can output f ∈ F together with two inputs, x0 and x1,
and distinguish the distributions f (x0) and f (x1) with probability larger than �. One
possible example for such a function family is that of differentially private mechanisms,
as discussed by Goyal et al. [23]. We refer the reader to Sect. 3.2 for more information
and the formal definitions.

Our Construction Let (Setup,KG,Enc,Dec) be any private-key functional encryp-
tion scheme that provides message privacy and function privacy.4 Our new scheme is
quite intuitive and is described as follows:

3As far as we are able to currently tell, it seems that both our scheme and the scheme of Goyal et al.
[23] provide message privacy according to both of these approaches. We emphasize that we view the main
contribution of our paper as basing the security of our scheme on any underlying functional encryption scheme
(and avoiding obfuscation-related assumptions), and not as offering alternative notions of message privacy.

4As discussed above, function privacy can be assumed without loss of generality using the transformation
of Brakerski and Segev [14].
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• The setup and decryption algorithms are identical to those of the underlying scheme.
• The encryption algorithm on input a message x samples a string s uniformly at
randomandoutputs an encryptionct ← Enc(msk, (x,⊥, s,⊥))of x and s together
with two additional “empty slots” that will be used in the security proof.

• The key-generation algorithm on input a description of a randomized function f
samples a PRF key K and outputs a functional key for the deterministic function
Left f,K defined as follows: On input (xL , xR, s, z) output f (xL ; r) where r =
PRFK (s).

The correctness and independence of our scheme follow in a straightforward manner
from the correctness of the underlying scheme and the assumption that PRF is pseu-
dorandom. In fact, it suffices that PRF is weakly pseudorandom (i.e., computationally
indistinguishable from a truly random function when evaluated on independent and
uniformly sampled inputs).
As for the message privacy of the scheme, recall that we consider adversaries that

can access an encryption oracle and a key-generation oracle, and should not be able to
distinguish between an encryption Enc(msk, (x∗

0 ,⊥, s∗,⊥)) of x∗
0 and an encryption

Enc(msk, (x∗
1 ,⊥, s∗,⊥)) of x∗

1 with advantage larger than T ·�+neg(λ) (where T is
the number of functional keys given to the adversary, and� is the a priori distinguishing
advantage for the functions under consideration as described above).
The first step in our proof of security is to replace the challenge ciphertext with a

modified challenge ciphertext Enc(msk, (x∗
0 , x

∗
1 , s

∗,⊥)) that contains information on
both challenge messages (this is made possible due to the message privacy of the under-
lying scheme). Next, denoting the adversary’s key-generation queries by f1, . . . , fT , our
goal is to replace the functional keys Left f1,K1 , . . . ,Left fT ,KT with the functional keys
Right f1,K1

, . . . ,Right fT ,KT
, where the function Right f,K is defined as follows: On in-

put (xL , xR, s, z) output f (xR; r)where r = PRFK (s). At this point, we note that, from
the adversary’s point of view, when providing only Left keys, the modified challenge
ciphertext is indistinguishable from an encryption of x∗

0 , and when providing onlyRight
keys, the modified challenge ciphertext is indistinguishable from an encryption of x∗

1 .
The most challenging part of the proof is in bounding the adversary’s advantage in

distinguishing the sequences of Left and Right keys, based on the function privacy and
the message privacy of the underlying scheme. The basic idea is to switch the functional
keys from Left toRight one by one, following different proof strategies for pre-challenge
keys and for post-challenge keys.5

When dealing with a pre-challenge key sk f , the function f is already known when
producing the challenge ciphertext. Therefore, we can use the message privacy of
the underlying scheme and replace the (already-modified) challenge ciphertext with
Enc(msk, (x∗

0 , x
∗
1 , s

∗, z∗)), where z∗ = f (x∗
0 ; r∗) and r∗ = PRFK (s∗). Then, we use

the function privacy of the underlying scheme and replace the functional key Left f,K
with a functional key for the function OutputZ that simply outputs z whenever s = s∗.
From this point on, we use the pseudorandomness of PRF and replace r∗ = PRFK (s∗)
with a truly uniform r∗ and then replace z∗ ← f (x∗

0 ) with z∗ ← f (x∗
1 ). Similar steps

5We use the term pre-challenge keys for all functional keys that are obtained before the challenge phase,
and the term post-challenge keys for all functional keys that are obtained after the challenge phase.
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then enable us to replace the functional key OutputZ with a functional key for the
function Right f,K .
When dealing with a post-challenge key sk f , we would like to follow the same

approach of embedding the value f (x∗
0 ; r∗) or f (x∗

1 ; r∗). However, for post-challenge
keys, the function f is not known when producing the challenge ciphertext. Instead, in
this case, the challenge messages x∗

0 and x∗
1 are known when producing the functional

key sk f . Combining this with the function privacy of the underlying scheme enables us
to embed the above values in the functional key sk f , and once again replace the Left
keys with theRight keys. We refer the reader to Sect. 4 for the formal description of our
scheme and its proof of security.

1.4. Paper Organization

The remainder of this paper is organized as follows. In Sect. 2, we provide an overview of
the basic notation and standard tools underlying our construction. In Sect. 3,we introduce
our notions of security for private-key functional encryption schemes for randomized
functionalities. In Sect. 4, we present our new scheme and prove its security. Formal
proofs of the claims that are stated in Sect. 4 appear in “Appendices 2 and 3.”

2. Preliminaries

In this section, we present the notation and basic definitions that are used in this work.
For a distribution X , we denote by x ← X the process of sampling a value x from the
distribution X . Similarly, for a set X we denote by x ← X the process of sampling
a value x from the uniform distribution over X . For a randomized function f and an
input x ∈ X , we denote by y ← f (x) the process of sampling a value y from the
distribution f (x). For an integer n ∈ N, we denote by [n] the set {1, . . . , n}. A function
neg : N → R is negligible if for every constant c > 0 there exists an integer Nc such
that neg(λ) < λ−c for all λ > Nc.
The statistical distance between two random variables X and Y over a finite do-

main � is defined as SD(X,Y ) = 1
2

∑
ω∈� |Pr[X = ω] − Pr[Y = ω]|. Two sequences

of random variables X = {Xλ}λ∈N and Y = {Yλ}λ∈N are computationally indistin-
guishable if for any probabilistic polynomial-time algorithmA there exists a negligible
function neg(·) such that

∣
∣Pr[A(1λ, Xλ) = 1] − Pr[A(1λ,Yλ) = 1]∣∣ ≤ neg(λ) for all

sufficiently large λ ∈ N.

2.1. Pseudorandom Functions

Let {Kλ,Xλ,Yλ}λ∈N be a sequence of sets, and let PRF = (PRF.Gen,PRF.Eval) be
a function family with the following syntax:

• PRF.Gen is a probabilistic polynomial-time algorithm that takes as input the unary
representation of the security parameter λ, and outputs a key K ∈ Kλ.

• PRF.Eval is a deterministic polynomial-time algorithm that takes as input a key
K ∈ Kλ and a value x ∈ Xλ, and outputs a value y ∈ Yλ.
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The sets Kλ, Xλ, and Yλ are referred to as the key space, domain, and range of the
function family, respectively. For easy of notation, we may denote by PRF.EvalK (·)
or PRFK (·) the function PRF.Eval(K , ·) for K ∈ Kλ. The following is the standard
definition of a pseudorandom function family.

Definition 2.1. (Pseudorandomness)A function familyPRF = (PRF.Gen,PRF.Eval)
is pseudorandom if for every probabilistic polynomial-time algorithm A there exits a
negligible function neg(·) such that

AdvPRF,A(λ)
def=

∣
∣
∣
∣ Pr
K←PRF.Gen(1λ)

[
APRF.EvalK (·)(1λ) = 1

]

− Pr
f←Fλ

[
A f (·)(1λ) = 1

]∣∣
∣
∣ ≤ neg(λ),

for all sufficiently large λ ∈ N, where Fλ is the set of functions that map Xλ into Yλ.

In addition to the standard notion of a pseudorandom function family, we rely on the
seemingly stronger (yet existentially equivalent) notion of a puncturable pseudorandom
function family [9,16,26,31]. In terms of syntax, this notion asks for an additional
probabilistic polynomial-time algorithm, PRF.Punc, that takes as input a key K ∈ Kλ

and an element x∗ ∈ Xλ and outputs a “punctured” key Kx∗ . The properties required by
such a puncturing algorithm are captured by the following definition.

Definition 2.2. (Puncturable PRF) A pseudorandom function family PRF =
(PRF.Gen,PRF.Eval,PRF.Punc) is puncturable if the following properties are sat-
isfied:

1. Functionality: For all sufficiently large λ ∈ N, for every x∗ ∈ Xλ, and for every
x ∈ Xλ \ {x∗} it holds that

Pr
K←PRF.Gen(1λ);

Kx∗←PRF.Punc(K ,x∗)

[PRF.EvalK (x) = PRF.EvalKx∗ (x)] = 1.

2. Pseudorandomness at Punctured Point: LetA = (A1,A2) be any probabilistic
polynomial-time algorithm such thatA1(1λ) outputs an element x∗ ∈ Xλ and state
information state. Then, for any such A there exists a negligible function neg(·)
such that

AdvpuPRF,A(λ)
def= ∣

∣Pr
[A2(Kx∗ ,PRF.EvalK (x∗), state) = 1

]

−Pr [A2(Kx∗ , y, state) = 1]| ≤ neg(λ)

for all sufficiently largeλ ∈ N,where (x∗, state) ← A1(1λ), K ← PRF.Gen(1λ),
Kx∗ = PRF.Punc(K , x∗), and y ← Yλ.

As observed by [9,16,26,31], the GGM construction [22] of PRFs from one-way
functions can be easily altered to yield a puncturable PRF.
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2.2. Private-Key Functional Encryption

A private-key functional encryption scheme over a message space X = {Xλ}λ∈N and
a function space F = {Fλ}λ∈N is a quadruple (Setup,KG,Enc,Dec) of probabilistic
polynomial-time algorithms. The setup algorithm Setup takes as input the unary rep-
resentation 1λ of the security parameter λ ∈ N and outputs a master-secret key msk.
The key-generation algorithm KG takes as input a master-secret keymsk and a function
f ∈ Fλ, and outputs a functional key sk f . The encryption algorithm Enc takes as input
a master-secret keymsk and a message x ∈ Xλ, and outputs a ciphertext ct. In terms of
correctness, we require that for all sufficiently large λ ∈ N, for every function f ∈ Fλ

and message x ∈ Xλ it holds that Dec(KG(msk, f ),Enc(msk, x)) = f (x) with all
but a negligible probability over the internal randomness of the algorithms Setup, KG,
and Enc.

In terms of security,we rely on the private-key variants of existing indistinguishability-
based notions for message privacy (see, for example, [11,15,27]) and function privacy
(see [1,14]).When formalizing these notions, it would be convenient to use the following
standard notion of a left-or-right oracle.

Definition 2.3. (Left-or-right oracle) LetO(·, ·) be a probabilistic two-input function-
ality. For each b ∈ {0, 1}, we denote by Ob the probabilistic three-input functionality

Ob(k, z0, z1)
def= O(k, zb).

2.2.1. Message Privacy

Afunctional encryption scheme ismessageprivate if the encryptions of any twomessages
x0 and x1 are computationally indistinguishable given access to an encryption oracle (as
required in private-key encryption) and to functional keys for any function f such that
f (x∗

0 ) = f (x∗
1 ). We consider two variants of message privacy: (full) message privacy in

which adversaries are fully adaptive, and selective-function message privacy in which
adversaries must issue their key-generation queries in advance.

Definition 2.4. (Messageprivacy)A functional encryption schemeFE = (Setup,KG,

Enc,Dec) over a message space X = {Xλ}λ∈N and a function space F = {Fλ}λ∈N is
message private if for any probabilistic polynomial-time adversary A there exists a
negligible function neg(·) such that

AdvMP
FE,A,F (λ)

def=
∣
∣
∣Pr

[
AKG(msk,·),Enc0(msk,·,·)(1λ) = 1

]

−Pr
[
AKG(msk,·),Enc1(msk,·,·)(1λ) = 1

]∣
∣
∣ ≤ neg(λ)

for all sufficiently large λ ∈ N, where for every (x0, x1) ∈ Xλ × Xλ and f ∈ Fλ with
which A queries the oracles Encb and KG, respectively, it holds that f (x0) = f (x1).
Moreover, the probability is taken over the choice ofmsk ← Setup(1λ) and the internal
randomness of A.
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Definition 2.5. (Selective-function message privacy) A functional encryption scheme
FE = (Setup,KG,Enc,Dec) over a message space X = {Xλ}λ∈N and a function
space F = {Fλ}λ∈N is T -selective-function message private, where T = T (λ), if for
any probabilistic polynomial-time adversary A = (A1,A2), there exists a negligible
function neg(·) such that

AdvsfMP
FE,A,F,T (λ)

def=
∣
∣
∣Pr

[
Expt(0)FE,A,F,T (λ) = 1

]
− Pr

[
Expt(1)FE,A,F,T (λ) = 1

]∣
∣
∣ ≤ neg(λ)

for all sufficiently large λ ∈ N, where for each b ∈ {0, 1} and λ ∈ N the random variable
Expt(b)FE,A,F ,T (λ) is defined as follows:

1. msk ← Setup(1λ).
2. ( f1, . . . , fT , state) ← A1(1λ), where fi ∈ Fλ for all i ∈ [T ].
3. sk fi ← KG(msk, fi ) for all i ∈ [T ].
4. b′ ← AEncb(msk,·,·)

2 (sk f1, . . . , sk fT , state), where for each of A2’s queries
(x0, x1) ∈ Xλ ×Xλ toEncb(msk, ·, ·) it holds that fi (x0) = fi (x1) for all i ∈ [T ].

