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Abstract. In this paper, we present a new digital signature scheme based on the com-
putational Diffie–Hellman (CDH) assumption in the standard model. The proposed sig-
nature scheme is not only asymptotically almost compact but also practical for concrete
parameters in the sense that the public key has 29 group elements, and the signature
consists of two group elements and two exponents for 80-bit security. Note that the
Waters signature scheme, which is the previous best digital signature scheme in the
same category (CDH assumption, standard model), requires linear-sized public keys
in the security parameter, particularly those with 164 group elements for 80-bit secu-
rity. To achieve our goal, we revisited the CDH-based signature scheme proposed by
Hohenberger and Waters (EUROCRYPT 2009), which is a stateful signature scheme
but achieves asymptotically compact parameters in the sense that its public key and
signature consist of constant group elements. We modify the Hohenberger–Waters sig-
nature scheme to remove the state information from the signatures. More precisely, we
use programmable hashes and random tags, instead of counters which is the state infor-
mation maintained by a signer. To prove the security of the proposed signature scheme,
we developed prefix-guessing technique for random tags. Note that the prefix-guessing
technique was first introduced by Hohenberger and Waters (CRYPTO 2009) and was
originally used for message queries.

Keywords. Digital Signature, Standard Model, Computational Diffie-Hellman.

1. Introduction

Digital signature schemes are one of the fundamental primitives ofmodern cryptography
and are used in many cryptographic protocols as an important building block. From both
practical and theoretical standpoints, it is important to design efficient signature schemes
whose security is proven under reliable assumptions. Most efficient signature schemes
follow a hash-and-sign paradigm (rather than a tree-based approach [19,22]) to obtain
efficient signatures, particularly short signatures. Collision-resistant hash functionsmap-
ping fromanarbitrarily longmessage to a short bit-string is first used, and then, the hashed
message is signed onto. Each of the hash-and-sign signature schemes requires relatively
© International Association for Cryptologic Research 2016
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strong assumptions (e.g., random oracles [2,11,23,26,27,41,43], strong RSA assump-
tions [20,24,25], q-strong type assumptions [8,30,32,42], or LRSW assumptions [13]),
inefficient signing/verification processes [30,34], long public parameters [46], or main-
tenance of the state by the signer [33]. However, there is an approach to prove the full
security of signature schemes in the standardmodel using a decisional assumption.More
precisely, there are several identity-based and functional encryption schemes that can be
transformed into digital signature schemes via the Naor transformation [10], which have
been proven secure under decisional Diffie–Hellman assumptions or decisional linear
assumptions by using the standard model. However, all these decisional assumptions are
stronger than the CDH assumption. In fact, there is a series of works on the construction
of an efficient signature scheme based on standard assumptions such as RSA and CDH
(rather than decisional assumptions) in the standard model; these studies were mainly
those conducted by Hohenberger and Waters [33,34], Hofheinz et al. [30], and Yamada
et al. [48]. In this study, we aim to develop new techniques for constructing efficient
CDH-based signature schemes.

Our Result. The Waters signature scheme [46] was the previous best construction in
the category of hash-and-sign, CDH-based, and standard model signature schemes.1 It
has a constant signature size (two group elements) and linear public keys in the security
parameter. Achieving sublinear public keys (in the category of hash-and-sign, CDH-
based, and standard model signatures) has been an important open problem. We provide
an answer by proposing a new signature scheme with almost compact public keys. In
fact, our signature scheme achieves asymptotically almost compact parameters in the
sense that the signature size is constant (two group elements and two exponents)2 in the
security parameter, and the public keys can be of the size ω(1) (e.g., log log λ); that is,
any function in ω(1) is possible.3

Furthermore, our security analysis can yield not only asymptotically almost compact
parameters but also reasonably short parameters to serve as concrete security parameters.
For instance, in the case of 80-bit security, a signature consists of two group elements
and two exponents and a public key consists of 29 group elements and a description
of a collision-resistant hash function, which is considerably shorter than the public key
size (164 group elements and a description of a collision-resistant hash function) of the
Waters signature scheme [46] for the same security parameter; however, the reduction
losses of both schemes are the same O(λq).4

Our Strategy. We first revisit the Hohenberger–Waters signatures (EUROCRYPT
2009 [33]), which is a CDH-based, standard model, hash-and-sign signature scheme
and has compact parameters (in the sense that public key size and the signature size are

1There is a subsequent work, which is independent of our work and has better asymptotic performance
than the Waters signatures. We will compare it at the end of this section.

