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Abstract. The two main classes of statistical cryptanalysis are the linear and differen-
tial attacks. They have many variants and enhancements such as the multidimensional
linear attacks and the truncated differential attacks. The idea of differential-linear crypt-
analysis is to apply first a truncated differential attack and then a linear attack on different
parts of the cipher and then combine them to a single distinguisher over the cipher. This
method is known since 1994whenLangford andHellman presented the first differential-
linear cryptanalysis of the DES. Recently, in 2014, Blondeau and Nyberg presented a
general link between differential and linear attacks. In this paper, we apply this link to
develop a concise theory of the differential-linear cryptanalysis. The differential-linear
attack can be, in the theoretical sense, considered either as a multidimensional linear
or a truncated differential attack, but is for both types an extreme case, which is best
measured by the differential-linear bias. We give an exact expression of the bias in a
closed form under the sole assumption that the two parts of the cipher are independent.
Unlike in the case of ordinary differentials and linear approximations, it is not granted
that restricting to a subset of characteristics of a differential-linear hull will give a lower
bound on the absolute value of the bias. Given this, we revisit the previous treatments
of differential-linear bias by Biham et al. in 2002–2003, Liu et al. in 2009, and Lu in
2012, and formulate assumptions under which a single differential-linear characteristic
gives a close estimate of the bias. These results are then generalized by considering
a subspace of linear approximations over the second part of the cipher. To verify the
assumptions made, we present several experiments on a toy-cipher.
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1. Introduction

The use of cryptography primitives in daily life plays an increasingly crucial role. Among
the different primitives, block ciphers are arguably the most widely used ones.
Great progress has been made in designing and analyzing block ciphers, especially

with the introduction of theAES, but alsomore recently withmany block ciphers appear-
ing in the area of lightweight cryptography. However, there is still research on funda-
mental aspects of these ciphers going on and important questions are still not understood.
For instance, we are not able to assess the security of a block cipher as such, but only its
security with respect to known attacks. The problem of precisely assessing the security
of a given primitive becomes more important for lightweight primitives. Those ciphers
often aim at achieving tighter trade-off between security and efficiency which in turn
sets higher requirements for the accuracy of cryptanalysis.
The focus of this paper is on statistical cryptanalysis of block ciphers. The two main

classes to be considered here are linear and differential attacks and their variants.

1.1. Differential Cryptanalysis

The first type of statistical attacks that is applicable to a large set of block ciphers is
the differential attack introduced by Biham and Shamir in [8]. Since its invention in
the early nineties several variants, tweaks and generalizations have been proposed. In
1994, Knudsen introduced so-called truncated differentials attacks [30]. This relaxation
of classical differential attacks has since then been applied to many block ciphers. In the
same paper, Knudsen furthermore introduced the concept of higher-order differentials,
an attack vector based on initial consideration by Lai in [32]. Another variant of dif-
ferential cryptanalysis (again by Knudsen) is the impossible differential cryptanalysis
which uses differentials with probability zero. This concept, introduced in [31], has later
been successfully applied numerously, e.g., to (almost) break the cipher Skipjack [3]1.
In 1999, Wagner introduced the boomerang attack, which allows to concatenate any
two, not necessarily coinciding, differentials over parts of a cipher. This attack allowed,
among others, breaking the cipher COCONUT98 [48]. Later, the boomerang attack itself
has been generalized to amplified boomerang attack [29] and the rectangle attack [4].

1.2. Linear Cryptanalysis

The second generally applicable attack on block ciphers is Matsui’s linear attack [41].
Similarly to differential attacks, since its introduction many extensions and improve-
ments have been made, and we mention a selection here. More precise estimates for the
success probability and the data complexity are given by Selçuk [46]. The effect of using

1The term impossible differential appeared first in [3].
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more than one linear trail, referred to as linear hulls, has been introduced byNyberg [45];
see also Daemen and Rijmen [22]. Multidimensional linear attacks have been studied by
Hermelin, Cho, and Nyberg [27] as a way to further reduce the data complexity of the
basic attack. These approaches have been used for example by Cho [20]. More recently,
the zero-correlation attacks introduced byBogdanov andRijmen in [16,17] have become
popular. These attacks, which can be seen as the natural counterpart of impossible dif-
ferential attacks, are based on linear approximations with probability exactly 1/2. A
further generalization of zero-correlation attacks, namely attacks based on key-invariant
biases, was presented in [14].

1.3. Theoretical Links Between Linear and Differential Cryptanalysis

Most of the work has been done independently for linear and differential cryptanalysis,
and there are examples of ciphers that appear to bemore vulnerable to one type than under
the other. However, the concepts are closely related. A first fundamental link between
themwas already given in 1994 byChabaud andVaudenay (see [19]), where itwas shown
that the probability of a differential can be expressed in terms of a sum of correlations
of linear approximations. Interestingly, this link was for a long time not used in practice
due to its large computational complexity. Only in 2013, Blondeau and Nyberg used the
link in [12] to compute the probability of a differential given the correlations of many
linear approximations and proved the equivalence of the existence of a zero-correlation
multidimensional linear distinguisher and an impossible truncated differential. More
recently, this link was extended by Sun et al. to cover also integral attacks [47] and
by Blondeau and Nyberg to cover general multidimensional linear approximations and
truncated differentials [13]. The latter paper also relates the different statististical attack
settings of these properties.

1.4. Differential-Linear Cryptanalysis

On the cryptanalytical side, differential and linear attacks have been used jointly for
the first time by Langford and Hellman [35]. The basic idea of differential-linear crypt-
analysis is to split the cipher under consideration into a composition of two parts. The
split should be such that for the first part of the cipher there exists a strong truncated
differential and for the second part there exists a strongly biased linear approximation.
In [35], the particular case where the differential over the first part holds with probability
one has been introduced. Later on, Biham et al. [5,34] generalized this attack using a
probabilistic truncated differential on the first rounds of the distinguisher.
More recently in 2012 [39,40], Lu studied the validity of the model proposed by

Biham et al. with the aim of minimizing the assumptions needed for the validity of the
attack.
Wagner presented ideas toward a unified view of statistical block cipher cryptanaly-

sis [49]. While concentrating on structural similarities between different attacks in a
Markov setting, he relied, albeit with some doubts, on the previously made heuristic
assumptions under which the differential-linear attacks had been claimed to work.
It is very remarkable that in none of the previous work on differential-linear crypt-

analysis, the theoretical link presented in [19] between linear and differential attacks is
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used to model and understand better the general behavior of differential-linear crypt-
analysis.
Recently in [23,37], differential-linear attacks on Ascon and Chaskey have been pro-

posed.

1.5. Our Contribution

In this paper, we take the natural step and apply the theoretical link between linear
and differential cryptanalysis to differential-linear cryptanalysis. This has a couple of
interesting consequences.
To the best of our knowledge, we are, for the first time, able to exactly express the

bias of a differential-linear approximation by a closed expression. The formula is exact
under the sole assumption that the two parts of the cipher are independent. In particular,
it is exact when averaging over all round-keys.
Evaluating this exact expression, the differential-linear hull is computationally infea-

sible, and in practice only a part of it or just a single term of it is evaluated. Unlike in
the case of ordinary differentials and linear hulls, we are not able to theoretically justify
that by doing this, we will obtain a lower bound of the absolute value of the bias. We
found, however, that it is possible to state some explicit assumptions under which a
single differential-linear characteristic gives a good estimate of the bias. We then revisit
the previous treatments of differential-linear bias by Biham et al. [5,6], Liu et al. [38],
and Lu in [39,40] and show how instead of the piling-up lemma the given bias estimates
can be derived from the differential-linear hull.
Moreover, given this exact expression of the bias and along with this a deeper under-

standing of differential-linear attacks allows us to substantially generalize the attack
vector. In particular, we study the possibility to take into consideration the hull of a
differential-linear approximation and introduce a multidimensional generalization of
differential-linear cryptanalysis which is defined for multiple input differences and mul-
tidimensional linear output masks.
Note that we do not propose new concrete attacks. Rather we provide a sound frame-

work for previous and future work on differential-linear cryptanalysis.