5. Output b′.
Such a scheme is selective-function message private if it is T -selective-functionmessage
private for all polynomials T = T (λ).

Known Constructions Private-key functional encryption schemes that satisfy the no-
tions presented in Definitions 2.4 and 2.5 (and support circuits of any a priori bounded
polynomial size) are known to exist based on various assumptions. The known schemes
are in fact public-key schemes, which are in particular private-key ones.
Specifically, a public-key scheme that satisfies the notion of 1-selective-function mes-

sage privacy was constructed by Gorbunov, Vaikuntanathan andWee [25] under the sole
assumption that public-key encryption exists. In the private-key setting, their transforma-
tion can in fact rely on any private-key encryption scheme (and thus on any one-way func-
tion). By assuming, in addition, the existence of a pseudorandom generator computable
by small-depth circuits (which is known to be implied by most concrete intractability
assumptions), they construct a scheme that satisfies the notion of T -selective-function
message privacy for any predetermined polynomial T = T (λ). However, the length of
the ciphertexts in their scheme grows linearly with T and with an upper bound on the
circuit size of the functions that the scheme allows (which also has to be known ahead
of time). Goldwasser et al. [24] showed that based on the Learning with Errors (LWE)
assumption, T -selective-function message privacy can be achieved where the ciphertext
size grows with T and with a bound on the depth of allowed functions.

In addition, schemes that satisfy the notion of (full) message privacy (Definition 2.4)
were constructed by Boyle et al. [6] and by Ananth et al. [3] based on differing-input
obfuscation, by Waters [32] based on indistinguishability obfuscation, and by Garg
et al. [21] based on multilinear maps. Very recently, Ananth et al. [4] gave a generic
transformation from selective-message message privacy to full message privacy. We
conclude that there is a variety of constructions offering various flavors of security
under various assumptions that can be used as a building block in our construction.



Functional Encryption for Randomized Functionalities 71

2.2.2. Function Privacy

A private-key functional encryption scheme is function private [1,14,29] if a functional
key sk f for a function f reveals no “unnecessary” information on f . More generally,
we ask that encryptions of messages m1, . . . ,mT together with functional keys corre-
sponding to functions f1, . . . , fT reveal essentially no information other than the values
{ fi (m j )}i, j∈[T ]. We consider two variants of function privacy: (full) function privacy in
which adversaries are fully adaptive, and selective-function function privacy in which
adversaries must issue their key-generation queries in advance.

Definition 2.6. (Function privacy) A functional encryption scheme FE = (Setup,

KG,Enc,Dec) over a message spaceX = {Xλ}λ∈N and a function spaceF = {Fλ}λ∈N
is function private if for any probabilistic polynomial-time adversary A there exists a
negligible function neg(·) such that

AdvFPFE,A,F (λ)
def=

∣
∣
∣Pr

[
AKG0(msk,·,·),Enc0(msk,·,·)(1λ) = 1

]

−Pr
[
AKG1(msk,·,·),Enc1(msk,·,·)(1λ) = 1

]∣
∣
∣

≤ neg(λ)

for all sufficiently large λ ∈ N, where for every ( f0, f1) ∈ Fλ × Fλ and (x0, x1) ∈
Xλ × Xλ with which A queries the oracles KGb and Encb, respectively, it holds
that f0(x0) = f1(x1). Moreover, the probability is taken over the choice of msk ←
Setup(1λ) and the internal randomness of A.

Definition 2.7. (Selective-function function privacy) A functional encryption scheme
FE = (Setup,KG,Enc,Dec) over a message space X = {Xλ}λ∈N and a function
space F = {Fλ}λ∈N is said T -selective-function function private, where T = T (λ), if
for any probabilistic polynomial-time adversaryA = (A1,A2) there exists a negligible
function neg(·) such that

AdvsfFPFE,A,F ,T (λ)
def=

∣
∣
∣Pr

[
Expt(0)FE,A,F ,T (λ) = 1

]
− Pr

[
Expt(1)FE,A,F ,T (λ) = 1

]∣
∣
∣ ≤ neg(λ),

for all sufficiently large λ ∈ N, where for each b ∈ {0, 1} and λ ∈ N the random variable
Expt(b)FE,A,F ,T (λ) is defined as follows:

1. msk ← Setup(1λ).
2. (( f0,1, . . . , f0,T ), ( f1,1, . . . , f1,T ), state) ← A1(1λ), where fσ,i ∈ Fλ for all

σ ∈ {0, 1} and i ∈ [T ].
3. sk∗

i ← KG(msk, fb,i ) for all i ∈ [T ].
4. b′ ← AEncb(msk,·,·)

2 (sk∗
1, . . . , sk

∗
T , state), where for each query (x0, x1) ∈ Xλ ×

Xλ to Encb(msk, ·, ·) it holds that f0,i (x0) = f1,i (x1) for all i ∈ [T ].
5. Output b′.

Such a scheme is selective-function function private if it is T -selective-function function
private for all polynomials T = T (λ).
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KnownConstructions Brakerski andSegev [14] showedhow to transformany (selective-
function or fully secure) message private functional encryption scheme into a (selective-
function or fully secure, respectively) functional encryption scheme which is also func-
tion private. Thus, any instantiation of a message private (or selective-function message
private) function encryption scheme as discussed in Sect. 2.2.1 can be used as a building
block in our construction.

3. Private-Key Functional Encryption for Randomized Functionalities

In this section, we present a framework for capturing the security of private-key func-
tional encryption for randomized functionalities. Our framework is inspired by that of
Goyal et al. [23] in the public-key setting, but takes a slightly different approach as we
discuss below.
Throughout this section, we let F = {Fλ}λ∈N be a family of randomized functionali-

ties, where for every λ ∈ N the set Fλ consists of functions of the form f : Xλ ×Rλ →
Yλ. That is, such a function f maps Xλ into Yλ using randomness from Rλ.
A private-key functional encryption scheme for a family F of randomized functions

consists of four probabilistic polynomial-time algorithms (Setup,KG,Enc,Dec) with
the same syntax that is described in Sect. 2.2 for deterministic functions. Although the
syntax in this setting is the same as in the deterministic setting, the correctness and
security requirements are more subtle.

3.1. Correctness and Independence

In terms of correctness, we rely on the definition of Goyal et al. [23] (when adapted to the
private-key setting). As discussed in Sect. 1.3, we ask that for any sequence of messages
x1, . . . , xT and for any sequence of functions f1, . . . , fT ∈ F , it holds that the distri-
bution obtained by encrypting x1, . . . , xT and then decrypting the resulting ciphertexts
with functional keys corresponding to f1, . . . , fT is computationally indistinguishable
from the distribution { f j (xi ; ri, j )}i, j∈[T ] where the ri, j ’s are sampled independently and
uniformly at random.

Definition 3.1. (Correctness) A functional encryption scheme � = (Setup,

KG,Enc,Dec) for a family F of randomized functions is correct if for all sufficiently
large λ ∈ N, for every polynomial T = T (λ), and for every x1, . . . , xT ∈ Xλ and
f1, . . . , fT ∈ Fλ, the following two distributions are computationally indistinguishable:

• Real(λ)
def= {

Dec(sk f j , cti )
}
i, j∈[T ], where:

− msk ← Setup(1λ),
− cti ← Enc(msk, xi ) for all i ∈ [T ],
− sk f j ← KG(msk, f j ) for all j ∈ [T ].

• Ideal(λ)
def= {

f j (xi )
}
i, j∈[T ].
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As noted by Goyal et al. [23], unlike in the case of deterministic functions where is
suffices to define correctness for a single ciphertext and a single key, here it is essential
to define correctness for multiple (possibly correlated) ciphertexts and keys. We refer
the reader to [23] for more details.

3.2. “Best-Possible” Indistinguishability-Based Message Privacy

We consider indistinguishability-based notions for capturingmessage privacy in private-
key functional encryption for randomized functionalities. As in the (standard) case of
deterministic functions (see Sect. 2.2), we consider adversaries whose goal is to distin-
guish between encryptions of two challenge messages x∗

0 and x∗
1 , when given access

to an encryption oracle (as required in private-key encryption) and to functional keys
of various functions. Recall that in the case of deterministic functions, the adversary is
allowed to ask for functional keys for any function f such that f (x∗

0 ) = f (x∗
1 ).

As discussed in Sect. 1.3, our notions of message privacy ask that the functional en-
cryption scheme under consideration will not add any non-negligible advantage to the
(possibly non-negligible) advantage that adversaries holding a functional key for a func-
tion f may already have in distinguishing between the distributions f (x∗

0 ) and f (x∗
1 ) to

begin with. That is, given that adversaries are able to obtain a sample from the distribu-
tion f (x∗

0 ) or from the distribution f (x∗
1 ) using the functional key sk f , and may already

have some advantage in distinguishing these distributions, we ask for “best-possible”
message privacy in the sense that essentially no additional advantage can be gained.
In what follows, we put forward two flavors of “best-possible” message privacy,

depending on the flavor of indistinguishability guarantee that is satisfied by the function
family under consideration.

Message Privacy for Non-adaptively Admissible Functionalities Our first notion is
that of non-adaptively admissible function families. These are families F such that for
a randomly sampled f ← F , no efficient adversary on input f can output x0 and x1
and distinguish the distributions f (x0) and f (x1) with probability larger than � (note
again that � does not have to be negligible). One possible example for such a function
family is a function that on input x samples a public-key pk for a public-key encryption
scheme, and outputs pk together with a randomized encryption of x .
For such function families, we consider a corresponding notion of message privacy in

which the adversaryobtains functional keys only for functions that are sampleduniformly
and independently from F . This is formally captured by the following two definitions.

Definition 3.2. (Non-adaptively admissible function family) A family F = {Fλ}λ∈N
of efficiently computable randomized functions is �(λ)-non-adaptively admissible if
for any probabilistic polynomial-time algorithm A = (A1,A2) it holds that

AdvnaADMF ,A (λ)
def=

∣
∣
∣
∣Pr

[
ExptnaADMF ,A (λ) = 1

]
− 1

2

∣
∣
∣
∣ ≤ �(λ)

for all sufficiently large λ ∈ N, where the random variable ExptnaADMF ,A (λ) is defined via
the following experiment:
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1. b ← {0, 1}, f ← Fλ.
2. (x0, x1, state) ← A1(1λ, f ).
3. y = f (xb; r) for r ← {0, 1}∗.
4. b′ ← A2(y, state).
5. If b′ = b then output 1, and otherwise output 0.

Definition 3.3. (Message privacy; non-adaptive case) Let F = {Fλ}λ∈N be a �(λ)-
non-adaptively admissible function family. A private-key functional encryption scheme
� = (Setup,KG,Enc,Dec) ismessage private with respect toF if for any probabilis-
tic polynomial-time adversary A = (A1,A2) and for any polynomial T = T (λ) there
exists a negligible function neg(λ) such that

AdvnaMPRF
�,F ,A,T (λ)

def=
∣
∣
∣
∣Pr

[
ExptnaMPRF

�,F ,A,T (λ) = 1
]

− 1

2

∣
∣
∣
∣ ≤ T (λ) · �(λ) + neg(λ),

for all sufficiently large λ ∈ N, where the random variable ExptnaMPRF
�,F ,A,T (λ) is defined

via the following experiment:

1. b ← {0, 1}, msk ← Setup(1λ), f1, . . . , fT ← Fλ.
2. sk fi ← KG(msk, fi ) for all i ∈ [T ].
3. (x∗

0 , x
∗
1 , state) ← AEnc(msk,·)

1 (1λ, f1, . . . , fT , sk f1, . . . , sk fT ).
4. c∗ = Enc(msk, x∗

b ).

5. b′ ← AEnc(msk,·)
2 (c∗, state).

6. If b′ = b then output 1, and otherwise output 0.

Message Privacy for Adaptively Admissible Functionalities Our second notion is that
of adaptively admissible function families. These are families F such that no efficient
adversary can output f ∈ F together with two inputs x0 and x1, and distinguish the
distributions f (x0) and f (x1) with probability larger than �. One possible example
for such a function family is that of differentially private mechanisms, as discussed by
Goyal et al. [23]. Specifically, these are randomized functions that on any two inputs
that differ on only a few of their entries, produce output distributions whose statistical
distance is polynomially small (i.e., � is polynomial in 1/λ).6

It is easy to observe that there are function families that are non-adaptively admissible
but are not adaptively admissible. One possible example is functions of the form fpk
that are indexed by a public encryption key pk, and on input x output a randomized
encryption of x under pk. Giving adversaries the possibility of adaptively choosing such
functions, they can choose a function fpk for which they know the corresponding decryp-
tion key sk. In this case, although for a randomly chosen pk the distributions fpk(x0)
and fpk(x1) are computationally indistinguishable, they may be easily distinguishable
given the randomness used by the adversary (from which it may be easy to compute the
corresponding decryption key sk).

6The definitions of differential privacy are in fact stronger than requiring small statistical distance.
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For adaptively admissible function families, we consider a corresponding notion of
message privacy in which the adversary obtains functional keys for functions that are
adaptively chosen from F . This is formally captured by the following two definitions.