2We can reduce the signature size to two group elements and one exponent under an additional standard
assumption of the existence of pseudorandom function; this will be discussed in Sect. 5.1.

3The public key size is not constant, but any strictly increasing function is possible, and hence, we say
that our scheme achieves “asymptotically almost compact" parameters.

4There are some variants of the Waters signatures [31,34,39]. However, the basic construction framework
is essentially the same as that of the Waters signatures.
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constant in the security parameter). However, their scheme is stateful; that is, it forces a
signer to maintain the state information. This property is not desirable in general but is
acceptable in some applications andmeaningful for various reasons. In fact,Hohenberger
and Waters viewed their result as a step toward realizing practical, standard model sig-
natures under standard assumptions in a statelessmanner, and expected similar progress
outcomes to the advance of the early tree-based signature schemes such that first, a
stateful signature scheme is proposed (e.g., GMR signatures [29]), and then, the method
to remove the state is developed (e.g., Goldreich [28]). We revisit the Hohenberger–
Waters signature scheme and construct a stateless, CDH-based, standard model signa-
ture scheme on the basis of the Hohenberger–Waters signature scheme. That is, one can
consider our proposal as a stateless version of the Hohenberger–Waters signatures.
The main idea behind Hohenberger–Waters signatures is the use of counters, which

is the state information maintained by a signer. Since all counters are distinct and the
number of counters used in practice is bounded by a polynomial, in the security proof,
the simulator can restrict the adversaries to use one counter in the forgery and can guess
such the counter with non-negligible probability. If the simulator’s guess is correct, we
can apply a selectively secure signature scheme’s proof technique (e.g., [7]). Since our
aim is a stateless signature scheme, we cannot use this technique directly. Instead of
a counter, we arrange a random tag chosen from [1, Q] ∩ Z for each signature, where
Q is an appropriately large integer and will be specified later. When using random
tags, we have to be careful since the same tags can be used several times in contrast
to ordered counters, and this could be troublesome in the security proof. To handle tag
duplications, we use a different technique called programmable hash functions [32]. A
naive combination of these techniques allows us to obtain short and stateless CDH-based
signatures with a somewhat short public key of Θ( λ

log λ
) group elements, but we cannot

achieve the standard security notion of existential unforgeability against the chosen-
message attack (EUF-CMA). Instead, we can achieve only a rather weaker bounded
CMA security notion, which guarantees that the signature scheme is only secure against
a fixed number (polynomial but predetermined at the time of parameter generation) of
signing queries. In the security proof, the simulator has to guess in advance the random
tag used for the forgery. To this end, the domain [1, Q] for random tags should be
a polynomial in the security parameter, which is larger than q, where q denotes the
maximum number of signing queries. That is, if Q is small, there could be a very large
number of duplications among the random tags, and thus, we cannot control such the
case even by using the programmable hashes. If Q is large (e.g., a superpolynomial),
then we cannot attain polynomial-time reduction. More precisely, Q > q is required to
apply the birthday lemma so that q is bounded above at the time of parameter generation.
Our main scheme is a generalization of the previous naive combination of