1.6. Organization of the Paper

In Sect. 2, we fix our notations and state several general results on differential and linear
cryptanalysis. The related work is summarized in Sect. 3. In Sect. 4, we develop the exact
expression for the bias of the differential-linear distinguisher (cf. Theorem 2) and outline
its meaning with an example using the block cipher Serpent. Furthermore, we elaborate
more on the comparison with previous work. In Sect. 5, we derive conditions on how and
if it is possible to obtain good and practical estimations of the exact expression. We back
up our assumption with experiments using small-scale variants of the cipher PRESENT.
Finally, in Sect. 6, we generalize the concept of differential-linear cryptanalysis to the
case of multiple differentials and multiple linear approximations and derive expressions
for the biases and the attack complexities for this generalization. Section 7 concludes
the paper.
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2. Basics of Linear and Differential Cryptanalysis

2.1. Linear Correlation and Differential Probability

In differential cryptanalysis [8], the attacker is interested in identifying and exploiting
non-uniformity in occurrences of plaintext and ciphertext differences. Given a vectorial
Boolean function F : F

n
2 → F

n
2, a differential is given by a pair (δ,Δ) of an input

difference δ ∈ F
n
2 and an output difference Δ ∈ F

n
2 and its probability is defined as

Pr[δ F→ Δ] = 2−n#{x ∈ F
n
2 | F(x) + F(x + δ) = Δ}.

Linear cryptanalysis [41] uses a linear relation between bits from plaintexts, corre-
sponding ciphertexts and encryption key. A linear relation of bits of data x ∈ F

n
2 is

determined by a mask a ∈ F
n
2 and is given as a Boolean function f (x) = a · x where “ · "

is the natural inner product of the vectors a and x in Fn
2. The strength of a linear relation

is measured by its correlation. The correlation of a Boolean function f : Fn
2 → F2 is

defined as

cor( f ) = cor( f (x)) = 2−n
[
#

{
x ∈ F

n
2| f (x) = 0

} − #
{
x ∈ F

n
2| f (x) = 1

} ]
,

where the quantity within brackets corresponds to the Fourier coefficient of f at zero
and can be computed using the Walsh transform of f , see e.g. [18].
In this paper, a block cipher, or a part of it, with a fixed key and block size n is

considered as a bijective vector-valued Boolean function F : Fn
2 → F

n
2. In the general

model of the differential-linear cryptanalysis to be built in this paper, we consider a set
of input differences to the cipher that form a linear subspace of Fn

2. Given a subspace
U of Fn

2, let us denote by U⊥ the orthogonal subspace of U with respect to the inner
product of Fn

2. That is,

U⊥ = {v ∈ F
n
2 | u · v = 0, for all u ∈ U }.

Let us denote by 0� ∈ F
�
2 the all-zero string of length �. If U = F

s
2 × {0t }, for some

positive integers s and t , where s + t = n, then U⊥ = {0s} × F
t
2. In this manner, we

obtain a splitting ofFn
2 to twomutually orthogonal subspaces, whose intersection is {0n}.

However, it is not true in general that the intersection ofU andU⊥ is always {0n}. Another
type of example of orthogonal subspaces is obtained for U = {(0, 0), (1, 1)} × {0n−2}.
Then U⊥ = {(0, 0), (1, 1)} × F

n−2
2 , in which case U ⊂ U⊥. However, in any case the

dimensions of U and U⊥ add up to n.
A truncated differential [30] over a vectorial Boolean function F : Fn

2 → F
n
2 is a set

of ordinary differentials (δ,Δ). In this paper, we restrict to the case where δ ∈ U⊥ and
Δ ∈ V⊥ andU and V are linear subspaces of Fn

2. In this way, the truncated differential is
determined by a pair of linear spacesU and V . The strength of a truncated differential is
measured by the number of solutions (x, δ,Δ) ∈ F

n
2 × (U⊥ \ {0})×V⊥ to the equation

F(x + δ) + F(x) = Δ. (1)
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To facilitate the derivations, we will use, in this paper, a different but closely related
quantity that allows the zero difference in the input. It is straightforward to show that
the number of solutions (x, δ,Δ) ∈ F

n
2 ×U⊥ × V⊥ of Eq. (1) can be computed as

∑

δ∈U⊥,Δ∈V⊥
#{x ∈ F

n
2 | F(x + δ) + F(x) = Δ}.

We denote by Pr[U⊥ F→ V⊥] the probability that a pair of inputs (x, x + δ), where x
is picked uniformly at random in Fn

2 and δ uniformly at random in U⊥, gives an output
difference Δ ∈ V⊥.

Proposition 1. Let F : Fn
2 → F

n
2 be a vectorial Boolean function and U and V be

linear subspaces of Fn
2 . Then

Pr[U⊥ F→ V⊥] = 1

2n|U⊥|#
{
(x, δ,Δ) ∈ F

n
2 ×U⊥ × V⊥ | F(x + δ) + F(x) = Δ

}

= 1

|U⊥|
∑

δ∈U⊥,Δ∈V⊥
Pr[δ F→ Δ]. (2)

The probability Pr[U⊥ F→ V⊥]which can be expressed in the two different ways shown
in Proposition 1 will be called the truncated differential probability.

Let us denote by Pr[U⊥ \ {0} F→ V⊥] the probability for the truncated differential
derived analogically as above but without allowing the zero input difference. Then, we
have the following relation:

|U⊥| · Pr[U⊥ F→ V⊥] = 1 + (|U⊥| − 1) · Pr[U⊥ \ {0} F→ V⊥]. (3)

In particular, for the ordinary differential probability, we have

Pr[δ F→ Δ] = 2 · Pr[sp(δ) F→ Δ] − 1

for all δ, Δ ∈ F
n
2, δ �= 0. Here, as well as later in the paper, we use the notation sp(a)

to denote the vector subspace {0, a} ⊂ F
n
2 spanned by a.

If F is bijective, then the probability of a single differential is symmetric, that is,

Pr[δ F→ Δ] = Pr[Δ F−1→ δ].

The truncated differential probability is not symmetric, except in the case when |U | =
|V |. In general, we have

|U⊥| · Pr[U⊥ F→ V⊥] = |V⊥| · Pr[V⊥ F−1→ U⊥].
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The main tool used in this paper to relate the differentials and linear approximations
is the link between the differential probabilities and the squared correlations of linear
approximations of vectorialBoolean functions presentedbyChabaud andVaudenay [19].
We state it as follows.

Pr[δ F→ Δ] = 2−n
∑
u∈Fn

2

∑
v∈Fn

2

(−1)u·δ+v·Δcor2 (u · x + v · F(x)) , (4)

where F : Fn
2 → F

n
2 is a vectorial Boolean function, and (δ, Δ) ∈ F

n
2 ×F

n
2. By applying

this link for all δ ∈ U⊥ and Δ ∈ V⊥ in Eq. (2), we obtain the following result which is
a generalization of [12,13].