Definition 3.4. (Adaptively admissible function family) A family F = {Fλ}λ∈N of
efficiently computable randomized functions is �(λ)-adaptively admissible if for any
probabilistic polynomial-time algorithm A = (A1,A2) it holds that

AdvaADMF ,A (λ)
def=

∣
∣
∣
∣Pr

[
ExptaADMF ,A (λ) = 1

]
− 1

2

∣
∣
∣
∣ ≤ �(λ)

for all sufficiently large λ ∈ N, where the random variable ExptaADMF ,A (λ) is defined via
the following experiment:

1. b ← {0, 1}.
2. ( f, x0, x1, state) ← A1(1λ), where f ∈ Fλ.
3. y = f (xb; r) for r ← {0, 1}∗.
4. b′ ← A2(y, state).
5. If b′ = b then output 1, and otherwise output 0.

Definition 3.5. (Message privacy; adaptively admissible case) Let F = {Fλ}λ∈N be a
�(λ)-adaptively admissible function family.Aprivate-key functional encryption scheme
� = (Setup,KG,Enc,Dec) is message private with respect to F if for any proba-
bilistic polynomial-time adversary A = (A1,A2) that issues at most T = T (λ) key-
generation queries there exists a negligible function neg(λ) such that

AdvaMPRF
�,F ,A(λ)

def=
∣
∣
∣
∣Pr

[
ExptaMPRF

�,F ,A(λ) = 1
]

− 1

2

∣
∣
∣
∣ ≤ T (λ) · �(λ) + neg(λ),

for all sufficiently large λ ∈ N, where the random variable ExptaMPRF
�,F ,A(λ) is defined via

the following experiment:

1. b ← {0, 1}, msk ← Setup(1λ).
2. (x∗

0 , x
∗
1 , state) ← AEnc(msk,·),KG(msk,·)

1 (1λ).
3. c∗ = Enc(msk, x∗

b ).

4. b′ ← AEnc(msk,·),KG(msk,·)
2 (c∗, state).

5. If b′ = b then output 1, and otherwise output 0.

4. Our Functional Encryption Scheme

In this section,we present our construction of a private-key functional encryption scheme
for randomized functionalities. LetF = {Fλ}λ∈N be a family of randomized functionali-
ties,where for everyλ ∈ N the setFλ consists of functions of the form f : Xλ×Rλ → Yλ

(i.e., f maps Xλ into Yλ using randomness from Rλ). Our construction relies on the
following building blocks:
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Leftf,K(xL, xR, s, z):

1. Let r = PRF.Eval(K, s).
2. Output f(xL; r).

Rightf,K(xL, xR, s, z):

1. Let r = PRF.Eval(K, s).
2. Output f(xR; r).

Fig. 1. The functions Left f,K andRight f,K . The function Left f,K is used by the actual scheme, whereas the
function Right f,K is used in the proofs of its security .

1. A private-key functional encryption scheme FE = (FE.Setup,FE.KG,

FE.Enc,FE.Dec).
2. A pseudorandom function family PRF = (PRF.Gen,PRF.Eval). We assume

that for every λ ∈ N and for every key K that is produced by PRF.Gen(1λ), it
holds that PRF.Eval(K , ·) : {0, 1}λ → Rλ.

As discussed in Sect. 1.1, we assume that the scheme FE is sufficiently expressive in
the sense that it supports the function familyF (when viewed as a family of single-input
deterministic functions), the evaluation procedure of the pseudorandom function family
PRF, and a few additional basic operations (such as conditional statements). Our scheme
� = (Setup,KG,Enc,Dec) is defined as follows.

• The setup algorithm.On input the security parameter 1λ the setup algorithmSetup
samples FE.msk ← FE.Setup(1λ), and outputs msk = FE.msk.

• The key-generation algorithm.On input the master secret keymsk and a function
f ∈ Fλ, the key-generation algorithm KG samples K ← PRF.Gen(1λ) and
outputs sk f ← FE.KG(msk,Left f,K ), where Left f,K is a deterministic function
that is defined in Figure 1.

• The encryption algorithm. On input the master secret key msk and a message
x ∈ Xλ, the encryption algorithm Enc samples s ← {0, 1}λ and outputs ct ←
FE.Enc(msk, (x,⊥, s,⊥)).

• The decryption algorithm. On input a functional key sk f and a ciphertext ct, the
decryption algorithm Dec outputs FE.Dec(sk f , ct).

The correctness and independence of the above scheme with respect to any family
of randomized functionalities follow in a straightforward manner from the correctness
of the underlying functional encryption scheme FE and the assumption that PRF is
a pseudorandom function family (in fact, it suffices that PRF is a weak pseudoran-
dom function family). Specifically, consider a sequence of messages x1, . . . , xT and a
sequence of functions f1, . . . , fT . As the encryption FE.Enc(msk, (xi ,⊥, si ,⊥)) of
each message xi uses a uniformly sampled si ∈ {0, 1}λ, and the functional key for a
function f j contains a freshly sampled key K j for the pseudorandom function family,
the distribution { f j (xi ;PRF.Eval(K j , si )} is computationally indistinguishable from
the distribution { f j (xi ; ri, j )}, where the ri, j ’s are sampled independently and uniformly
at random.
The following two theorems capture the security of the scheme. These theorems

(which are proved in Sects. 4.1 and 4.2) state that under suitable assumptions on the
underlying building blocks, the scheme is message private for non-adaptively admissible
randomized functionalities and for adaptively admissible randomized functionalities.
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OutputZ(xL, xR, s, z)

1. Output z.

Fig. 2. The function OutputZ .

Theorem 4.1. Assuming that PRF is a pseudorandom function family and that FE
is selective-function function private, then � is message private for non-adaptively
admissible randomized functionalities.

Theorem 4.2. Assuming that PRF is a puncturable pseudorandom function family
and that FE is function private, then � is message private for adaptively admissible
randomized functionalities.

As discussed in Sects. 2.1 and 2.2, Theorems 4.1 and 4.2 can be instantiated based on
a variety of known pseudorandom function families and functional encryption schemes.
In particular, Theorem 4.1 can be based on the minimal assumption that a selective-
function message private functional encryption scheme exists, and Theorem 4.2 can be
based on the minimal assumption that a message private functional encryption scheme
exists.

4.1. Proof of Theorem 4.1

We prove that the scheme � is message private for non-adaptively admissible func-
tionalities (see Definition 3.2) based on the assumptions that PRF is a pseudorandom
function family and that FE is selective-function function private (see Definition 2.7).
Let A be a probabilistic polynomial-time adversary that receives functional keys for

at most T = T (λ) functions (note that T may be any polynomial and is not fixed in
advance), and let F be a �-non-adaptively admissible family of randomized function-
alities. We denote by f1, . . . , fT the functions for which A receives functional keys.
We present a sequence of experiments and upper boundA’s advantage in distinguish-

ing each of the two consecutive experiments. Each of the two consecutive experiments
differs either in the description of their encryption oracle or in the description of their
key-generation oracle. The first experiment is the experimentExptnaMPRF

�,F ,A,T (λ) (see Def-
inition 3.3), and the last experiment is completely independent of the bit b. This enables
us to prove that there exists a negligible function neg(·) such that

AdvnaMPRF
�,F ,A,T (λ)

def=
∣
∣
∣
∣Pr

[
ExptnaMPRF

�,F ,A,T (λ) = 1
]

− 1

2

∣
∣
∣
∣ ≤ T (λ) · �(λ) + neg(λ)

for all sufficiently large λ ∈ N. Throughout the proof we use, in addition to Left f,K
and Right f,K that are defined in Figure 1, the algorithm OutputZ that is described in
Figure 2.

In what follows, we describe the experiments, and we refer the reader to Table 1 for
a high-level overview of the differences between them.
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Table 1. The differences between the experiments H(0), . . . ,H(9) .

Experiment Encryption oracle Challenge ciphertext Functional keys

H(0) (x, ⊥, s, ⊥) (x∗
b , ⊥, s∗,⊥) Left f,K

H(1) (x, x , s,⊥) (x∗
b , x∗

1 , s∗, ⊥) Left f,K

H(2,i) (x, x, s,⊥) (x∗
b , x∗

1 , s∗, ⊥) Keys 1, . . . , i − 1 : Right f,K
Keys i, . . . , T : Left f,K

H(3,i) (x, x, s, fi (x;PRFKi (s)) ) (x∗
b , x∗

1 , s∗, fi (x
∗
b ;PRFKi (s∗)) ) Keys 1, . . . , i − 1: Right f,K

Keys i, . . . , T : Left f,K
H(4,i) (x, x, s, fi (x;PRFKi (s))) (x∗

b , x∗
1 , s∗, fi (x

∗
b ;PRFKi (s∗))) Keys 1, . . . , i − 1: Right f,K

Key i : OutputZ

Keys i + 1, . . . , T : Left f,K
H(5,i) (x, x, s, fi (x; r )) (x∗

b , x∗
1 , s∗, fi (x

∗
b ; r∗ )) Keys 1, . . . , i − 1: Right f,K

Key i : OutputZ
Keys i + 1, . . . , T : Left f,K

H(6,i) (x, x, s, fi (x; r)) (x∗
b , x∗

1 , s∗, fi ( x∗
1 ; r∗)) Keys 1, . . . , i − 1: Right f,K

Key i : OutputZ
Keys i + 1, . . . , T : Left f,K

H(7,i) (x, x, s, fi (x; PRFKi (s) )) (x∗
b , x∗

1 , s∗, fi (x
∗
1 ; PRFKi (s

∗) )) Keys 1, . . . , i − 1: Right f,K

Key i : OutputZ
Keys i + 1, . . . , T : Left f,K

H(8,i) (x, x, s, fi (x;PRFKi (s))) (x∗
b , x∗

1 , s∗, fi (x
∗
1 ;PRFKi (s∗))) Keys 1, . . . , i : Right f,K

Keys i + 1, . . . , T : Left f,K

H(9) (x, x, s,⊥) ( x∗
1 , x∗

1 , s∗, ⊥) Right f,K

Experiment H(0)(λ). This is the experiment ExptnaMPRF
�,F ,A,T (λ) (see Definition 3.3).

Experiment H(1)(λ). This experiment is obtained from the experiment H(0)(λ) by
modifying the encryption oracle, and the distribution of the challenge ciphertext as
follows. The encryption oracle on input x samples s ← {0, 1}λ and outputs ct ←
FE.Enc(msk, (x, x , s,⊥)) instead of ct ← FE.Enc(msk, (x, ⊥ , s,⊥)). Similarly,
the challenge ciphertext is computed by sampling s∗ ← {0, 1}λ and outputting ct∗ ←
FE.Enc(msk, (x∗

b , x∗
1 , s∗,⊥)) instead of ct∗ ← FE.Enc(msk, (x∗

b , ⊥ , s∗,⊥)).
Note that for each function f ∈ { f1, . . . , fT } with an associated PRF key K , for the

deterministic function Left f,K it holds that Left f,K (x, x, s,⊥) = Left f,K (x,⊥, s,⊥)

(and similarly for the challenge ciphertext). Therefore, the selective-function message
privacy of the underlying schemeFE (with respect to deterministic functions) guarantees
that the adversaryA has only a negligible advantage in distinguishing experimentsH(0)

and H(1). Specifically, let F ′ denote the family of deterministic functions Left f,K and
Right f,K for every f ∈ F and PRF key K (as defined in Figure 1) as well as the
function OutputZ (as defined in Figure 2). In “Appendix 2,” we prove the following
claim:
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Claim 4.3. There exists a probabilistic polynomial-time adversary B(0)→(1) such that

∣
∣
∣Pr

[
H(0)(λ) = 1

]
− Pr

[
H(1)(λ) = 1

]∣
∣
∣ ≤ AdvsfMP

FE,F ′,B(0)→(1),T (λ).

Experiment H(2,i)(λ) where i ∈ [T + 1]. This experiment is obtained from the ex-
periment H(1)(λ) by modifying the distribution of the functional keys as follows. The
functional keys for f1, . . . , fi−1 are generated as sk f ← FE.KG(msk, Right f,K )

instead of as sk f ← FE.KG(msk, Left f,K ) (where Right f,K is defined in Figure

1), and the functional keys for fi , . . . , fT are generated as before (i.e., as sk f ←
FE.KG(msk,Left f,K )). We observe that H(1)(λ) = H(2,1)(λ).
Experiment H(3,i)(λ) where i ∈ [T ]. This experiment is obtained from the experi-
mentH(2,i)(λ) by modifying the encryption oracle, and the distribution of the challenge
ciphertext as follows. The encryption oracle on input x samples s ← {0, 1}λ and out-
puts ct ← FE.Enc(msk, (x, x, s, z )), where z = fi (x;PRF.Eval(Ki , s)), instead of

ct ← FE.Enc(msk, (x, x, s, ⊥ )). Similarly, the challenge ciphertext is computed by

sampling s∗ ← {0, 1}λ and outputting ct ← FE.Enc(msk, (x∗
b , x

∗
1 , s

∗, z∗ )), where

z∗ = fi (x∗
b ;PRF.Eval(Ki , s∗)), instead of ct ← FE.Enc(msk, (x∗

b , x
∗
1 , s

∗, ⊥ )).
Note that for function f ∈ { f1, . . . , fT } with an associated PRF key K , for the de-

terministic functions Left f,K and Right f,K it holds that Left f,K (x, x, s, z) = Left f,K
(x, x, s,⊥) andRight f,K (x, x, s, z) = Right f,K (x, x, s,⊥) (and similarly for the chal-
lenge ciphertext). Therefore, the selective-function message privacy of the underlying
scheme FE (with respect to deterministic functions) guarantees that the adversary A
has only a negligible advantage in distinguishing experimentsH(2,i) andH(3,i). In “Ap-
pendix 2,” we prove the following claim:

Claim 4.4. For every i ∈ [T ] there exists a probabilistic polynomial-time adversary
B(2,i)→(3,i) such that

∣
∣
∣Pr

[
H(2,i)(λ) = 1

]
− Pr

[
H(3,i)(λ) = 1

]∣
∣
∣ ≤ AdvsfMP

FE,F ′,B(2,i)→(3,i),T (λ).