Hohenberger–Waters signatures and programmable hashes; a signature has a random tag
vector instead of a random tag. Surprisingly, our main scheme not only achieves shorter
public keys but is also EUF-CMA secure. Let us briefly explain why our generalization,
which is seemingly very natural but non-trivial to analyze, can lead improvements in
both efficiency and security. If the overall length of a tag vector is sufficiently large,
which should be a superpolynomial, we can show that there are no (m + 1) collisions
in the set of q random tag vectors, with a 1 − neg(λ) probability, where m denotes
some fixed public parameter and neg(λ) represents a negligible function in the security
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parameter λ. This probability can be calculated from the generalized birthday lemma.
For the domain of tag vectors, we use [1, λ]k , where k is a function in ω(1), and we
can show that it satisfies the above probability. Therefore, we do not require a parame-
ter associating the maximum number of signing queries q for the domain of tags, and
thus, we can avoid the bounded CMA security notion. Furthermore, the public key size
is bounded from the above-mentioned O(m + k), and our parameter selection enables
m = k so that we can attain asymptotically almost compact public keys; that is, the
public key size could be any (fixed) function in ω(1) (e.g., log log λ). There is one more
important issue related to the security proof. Although we increase the overall length of
the tag vectors, a trivial simulation will end up with an exponential-time reduction since
it cannot guess the target tag vectors with a non-negligible probability. To resolve this,
we extend the prefix-guessing technique, which was first introduced by Hohenberger
and Waters (CRYPTO 2009 [34]). Hohenberger and Waters used the prefix-guessing
technique for the target message in the simulation; the simulator guesses the shortest
prefix of the target message, which is not a prefix of any of the messages queried by the
adversary, before the simulator generating the parameters.5 We apply the prefix-guessing
technique to the random tag vectors instead of the messages. In [34], each message bit
is separately handled to enable prefix guessing with a high probability, although several
bits (at most log λ) can be handled via a trivial trade-off between efficiency and reduction
loss [39]. For random tag vectors, we have to consider the case wherein several tags have
the same prefix.We extend theHohenberger–Waters prefix-guessing technique to handle
duplications among random tag vectors; this allows the simulator to guess a prefix of
the target tag vector with a high probability. Therefore, our prefix-guessing technique is
of independent interest.

Related Works (Hash-and-Sign Signatures). By relying on the random oracle heuris-
tic, many constructions for efficient signature schemes in several settings have been
proposed (e.g., DL setting [11,23,27,41,43], RSA setting [2], and Lattice setting [26]).
However, there have been some studies showing the limitations of the random ora-
cles [14,21,37].
In the DL setting, Boneh and Boyen [8] proposed the first signature scheme in the

standard model where the signature size is comparable with that of the BLS signature
scheme [11] in the random oracle model. Okamoto [42] proposed a signature scheme
that is more effective in many applications such as blind signatures, group signatures,
and anonymous credentials. Recently, Hofheinz et al. [30,32] proposed short signa-
tures using programmable hash functions where the signature size is a bit shorter than
that in the previous schemes. However, the security of all these signature schemes are
proven under non-static q-type assumptions. The size of the problem instance of q-type
assumptions is (linearly) increased according to the number of signing queries. There
are analyses for the q-type assumptions [12,18]. Camenisch and Lysyanskaya [13] pro-
posed a signature scheme that can be used for constructing efficient group signatures
and identifying escrow schemes and anonymous credential systems. They proved the

5Therefore, the prefix-guessing technique is suitable for weak CMA security, where the adversary issues
all message queries before receiving the parameters. Note that there is a general transformation from EUF-
wCMA secure signatures to EUF-CMA secure signatures via the Chameleon hashes. We also use the same
strategy using the Chameleon hashes based on the discrete logarithm assumption [36].
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security of their signature scheme under an interactive assumption called the LRSW
assumption [38]. Interactive assumptions are non-falsifiable assumptions, and there is a
considerable amount of criticism for non-falsifiable assumptions [40].
To the best of our knowledge, there were only two signature schemes based on the

standard CDH assumption in the standard model [33,46]. However, the signer of the
signature scheme in [33] needs tomaintain certain states, i.e., a stateful signature scheme.
Therefore, there is only one construction for stateless signatures [46] that has been
proven secure under the standard CDH assumption in the standard model. However, the
signature scheme proposed in [46] has a large public key Θ(λ) as compared to all the
aforementioned signature schemes based on the strong assumptions.
Note that there is a generic transformation from the IBE scheme to the signature

scheme, called the Naor transformation, and there are efficient DH-based IBE con-
structions in the standard model [3,16,17,35,47]. However, signature schemes trans-
formed from these IBE constructions inherently require decisional (as opposed to search)
assumptions such as the decisional linear assumption and the decisional DH assumption.
In the RSA setting, the first standard model construction was developed by Gennaro et

al. [25]. Subsequently, Cramer and Shoup [20] and Fischlin [24] proposed more efficient
signature schemes. These schemeswere proven secure under the strongRSAassumption.
Hohenberger and Waters proposed the first hash-and-sign signatures from the RSA
assumption [33]. However, their scheme requires the signer to maintain states, i.e., a
stateful signature scheme. In the same year, they proposed the first-ever stateless RSA-
based signatures [34]. Subsequently,Hofheinz et al. [30] andYamada et al. [48] improved
its efficiency.However, all these signature schemes based on theRSAassumption require
a large number of primality tests at the signing and verifying stages.