Theorem 1. The probability of a truncated differential with input differences in U⊥
and output differences in V⊥ can be computed as a sum of squared correlations with
input masks in U and output masks in V as

Pr[U⊥ F→ V⊥] = 1

|V |
∑

u∈U,v∈V
cor2 (u · x + v · F(x)) .

Proof. If for u ∈ F
n
2 we have u · δ = 1 for some δ ∈ U⊥, then the linear function

δ �→ u · δ is nonzero and hence balanced onU⊥. Thus, in this case
∑

δ∈U⊥(−1)u·δ = 0.
This is not the case exactly if we have u ∈ U and then

∑
δ∈U⊥(−1)u·δ = |U⊥|. Then,

applying the same reasoning for all v ∈ F
n
2 gives the claim. �

The following corollary concerning a special case will be used later.

Corollary 1. For all w ∈ F
n
2 \ {0} and Δ ∈ F

n
2 \ {0} we have

Pr[Δ F→ sp(w)⊥] =
∑

v∈sp(Δ)⊥
cor2(v · x + w · F(x)).

Proof. From Eq. (3) and Theorem 1, we have

Pr[Δ F→ sp(w)⊥] = 2 · Pr[sp(Δ)
F→ sp(w)⊥] − 1

= 2 · 1
2

·
∑

v∈sp(Δ)⊥,b∈sp(w)

cor2(v · x + b · F(x)) − 1

=
∑

v∈sp(Δ)⊥
cor2(v · x + w · F(x)).

�
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2.2. Round Independence

Differential probabilities or linear correlations over an iterated cipher are often computed
assuming that the rounds of the cipher behave independently. The notion of independence
is defined precisely in the following definition.

Definition 1. Two parts E0 and E1 of an n-bit block cipher E = E1 ◦ E0 are said to
be differentially round independent if for all (δ,Ω) ∈ F

n
2 × F

n
2 the following holds

Pr[δ E→ Ω] =
∑

Δ∈Fn
2

Pr[δ E0→ Δ]Pr[Δ E1→ Ω].

Analogically, the parts E0 and E1 are said to be linearly round independent if for all
(u, w) ∈ F

n
2 × F

n
2 the following holds

cor2(u · x + w · E(x)) =
∑
v∈Fn

2

cor2(u · x + v · E0(x))cor
2(v · y + w · E1(y)).

It was proved in [2] that the rounds of aMarkov cipher [33] are both differentially and lin-
early round independent. Next, we show that differential and linear round independence
are equivalent concepts for any cipher.

Proposition 2. Two parts E0 and E1 of an n-bit block cipher E = E1 ◦ E0 are
differentially round independent if and only if they are linearly round independent.

Proof. Let us start by stating Eq. (4) in the following equivalent form

∑
δ∈Fn

2

(−1)u·δ Pr[δ F→ Δ] =
∑
v∈Fn

2

(−1)v·Δcor2 (u · x + v · F(x)) .

This is obtained by applying the inverse Fourier transform to the input difference. By
applying it to the output difference, another equivalent form can be given where the
first summation is taken over Δ and the second summation over u. We refer to these
equations as partial inverses of Eq. (4). A further variant is obtained by applying the
inverse Fourier transform on both differences. We call it the inverse of Eq. (4).

Let us now assume that the parts of the cipher are differentially round independent.
Then using the inverse of Eq. (4) and the assumption of differential round independence,
we get

cor2 (u · x + w · E(x)) = 2−n
∑
δ∈Fn

2

∑
Ω∈Fn

2

(−1)u·δ+w·Ω Pr[δ E→ Ω]

= 2−n
∑

Δ∈Fn
2

∑
δ∈Fn

2

(−1)u·δ Pr[δ E0→ Δ]
∑

Ω∈Fn
2

(−1)w·Ω Pr[Δ E1→ Ω].
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Then using the both partial inverses of Eq. (4), we obtain

cor2 (u · x + w · E(x))

= 2−n
∑

Δ∈Fn
2

∑
v∈Fn

2

(−1)v·Δcor2(u · x+v · E0(x))
∑

v′∈Fn
2

(−1)v
′·Δcor2

(
v′ · y+w · E1(y)

)

= 2−n
∑
v∈Fn

2

∑
v′∈Fn

2

cor2(u · x+v · E0(x)) cor
2 (

v′ · y+w · E1(y)
)∑
Δ∈Fn

2

(−1)(v+v′)·Δ.

The sum over Δ is nonzero if and only if v = v′ and the value of this sum, 2n , cancels
with the factor 2−n . Thus, we get

cor2 (u · x + w · E(x)) =
∑
v∈Fn

2

cor2 (u · x+v · E0(x)) cor
2 (v · y+w · E1(y)) ,

which is exactly the condition of linear round independence as defined above. The
converse proof is analogous. �

Few ciphers satisfy round independence in the strict sense of Definition 1. On the other
hand, n-bit ciphers of the form EK (x) = E1(E0(x) + K ) with n-bit key K are round
independent on average over the key. For simplicity, the results given in this paper will
be stated in terms of strict round independence, but can be reformulated using average
round independence for such ciphers.

3. Differential-Linear Distinguisher

In this section, we recall the basic principle of the differential-linear distinguisher and
discuss previous treatments of how to estimate its efficiency. This will be the starting
point to study the theoretical justification of the combination of linear and differential
distinguisher. In particular to examine the underlying assumptions for such a combination
of two distinguishers of different type.

3.1. Differential-Linear Bias

In statistical attacks, one can distinguish between the offline analysis consisting in detect-
ing a weak property of the cipher and the online analysis consisting in extracting infor-
mation on the encryption key. In this respect, the differential-linear attacks introduced
in [5,35] do not differ from the classical differential or linear attacks. The differences
found between these attacks are mostly caused by the method used to detect the weak
property of the cipher. For instance, in the differential context under the Markov cipher
assumption (or the differential independence as defined above), the probability of a dif-
ferential characteristic is obtained by multiplying the probabilities over the different
rounds of the cipher. Then, methods such as Branch-and-Bound algorithms or matrix
methods have been proposed to search for differentials with high probabilities. For some
ciphers with strong diffusion, however, these methods soon meet their limits. Either the



868 C. Blondeau et al.

Fig. 1. The setting of a differential-linear distinguisherwith input difference δ, outputmaskw and intermediate
mask v ∈ V .

size of the search tree or the matrix grows exponentially as the number of studied rounds
increases. The idea of differential-linear attacks is to find a strong differential-linear
distinguisher by combining a strong truncated differential with strong linear approxima-
tions.
Let E : Fn

2 → F
n
2 be an encryption function of a block cipher with a fixed key. When

applying the technique of differential-linear cryptanalysis, the cipher is presented as a
composition E = E1 ◦ E0 of two parts. The first part E0 is chosen in such a way that
there is some strong truncated differential over E0.
The typical setting of a differential-linear property is depicted in Fig. 1. Over the first

part E0, the space U is selected so that U⊥ is one-dimensional. The output difference
space V⊥ is usually larger. For the second part E1, it is then assumed that there is a
strong linear approximation (v,w) over E1, where v ∈ V , which means that v · Δ = 0
for all Δ ∈ V⊥.
Then, the bias of the differential-linear approximation is defined as

Eδ,w = Pr[w · (E(x + δ) + E(x)) = 0] − 1

2
. (5)

By combining a truncated differential (δ, V⊥) with high probability p′ and a strong
linear approximation (u, v)with v ∈ V and a correlation cv,w of high absolute value, the
attacker is expecting to get a differential-linear approximation with bias of high absolute
value.
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In this definition of the bias, neither the input mask v nor the output difference space
V⊥ does appear. In practice, however, when deriving estimates of the differential-linear
bias they play a crucial role as we will see in this paper.