Experiment H(4,i)(λ)where i ∈ [T ]. This experiment is obtained from the experiment
H(3,i)(λ) by modifying the distribution of the functional key for the i th function fi .
Specifically, the functional key for fi is computed as sk fi ← FE.KG(msk, OutputZ )

instead of sk fi ← FE.KG(msk, Left fi ,Ki ), where the functionOutputZ is defined in

Figure 1.
Note that the encrypted values are all of the form (x, x, s, fi (x;PRF.Eval(Ki , s)))

or of the form (x∗
b , x

∗
1 , s

∗, fi (x∗
b ;PRF.Eval(Ki , s∗))), and therefore OutputZ(x, x, s,

fi (x;PRF.Eval(Ki , s))) = Left fi ,Ki (x, x, s, fi (x;PRF.Eval(Ki , s))) and similarly
OutputZ(x∗

b , x
∗
1 , s

∗, fi (x∗
b ;PRF.Eval(Ki , s∗))) = Left fi ,Ki (x

∗
b , x

∗
1 , s

∗,
fi (x∗

b ;PRF.Eval(Ki , s∗))). Therefore, the selective-function function privacy of the
underlying scheme FE (with respect to deterministic functions) guarantees that the ad-
versary A has only a negligible advantage in distinguishing experiments H(3,i) and
H(4,i). In “Appendix 2,” we prove the following claim:
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Claim 4.5. For every i ∈ [T ] there exists a probabilistic polynomial-time adversary
B(3,i)→(4,i) such that

∣
∣
∣Pr

[
H(3,i)(λ) = 1

]
− Pr

[
H(4,i)(λ) = 1

]∣
∣
∣ ≤ AdvsfFPFE,F ′,B(3,i)→(4,i),T (λ).

Experiment H(5,i)(λ)where i ∈ [T ]. This experiment is obtained from the experiment
H(4,i)(λ)bymodifying the encryptionoracle, and the distributionof the challenge cipher-
text as follows.The encryptionoracle on input x outputsct ← FE.Enc(msk, (x, x, s, z)),
where z = fi (x; r ) for a fresh and uniformly sampled value r instead of z =
fi (x; PRF.Eval(Ki , s) ). Similarly, the challenge ciphertext is computed as ct∗ ←
FE.Enc(msk, (x∗

b , x
∗
1 , s

∗, z∗)), where z∗ = fi (x∗
b ; r∗ ) for a fresh and uniformly sam-

pled value r∗ instead of z∗ = fi (x∗
b ; PRF.Eval(Ki , s

∗) ).
The pseudorandomness of PRF.Eval(Ki , ·) guarantees that the adversaryA has only

a negligible advantage in distinguishing experimentsH(4,i) andH(5,i). In “Appendix 2,”
we prove the following claim:

Claim 4.6. For every i ∈ [T ] there exists a probabilistic polynomial-time adversary
B(4,i)→(5,i) such that

∣
∣
∣Pr

[
H(4,i)(λ) = 1

]
− Pr

[
H(5,i)(λ) = 1

]∣
∣
∣ ≤ AdvPRF,B(4,i)→(5,i) (λ).

Experiment H(6,i)(λ)where i ∈ [T ]. This experiment is obtained from the experiment
H(5,i)(λ) by computing the challenge ciphertext as ct∗ ← FE.Enc(msk, (x∗

b , x
∗
1 , s

∗,
z∗)), where z∗ = fi ( x∗

1 ; r∗) instead of z = fi ( x∗
b ; r∗).

The computational admissibility of the function family F guarantees that the advan-
tage of the adversaryA in distinguishing experimentsH(5,i) andH(6,i) is at most �(λ).
In “Appendix 2,” we prove the following claim:

Claim 4.7. For every i ∈ [T ] there exists a probabilistic polynomial-time adversary
B(5,i)→(6,i) such that

∣
∣
∣Pr

[
H(5,i)(λ) = 1

]
− Pr

[
H(6,i)(λ) = 1

]∣
∣
∣ ≤ AdvnaADMF ,B(5,i)→(6,i) (λ) ≤ �(λ).

Experiment H(7,i)(λ)where i ∈ [T ]. This experiment is obtained from the experiment
H(6,i)(λ)bymodifying the encryptionoracle, and the distributionof the challenge cipher-
text as follows.The encryptionoracle on input x outputsct ← FE.Enc(msk, (x, x, s, z))
where z = fi (x; PRF.Eval(Ki , s) ) instead of z = fi (x; r ) for a fresh and uni-
formly sampled value r . Similarly, the challenge ciphertext is computed as ct∗ ←
FE.Enc(msk, (x∗

b , x
∗
1 , s

∗, z∗)), where z = fi (x∗
1 ; PRF.Eval(Ki , s

∗) ) instead of z =
fi (x∗

1 ; r∗ ) for a fresh and uniformly sampled value r∗.
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The pseudorandomness of PRF.Eval(Ki , ·) guarantees that the adversaryA has only
a negligible advantage in distinguishing experimentsH(6,i) andH(7,i). The proof of the
following claim is essentially identical to the proof of Claim 4.6 (see “Appendix 2”):

Claim 4.8. For every i ∈ [T ] there exists a probabilistic polynomial-time adversary
B(6,i)→(7,i) such that

∣
∣
∣Pr

[
H(6,i)(λ) = 1

]
− Pr

[
H(7,i)(λ) = 1

]∣
∣
∣ ≤ AdvPRF,B(6,i)→(7,i) (λ).

Experiment H(8,i)(λ) where i ∈ [T ]. This experiment is obtained from the experi-
mentH(7,i)(λ) bymodifying the distribution of the functional key for the i th function fi .
Specifically, the functional key for fi is computed assk fi ← FE.KG(msk, Right fi ,Ki

)

instead of sk fi ← FE.KG(msk, OutputZ ).
As in the proof of Claim 4.5, the selective-function function privacy of the underlying

scheme FE (with respect to deterministic functions) guarantees that the adversaryA has
only a negligible advantage in distinguishing experimentsH(7,i) andH(8,i). The proof of
the following claim is essentially identical to the proof of Claim 4.5 (see “Appendix 2”):

Claim 4.9. For every i ∈ [T ] there exists a probabilistic polynomial-time adversary
B(7,i)→(8,i) such that

∣
∣
∣Pr

[
H(7,i)(λ) = 1

]
− Pr

[
H(8,i)(λ) = 1

]∣
∣
∣ ≤ AdvsfFPFE,F ′,B(7,i)→(8,i),T (λ).

Next, we observe that the experiment H(2,i+1)(λ) is obtained from the experiment
H(8,i)(λ) bymodifying the encryption oracle and the distribution of the challenge cipher-
text as follows. The encryption oracle on input x outputs ct ← FE.Enc(msk, (x, x, s,
⊥ )) instead of ct ← FE.Enc(msk, (x, x, s, z )) where z = fi (x;
PRF.Eval(Ki , s)). Similarly, the challenge ciphertext is computed using z∗ = ⊥ instead
of z∗ = fi (x∗

1 ;PRF.Eval(Ki , s∗)).
Note that for each function f ∈ { f1, . . . , fT } with an associated PRF key K , for

the deterministic functions Left f,K and Right f,K it holds that Left f,K (x, x, s,⊥) =
Left f,K (x, x, s, z) and Right f,K (x, x, s,⊥) = Right f,K (x, x, s, z) (and similarly for
the challenge ciphertext). Therefore, the selective-functionmessage privacy of the under-
lying scheme FE (with respect to deterministic functions) guarantees that the adversary
A has only a negligible advantage in distinguishing experiments H(8,i) and H(2,i+1).
The proof of the following claim is essentially identical to the proof of Claim 4.4 (see
“Appendix 2”):

Claim 4.10. For every i ∈ [T ] there exists a probabilistic polynomial-time adversary
B(8,i)→(2,i+1) such that

∣
∣
∣Pr

[
H(8,i)(λ) = 1

]
− Pr

[
H(2,i+1)(λ) = 1

]∣
∣
∣ ≤ AdvsfMP

FE,F ′,B(8,i)→(2,i+1),T (λ).
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Experiment H(9)(λ). This experiment is obtained from the experiment H(2,T+1)(λ)

by computing the challenge ciphertext as ct∗ ← FE.Enc(msk, ( x∗
1 , x∗

1 , s
∗,⊥)) in-

stead of ct ← FE.Enc(msk, ( x∗
b , x∗

1 , s
∗,⊥)). Note that this experiment is completely

independent of the bit b, and therefore, Pr
[H(9)(λ) = 1

] = 1/2.
In addition, note that for every function f ∈ { f1, . . . , fT } with an associated PRF

key K , for the deterministic function Right f,K it holds that Right f,K (x∗
b , x

∗
1 , s

∗,⊥) =
Right f,K (x∗

1 , x
∗
1 , s

∗,⊥). Therefore, the selective-functionmessage privacy of the under-
lying scheme FE (with respect to deterministic functions) guarantees that the adversary
A has only a negligible advantage in distinguishing experiments H(8,i) and H(2,i+1).
The proof of the following claim is essentially identical to the proof of Claim 4.3 (see
“Appendix 2”):

Claim 4.11. There exists a probabilistic polynomial-time adversaryB(2,T+1)→(9) such
that

∣
∣
∣Pr

[
H(2,T+1)(λ) = 1

]
− Pr

[
H(9)(λ) = 1

]∣
∣
∣ ≤ AdvsfFPFE,F ′,B(2,T+1)→(9),T (λ).

Finally, putting together Claims 4.3–4.11 with the facts that ExptnaMPRF
�,F ,A,T (λ) =

H(0)(λ),H(1)(λ) = H(2,1)(λ) and Pr
[H(9)(λ) = 1

] = 1/2, we observe that

AdvnaMPRF
�,F ,A,T

def=
∣
∣
∣
∣Pr

[
ExptnaMPRF

�,F ,A,T (λ) = 1
]

− 1

2

∣
∣
∣
∣

=
∣
∣
∣Pr

[
H(0)(λ) = 1

]
− Pr

[
H(9)(λ) = 1

]∣
∣
∣

≤
∣
∣
∣Pr

[
H(0)(λ) = 1

]
− Pr

[
H(1)(λ) = 1

]∣
∣
∣

+
T∑

i=1

7∑

j=2

∣
∣
∣Pr

[
H( j,i)(λ) = 1

]
− Pr

[
H( j+1,i)(λ) = 1

]∣
∣
∣

+
T∑

i=1

∣
∣
∣Pr

[
H(8,i)(λ) = 1

]
− Pr

[
H(2,i+1)(λ) = 1

]∣
∣
∣

+
∣
∣
∣Pr

[
H(2,T+1)(λ) = 1

]
− Pr

[
H(9)(λ) = 1

]∣
∣
∣

≤ T (λ) · �(λ) + neg(λ).

�

4.2. Proof of Theorem 4.2

We prove that the scheme � is message private for adaptively admissible functionalities
(see Definition 3.5) based on the assumptions that PRF is a puncturable pseudorandom
function family and that FE is function private (see Definition 2.6).
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PuncOutputYf,K′,y,s∗(xL, xR, s, z):

1. If s = s∗ then output y.
2. Otherwise, let r = PRF.Eval(K ′, s) and out-

put f(xL; r).

PuncOutputZf,K′,s∗(xL, xR, s, z):

1. If s = s∗ then output z.
2. Otherwise, let r = PRF.Eval(K ′, s) and out-

put f(xL; r).

Fig. 3. The functions PuncOutputY f,K ′,y,s∗ and PuncOutputZ f,K ′,s∗ .

Let A be a probabilistic polynomial-time adversary that issues at most T1 = T1(λ)

pre-challenge key-generation queries, atmost T2 = T2(λ) post-challenge key-generation
queries, where T = T1 + T2 (note that T1 and T2 may be any polynomials and are
not fixed in advance), and let F be a �-adaptively admissible family of randomized
functionalities. We denote by f1, . . . , fT the key-generation queries that are issued by
A.
We present a sequence of experiments and upper boundA’s advantage in distinguish-

ing each of the two consecutive experiments. Each of the two consecutive experiments
differs either in the distribution of their challenge ciphertexts or in the distribution of
the functional keys that are produced by the key-generation oracle. The first experiment
is the experiment ExptaMPRF

�,F ,A,T (λ) (see Definition 3.5), and the last experiment is com-
pletely independent of the bit b. This enables us to prove that there exists a negligible
function neg(·) such that

AdvaMPRF
�,F ,A,T (λ)

def=
∣
∣
∣
∣Pr

[
ExptaMPRF

�,F ,A,T (λ) = 1
]

− 1

2

∣
∣
∣
∣ ≤ T (λ) · �(λ) + neg(λ)

for all sufficiently large λ ∈ N. Throughout the proof we use, in addition to the functions
Left f,K andRight f,K that were defined in Figure 1, the functionsPuncOutputY f,K ′,y,s∗
and PuncOutputZ f,K ′,s∗ that are defined in Figure 3. In what follows, we describe the
experiments, andwe refer the reader toTable 2 for a high-level overviewof the differences
between them. We note that in all experiments the encryption oracle is as defined by the
encryption procedure of the scheme.

Experiment H(0)(λ). This is the experiment ExptaMPRF
�,F ,A(λ) (see Definition 3.5).