Independent Work. Independently of our work, Böhl et al. [5,6] proposed almost the
same CDH-based signature scheme but with a completely different security analysis.
Both schemes are the same except the length of each component in a tag vector. More
precisely, all components of a tag vector are of equal length in our construction, but of
various lengths in [5,6]. Theseminor differences in their scheme are crucial for their new
proof strategy, called confined guessing; most notably, the reduction algorithm behaves
differently according to the adversarial success probability, and various tag lengths are
essential for realizing this proof strategy.6 Confined guessing approach can be applied
to several settings such as RSA and SIS, and the CDH-based signature scheme is one
instantiation of their strategy.

Comparison. We give a brief comparison with Waters scheme [46] and BHJKS
scheme [5,6] in Table 1.7 BHJKS scheme achieves sublinear public keys (O(log λ)

group elements), which is smaller than the Waters scheme but larger than ours (e.g.,

6According to adversarial success probability, the simulator in the confined guessing strategy chooses a
tag component with appropriate size so that we say that various tag component lengths are essential in Böhl
et al. scheme. In contrast, our prefix-guessing proof approach requires that components in a tag vector are of
equal length.

7Note that Naccache [39] proposed a variant ofWaters signatures that offers a trade-off between the public
key size and the tightness of the security reduction, but the asymptotic behavior is the same as the Waters
signatures.
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Table 1. EUF-CMA secure CDH-based signature schemes.

Scheme PK size Sig. size Reduction loss Sec. model

Waters [46] O(λ)τG 2τG O(λq) EUF-CMA

BHJKS [5,6] O(logd λ)τG 2τG + 1τFp O
(
2
2+ d

m′ q
d
m′ +d

ε
d
m′

)
EUF-CMA

This paper O( f (λ))τ
†
G

2τG + 2τFp O(λq) EUF-CMA
(tag-free)� (2τG + 1τFp )

τG is the size of group element, τFp is the size of the exponent

In [5,6], m′ and d > 1 are constants and ε is the adversarial success probability
�A variant scheme under an additional assumption of the existence of pseudorandom functions
† f (λ) can be any strictly increasing function, that is, f ∈ ω(1); e.g., log log λ

O(log log λ) group elements). Contrary to the other schemes, the reduction loss

O
(
2
2+ d

m′ q
d
m′ +d

ε
d
m′

)
of the BHJKS scheme depends on the adversarial success probabil-

ity ε. Since d and m′ are constants defined in the scheme and q are polynomial in
the security parameter λ (if we assume polynomial-time adversaries), the numerator is
polynomial in λ. If ε is constant, the quantity in the big-O notation is comparable to the
reduction loss λq of the other schemes. However, for adversaries with small (but still
non-negligible) success probability ε, the reduction loss becomes much larger than that
of the other schemes; for instance, if ε = 1/(λq)2m

′/d (polynomial in λ), then the reduc-
tion loss is larger than (λq)2. On the other hand, the reduction loss of Waters scheme
and ours is O(λq), regardless of the adversarial success probability.

Journal Version Versus Conference Version. The current paper is a journal version of
the first part of the conference paper (EUROCRYPT 2013) [4]8. The security analysis
given in the conference version guarantees only the bounded CMA security notion.More
precisely, the prefix-guessing technique used in [4,44] inherently requires the domain
of random tag vectors to be of the form [1, Q]k satisfying Q > q, where q is the
maximum of the allowable signing queries in the proof so that q should be bounded by
Q at the parameter generation time. In this journal version, we endeavor to remove the
undesirable restriction Q > q of the conference version [4,44].

Outline. In the next section, we give useful preliminaries for explaining our results. In
Sect. 3, the first approach toward stateless CDH-based signatures and its limitations are
presented. Ourmain CDH-based signature scheme and its security analysis are presented
in Sect. 4. In particular, we give practical parameters for concrete security parameters
λ ∈ {80, 128, 192, 256} in Sect. 4.1. In Sect. 5, we give two extensions for shorter
signatures using a pseudorandom function and using asymmetric pairings.

8Böhl et al. [4] is the merged paper of [5,44], and the full version of the second part of [4] is published
in [6].