3.2. Attack Algorithm and Statistics

The attacker targets on a linear relation expressed by the linear maskw of the bits of each
output difference obtained for pairs of plaintexts with input difference δ. Algorithm 1
presents the differential-linear distinguisher (δ, w) given a sample of pairs of plaintexts
of size NS .

Alg. 1 Differential-linear distinguisher

Set a counter T to 0
for NS plaintext pairs (x, x + δ) do

Increment T if w ·
(
E(x) + E(x ⊕ δ)

)
= 0

if T deviates enough from NS/2 then
The data is drawn from the cipher E .

In the previous literature, the data complexity of the differential-linear attack has
usually been estimated as follows [6]. Let N be the number of pairs used in the attack, and
let Tw and T0 be two random variables following the binomial distributions B(N , 1/2)
and B(N , 1/2 + Eδ,w)), respectively. As in the linear context [41,46], these binomial
distributions are approximated by normal distributions. Therefore, we can assume that
Tw/N−1/2 and T0/N−1/2 follow the normal distributionsN (0, 1

4N ) andN (Eδ,w, 1
4N ),

respectively.
Unlike in [46], there is no need to use the folded normal distribution. This fact cor-

responds to the observation made in [6] that, in the case of positive expected bias, it
suffices to test whether T/N −1/2 > ε rather than |T/N −1/2| > ε. It is even claimed
in [6] that the sign of the bias “is unaffected by any key bit (as all the affected key bits
are used twice and thus cancelled)." While this is clearly the reason for the differential-
linear probability to be a nonnegative value, this probability may, for some keys, be less
than 1/2, even if the average probability taken over the keys is greater than 1/2. In any
case, the main difference between the linear context and the differential-linear context
is that the expected bias in the latter case is a nonzero value. In the linear context, only
the absolute value of the expected bias is nonzero, while the expectation of the bias is
typically zero due to the effect of the key bits.
With this modification, which allows saving one bit in the advantage, the framework

of [46] is then adapted to the differential-linear context to give the success probability
of a key recovery attack as

PS = Φ
(
2
√
NEδ,w − Φ−1(1 − 2−a)

)
,
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where Φ is the cumulative distribution function of the standard normal distribution and
a is the advantage of the attack in bits as defined in [46]. From this estimate, the data
complexity of the differential-linear attack is then deduced.

Lemma 1. Given the bias Eδ,w of a differential-linear approximation as defined in
Eq. (5), the data complexity of a key-recovery attack with advantage a and success
probability PS can be given as

N =
(
Φ−1(PS) + Φ−1(1 − 2−a)

)2
4Eδ,w

.

3.3. Previous Treatments

In the previous treatments [5,35,39], the bias

Eδ,w = Pr[w · (E(x + δ) + E(x)) = 0] − 1

2

is evaluated by decomposing the Boolean variable w · (E(x + δ) + E(x)) as a sum of
three variables

w · (E(x + δ) + E(x)) = v · E0(x + δ) + w · E(x + δ)

+ v · (E0(x + δ) + E0(x)) (6)

+ v · E0(x) + w · E(x),

where v is the input mask to the strong linear approximation over the second part of the
cipher. Then, these three terms are assumed to be statistically independent as x varies
and the bias is evaluated using the piling-up lemma [41].
By using the following notation for the involved biases

εv,w = Pr[v · y + w · E1(y) = 0] − 1

2

εδ,v = Pr[v · (E0(x + δ) + E0(x)) = 0] − 1

2
= Pr[δ E0→ sp(v)⊥] − 1

2
, (7)

the piling-up lemma gives

Eδ,w = 4εδ,vε
2
v,w. (8)

It remains to determine εδ,v given the truncated differential probability p′ = Pr[δ E0→
V⊥]. That is, one has to deal with the probability of differentials where the output
difference is contained in sp(v)⊥ but not in V⊥.

This is where the previous studies differ. In [35], Pr[δ E0→ V⊥] = 1, in which case

Pr[δ E0→ sp(v)⊥] = 1, since v ∈ V . The general case where Pr[δ E0→ V⊥] < 1 was
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considered first in [34] and then by Biham et al. [5] (see also Biham et al. [7]). Then
assuming that when Δ /∈ V⊥ the parities of v · Δ are balanced they obtain the estimate

Pr[δ E0→ sp(v)⊥] ≈ p′ + (1 − p′)1
2
,

where equality holds if p′ = 1. If p′ < 1, equality does not hold, for the simple reason
that if a linear function v · y vanishes in V⊥, it cannot be balanced outside V⊥. The
estimate is better, if V⊥ is small, which is the case studied in [5]. It becomes worse,
however, as V⊥ increases. The extreme case is sp(v) = V . Then, v · y = 1, for all
y /∈ V⊥.
This problem was observed by Lu [39]. In his study, the assumption about uniform

distribution of parities is not needed, since the output difference space of the truncated
differential is taken equal to the hyperplane sp(v)⊥.
As in practice, V⊥ is often smaller than a zero space of the linear approximation, we

have that Pr[δ E0→ V⊥] is less than or equal to Pr[δ E0→ sp(v)⊥]. As the inequality may
be strict, replacing the latter by the former in the estimation of the bias Eq. (7) may
lead to a wrong result for Eδ,w. Biham et al. suggest that the other output differences
Δ ∈ sp(v)⊥ \ V⊥ may occur with high probability and affect their approximation.
Therefore, they stress the importance of experimental verification.
Note that it would be possible to improve the assumption by Biham et al. by correcting

the probability of zero parity outside V⊥ from 1
2 to (2n−1 −|V⊥|)/(2n −|V⊥|). We will

not proceed in this direction, since in Sect. 5.1 we present a new approach to justify the
bias estimate of Biham et al. without the assumption of the piling-up lemma.
In [38], the authors mention the possibility of using multiple linear approximations in

order to improve the complexity of a differential-linear distinguisher. Their study, which
is based on the differential-linear model of Biham et al. [6] and on the multiple linear
model of Biryukov et al. [9], assumes that the distinguisher is built from the combination
of only one truncated differential with independent linear approximations.
While differential-linear cryptanalysis has been applied successfully inmany previous

work, the estimates on the attack complexities have been derived under heuristic assump-
tions and presented in an informal manner. The goal of this paper is to present a rigorous
analysis what is happening in the intermediate layer of the differential-linear approx-
imation and take into account not only more high-probability output differences from
E0 but also more, not necessarily independent, linear approximations over E1. Based
on this analysis, we then present alternative approaches for getting accurate estimates
of the strength of differential-linear approximations.

4. Differential-Linear Hull

The basic tool in examining the intermediate layer between E0 and E1 is the following
theorem. We use the notation Eδ,w and εδ,v introduced in the preceding section, and
denote the correlation of the linear approximation v · y + w · E1(y) by cv,w. Then,
cv,w = 2εv,w in relation to the notation used in the preceding section.
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Theorem 2. Assume that the parts E0 and E1 of the block cipher E = E1 ◦ E0 are
independent. Using the notation previously defined, we have

Eδ,w =
∑
v∈Fn

2

εδ,vc
2
v,w (9)

for all δ ∈ F
n
2 \ {0} and w ∈ F

n
2 \ {0}.