Experiment H(1)(λ). This experiment is obtained from the experiment H(0)(λ) by
modifying the encryption oracle so that on the challenge input (x∗

0 , x
∗
1 ) it samples

s∗ ← {0, 1}λ and outputs ct ← FE.Enc(msk, (x∗
b , x∗

1 , s∗,⊥)) instead of ct ←
FE.Enc(msk, (x∗

b , ⊥ , s∗,⊥)).
Note that for each function f ∈ { f1, . . . , fT }with an associatedPRFkey K , for the de-

terministic function Left f,K and the challenge ciphertext it holds that
Left f,K (x∗

b , x
∗
1 , s

∗,⊥) = Left f,K (x∗
b ,⊥, s∗,⊥). Therefore, the message privacy of the

underlying scheme FE (with respect to deterministic functions) guarantees that the ad-
versaryA has only a negligible advantage in distinguishing experimentsH(0) andH(1).
Specifically, let F ′ denote the family of deterministic functions Left f,K and Right f,K
for every f ∈ F and PRF key K (as defined in Figure 1) as well as the function
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Table 2. The differences between the experiments H(0), . . . ,H(11) .

Experiment Challenge ciphertext Key-generation oracle
(pre-challenge)

Key-generation oracle
(post-challenge)

H(0) (x∗
b ,⊥, s∗, ⊥) Left f,K Left f,K

H(1) (x∗
b , x∗

1 , s∗, ⊥) Left f,K Left f,K

H(2,i) (x∗
b , x∗

1 , s∗,⊥) Left f,K PuncOutputY f,K ′,y,s∗
Keys T1 + 1, . . . , T1 + i − 1:
y ← f (x∗

b )

Keys T1 + i, . . . , T :
y = f (x∗

b ;PRFK (s∗))

H(3,i) (x∗
b , x∗

1 , s∗,⊥) Left f,K PuncOutputY f,K ′,y,s∗
Keys T1 + 1, . . . , T1 + i − 1:

y ← f (x∗
1 )

Keys T1 + i, . . . , T :
y = f (x∗

b ;PRFK (s∗))

H(4,i) (x∗
b , x∗

1 , s∗,⊥) Keys 1, . . . , i − 1 : Right f,K PuncOutputY f,K ′,y,s∗
Keys i, . . . , T1: Left f,K y ← f (x∗

1 )

H(5,i) (x∗
b , x∗

1 , s∗, z∗ ) Keys 1, . . . , i − 1: Right f,K PuncOutputY f,K ′,y,s∗

z∗ = fi (x
∗
b ;PRFKi (s

∗)) Keys i, . . . , T1: Left f,K y ← f (x∗
1 )

H(6,i) (x∗
b , x∗

1 , s∗, z∗) Keys 1, . . . , i − 1: Right f,K PuncOutputY f,K ′,y,s∗

z∗ = fi (x
∗
b ;PRFKi (s

∗)) Key i : PuncOutputZ fi ,K
′
i ,s

∗ y ← f (x∗
1 )

Keys i + 1, . . . , T1 : Left f,K
H(7,i) (x∗

b , x∗
1 , s∗, z∗) Keys 1, . . . , i − 1: Right f,K PuncOutputY f,K ′,y,s∗

z∗ = fi (x
∗
b ; r∗ ) Key i : PuncOutputZ fi ,K

′
i ,s

∗ y ← f (x∗
1 )

Keys i + 1, . . . , T1: Left f,K
H(8,i) (x∗

b , x∗
1 , s∗, z∗) Keys 1, . . . , i − 1: Right f,K Key i : PuncOutputZ fi ,K

′
i ,s

∗

z∗ = fi ( x∗
1 ; r∗) PuncOutputY f,K ′,y,s∗ y ← f (x∗

1 )

Keys i + 1, . . . , T1: Left f,K
H(9,i) (x∗

b , x∗
1 , s∗, z∗) Keys 1, . . . , i − 1: Right f,K PuncOutputY f,K ′,y,s∗

z∗ = fi (x
∗
1 ; PRFKi (s

∗) ) Key i : PuncOutputZ fi ,K
′
i ,s

∗ y ← f (x∗
1 )

Keys i + 1, . . . , T1: Left f,K

H(10,i) (x∗
b , x∗

1 , s∗, z∗) Keys 1, . . . , i : Right f,K PuncOutputY f,K ′,y,s∗
z∗ = fi (x

∗
1 ;PRFKi (s

∗)) Keys i + 1, . . . , T1: Left f,K y ← f (x∗
1 )

H(11) ( x∗
1 , x∗

1 , s∗, ⊥) Right f,K PuncOutputY f,K ′,y,s∗
y ← f (x∗

1 )

PuncOutputY f,K ′,y,s∗ and PuncOutputZ f,K ′,s∗ for every f ∈ F , punctured PRF key
K ′, value y ∈ Yλ and string s∗ ∈ {0, 1}λ (as defined in Figure 3). In “Appendix 3,” we
prove the following claim:
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Claim 4.12. There exists a probabilistic polynomial-time adversaryB(0)→(1) such that

∣
∣
∣Pr

[
H(0)(λ) = 1

]
− Pr

[
H(1)(λ) = 1

]∣
∣
∣ ≤ AdvMP

FE,F ′,B(0)→(1),T (λ).

Experiment H(2,i)(λ) where i ∈ [T2 + 1]. This experiment is obtained from the ex-
periment H(1)(λ) by modifying the post-challenge key-generation oracle to gener-
ate keys as follows. The functional keys for the fT1+1, . . . , fT1+i−1 are generated
as PuncOutputY f,K ′,y,s∗ (see Figure 3 for the definition of PuncOutputY f,K ′,y,s∗ ),
where K ′ is generated by sampling a PRF key K ← PRF.Gen(1λ) and then punctur-
ing it at s∗, and where y ← f (x∗

b ), and the functional keys for fT1+i , . . . , fT1+T2 =
fT are generated as PuncOutputY f,K ′,y,s∗ , where K ′ and s∗ are as before but y =
f (x∗

b ;PRFK (s∗)).
Note that every x 	= x∗

b with which the encryption oracle is queries (with probabil-
ity negligibly close to 1) it holds that s 	= s∗, hence, using the functionality feature of the
punctured PRF, for every f ∈ { fT1+1, . . . , fT } it holds that
Left f,K (x, x, s,⊥) = PuncOutputY f,K ′,y,s∗(x, x, s,⊥). In addition, for the challenge
x∗
b it holds that Left f,K (x∗

b , x
∗
1 , s

∗,⊥) = PuncOutputY f,K ′,y,s∗(x∗
b , x

∗
1 , s

∗,⊥) since
PuncOutputY f,K ′,y,s∗ simply outputs y, where y = f (x∗

b ;PRFK (s∗)). Thus, the func-
tion privacy of the underlying schemeFE guarantees that the adversaryA has only a neg-
ligible advantage in distinguishing experimentsH(1)(λ) andH(2,1)(λ). In “Appendix 3,”
we prove the following claim:

Claim 4.13. There exists a probabilistic polynomial-time adversary B(1)→(2,1) such
that

∣
∣
∣Pr

[
H(1)(λ) = 1

]
− Pr

[
H(2,1)(λ) = 1

]∣
∣
∣ ≤ AdvFPFE,F ′,B(1)→(2,1),T (λ) + neg(λ).

Moreover, note that the pseudorandomness of PRFK (·) at punctured point s∗ (see
Definition 2.2) guarantees that the adversary A has only a negligible advantage in dis-
tinguishing experiments H(2,i) and H(2,i+1). In “Appendix 3,” we prove the following
claim:

Claim 4.14. For every i ∈ [T2] there exists a probabilistic polynomial-time adversary
B(2,i)→(2,i+1) such that

∣
∣
∣Pr

[
H(2,i)(λ) = 1

]
− Pr

[
H(2,i+1)(λ) = 1

]∣
∣
∣ ≤ AdvpuPRF,B(2,i)→(2,i+1) (λ).

Experiment H(3,i)(λ) where i ∈ [T2 + 1]. This experiment is obtained from the ex-
periment H(2,T2)(λ) by modifying the post-challenge key-generation oracle as follows.
The functional keys for the fT1+1, . . . , fT1+i−1 are generated asPuncOutputY f,K ′,y,s∗ ,
where K ′ is generated by sampling a PRF key K ← PRF.Gen(1λ) and then puncturing

it at s∗, and where y ← f (x∗
1 ) , and the functional keys for fT1+i , . . . , fT1+T2 are

generated as PuncOutputY f,K ′,y,s∗ , where K
′ and s∗ are as before but y ← f (x∗

b ). We
observe that H(2,T+1)(λ) = H(3,1)(λ).
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The adaptive admissibility of the function family F (see Definition 3.4) guarantees
that the advantage of the adversaryA in distinguishing experimentsH(3,i) andH(3,i+1)

is at most �(λ). In “Appendix 3,” we prove the following claim:

Claim 4.15. For every i ∈ [T2] there exists a probabilistic polynomial-time adversary
B(3,i)→(3,i+1) such that

∣
∣
∣Pr

[
H(3,i)(λ) = 1

]
− Pr

[
H(3,i+1)(λ) = 1

]∣
∣
∣ ≤ AdvaADMF ,B(3,i)→(3,i+1) ≤ �(λ).

Experiment H(4,i)(λ)where i ∈ [T1 + 1]. This experiment is obtained from the exper-
iment H(3,T )(λ) by modifying the pre-challenge key-generation oracle as follows. The
functional keys for f1, . . . , fi−1 are generated as sk f ← FE.KG(msk, Right f,K )

instead of as sk f ← FE.KG(msk, Left f,K ) (where Right f,K is defined in Figure

1), and the functional keys for fi , . . . , fT1 are generated as before (i.e., as sk f ←
FE.KG(msk,Left f,K )). We observe that H(3,T+1)(λ) =H(4,1)(λ).

Experiment H(5,i)(λ)where i ∈ [T1]. This experiment is obtained from the experiment
H(4,i)(λ) by modifying the encryption oracle so that on the challenge input (x∗

0 , x
∗
1 )

it samples s∗ ← {0, 1}λ and outputs ct ← FE.Enc(msk, (x∗
b , x

∗
1 , s

∗, z∗ )), where

z∗ = fi (x∗
b ;PRF.Eval(Ki , s∗)), instead of ct ← FE.Enc(msk, (x∗

b , x
∗
1 , s

∗, ⊥ )).
Notice that both Left f,K andRight f,K are defined to ignore the fourth input z, hence,

for the first i − 1 keys it holds that Right f,K (x∗
b , x

∗
1 , s

∗,⊥) = Right f,K (x∗
b , x

∗
1 , s

∗, z∗)
and for the next T1 − i + 1 keys it holds that Left f,K (x∗

b , x
∗
1 , s

∗,⊥) = Left f,K (x∗
b , x

∗
1 ,

s∗, z∗). Therefore, the message privacy of the underlying scheme FE guarantees that the
adversary A has only a negligible advantage in distinguishing experiments H(4,i) and
H(5,i). In “Appendix 3,” we prove the following claim:

Claim 4.16. For every i ∈ [T1] there exists a probabilistic polynomial-time adversary
B(4,i)→(5,i) such that

∣
∣
∣Pr

[
H(4,i)(λ) = 1

]
− Pr

[
H(5,i)(λ) = 1

]∣
∣
∣ ≤ AdvMP

FE,F ′,B(4,i)→(5,i),T (λ).

Experiment H(6,i)(λ) where i ∈ [T1]. This experiment is obtained from the exper-
iment H(5,i)(λ) by modifying the behavior of the pre-challenge key-generation or-
acle on the i th query fi (without modifying its behavior on all other queries). On
input the i th query fi , the pre-challenge key-generation oracle computes sk fi ←
FE.KG(msk, PuncOutputZ fi ,K ′

i ,s
∗ ) instead of sk fi ← FE.KG(msk, Left fi ,Ki )

(where the function PuncOutputZ fi ,K ′
i ,s

∗ is defined in Figure 3).
Note that by the functionality feature of the punctured PRF (see Definition 2.2), for

every ciphertext (x,⊥, s, z) which is not the challenge ciphertext (with probability neg-
ligibly close to 1) it holds that PuncOutputZ fi ,K ′

i ,s
∗(x,⊥, s, z) = Left fi ,Ki (x,⊥, s, z)

(since s 	= s∗ withveryhighprobability). For the challenge ciphertext the latter also holds
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since PuncOutputZ fi ,K ′
i ,s

∗(x∗
b , x

∗
1 , s

∗, z∗) outputs z∗ = fi (x∗
b ;PRFKi (s

∗)). Thus, the
function privacy of the underlying scheme FE guarantees that the adversaryA has only
a negligible advantage in distinguishing experiments H(6,i)(λ) and H(7,i)(λ). In “Ap-
pendix 3,” we prove the following claim:

Claim 4.17. For every i ∈ [T1] there exists a probabilistic polynomial-time adversary
B(5,i)→(6,i) such that

∣
∣
∣Pr

[
H(5,i)(λ) = 1

]
− Pr

[
H(6,i)(λ) = 1

]∣
∣
∣ ≤ AdvFPFE,F ′,B(5,i)→(6,i),T (λ) + neg(λ).