Short Signatures from Diffie–Hellman 741

2. Preliminaries

In this section, we describe the notation used in this paper, the standard definition of
a digital signature scheme and its security, and a background on the underlying bilinear
group structure and complexity assumption.

Notation. Throughout the paper, λ means the security parameter. For a, b ∈ Z, [a, b]
means {a, a+1, . . . , b}. For vectors−→v and−→w , 〈−→v ,−→w 〉means the standard dot product
between −→v and −→w . For a probabilistic algorithm Alg, Alg(x) → a means that Alg
assigns the result to a on input x with uniformly chosen random coins. If we emphasize
the random coins r of Alg, then we use Alg(x; r). If the input of Alg is clear from
the context, we sometimes omit it and simply write Alg → a. If Alg terminates in
polynomial time inλ, then Alg is called a probabilistic polynomial-time (PPT) algorithm.

For a set S, s
$← S denotes that the element s is uniformly chosen from S. A negligible

function is a function μ(λ) : N → R such that for every positive polynomial poly(·),
there exists a positive integer Npoly such that for all λ > Npoly, |μ(λ)| < 1

poly(λ)
. For

two real-valued functions a and b in λ, a ∼ b means that |a − b| is a negligible function
in λ.

2.1. Syntax and Security of Signature Scheme

Signature Scheme. A signature scheme with message space M consists of three PPT
algorithms, KeyGen, Sign, and Verify.

KeyGen(λ): It takes the security parameter λ and outputs a pair of public key PK
and secret key SK .
Sign(PK , M, SK ): It takes PK , SK , and a message M ∈ M and outputs a
signature σ .
Verify(PK , M, σ ): It takes PK , M ∈ M, and σ , and returns b ∈ {0, 1}, where the
case b = 1 means that σ is a valid signature on M and the case b = 0 means that
σ is invalid.

Correctness: KeyGen, Sign, and Verify must satisfy the following correctness condi-
tion.

Pr[KeyGen(λ) → (PK , SK ),Verify(PK , M,Sign(PK , M, SK )) → 1] = 1.

Existential UnForgeability. The standard security notion for signature schemes, called
Existential UnForgeability with respect to Chosen-Message Attacks (EUF-CMA), was
formalized by Goldwasser et al. [29]. There is a slightly weaker model called Existen-
tial UnForgeability with respect to weak Chosen-Message Attacks (EUF-wCMA). The
adversaries in both security models are given the public key and access to a signing
oracle, and win if she can produce a valid pair of a signature and a message on which
the adversary did not query to the signing oracle. In the EUF-CMA security model,
the adversary is allowed to query any time before she outputs a forgery. However, the
adversary in the EUF-wCMA model has to send the challenger the entire list of mes-
sages that she wants to query before receiving the public key; thus, we sometimes call
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the adversary in the EUF-wCMA model, a non-adaptive adversary. Next, we provide
the formal definition of the EUF-CMA secure signature scheme and the EUF-wCMA
secure signature scheme. Let SIG = (KeyGen,Sign,Verify) be a signature scheme.
We now consider the two following experiments:

ExpEUF-CMA
SIG,A (λ)

(PK , SK ) ← KeyGen(λ);
(M, σ ) ← ASign(·)(PK );
Define L as the set of
all messages queried
by the adversary;
Return⎧⎨
⎩
1 if M 
∈ L

and Verify(PK , M, σ ) = 1,
0 otherwise.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ExpEUF-wCMA
SIG,A=(A1,A2)

(λ)

(M1, . . . , Mq , st) ← A1(st);
(PK , SK ) ← KeyGen(λ);
For ∀i ∈ [1, q], σi ← Sign(PK , Mi , SK );
(M, σ ) ← A2(PK , σ1, . . . , σq , st);
Return⎧⎨
⎩
1 if for ∀i ∈ [1, q], M 
= Mi

and Verify(PK , M, σ ) = 1,
0 otherwise.

We define adversarial advantages of the above experimentations as follows:

AdvEUF-CMA
SIG,A (λ) = Pr

[
ExpEUF-CMA

SIG,A (λ) = 1
]

and AdvEUF-wCMA
SIG,A (λ) = Pr

[
ExpEUF-wCMA

SIG,A (λ) = 1
]
.