Proof. First, we apply the assumption of independence to the probability Pr[δ E→
sp(w)⊥] and then the link given by Corollary 1 to the differential probability over E1.

Pr[δ E→ sp(w)⊥] =
∑

Δ∈Fn
2

Pr[δ E0→ Δ]Pr[Δ E1→ sp(w)⊥]

=
∑

Δ∈Fn
2

Pr[δ E0→ Δ]
∑

v∈sp(Δ)⊥
cor2(v · y + w · E1(y))

=
∑
v∈Fn

2

∑

Δ∈sp(v)⊥
Pr[δ E0→ Δ]cor2(v · y + w · E1(y))

=
∑
v∈Fn

2

Pr[δ E0→ sp(v)⊥]cor2(v · y + w · E1(y)),

where changing the order of summation is possible since

{(v,Δ) | Δ ∈ F
n
2, v ∈ sp(Δ)⊥} = {(v,Δ) | v ∈ F

n
2, Δ ∈ sp(v)⊥}.

Now by subtracting 1
2 from both of the sides of the obtained equality and using Parseval’s

theorem gives the result. �

Wecall the expressionEq. (9) the differential-linear hull of E = E1◦E0.Thedifferential-
linear method has been previously applied in cases, where only one correlation cv,w has
been identified to have a large absolute value, but the output differential space of the
truncated differential is a strict subspace of the zero space of v. Consequently, more than
one linear approximation trail must be taken into account when estimating the bias of
the differential-linear approximation. We illustrate this in the context of an attack on the
Serpent cipher [1].

4.1. Example on Serpent

Differential-linear cryptanalysis [6,24] which has been applied tomany ciphers remains,
togetherwith themultidimensional linear cryptanalysis [42,44], themost powerful attack
on the Serpent cipher [1]. In this section, we summarize in our notation the distinguisher
proposed in [6] on nine rounds of Serpent and examine its derivation. Later, in [24],
another similar distinguisher on Serpent was provided. The only difference was that a
new and stronger truncated differential over the three rounds of E0 was used.
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To be used in a key-recovery attack, this distinguisher was defined to start from the
second round of the cipher. First, a truncated differential is defined on three rounds of
Serpent . In this attack, only one input difference is taken into consideration meaning
that U⊥ is one-dimensional. The output space of the truncated differential consists of
all differences which have the bits number 1 and 117 equal to zero. Hence, it is the
orthogonal of the two-dimensional space V spanned by the bits (taken as basis vectors)
number 1 and 117. The strong linear approximation over the six following rounds has
input mask ν ∈ V where both bits number 1 and 117 are equal to 1. The output mask is
denoted by w. The bias of this linear approximation is estimated to εν,w = 2−27.

The resulting differential-linear relation spans over nine rounds of Serpent. In [6], its
bias was estimated using a formula 2pq2, where p is such that 1

2 + p is the probability
of the truncated differential, and q = εν,w is the bias of the linear approximation. But

instead of taking 1
2 + p = Pr[δ E0→ V⊥], they observe in experiments that, in addition to

the differences where the two bits 1 and 117 are equal to zero, also “other differentials
predict the difference in the bits” of the input mask ν and then they sum all these
differentials to estimate p. In Sect. 3, we showed that in the piling-up lemma approach

an estimate of Pr[v · (E0(x + δ) + E0(x)) = 0] = Pr[δ E0→ sp(v)⊥] is needed. It seems
that in [6] such an estimate was obtained experimentally and its value was 1

2 + 2−7.
Then substituting p = 2−7 and q = 2−27 gives an estimate of the 2pq2 = 2−60 for the
bias of the differential-linear distinguisher in [6].

Let us analyze next the bias of the same distinguisher by considering the differential-
linear hull. From Theorem 2, we deduce that Eδ,w can be computed as

Eδ,w =
∑
v∈V

εδ,vc
2
v,w +

∑
v∈Fn

2\V
εδ,vc

2
v,w. (10)

We observe that for the two masks v ∈ V , for which only one bit, either number 1 or
117, is equal to 1, the correlations cv,w are equal to zero. Then, it follows that the first
sum on the right side of Eq. (10) is, indeed, equal to εδ,νc2ν,w, that is, the same value as
we would obtain by the direct application of Eq. (8).

Note that the terms in the summations Eq. (10) can be positive or negative. So strictly
speaking, restricting to a partial sum may not give a lower bound. On the other hand,
this may well happen in practice, which motivates the investigations in the next section.

4.2. Recent Differential-Linear Attacks

Recently in 2015, a differential-linear attack [28] on the authenticated cipher ICE-
POLE [43] has been presented. While the authors used classical methods to find poten-
tially good input differences and output masks, the bias of the differential-linear char-
acteristics was so large that it was possible for the authors to estimate this one experi-
mentally, meaning that no assumptions on the differential-linear hull was made in this
estimate.
The block cipher CTC2 [21] has been proven to be weak against differential-linear

attacks. While in previous attacks [25,39,40], the space V was one dimensional, using
the differential-linear hull the authors of [26] improved the best attack on this cipher.
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The estimation of the differential-linear bias is based on the theory we developed [11]
and which is presented in the next section.

5. Estimating the Bias Using the Intermediate Space

5.1. Previous Models

In the few available analyses in the differential-linear context recalled in Sect. 3, the
differential-linear bias is estimated by considering the differential-linear approximation
as a combination of one strong truncated differential with one strong linear approxima-
tion under the assumption that the piling-up lemma holds. In addition, as pointed out by
Lu, also other assumptions may be needed. Now that we have the exact expression of
the bias available, the question arises whether the piling-up lemma could be avoided and
replaced by other reasonable assumptions in the previous attack models. Answering this
question would have also practical relevance. The cryptographers would know which
properties of the cipher remain to be validated in simulations.
Biham et al. [5] and Lu [39] treat the case of one strong linear approximation over

the second part of the cipher. Next, we show that in this case it is possible to replace
the piling-up lemma by the assumption that the bias is equally small for all other input
masks on the intermediate layer.

Theorem 3. Suppose that there is one strong linear approximation with masks (ν,w)

over the second part of the cipher and that the correlations of all other approximations
are of equal absolute value. Then

Eδ,w ≈ εδ,νc
2
ν,w.

Proof. Let us denote ρ = cν,w. By the assumption and Parseval’s theorem we have

c2v,w = 1 − ρ2

2n − 2
, v �= ν.

Then

Pr[δ E→ sp(w)⊥] =
∑
v∈Fn

2

Pr[δ E0→ sp(v)⊥]c2v,w

= Pr[δ E0→ sp(ν)⊥]ρ2 +
∑

v �=ν, 0

Pr[δ E0→ sp(v)⊥]1 − ρ2

2n − 2
. (11)

From the fact

∑
v �=0

Pr[δ E0→ sp(v)⊥] =
∑
v �=0

∑

Δ∈sp(v)⊥,Δ�=0

Pr[δ E0→ Δ] = 2n−1 − 1
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we get the following inequalities

1

2
≥ 1

2n − 2

∑
v �=ν, 0

Pr[δ E0→ sp(v)⊥] ≥ 1

2
· 2

n−1 − 2

2n−1 − 1
,

which justify the estimate

1

2n − 2

∑
v �=ν, 0

Pr[δ E0→ sp(v)⊥] ≈ 1

2
.

Substituting it to Eq. (11) gives the claim. �

Themodel of Biham et al. [5] is a special case of themodel of Lu,where the probability

of the truncated differential Pr[δ E0→ sp(ν)⊥] is estimated based on one strong differential

δ
E0→ Δ.