Experiment H(7,i)(λ)where i ∈ [T1]. This experiment is obtained from the experiment
H(6,i)(λ) by modifying the encryption oracle so that on the challenge input (x∗

0 , x
∗
1 ) it

outputs ct ← FE.Enc(msk, (x∗
b , x

∗
1 , s

∗, z∗)), where z∗ = fi (x∗
b ; r∗ ) for a fresh and

uniformly sampled value r∗ instead of z∗ = fi (x∗
b ; PRF.Eval(Ki , s

∗) ).
The pseudorandomness at punctured point s∗ of PRF.Eval(Ki , ·) guarantees that the

adversary A has only a negligible advantage in distinguishing experiments H(6,i) and
H(7,i). In “Appendix 3,” we prove the following claim:

Claim 4.18. For every i ∈ [T1] there exists a probabilistic polynomial-time adversary
B(6,i)→(7,i) such that

∣
∣
∣Pr

[
H(6,i)(λ) = 1

]
− Pr

[
H(7,i)(λ) = 1

]∣
∣
∣ ≤ AdvpuPRF,B(6,i)→(7,i) (λ).

Experiment H(8,i)(λ)where i ∈ [T1]. This experiment is obtained from the experiment
H(7,i)(λ) by modifying the encryption oracle so that on the challenge input (x∗

0 , x
∗
1 )

it outputs ct ← FE.Enc(msk, (x∗
b , x

∗
1 , s

∗, z∗)), where z∗ = fi ( x∗
1 ; r∗) instead of

z∗ = fi ( x∗
b ; r∗) (both with fresh and uniform r∗).

The adaptive admissibility of the function family F (see Definition 3.4) guarantees
that the advantage of the adversaryA in distinguishing experimentsH(7,i) andH(8,i) is
at most �(λ). In “Appendix 3,” we prove the following claim:

Claim 4.19. For every i ∈ [T1] there exists a probabilistic polynomial-time adversary
B(7,i)→(8,i) such that

∣
∣
∣Pr

[
H(7,i)(λ) = 1

]
− Pr

[
H(8,i)(λ) = 1

]∣
∣
∣ ≤ AdvaADMF ,B(7,i)→(8,i) ≤ �(λ).

Experiment H(9,i)(λ)where i ∈ [T1]. This experiment is obtained from the experiment
H(8,i)(λ) by modifying the encryption oracle so that on the challenge input (x∗

0 , x
∗
1 ) it

outputs ct ← FE.Enc(msk, (x∗
b , x

∗
1 , s

∗, z∗)), where z∗ = fi (x∗
1 ; PRF.Eval(Ki , s

∗) )

instead of z∗ = fi (x∗
1 ; r∗ ) for a fresh and uniformly sampled value r∗.
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The pseudorandomness at punctured point s∗ of PRF.Eval(Ki , ·) guarantees that the
adversary A has only a negligible advantage in distinguishing experiments H(9,i) and
H(10,i). The proof of the following claim is essentially identical to the proof of Claim
4.18 (see “Appendix 3”):

Claim 4.20. For every i ∈ [T1] there exists a probabilistic polynomial-time adversary
B(8,i)→(9,i) such that

∣
∣
∣Pr

[
H(8,i)(λ) = 1

]
− Pr

[
H(9,i)(λ) = 1

]∣
∣
∣ ≤ AdvpuPRF,B(8,i)→(9,i) (λ).

Experiment H(10,i)(λ) where i ∈ [T1]. This experiment is obtained from the experi-
ment H(9,i)(λ) by modifying the behavior of the pre-challenge key-generation oracle
on the i th query fi (without modifying its behavior on all other queries). On input the
i th query fi , the key-generation oracle computes sk fi ← FE.KG(msk, Right fi ,Ki

)

instead of sk fi ← FE.KG(msk, PuncOutputZ fi ,K ′
i ,s

∗ ).

As in the proof of Claim 4.17, the function privacy of the underlying scheme FE (with
respect to deterministic functions) guarantees that the adversaryA has only a negligible
advantage in distinguishing experiments H(9,i) and H(10,i). The proof of the following
claim is essentially identical to the proof of Claim 4.17 (see “Appendix 3”):

Claim 4.21. For every i ∈ [T1] there exists a probabilistic polynomial-time adversary
B(9,i)→(10,i) such that

∣
∣
∣Pr

[
H(9,i)(λ) = 1

]
− Pr

[
H(10,i)(λ) = 1

]∣
∣
∣ ≤ AdvFPFE,F ′,B(9,i)→(10,i),T (λ) + neg(λ).

Next, we observe that experiment H(4,i+1)(λ) is obtained from the experiment
H(10,i)(λ) by modifying the challenge ciphertext to be computed using z∗ = ⊥ instead
of z∗ = fi (x∗

1 ;PRF.Eval(Ki , s∗)).
Note that for each function f ∈ { f1, . . . , fT } with an associated PRF key K , for

the deterministic functions Left f,K and Right f,K and the challenge ciphertext it holds
that Left f,K (x∗

b , x
∗
1 , s

∗,⊥) = Left f,K (x∗
b , x

∗
1 , s

∗, z∗) and Right f,K (x∗
b , x

∗
1 , s

∗,⊥) =
Right f,K (x∗

b , x
∗
1 , s

∗, z∗). Therefore, the selective-function message privacy of the un-
derlying scheme FE (with respect to deterministic functions) guarantees that the ad-
versary A has only a negligible advantage in distinguishing experiments H(10,i) and
H(4,i+1). The proof of the following claim is essentially identical to the proof of Claim
4.16 (see “Appendix 3”):

Claim 4.22. For every i ∈ [T1] there exists a probabilistic polynomial-time adversary
B(10,i)→(4,i+1) such that

∣
∣
∣Pr

[
H(10,i)(λ) = 1

]
− Pr

[
H(4,i+1)(λ) = 1

]∣
∣
∣ ≤ AdvMP

FE,F ′,B(10,i)→(4,i+1),T (λ).
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Experiment H(11)(λ). This experiment is obtained from the experiment H(4,T+1)(λ)

bymodifying the encryption oracle so that on the challenge input (x∗
0 , x∗

1 ) it outputs ct ←
FE.Enc(msk, ( x∗

1 , x∗
1 , s

∗,⊥)) insteadofct ← FE.Enc(msk, ( x∗
b , x∗

1 , s
∗,⊥)).Note

that this experiment is completely independent of the bit b, and therefore,
Pr

[H(11)(λ) = 1
] = 1/2.

In addition, note that for every function f ∈ { f1, . . . , fT1} with an associated PRF
key K , for the deterministic function Right f,K it holds that Right f,K (x∗

b , x
∗
1 , s

∗,⊥) =
Right f,K (x∗

1 , x
∗
1 , s

∗,⊥). Therefore, the message privacy of the underlying scheme FE
(with respect to deterministic functions) guarantees that the adversary A has only a
negligible advantage in distinguishing experiments H(4,T1+1) and H(11). The proof of
the following claim is essentially identical to the proof of Claim 4.12 (see “Appendix 3”):

Claim 4.23. There exists a probabilistic polynomial-time adversary B(4,T1+1)→(11)

such that
∣
∣
∣Pr

[
H(4,T1+1)(λ) = 1

]
− Pr

[
H(11)(λ) = 1

]∣
∣
∣ ≤ AdvsfFPFE,F ′,B(4,T+1)→(11),T (λ).

Finally, putting together Claims 4.12–4.23 with the facts that ExptaMPRF
�,F ,A,T (λ) =

H(0)(λ), H(1)(λ) = H(2,1)(λ), H(2,T+1)(λ) = H(3,1)(λ), H(3,T+1)(λ) = H(4,1)(λ) and
Pr

[H(11)(λ) = 1
] = 1/2, we observe that

AdvaMPRF
�,F ,A,T

def=
∣
∣
∣
∣Pr

[
ExptaMPRF

�,F ,A,T (λ) = 1
]

− 1

2

∣
∣
∣
∣

=
∣
∣
∣Pr

[
H(0)(λ) = 1

]
− Pr

[
H(11)(λ) = 1

]∣
∣
∣

≤
∣
∣
∣Pr

[
H(0)(λ) = 1

]
− Pr

[
H(1)(λ) = 1

]∣
∣
∣

+
∣
∣
∣Pr

[
H(1)(λ) = 1

]
− Pr

[
H(2,1)(λ) = 1

]∣
∣
∣

+
3∑

j=2

T2∑

i=1

∣
∣
∣Pr

[
H( j,i)(λ) = 1

]
− Pr

[
H( j,i+1)(λ) = 1

]∣
∣
∣

+
T1∑

i=1

9∑

j=4

∣
∣
∣Pr

[
H( j,i)(λ) = 1

]
− Pr

[
H( j+1,i)(λ) = 1

]∣
∣
∣

+
T1∑

i=1

∣
∣
∣Pr

[
H(10,i)(λ) = 1

]
− Pr

[
H(4,i+1)(λ) = 1

]∣
∣
∣

+
∣
∣
∣Pr

[
H(4,T+1)(λ) = 1

]
− Pr

[
H(11)(λ) = 1

]∣
∣
∣

≤ (T1(λ) + T2(λ)) · �(λ) + neg(λ)

= T (λ) · �(λ) + neg(λ).

�
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Appendix 1: A Comparison with the Definitional Framework of Goyal et al. [23]

Our approach for defining message privacy is inspired by that of Goyal et al. but there
are a few subtle differences between the two approaches. As mentioned in Sect. 1.3, both
our scheme and the scheme of Goyal et al. seem to provide message privacy according
to both approaches. We emphasize once again that we view the main contribution of
our work as basing the security of our scheme on any underlying functional encryption
scheme (and avoiding obfuscation-related assumptions), and not as offering alternative
notions of message privacy. In what follows, we point out several differences between
the two approaches.

• Goyal et al. allow adversaries to obtain functional keys only for functions f for
which the distributions f (x∗

0 ) and f (x∗
1 ) are negligibly close (either computation-

ally or statistically), whereas our framework does not include such a restriction. In
our framework, if the distributions f (x∗

0 ) and f (x∗
1 ) can be efficiently distinguished

with advantage at most� = �(λ) to begin with (where� does not necessarily have
to be negligible), then we require that no adversary that is given a functional key
for f will be able to distinguish between encryptions of x∗

0 and x∗
1 with advantage

larger than � + neg(λ), for some negligible function neg(·).
This seems to better capture the motivating applications given by Goyal et al. of
auditing an encrypted database and of performing differentially private analysis on
an encrypted database. In both applications, the distributions obtained from two
different encrypted databases are not negligibly close, as otherwise no utility can
be gained.

• Goyal et al. allow adversaries to obtain functional keys only for functions f for
which the distributions f (x∗

0 ) and f (x∗
1 ) are negligibly close evenwhen conditioned

on the adversary’s randomness and on themaster secret key of the scheme. Thismay
cause a situation where it is legal to obtain a functional key for some function f by
some specific adversary and for some specific instantiation of the functional encryp-
tion scheme, but it may be illegal to obtain a functional key for the same function f
by some other adversary and for some other instantiation of the encryption scheme.
In our framework, on the one hand, each function family is considered either ad-
missible or inadmissible independently of the adversary (and of the challenge ci-
phertext) and of the encryption scheme under consideration. However, on the other
hand, our framework may consider some function families inadmissible, whereas
the framework of Goyal et al. would consider the same function families as admis-
sible with respect to some adversaries and encryption schemes. Nevertheless, our
framework is still sufficiently general for capturing applications such as auditing
an encrypted database, performing differentially private analysis on an encrypted
database, and many more.

• In terms of security notions, Goyal et al. consider a simulation-based notion,
whereas we consider an indistinguishability-based one. As is often the case with
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functional encryption schemes, simulation-based security is inherently quite limited
[5,11,15], and as a result their scheme supports only an a priori bounded number of
messages (and is selectively secure), whereas our scheme supports an unbounded
number of messages (and is adaptively secure).

Appendix 2: Proofs of Claims 4.3–4.7

Proof of Claim 4.3. The adversaryB(0)→(1) = (B1,B2) is defined as follows. First,B1
samples T PRF keys K1, . . . , KT ← PRF.Gen(1λ) and T functions f1, . . . , fT←F
independently and uniformly at random. Then, it outputs the functions Left f1,K1 , . . . ,

Left fT ,KT ∈ F ′ (and its own randomness as the state information state).
Next, B2 on input functional keys sk1, . . . , skT emulates the execution of A1 on

input ( f1, . . . , fT , sk1, . . . , skT ) by simulating the encryption oracle Enc(msk, ·) as
follows: Whenever A1 requests an encryption of some x ∈ Xλ, B2 samples s ∈ {0, 1}λ
uniformly at random, queries the encryption oracle FE.Encσ (msk, ·, ·) with the pair
((x,⊥, s,⊥), (x, x, s,⊥)), and returns the answer toA1.WhenA1 outputs its challenge
messages (x∗

0 , x
∗
1 ), B2 chooses a random bit b, samples s∗ ∈ {0, 1}λ, and queries the

encryption oracle Encσ (msk, ·, ·) with the pair
(
(x∗

b ,⊥, s∗,⊥), (x∗
b , x

∗
1 , s

∗,⊥)
)
to get

the ciphertext c∗. Then,B2 runsA2 using the input (c∗, state) to get its output b′. Finally,
B2 outputs 1 if b′ = b, and otherwise, it outputs 0.
Note that when σ = 0 (the mode of the encryption oracle Encσ (msk, ·, ·)), thenA’s

view is identical to its view in the experiment H(0), and when σ = 1, then A’s view is
identical to its view in the experiment H(1). Therefore,

AdvsfMP
FE,F ′,B(0)→(1),T (λ) =

∣
∣
∣Pr

[
H(0)(λ) = 1

]
− Pr

[
H(1)(λ) = 1

]∣
∣
∣ .