Definition 1. LetSIGbe a signature scheme. If for anyPPTadversaryA,AdvEUF-CMA
SIG,A (λ)

(AdvEUF-wCMA
SIG,A (λ), respectively) is a negligible function in λ, we say that the signature

scheme SIG is EUF-CMA secure (EUF-wCMA secure, respectively).

2.2. Chameleon Hash Functions and Generic Transformation

Krawczyk and Rabin [36] formalized the notion of a Chameleon hash function and
provided a simple construction based on the DL assumption in the standard model. A
Chameleon hash function H takes two inputs m (message) and r (randomness) and
outputs a hash value H(m; r). It satisfies three properties, namely collision resistance,
trapdoor collisions, and uniformity. The collision-resistant property states that it is infea-
sible (for any PPT adversary) to find two distinct messages m and m′ and randomness
r and r ′ such that H(m; r) = H(m′; r ′). The uniformity property states that for each
message m, H(m; r) has the same probability distribution, where r is chosen uniformly
at random. The trapdoor collisions property states that given some trapdoor informa-
tion, any pair of m, r , and any additional message m′, it is possible to efficiently find a
randomness r ′ such that H(m; r) = H(m′; r ′).

We review the Chameleon hashes based on the DL assumption.9 Let Gch be a group
generator that takes the security parameter λ as an input and outputs a cyclic group of

9In [36], the Chameleon hash function is constructed over a multiplicative subgroup of a finite field. We
can easily generalize it to a Chameleon hash function over any cyclic group in which the DL assumption holds.
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prime order p′ of 2λ bits (e.g., an elliptic curve group generator).

CHSetup(λ) : Gch(λ) → Gch.

Choose gch
$← Gch and β

$← Z
∗
p′ and compute

hch = gβ
ch.

Output {gch, hch}, as the description of H(·; ·),
and trapdoor tr = β,

where H(·; ·) : Zp′ × Zp′ → Gch is defined by
(x, r) 
→ gxchh

r
ch.

Trapdoor collision(β, x, r, x ′) : Output r ′ = r + (x − x ′)/β.

We can easily check that the above-mentioned scheme satisfies the three properties of
Chameleon hashes. In particular, the collision resistance of the abovementioned scheme
tightly comes from the DL assumption onGch; that is, if there exists an adversary finding
collisions of the above Chameleon hashes with εch probability in time Tch, then we can
construct an algorithm solving the DL problem with εch probability in time T ′

ch such that
T ′
ch ≈ Tch.
The generic transformation from EUF-wCMA secure signatures to EUF-CMA

secure signatures has been used in many previously proposed signature schemes
(e.g., [8,33,34,36,45]). Suppose that (G,S,V) is an EUF-wCMA secure signature
scheme for arbitrary-length messages and CHSetup is a generator for the description
of a Chameleon hash based on the DL assumption. Then, the following scheme is an
EUF-CMA secure signature scheme for fixed-length messages.10

KeyGen(λ): Run CHSetup(λ) → (H(·; ·), tr) and G(λ) → (pk, sk), publish
PK = (pk, H), and then keep SK = {sk}.
Sign(PK , M, SK ): Pick a random r ∈ Zp, compute y = H(M; r), run
S(pk, y, sk) → σ ′, and then output the signature σ = (σ ′, r).
Verify(PK , M, σ ): Parse σ as (σ ′, r), compute y = H(M; r), and then output
V(pk, y, σ ′).

Lemma 1. ([34]) If (G,S,V) is EUF-wCMA secure and CHSetup is a generator for
secure Chameleon hashes, then the abovementioned scheme is an EUF-CMA secure
signature scheme.11

2.3. Background on Group and Assumption

In this paper, we use groups with bilinear pairings and the computational Diffie–Hellman
(CDH) assumption in the bilinear group setting.

10For signing arbitrary-length messages, the signer can first apply collision-resistant hash functions.
11In [34], a generic transformation is given for an EUF-wCMA secure signature scheme for fixed-length

messages. Note that we can easily generalize it and prove an analogous lemma for arbitrary-length messages.
In fact, if the message size of an EUF-wCMA secure signature scheme is larger than or equal to the size of the
representation of the Chameleon hash values, then the generic transformation derives the EUF-CMA secure
signature scheme.
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We define bilinear groups of prime order. The proposed signature scheme essentially
uses a bilinear map.