Corollary 2. Let us consider the setting as described in Theorem 3 with one output

difference Δ. If then the differential probabilities Pr[δ E0→ Ω] for Ω �= Δ are equally
small then

Eδ,w ≈ Pr[δ E0→ Δ]
2

c2ν,w.

Proof. Let us denote p = Pr[δ E0→ Δ]. Then

Pr[δ E0→ Ω] = 1 − p

2n − 2
,

for Ω �= Δ. From this we get

Pr[δ E0→ sp(ν)⊥] =
∑

Ω∈sp(v)⊥
Pr[δ → Ω] = p + 1 − p

2n − 2
(2n−1 − 2) ≈ p

2
+ 1

2
,

and the claim follows from Theorem 3. �

5.2. Supporting Subset

By Theorem 2, computation of the exact value of the bias Eδ,w of a differential-linear
approximation requires the knowledge of the correlations over E1 for all inputmasks v ∈
F
n
2,whichmaybe impossible to obtain in practice formany ciphers. In this subsection,we

discuss the possibility of using the differential-linear hull more efficiently by restricting
the masks v to a subset of the intermediate layer.
In the previous subsection, we already saw that particular assumptions allow focusing

on a single strong linear approximation over the second part of the cipher. In fact, it
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is straightforward to generalize Theorem 3 to a larger set of intermediate masks v.
On the other hand, such assumptions are difficult to verify in practice, and they may
not even be necessary as we only need a lower bound to the magnitude of the bias to
get an upperbound to the data complexity of the attack. This can be guaranteed if the
differential-linear approximation admits a supporting subset in the sense of the following
definition [cf. Eq. (10)].

Definition 2. Given a differential-linear approximation with input difference δ and
output mask w, a subset V in the intermediate layer is called supporting if

∣∣∣∣∣∣
∑

v∈V,v �=0

εδ,vc
2
v,w

∣∣∣∣∣∣
≤ ∣∣Eδ,w

∣∣ .

When theparts of a block cipher E0 and E1 are round independent, then anydifferential
probability over the cipher is underestimated, if we take into consideration only a subset
of the differential characteristics relative to the differential. The same holds for the
squared correlation of a linear approximation. In terms of Definition 2, we can state that
for differentials and linear approximations all subsets are supporting.
Is it possible to achieve the same nice state of affairs for differential-linear hull? This

is a difficult problem and left open in this paper. Since the terms of the sum of the
differential-linear hull in Eq. (10) may be positive or negative, including more terms in
the summation may decrease the estimated bias. Currently, the only way to get some
evidence that a subset is supporting is to experimentally compute the bias of a differential-
linear approximation over a reduced number of rounds of the cipher. In [5,6], the authors
conducted this kind of experiments to check the validity of their results.

5.3. Breaking Up at Intermediate Layer

If the supporting set V is large, it may be infeasible to compute the biases εδ,v over E0
or the correlations cv,w over E1 for all v ∈ V , while it may be feasible to obtain the
probability of the truncated differential over E0 and the capacity of themultidimensional
linear approximation over E1. Next, we show that under an additional assumption that
certain probabilities over E0 are equal, the sum

∑
v∈V εδ,vc2v,w can be estimated by the

product of a truncated differential probability and a multidimensional linear capacity.

Theorem 4. Let V be a subspace in the intermediate layer of a differential-linear

approximation with input difference δ and output linear mask w. Let εδ,V = Pr[δ E0→
V⊥]− 1

|V | be the bias of a truncated differential with one nonzero input difference δ and

output differences in V⊥. Further, we denote by CV,w = ∑
v∈V,v �=0 c

2
v,w the capacity of

the multidimensional linear approximation with all input masks v in V and one output

maskw �= 0. If then, for allΔ /∈ V⊥, the differential probabilities Pr[δ E0→ Δ] are equal,
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we have

∑
v∈V

εδ,vc
2
v,w = 1

2

|V |
|V | − 1

εδ,VCV,w. (12)

Proof. For a purpose of clarity, let us denote Q = Pr[δ E0→ V⊥]. We denote by p the

common value of the probabilities Pr[δ E0→ Δ] for Δ /∈ V⊥. Then by
∑

Δ∈Fn
2
Pr[δ E0→

Δ] = 1 we deduce that p = 1 − Q

2n − |V⊥| .
Since V⊥ ⊂ sp(v)⊥ holds for all v ∈ V , we have

Pr[δ E0→ sp(v)⊥] = Pr[δ E0→ V⊥] +
∑

Δ∈sp(v)⊥, Δ/∈V⊥
Pr[δ E0→ Δ]

= Q + (2n−1 − |V⊥|) · 1 − Q

2n − |V⊥| .

Therefore, for all v ∈ V , we have

εδ,v = Pr[δ E0→ sp(v)⊥] − 1

2
= Q +

(
2n−1 − |V⊥|

) 1 − Q

2n − |V⊥| − 1

2

= 1

2
· 2

nQ − |V⊥|
2n − |V⊥| = 1

2
· Q − |V |−1

1 − |V |−1

= 1

2
· |V |
|V | − 1

(
Q − 1

|V |
)

= 1

2
· |V |
|V | − 1

εδ,V .

And we deduce

∑
v∈V

εδ,vcv,w = 1

2

|V |
|V | − 1

εδ,V

∑
v∈V

c2v,w = 1

2

|V |
|V | − 1

εδ,VCV,w.

�

Let us note that if |V | = 2, we have
∑

v∈V εδ,vc2v,w = εδ,VCV,w. The larger the size of

|V |, the closer to 1

2
εδ,VCV,w we get.

5.4. Experiments

The experiments of this section have been performed on a 32-bit scaled version of
PRESENT [15,36] called SmallPresent-[8]. The differential-linear approximations
are defined for one input difference δ and one output mask w. To limit the number of
assumptions, the bias εδ,v and the correlations cv,w are computed experimentally using
230 plaintexts and averaged over 200 keys. When using Theorem 2, round independence
is only required between E0 and E1.
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The purpose of these experiments was to investigate supporting subsets in the sense
of Definition 2. In each of the figures of this section, we plotted as a reference the
experimental bias

Eδ,w = Pr[δ → sp(w)⊥] − 1

2
, (13)

over eight rounds of SmallPresent-[8], and given a space V , compare it with

∑
v∈V

εδ,vc
2
v,w. (14)

While experiments have been performed for many differential-linear approxima-
tions on eight rounds of SmallPresent-[8], we present results for the input difference
δ = 0x1 and the output mask w = 0x80000000. The bias of this differential-linear
approximation is positive and we hope to have supporting subsets V such that Eq. (14)
gives an underestimate of the actual bias. In Fig. 2, resp. in Fig. 3, the differentials are
taken over three rounds, resp. four rounds, and the correlations are taken over 5 rounds,
resp. 4 rounds of SmallPresent-[8]. The set V is chosen to be a linear subspace.
As the accuracy of these approximations depends mostly on the size of the subspace,

we study the evolution of Eq. (14) in regard to log(|V |).
Result of the different experiments shows that in the case of SmallPresent-[8],

Eq. (14) gives as expected an underestimate of the actual bias Eδ,w. In most of the cases
by increasing the size of the supporting space V , we have a better estimate of the bias
(in this experiments, the initial spaces V are subset of the larger ones). Nevertheless
as the second sum of Eq. (10) is not always positive, we observe that this gain can be
somewhat relative. When experiments are conducted for a fixed key instead of averaged
over keys, we strictly observe that Eq. (14) is not an increasing function of |V |.