�

Proof of Claim 4.4. The adversary B(2,i)→(3,i) = (B1,B2) is defined as follows. First,
B1 chooses T PRFkeys K1, . . . , KT ← PRF.Gen(1λ) and T functions f1, . . . , fT←F
independently and uniformly at random. Then, it outputs the functions (Right f1,K1

, . . . ,

Right fi−1,Ki−1
, Left fi ,Ki , . . . ,Left fT ,KT ) (and its own randomness as the state informa-

tion state).
Next,B2 on input functional keys sk1, . . . , skT emulates the execution ofA1 on input

( f1, . . . , fT , sk1, . . . , skT ) by simulating the encryption oracleEnc(msk, ·) as follows:
WhenA1 requests an encryption of x ∈ Xλ,B2 samples s ∈ {0, 1}λ uniformly at random,
queries the encryption oracle Encσ (msk, ·, ·) with the pair ((x, x, s,⊥), (x, x, s, fi
(x;PRF.Eval(Ki , s)))), and returns the answer to A1. When A1 outputs its challenge
messages (x∗

0 , x
∗
1 ), B2 chooses a random bit b, samples s∗ ∈ {0, 1}λ, and queries

the encryption oracle Encσ (msk, ·, ·) with the pair ((x∗
b , x

∗
1 , s

∗,⊥), (x∗
b , x

∗
1 , s

∗, fi (x∗
b ;

PRF.Eval(Ki , s∗)))) to get the ciphertext c∗. Then,B2 runsA2 using the input (c∗, state)

to get its output b′. Finally, B2 outputs 1 if b′ = b, and otherwise, it outputs 0.
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Note that when σ = 0 (the mode of the encryption oracle Encσ (msk, ·, ·)), thenA’s
view is identical to its view in the experiment H(2,i), and when σ = 1, the A’s view is
identical to its view in the experiment H(3,i). Therefore,

AdvsfMP
FE,F ′,B(2,i)→(3,i),T (λ) =

∣
∣
∣Pr

[
H(2,i)(λ) = 1

]
− Pr

[
H(3,i)(λ) = 1

]∣
∣
∣ .

�

Proof of Claim 4.5. The adversary B(3,i)→(4,i) = (B1,B2) is defined as follows. First,
B1 chooses T PRFkeys K1, . . . , KT ← PRF.Gen(1λ) and T functions f1, . . . , fT←F
independently and uniformly at random. Then, it outputs the functions (Right f1,K1

, . . . ,

Right fi−1,Ki−1
,Left fi ,Ki , . . . ,Left fT ,KT ) and (Right f1,K1

, . . . ,Right fi−1,Ki−1
,OutputZ,

Left fi+1,Ki+1 , . . . ,Left fT ,KT ) (and its own randomness as the state information state).
Next, B2 on input functional keys sk1, . . . , skT emulates the execution of A1 on

input ( f1, . . . , fT , sk1, . . . , skT ) by simulating the encryption oracle Enc(msk, ·) as
follows: When A1 requests an encryption of x ∈ Xλ, B2 samples s ∈ {0, 1}λ uniformly
at random, queries the encryption oracle Encσ (msk, ·, ·) with the pair ((x, x, s, fi
(x;PRF.Eval(Ki , s))), (x, x, s, fi (x;PRF.Eval(Ki , s)))), and returns the answer to
A1. When A1 outputs its challenge messages (x∗

0 , x
∗
1 ), B2 chooses a random bit b,

samples s∗ ∈ {0, 1}λ, and queries the encryption oracle Encσ (msk, ·, ·) with the
pair ((x∗

b , x
∗
1 , s

∗, fi (x∗
b ;PRF.Eval(Ki , s∗))), (x∗

b , x
∗
1 , s

∗, fi (x∗
b ;PRF.Eval(Ki , s∗))))

to get the ciphertext c∗. Then, B2 runs A2 using the input (c∗, state) to get its output
b′. Finally, B2 outputs 1 if b′ = b, and otherwise, it outputs 0.
Note that when σ = 0 (the functional keys correspond to the first list of functions),

then A’s view is identical to its view in the experiment H(3,i), and when σ = 1, then
A’s view is identical to its view in the experiment H(4,i). Therefore,

AdvsfFPFE,F ′,B(3,i)→(4,i),T (λ) =
∣
∣
∣Pr

[
H(3,i)(λ) = 1

]
− Pr

[
H(4,i)(λ) = 1

]∣
∣
∣ .

�

Proof of Claim 4.6. The adversary B(4,i)→(5,i) = B is defined as follows. First, B
chooses a master key msk ← FE.Setup(1λ), T − 1 PRF keys K1, . . . ,

Ki−1, Ki+1, . . . , KT ← PRF.Gen(1λ) and T functions f1, . . . , fT←F independently
and uniformly at random. Then, it computes the functional keys sk1, . . . , skT for the
functions (Right f1,K1

, . . . ,Right fi−1,Ki−1
, OutputZ,Left fi+1,Ki+1 , . . . ,Left fT ,KT ) us-

ing msk. Recall that B has access to an oracle, denoted R(·), that is either a random
function or a PRF and its goal is to distinguish between the two cases.
Next, B emulates the execution of A1 on input ( f1, . . . , fT , sk1, . . . , skT ) by simu-

lating the encryption oracle Enc(msk, ·) as follows: When A1 requests an encryption
of x ∈ Xλ, B samples s ∈ {0, 1}λ uniformly at random, queries R(s) to get r , com-
putes FE.Enc(msk, (x, x, s, fi (x; r))), and returns the output toA1. WhenA1 outputs
its challenge messages (x∗

0 , x
∗
1 ),B chooses a random bit b, samples s∗ ∈ {0, 1}λ, queries

R(s∗) to get r∗ and computes the ciphertext c∗ = FE.Enc(msk, (x∗
b , x

∗
1 , s

∗, fi (x∗
b ; r∗))).
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Then, B runs A2 using the input (c∗, state) to get its output b′. Finally, B2 outputs 1 if
b′ = b, and otherwise, it outputs 0.
Note that when R(·) corresponds to a pseudorandom function, thenA’s view is iden-

tical to its view in the experiment H(4,i), and when R(·) corresponds to a truly random
function, then A’s view is identical to its view in the experiment H(5,i). Therefore,

AdvPRF,B(4,i)→(5,i) (λ) =
∣
∣
∣Pr

[
H(4,i)(λ) = 1

]
− Pr

[
H(5,i)(λ) = 1

]∣
∣
∣ .

�

Proof of Claim 4.7. The adversary B(5,i)→(6,i) = (B1,B2) on input f ←F is de-
fined as follows. First, B1 chooses a master key msk ← FE.Setup(1λ), T PRF keys
K1, . . . , KT ← PRF.Gen(1λ) and T −1 functions f1, . . . , fi−1, fi+1, . . . , fT←F in-
dependently anduniformly at random.Then, it computes the functional keyssk1, . . . , skT
for the functions (Right f1,K1

, . . . ,Right fi−1,Ki−1
, OutputZ,Left fi+1,Ki+1 , . . . ,

Left fT ,KT ). Next, B1 emulates the execution of A1 on input ( f1, . . . , fi−1, f ,
fi+1, . . . , fT , sk1, . . . , skT ) by simulating the encryption oracle Enc(msk, ·) as fol-
lows: WhenA1 requests an encryption of x ∈ Xλ, B2 samples s ∈ {0, 1}λ and a random
string r , computesFE.Enc(msk, (x, x, s, f (x; r))), and returns the output toA1.When
A1 outputs its challenge messages (x∗

0 , x
∗
1 ), B2 outputs (x∗

b , x
∗
1 ), where b ∈ {0, 1} is

chosen uniformly at random.
Then,B2 on input y (which is a uniform sample either from f (x∗

b ) or from f (x∗
1 )) sam-

ples s∗ ∈ {0, 1}λ uniformly at random, computes c∗ = FE.Enc(msk, (x∗
b , x

∗
1 , s

∗, y)),
and runs A2 using the input c∗ to get its output b′. Finally, B2 outputs 1 if b′ = b, and
otherwise, it outputs 0.
Note that when y is sampled according to f (x∗

b ), thenA’s view is identical to its view
in the experiment H(5,i). Similarly, when y is sampled according to f (x∗

1 ), then A’s
view is identical to its view in the experiment H(6,i). Therefore,

AdvnaADMF ,B(5,i)→(6,i) (λ) =
∣
∣
∣Pr

[
H(5,i)(λ) = 1

]
− Pr

[
H(6,i)(λ) = 1

]∣
∣
∣ .

�

Appendix 3: Proofs of Claims 4.12–4.19

Proof of Claim 4.12. The adversary B(0)→(1) = B is defined as follows. First, B
emulates the execution of A1 on input (1λ) by simulating the encryption oracle and
the key generation oracle as follows: When A1 requests an encryption of x ∈ Xλ,
B samples s ∈ {0, 1}λ, queries the encryption oracle Encσ (msk, ·, ·) with the pair
((x,⊥, s,⊥), (x,⊥, s,⊥)), and returns the output to A1. When A1 requests a func-
tional key for f ∈ F , B, samples a PRF key K1 ← PRF.Gen(1λ), queries the key
generation oracle KG(msk,Left f,K ), and returns the output to A1. Finally, A1 outputs
the challenge (x∗

0 , x
∗
1 , state).



94 I. Komargodski et al.

Next, B chooses a random bit b, samples s∗ ∈ {0, 1}λ, and queries the encryption
oracle with the pair ((x∗

b ,⊥, s∗,⊥), (x∗
b , x

∗
1 , s

∗,⊥)) to get the ciphertext c∗. Then, B
runs A2 using the input (c∗, state) to get its output b′. Finally, B outputs 1 if b′ = b,
and otherwise, it outputs 0.
Note that when σ = 0 (the mode of the encryption oracle Encσ (msk, ·, ·)), thenA’s

view is identical to its view in the experiment H(0), and when σ = 1, then A’s view is
identical to its view in the experiment H(1). Therefore,

∣
∣
∣Pr

[
H(0)(λ) = 1

]
− Pr

[
H(1)(λ) = 1

]∣
∣
∣ = AdvMP

FE,F ′,B(0)→(1),T (λ).

�

Proof of Claim 4.13. The adversary B(1)→(2,1) = B is defined as follows. First, B
emulates the execution of A1 on input (1λ) by simulating the encryption oracle and
the key generation oracle as follows: When A1 requests an encryption of x ∈ Xλ,
B samples s ∈ {0, 1}λ, queries the encryption oracle Encσ (msk, ·, ·) with the pair
((x,⊥, s,⊥), (x,⊥, s,⊥)), and returns the output toA1.WhenA1 requests a functional
key for f ∈ F , B samples a PRF key K ← PRF.Gen(1λ), queries the key generation
oracle KGσ (msk, ·, ·) with the pair (Left f,K ,Left f,K ), and returns the output to A1.
Finally, A1 outputs the challenge (x∗

0 , x
∗
1 , state).

Next, B chooses a random bit b, samples s∗ ∈ {0, 1}λ, and queries the encryption
oracle with the pair ((x∗

b ,⊥, s∗,⊥), (x∗
b , x

∗
1 , s

∗,⊥)) to get the ciphertext c∗. We assume
that s∗ 	= s for all sampled s’s and lose an additive negligible factor. Then, B emulates
the execution of A2 on input (c∗, state) by simulation the encryption oracle in the
same way and simulating the key generation oracle as follows: When A2 requests for
a functional key for f ∈ F , B samples K ← PRF.Gen(1λ), computes the key K ′ by
puncturing K at s∗, sets y = f (x∗

b ;PRF.EvalK (s∗)), and queries the key generation
oracleKGσ (msk, ·, ·)with the pair (Left f,K ,PuncOutputY f,K ′,y,s∗). Finally, whenA2
outputs b′, B outputs 1 if b′ = b, and otherwise, it outputs 0.
Note that when σ = 0 (the mode of the encryption oracle Encσ (msk, ·, ·) and key

generation oracleKGσ (msk, ·, ·)), thenA’s view is identical to its view in the experiment
H(1), and when σ = 1, then A’s view is identical to its view in the experiment H(2,1).
Therefore,

∣
∣
∣Pr

[
H(1)(λ) = 1

]
− Pr

[
H(2,1)(λ) = 1

]∣
∣
∣ ≤ AdvFPFE,F ′,B(1)→(2,1),T (λ) + neg(λ).

�

Proof of Claim 4.14. The adversary B(2,i)→(2,i+1) = (B1,B2) is defined as follows.
B1 samples a random string s∗ ∈ {0, 1}λ and outputs the set {s∗} as the punctured set
and the point s∗ as the state.
B2 gets as input a punctured PRF key K ′ � K{s∗} at the point s∗, a value y (which

is either PRFK (s∗) or a random string), and the point s∗ as the state information. Next,
B2 chooses a master key msk ← FE.Setup(1λ) and emulates the execution of A1
on input 1λ by simulating the encryption oracle and the key generation oracle as fol-
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lows: When A1 requests an encryption of x ∈ Xλ, B2 samples s ∈ {0, 1}λ, computes
FE.Enc(msk, (x,⊥, s,⊥)), and returns the output to A1. When A1 requests a func-
tional key for the function f ∈ F ,B2 samples a PRFkey K ← PRF.Gen(1λ), computes
FE.KG(msk,Left f,K ), and returns the output to A1. Finally, A1 outputs the challenge
(x∗

0 , x
∗
1 , state).