Definition 2. We say that G is a bilinear group generator, if on input the security
parameter λ, it outputs a tuple (p,G1,G2,Gt , e), where p is a prime, G1, G2, and Gt

are finite abelian groups of order p, and e : G1 ×G2 → Gt is a non-degenerate bilinear
map, that is (bilinearity), for all a, b ∈ Zp and g ∈ G1, g′ ∈ G2, e(ga, g′b) = e(g, g′)ab
and (non-degeneracy) for generators g ∈ G1 and g′ ∈ G2, e(g, g′) 
= 1.

IfG1 = G2, then we denoteG1 andG2 byG, and we say that e is a type-1 pairing. If
G1 
= G2 but there is an efficiently computable homomorphism φ : G2 → G1, then we
say that e is a type-2 pairing. Otherwise (that is, G1 
= G2 and there are no efficiently
computable homomorphisms between G1 and G2), we say that e is a type-3 pairing.

We define the CDH assumption in the bilinear group setting.

Definition 3. (Computational Diffie–Hellman Assumption) Let G be a (symmetric)
bilinear group generator. We say that G satisfies the CDH assumption if for any
polynomial-time probabilistic algorithm A the following advantage AdvCDHA is neg-
ligible function in the security parameter λ.

AdvCDHG,A (λ)

= Pr
[
A(p,G,Gt , e, g, g

a, gb) → gab

∣∣∣G(λ) → (p,G,Gt , e), a, b
$← Zp, g

$← G

]
.

3. Bounded CMA Secure Signatures with Sublinear Public Key

In this section, we present our first trial for almost compact signatures. The scheme
proposed in this section will be extended to achieve the security in the weak CMA
model in the next section.
We begin with reviewing the Hohenberger–Waters signature scheme HWSig [33],

which is given in Fig. 1.12 HWSig has compact parameters in the sense that a signature
and a public key consist of constant group elements and exponents but requires a signer
to maintain some state information ct, which is the number of signatures used until now.
From the viewpoint of security proof, the advantage of using the state information ct
is that each signature has distinct ct so that we can apply the proof technique used for
selectively secure signatures (e.g., Boneh–Boyen Signatures [7]). More precisely, the
idea of this approach is to enable a simulator, which reduces the security of signature
scheme to the CDH problem, to restrict the adversary to attack one of the polynomially
many indexes so that the simulator can guess the index associated with the target forgery

12In [33], Hohenberger and Waters present the signature scheme in Fig. 1 as a secondary scheme. The
original CDH-based Hohenberger–Waters signature scheme has a merged form of the scheme in Fig. 1 and
the Chameleon hash function. To make the effect of the Chameleon hash function and the other techniques
clear, we use the scheme in Fig. 1, instead of the original scheme in [33].
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KeyGen(λ) : Run G → (p,G,Gt, e) and choose w, v, u, g1, h, g
$← G, α

$← Zp.
Output PK = {w, v, u, g1, h, g, gα} and SK = {α}. Set ct = 0

Sign(PK, M, SK) : Choose t
$← Zp and increase ct by 1. // ct is a state information.

Compute σ1 = (vuM )α(w log2(ct) hgct1 )
t and σ2 = g−t.

Output σ = (σ1, σ2, ct).
Verify(PK, M, σ) : Parse σ to (σ1, σ2, ct).

Check whether e(σ1, g)e(σ2, w
log2(ct) hgct1 )

?= e(gα, vuM ).
Output 1 if the equation holds; otherwise, 0.

Fig. 1. The Hohenberger–Waters signature scheme [33].

in advance. If the simulator’s guess is correct, the simulator embeds the CDH problem
so that the solution of the CDH problem is extractable from any signature associated
with the target index.
One naive trial to modify HWSig into a stateless signature scheme is to change the

state information ct with a random tag. However, we have to be open to the possibility
of there being two (or more) signatures with the same tags. To handle several signature
queries using the same random tag, we apply programmable hashes [32]. In particular,
we use weak programmable hash functions. For a 2λ-bit message M , we consider M
as an element of Zp and (v

∏m
i=1 u

Mi

i ) is used instead of (vuM ) in HWSig.13 Here,

(v
∏m

i=1 u
Mi

i ) is a weak programmable hash function on input M and enables the simu-
lator to sign on at most m messages (with the same tag). Next, we use a random tag tag
instead of a counter ct.14 In addition, we remove w�log2(ct)� part from HWSig since the
role of this part is ambiguous for our purpose.15 As a result, we obtain a stateless short
signature scheme with sublinear public keys, as shown in Fig. 2.