In Theorem 4, based on the assumption that for all Δ /∈ V⊥, the probabilities Pr[δ E0→
Δ] are equal, we propose an estimate of Eq. (14). This one is relatively easier to compute,
since, independently of the size of V , only one truncated differential probability and one
capacity need to be computed. The blue curves (lowest curves for V of large size) in
Figs. 2 and 3 correspond to the computation of the expression on the right side of Eq. (12).
While this expression seems to be a correct estimate of Eq. (14) for V of small size, the

assumption that for all Δ /∈ V⊥, the probabilities Pr[δ E0→ Δ] are equal, seems to be
getting less realistic as the size of V increases.
The differential-linear approximations simulated in this section also act as examples

of truncated differentials composed of two truncated differentials. In these experiments,
the true probability of the truncated differential is always larger than the product of the
probabilities of its parts. As shown in [10], this is not always the case as sometimes
erroneously assumed, but the true probability can also be much smaller. We conclude
that the assumption made in Theorem 4 does not always hold in practice and therefore
the bias estimate proposed in this theorem must be studied carefully in experiments for
each particular cipher.
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Fig. 2. Estimation of the bias a differential-linear approximation on 3 + 5 rounds of SmallPresent-[8] for
two different chains of intermediate spaces.
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Fig. 3. Estimation of the bias of a differential-linear approximation on 4 + 4 rounds of SmallPresent-[8]
for two different chains of intermediate spaces.
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6. Multidimensional Differential-Linear Distinguisher

6.1. The Model

The idea of taking advantage ofmultiple differentials ormultiple linear approximations is
widely spread out in the cryptographic community. To generalize the results of Sect. 4, let
us now consider the case where the spaceU⊥ of possible input differences is an arbitrary
subspace of Fn

2. The linear approximation over E1 is assumed to be multidimensional
such that the output masks form a linear subspace W of Fn

2. We denote its orthogonal
space by W⊥.
The conditions on which it would be possible to combine such a truncated differential

and multidimensional linear approximation to a strong truncated differential over the
full cipher are similar to the ones in the one-dimensional case expressed in Sect. 5.
We express here the generalization of Theorem 2 to compute the bias

EU⊥,W = Pr[U⊥ \ {0} E→ W⊥] − 1

|W | , (15)

of a multidimensional differential-linear approximation.

Theorem 5. Let EU⊥,W be as defined in Eq. (15). Assume that the parts E0 and E1 of
the block cipher E = E1 ◦ E0 are independent. Then

EU⊥,W = 2

|W |
∑

v∈Fn
2 ,v �=0

εU⊥,vCv,W , (16)

where εU⊥,v = Pr[U⊥ \ {0} E0→ sp(v)⊥] − 1/2, and Cv,W = ∑
w∈W,w �=0 cor

2(v · y +
w · E1(y)), is for v �= 0, the capacity of the multidimensional linear approximation with
input mask v and all nonzero output masks w in W.

Proof. First, let us state the following generalization of Corollary 1. Given a bijective
function F : Fn

2 → F
n
2, a subspace U ⊂ F

n
2 and a mask vector v ∈ F

n
2, we have

2 · Pr[U⊥ F→ sp(v)⊥] − 1 =
∑
u∈U

cor2(u · x + v · F(x)).

Using Theorem 1 to write the truncated differential probability in terms of squared
correlations, we apply this result together with Proposition 2 to obtain

Pr[U⊥ E→ W⊥]
= 1

|W |
∑

u∈U,v∈Fn
2 ,w∈W

cor2(u · x + v · E0(x))cor
2(v · y + w · E1(y))

= 1

|W |
∑
v∈Fn

2

(
2 Pr[U⊥ E0→ sp(v)⊥] − 1

) ∑
w∈W

cor2(v · y + w · E1(y)).
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The next step consists at removing the zero from the possible input differences. To use
relation of Eq. (3), we multiply the probabilities on the first and second line by |U | and
then subtract 1 = 1

|W |
∑

w∈W
∑

v∈Fn
2
cor2(v · y + w · E1(y)) to get

(|U | − 1)Pr[U⊥ \ {0} E→ W⊥]
= 1

|W |
∑
v∈Fn

2

(
2|U |Pr[U⊥ E0→ sp(v)⊥] − |U | − 1

)
Cv,W

= 1

|W |
∑
v∈Fn

2

(
2(|U |Pr[U⊥ E0→ sp(v)⊥] − 1) − |U | + 1

)
Cv,W

= 1

|W |
∑
v∈Fn

2

(
(|U | − 1)(2 Pr[U⊥ \ {0} E0→ sp(v)⊥] − 1)

)
Cv,W .

We obtain the claim by dividing the first and last expressions in this chain of equalities
by |U | − 1 and then observing that the term for v = 0 in the last expression is equal to
1/|W |. �

6.2. Bias Estimation

In this section, we investigate under which conditions the multidimensional differential-
linear hull given by Eq. (16) can be used to compute an estimate of the bias of a multi-
dimensional differential-linear approximation.
The approach is similar to the one of Sect. 5. Given a set V , the sum in Eq. (16) can

be decomposed into two sums:

EU⊥,W = 2

|W |
∑

v∈V,v �=0

εU⊥,vCv,W + 2

|W |
∑
v /∈V

εU⊥,vCv,W . (17)

Practical computation of the bias of a multidimensional differential-linear approxima-
tion relies on the fact that computing only the first partial sum gives us an underestimate
of the absolute bias |EU⊥,W |. This leads us to the following definition.

Definition 3. Given a multidimensional differential-linear approximation with input
difference space U⊥ and output mask space W , a subset V in the intermediate layer is
called supporting if

∣∣∣∣∣∣
2

|W |
∑

v∈V,v �=0

εU⊥,vCv,W

∣∣∣∣∣∣
≤ ∣∣EU⊥,W

∣∣ .

It follows that if a subset is supporting for all δ ∈ U⊥ and w ∈ W in the sense of Defin-
ition 2, then it is supporting for the multidimensional differential-linear approximation
with input difference space U⊥ and output mask space W . But the converse may not be
true.



Differential-Linear Cryptanalysis Revisited 883

To compute an estimate of the bias more efficiently, we can break up the differential-
linear approximations at the intermediate layer. Similarly as in Theorem 4, an exact
equality is obtained under an additional assumption.

Corollary 3. Let EU⊥,V = Pr[U⊥ \ {0} E0→ V⊥] − 1

|V | be the bias of a truncated

differential with nonzero input differences in U⊥ and output differences in V⊥, where
V is a linear subspace. Further, we denote by CV,W = ∑

w∈W,w �=0

∑
v∈V

c2v,w the capacity

of the multidimensional linear approximation.

If then, for all Δ /∈ V⊥ the truncated differential probabilities Pr[U⊥ \ {0} E0→ Δ] are
equal, we can compute the first sum on the right side of Eq. (17) as

2

|W |
∑
v∈V

εU⊥,vCv,W = 1

|W |
|V |

|V | − 1
εU⊥,VCV,W .

To test the usefulness of the results presented in this section, we conducted similar
experiments than the ones presented in Sect. 5.4 on SmallPresent[8]. Conclusions of
these experiments are similar to the ones in the one-dimensional case. We found that
supporting subspaces exist. In the case of the PRESENT cipher, all subspaces V in the
experiments satisfied

∣∣∣∣∣
2

|W |
∑
v∈V

εU⊥,vCv,W

∣∣∣∣∣ <
∣∣EU⊥,V

∣∣ .