Then, B2 chooses a random bit b, computes c∗ ← FE.Enc(msk, (x∗
b , x

∗
1 , s

∗,⊥))

and emulates the execution of A2 on input (c∗, state) by simulating the encryption
oracle as before and simulating the key generation oracle as follows: When A2 re-
quests the j th functional key for f j ∈ F , if j < i then B2 samples a PRF key
K j ← PRF.Gen(1λ), obtains K ′

j by puncturing K j at s∗, samples y ← f (x∗
b ), com-

putes FE.KG(msk,PuncOutputY f j ,K ′
j ,y,s

∗), and returns the output to A2. If j = i

then B2, computes FE.KG(msk,PuncOutputY f j ,K ′,y,s∗), and returns the output to

A2. If j > i then B2 samples a PRF key K j ← PRF.Gen(1λ), obtains K ′
j by

puncturing K j at s∗, samples y = f (x∗
b ;PRF.EvalK j (s

∗)), computes FE.KG(msk,
PuncOutputY f j ,K ′

j ,y,s
∗), and returns the output toA2. Finally, whenA2 outputs the bit

b′, B2 outputs 1 if b′ = b, and otherwise, it outputs 0.
Note that when y is obtained from as a PRF evaluation then A’s view is identical to

its view in the experimentH(2,i+1), and when y is obtained from as a random string then
A’s view is identical to its view in the experiment H(2,i). Therefore,

∣
∣
∣Pr

[
H(2,i)(λ) = 1

]
− Pr

[
H(2,i+1)(λ) = 1

]∣
∣
∣ = AdvpuPRF,B(2,i)→(2,i+1) (λ).

�

Proof of Claim 4.15. The adversary B(3,i)→(3,i+1) = (B1,B2) is defined as follows.
First, B1 chooses a master key msk ← FE.Setup(1λ) and emulates the execution of
A1 on input 1λ by simulating the encryption oracle and the key generation oracle as
follows: WhenA1 requests an encryption of x ∈ Xλ, B1 samples s ∈ {0, 1}λ, computes
FE.Enc(msk, (x,⊥, s,⊥)) and returns the output toA1.WhenA1 requests a functional
key for the function f ∈ F , B1 samples a PRF key K ← PRF.Gen(1λ), computes
FE.KG(msk,Left f,K ), and returns the output to A1. When, A1 outputs the challenge
(x∗

0 , x
∗
1 , state), B1 chooses a random bit b, computes c∗ ← FE.Enc(msk, (x∗

b , x
∗
1 , s

∗,
⊥)) and emulates the execution ofA2 on input (c∗, state) by simulating the encryption
oracle as before and simulating the key generation oracle for the first i − 1 times as
follows: When A2 requests a functional key for f ∈ F , B1 samples a PRF key K ←
PRF.Gen(1λ), obtains K ′ by puncturing K at s∗, samples y ← f (x∗

1 ), computes
FE.KG(msk,PuncOutputY f,K ′,y,s∗), and returns the output toA2. WhenA2 requests
the i th functional key f ∈ F then B1 chooses a random bit b, outputs ( f, x∗

b , x
∗
1 ) and its

entire memory and internal randomness as the state state (without answering the last
key generation query of A2).
Next, B2 runs on input (y, state), continues the execution ofA2, samples a PRF key

K ← PRF.Gen(1λ), obtains K ′ by puncturing K at s∗, computes FE.KG
(msk,PuncOutputY f,K ′,y,s∗), and returns the output toA2. WhenA2 requests a func-
tional key for the function f ∈ F , B2 samples a PRF key K ← PRF.Gen(1λ),
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obtains K ′ by puncturing K at s∗, samples y = f (x∗
b ;PRF.EvalK (s∗)), computes

FE.KG(msk,PuncOutputY f,K ′,y,s∗), and returns the output to A2. Finally, when A2
outputs the bit b′, B2 outputs 1 if b′ = b, and otherwise, it outputs 0.
Note that when y is sampled from f (x∗

b ), thenA’s view is identical to its view in the
experiment H(3,i+1), and when y is sampled from f (x∗

1 ), then A’s view is identical to
its view in the experiment H(3,i). Therefore,

∣
∣
∣Pr

[
H(3,i)(λ) = 1

]
− Pr

[
H(3,i+1)(λ) = 1

]∣
∣
∣ = AdvaADMF ,B(3,i)→(3,i+1) ≤ �(λ).

�

Proof of Claim 4.16. The adversary B(4,i)→(5,i) = B is defined as follows. First, B
samples T1 PRF keys K1, . . . , KT1 ← PRF.Gen(1λ). Then, B emulates the execution
ofA1 on input (1λ) by simulating the encryption oracle and the key generation oracle as
follows: WhenA1 requests an encryption of x ∈ Xλ, B samples s ∈ {0, 1}λ, queries the
encryption oracle Encσ (msk, ·, ·) with the pair ((x,⊥, s,⊥), (x,⊥, s,⊥)), and returns
the output to A1. When A1 requests a functional key for the function f ∈ F for the
j th time, if j ≤ i − 1, then B queries the key generation oracle KG(msk,Right f,K j

)

and returns the output to A1, and otherwise, B queries the key generation oracle with
KG(msk,Left f,K j ) and returns the output to A1. Finally, A1 outputs the challenge
(x∗

0 , x
∗
1 , state).

Next, B chooses a random bit b, samples s∗ ∈ {0, 1}λ, computes z∗ = fi (x∗
b ;

PRF.EvalKi (s
∗)), and queries the encryption oracle with the pair ((x∗

b ,

x∗
1 , s

∗,⊥), (x∗
b , x

∗
1 , s

∗, z∗)) to get the ciphertext c∗. Then, B emulates the execution
of A2 on input (c∗, state) by simulating the key generation oracle as follows: When
A2 requests a functional key for the function f ∈ F , B samples s∗ ∈ {0, 1}λ uniformly
at random, samples K ← PRF.Gen(1λ), computes the key K ′ which is the key K
punctured at the point s∗, queries the key generation oracle KGσ (msk, ·, ·)with the pair
(PuncOutputZ fi ,K ′,s∗ ,PuncOutputZ fi ,K ′,s∗) and returns the output to A1. Finally,
when A2 outputs the bit b′, B outputs 1 if b′ = b, and otherwise, it outputs 0.
Note that when σ = 0 (the mode of the encryption oracle Encσ (msk, ·, ·)), thenA’s

view is identical to its view in the experimentH(4,i), and when σ = 1, thenA’s view is
identical to its view in the experiment H(5,i). Therefore,

∣
∣
∣Pr

[
H(4,i)(λ) = 1

]
− Pr

[
H(5,i)(λ) = 1

]∣
∣
∣ = AdvMP

FE,F ′,B(4,i)→(5,i),T (λ).

�

Proof of Claim 4.17. The adversary B(5,i)→(6,i) = B is defined as follows. First, B
samples T1 PRF keys K1, . . . , KT1 ← PRF.Gen(1λ). Then, B emulates the execution
ofA1 on input (1λ) by simulating the encryption oracle and the key generation oracle as
follows: WhenA1 requests an encryption of x ∈ Xλ, B samples s ∈ {0, 1}λ, queries the
encryption oracle Encσ (msk, ·, ·) with the pair ((x,⊥, s,⊥), (x,⊥, s,⊥)), and returns
the output toA1. WhenA1 requests a functional key for the function f ∈ F for the j th
time, if j < i , then B queries the key generation oracle KGσ (msk, ·, ·) with the pair
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(Right f,K j
,Right f,K j

) and returns the output toA1. If j = i thenB samples s∗ ∈ {0, 1}λ
uniformly at random, samples a PRF key K , obtains a punctured key K ′ which is the
key K punctured at the point s∗, queries the key generation oracle KGσ (msk, ·, ·) with
the pair (Right f,Ki

,PuncOutputZ fi ,K ′
i ,s

∗), and returns the output to A1. If j > i , then
B queries the key generation oracle KGσ (msk, ·, ·) with the pair (Left f,K j ,Left f,K j )

and returns the output to A1. Finally, A1 outputs the challenge (x∗
0 , x

∗
1 , state).

Next, B chooses a random bit b, samples s∗ ∈ {0, 1}λ, computes z∗ = fi (x∗
b ;

PRF.EvalKi (s
∗)) and queries the encryption oracle with the pair ((x∗

b , x
∗
1 , s

∗, z∗),
(x∗

b , x
∗
1 , s

∗, z∗)) to get the ciphertext c∗. We assume that s∗ 	= s for all sampled s’s
and lose an additive negligible factor. Then, B emulates the execution of A2 on in-
put (c∗, state) by simulating the key generation oracle as follows: When A2 requests
a functional key for the function f ∈ F , B samples s∗ ∈ {0, 1}λ uniformly at ran-
dom, samples K ← PRF.Gen(1λ), computes the key K ′ which is the key K punc-
tured at the point s∗, queries the key generation oracle KGσ (msk, ·, ·) with the pair
(PuncOutputZ fi ,K ′,s∗ ,PuncOutputZ fi ,K ′,s∗), and returns the output to A1. Finally,
when A2 outputs the bit b′, B outputs 1 if b′ = b, and otherwise, it outputs 0.
Note that when σ = 0 (the mode of the encryption oracle Encσ (msk, ·, ·)), thenA’s

view is identical to its view in the experimentH(5,i), and when σ = 1, thenA’s view is
identical to its view in the experiment H(6,i). Therefore,

∣
∣
∣Pr

[
H(5,i)(λ) = 1

]
− Pr

[
H(6,i)(λ) = 1

]∣
∣
∣ ≤ AdvFPFE,F ′,B(5,i)→(6,i),T (λ) + neg(λ).

�

Proof of Claim 4.18. The adversary B(6,i)→(7,i) = (B1,B2) is defined as follows. B1
samples a random string s∗ ∈ {0, 1}λ and outputs the set {s∗} as the punctured set and
the point s∗ as the state.
Next, B2 gets as input a punctured PRF key K ′ � K{s∗} at the point s∗, a value y

(which is eitherPRFK (s∗) or a random string), and the point s∗ as the state information.
Next,B2 chooses a master keymsk ← FE.Setup(1λ) and emulates the execution ofA1
on input 1λ by simulating the encryption oracle and the key generation oracle as follows:
WhenA1 requests an encryption of x ∈ Xλ, B2 samples s ∈ {0, 1}λ, computes FE.Enc
(msk, (x,⊥, s,⊥)) and returns the output to A1. When A1 requests the j th func-
tional key for f j ∈ F , B2 samples a PRF key K j ← PRF.Gen(1λ), computes
FE.KG(msk,Right f j ,K j

) if j < i , computes FE.KG(msk,PuncOutputZ f j ,K ′,s∗) if
j = i and computes FE.KG(msk,Left f j ,K j ) if j > i , and returns the output to A1.
Finally, A1 outputs the challenge (x∗

0 , x
∗
1 , state).

Then, B2 chooses a random bit b, computes c∗ ← FE.Enc(msk, (x∗
b , x

∗
1 , s

∗, fi (x∗
b ,

y))), and emulates the execution ofA2 on input (c∗, state) by simulating the encryption
oracle as before and simulating the key generation oracle as follows: WhenA2 requests
a functional key for f ∈ F ,B2 computes FE.KG(msk,PuncOutputY f,K ′, f (x∗

1 ),s∗) and
returns the outputs to A2. Finally, when A2 outputs the bit b′, B2 outputs 1 if b′ = b,
and otherwise, it outputs 0.
Note that when y is obtained from as a PRF evaluation, then A’s view is identical to

its view in the experimentH(6,i), and when y is obtained from as a random string, then
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A’s view is identical to its view in the experiment H(7,i). Therefore,

∣
∣
∣Pr

[
H(6,i)(λ) = 1

]
− Pr

[
H(7,i)(λ) = 1

]∣
∣
∣ = AdvpuPRF,B(6,i)→(7,i) (λ).

�

Proof of Claim 4.19. The adversaryB(7,i)→(8,i) = (B1,B2) is defined as follows. First,
B1 chooses a master key msk ← FE.Setup(1λ) and emulates the execution of A1
on input 1λ by simulating the encryption oracle and the key generation oracle as fol-
lows: When A1 requests an encryption of x ∈ Xλ, B1 samples s ∈ {0, 1}λ, computes
FE.Enc(msk, (x,⊥, s,⊥)), and returns the output to A1. When A1 requests the j th
functional key for f j ∈ F , B2 samples a PRF key K j ← PRF.Gen(1λ), samples
s∗ ← {0, 1}λ, computes FE.KG(msk,Right f j ,K j

) if j < i , computes FE.KG(msk,
PuncOutputZ f j ,K ′,s∗) if j = i and computes FE.KG(msk,Left f j ,K j ) if j > i , and
returns the output to A1. When, A1 outputs the challenge (x∗

0 , x
∗
1 , state), B1 chooses a

random bit b, and outputs ( fi , x∗
b , x

∗
1 ) and its entire memory and internal randomness

as the state information.
Next, B2 runs on input y (which is either a uniform sample from f (x∗

b ) or from
f (x∗

1 )), computes c∗ ← FE.Enc(msk, (x∗
b , x

∗
1 , s

∗, y)), emulates the execution of A2
on input (c∗, state) by simulating the encryption algorithm as before and simulating
the key generation oracle as follows: When A2 requests a functional key for f ∈ F ,
B2 computes FE.KG(msk,PuncOutputY f,K ′, f (x∗

1 ),s∗) and returns the outputs to A2.
Finally, when A2 outputs the bit b′, B2 outputs 1 if b′ = b, and otherwise, it outputs 0.
Note that when y is sampled from f (x∗

b ), thenA’s view is identical to its view in the
experiment H(7,i), and when y is sampled from f (x∗

1 ), then A’s view is identical to its
view in the experiment H(8,i). Therefore,

∣
∣
∣Pr

[
H(7,i)(λ) = 1

]
− Pr

[
H(8,i)(λ) = 1

]∣
∣
∣ = AdvaADMF ,B(7,i)→(8,i) ≤ �(λ).

�
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