Similarly as in the test cases described in Sect. 5.4, we observed that the accuracy of the
computational result gets worse as the size of V increases. This behavior indicates that

the assumption in Corollary 3 about the equality of the probabilities Pr[U⊥ \ {0} E0→ Δ]
for Δ /∈ V⊥ does not hold.

6.3. Data Complexity of Multidimensional Differential-Linear Attack

When the differential-linear approximation is characterized by only one output mask
w, as recalled in Lemma 1, the data complexity is inversely proportional to the square
of the bias Eδ,w, meaning that larger its absolute value is, less costly the underlying
distinguishing attack is.
When usingmultiple outputmasks, the differential-linear probability should be distin-

guishable from the uniformprobability 1/|W | and the data complexity of the differential-
linear distinguisher depends of the number |W | of output masks. Then by repeating the
derivations given in Sect. 3.2 with binomial probabilities 1/|W | and 1/|W | + EU⊥,W
yields to the following generalization of the number of data pairs when EU⊥,W is small
compared to 1/|W |.

Proposition 3. Given a success probability PS and an advantage a, the number of input
data pairs NS required in a multidimensional differential-linear attack with nonzero
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input differences in U⊥, output masks in W, and bias EU⊥,W as defined in Eq. (15) is

NS = [Φ−1(PS) + Φ−1(1 − 2−a)]2 (
1/|W | − 1/|W |2)

E2
U⊥,W

. (18)

Proof. Assuming that, compared to 1/|W |, EU⊥,V is small, we can safely use a nor-
mal approximation of the binomial distribution to estimate the data complexity of a
differential-linear attack. Using the notation of [46], let us denote by X0 and Xw two
random variables that follow the standard normal distributions with means μ0 = EU⊥,V

and μw = 0 and variances σ 2
0 ≈ 1

NS

(
1

|W | − 1

|W |2
)
and σ 2

w = 1

NS

(
1

|W | − 1

|W |2
)
,

respectively. The success probability PS of the attack is estimated as

PS = Φ

(
EU⊥,W

√
NS√

1/|W | − 1/|W |2 − Φ−1 (
1 − 2−a)

)
,

from where the claim follows. �

For attacks using multiple input differences, it is useful to sample the input data NS in
structures, which are sets of the form x + Z where x ∈ U and Z is a fixed subset ofU⊥.
When structures are used, the total data complexity NDL of a differential-linear attack
is two times the required number of data pairs divided by the size |Z | of the structure.

6.4. Comparison with Truncated Differential and Multidimensional Linear Attack

The relation between the truncated differential and multidimensional linear attacks was
investigated in [13]. Let us briefly recall those results. Let U be a linear subspace of
the input space and W a linear subspace of the output space of the cipher E . Then, the
probability of the truncated differential over the cipher E with input differences in U⊥
and output differences in W⊥ is defined as

PU⊥,W⊥ = Pr[U⊥ E→ W⊥].

The capacity of the related multidimensional linear approximation is equal to

CU,W =
∑

u∈U\{0},w∈W
cor2(u · x + w · E(x)),

and we have the following relation [13]

PU⊥,W⊥ = 1

|W | (CU,W + 1).

The multidimensional differential-linear approximation, including the classical one
as its special case, with nonzero input differences in U⊥ and output masks in W⊥, is
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clearly a truncated differential, and we have the following relationship between its bias
and the truncated differential probability

PU⊥,W⊥ = |U⊥| − 1

|U⊥| EU⊥,W + 1

|W | + |W | − 1

|W ||U⊥| .

We can see that when the size of U⊥ increases we can estimate

EU⊥,W ≈ PU⊥,W⊥ − 1

|W | , (19)

that is, the effect of the zero input difference can be ignored.
Since the goal of [13] was to establish a link between the multidimensional linear and

the truncated differential attack, the used statistical model of the truncated differential
attack has been computed asymptotically for a success probability of 50%. However, a
more accurate derivation of the number of input data pairs NT D

S can be obtained from
Proposition 3, since in the case where the estimate given by Eq. (19) is valid, the input
data pairs NS and NT D

S of a multidimensional differential-linear and truncated attacks
satisfy NS = NT D

S .

Corollary 4. We assume that the input difference space U⊥ is of reasonable size to
justify the estimate given by Eq. (19). Given a success probability PS and an advantage
a, the number of input data pairs NT D

S required in a truncated differential attack with
input differences in U⊥, output differences in W⊥, and probability PU⊥,W⊥ close to
1/|W |, is

NT D
S = [Φ−1(PS) + Φ−1(1 − 2−a)]2(1/|W | − 1/|W |2)(

PU⊥,W⊥ − 1/|W |)2
. (20)

From this result, assuming that the data are organized into structures in the same way
in a multidimensional differential-linear and a truncated differential attack, we deduce
that the respective data complexities NDL and NT D are equal.
A multidimensional differential-linear approximation can be described also as a mul-

tidimensional linear approximation. If only one input difference is used, then this link
remains of theoretical nature, as it does not yield any useful multidimensional linear
attack due to the huge number of input masks needed to perform the known-plaintext
attack in practice. But as the size of the input difference space U⊥ increases also this
link becomes practical.
For the actual key-recovery attack algorithms and their time andmemory complexities,

we refer to [13]. We only remark here that the size of a structure used in the sampling
of input data varies depending on the number rounds added in the encryption side of the
key-recovery attack. The maximum size of the structure is equal to |U⊥| when no round
is added before E0, but is larger than this value, otherwise. This fact may affect the data
complexities of the attacks and should be taken into account when the complexities of
the known-plaintext and chosen plaintext types of attacks are compared.
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7. Conclusion

In this paper, we studied and generalized differential-linear cryptanalysis. Starting from
the observation that any differential-linear relation can be regarded as a truncated differ-
ential, we derive a general expression of its bias based on the link between differential
probabilities and linear correlations provided by Chabaud and Vaudenay.
The exact expression given in Theorem 2 is valid under the sole assumption of round

independence. As a side-note, we demonstrated that, in general and independent of the
differential-linear context, linear- and differential round independence are equivalent
properties or assumptions.
We also revisit previous studies and applications of differential-linear cryptanalysis,

where the bias of the differential-linear approximation has often been estimated under
some heuristic assumptions, implicitly or explicitly present in the derivations. Starting
from the exact expression of the bias under the assumption of round independence of
the parts of the cipher, we identify new additional assumptions for computing efficient
estimates of it. Extensive experiments have been performed to test the validity of these
assumptions. We furthermore extracted assumptions (cf Theorem 3 and Corollary 2)
under which the previous estimates as derived by Lu [39] and Biham et al. [5] are valid.
This is potentially of practical relevance, as it shows which properties of the cipher
remain to be validated experimentally.
Although no new applications of differential-linear cryptanalysis are presented in this

paper, the potential and generality of our sound framework is demonstrated by its abil-
ity to explain existing examples of differential-linear cryptanalysis. Our generalization
of differential-linear cryptanalysis to multidimensional differential-linear cryptanalysis
presented in Sect. 6 could be used in future work to improve differential-linear attacks in
the same manner as multiple differentials and multidimensional liner attacks improved
upon differential and linear attacks, respectively.
Finally, we encourage further research to obtain better estimates for the differential-

linear bias. As can be seen in Figs. 2 and 3, while the theoretical estimate is always an
underestimate as desired, the actual bias is significantly larger then the theoretical one. At
least in the case of SmallPresent-[8], this would result in a significant overestimation
of the data complexity of the corresponding attack.
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