We set Q to be a polynomial in λ. The simulation strategy is as follows: the simulator
guesses tag∗, the tag of the forgery (with a non-negligible 1

Q probability) and uses the
technique for the selectively secure signature scheme of the Boneh–Boyen signatures.
For each signature, the tag is randomly chosen so that there may exist several signatures
containing the same tag as tag∗ among the resulting signatures of singing queries.
Under normal circumstances, the simulator cannot produce signatures with tag∗ (since
we use technique for a selectively secure scheme). We can resolve this by using the
weak programmable hash functions. If we uniformly choose a tag from [1, Q] at most
q times for polynomial Q ≥ q, there are at most m = O( λ

log λ
) same tags as the tag

of the forgery with an overwhelming probability. (Here, we need to restrict Q ≥ q for
meaningful parameter.) Therefore, the simulator can create m signatures, which have

13Mi is not the i-th bit of M , but M raised to the power i .
14Note that the idea of using random tags in signature schemes is already used in previous works [30,33].
15In the security proof of HWSig, w�log2(ct)� part is used to prevent forgeries associated with indices that

are larger than the number of signing queries q. More precisely, the domain of indices [1, 2λ] is divided by
two parts [1, 2�log2q�] and (2�log2q�, 2λ]. The former is polynomial size so that the simulator can deal with
in polynomial time, but the latter is too large for the simulation to guess one index contained in the latter one.
Instead, the logarithm of the index is used like w�log2(ct)�. However, this separation is successful only when
there is no signing query with index contained in the latter part and the stateful signature scheme is exactly the
case. Since we will not use such the separation in the security proof for stateless signature scheme,w�log2(ct)�
is not necessary.
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KeyGen(λ) : Run G → (p,G,Gt, e) and choose v, u1, . . . , um, g1, h, g
$← G, α

$← Zp.
Choose an integer Q.
Output PK = {Q, v, u1, . . . , um, g1, h, g, gα} and SK = {α}.

Sign(PK, M, SK) : Choose t
$← Zp and tag

$← [1, Q].
Compute σ1 = (v m

i=1 uMi

i )α(hgtag
1 )t and σ2 = g−t.

Output σ = (σ1, σ2, tag).
Verify(PK, M, σ) : Parse σ to (σ1, σ2, tag).

Check whether tag ∈ [1, Q]. If not, abort and output 0.
Check whether e(σ1, g)e(σ2, hgtag

1 ) ?= e(gα, v
m
i=1 uMi

i ).
Output 1 if the equation holds; otherwise, 0.

Fig. 2. Naive approach for somewhat short public key.

the same tag as that of the forgery. For other queries related to different tags, we can
apply the technique of the selectively secure signature scheme.
Unfortunately, the above-mentioned proof strategy works only against a rather weak

attack called a bounded chosen-message-attack. Informally, the proposed signature
scheme determines the number of allowable signing queries q at the parameter gen-
eration time since Q ≥ q. This could be any polynomial in the security parameter, and
hence, the security proof cannot guarantee any security against more than q signing
queries. According to the applications, the number of signature generations could be
bounded above at the parameter generation time, and the proposed scheme could be
useful for such applications. However, usually, it is not a desirable property in practice.
We omit the proof of the bounded security of the scheme in Fig. 2 since the scheme

in the next section achieves better performance and security statement and its security
proof contains all ideas to prove the scheme in Fig. 2.

Remark 1. The proposed signature scheme is for fixed-length messages, but we note
that we can easily modify it for arbitrary-length messages by using collision-resistant
hash functions; to do so, first, we need to compute the hash value of a long message and
then use it as a message for the signature scheme.

Remark 2. We used a combination of two techniques in this section for signature
schemes based on the CDH assumption. This approach is similar to that used for signa-
ture schemes based on the RSA assumption and q-DH assumption [31]. Note that our
main contribution is explained in the next section.

4. Almost Compact Signature Scheme

Wedescribe ourmain signature scheme,which is a generalization of the previous scheme
shown in Fig. 3. In contrast to the scheme discussed in the previous section, we use a
tag vector −→

tag of length k instead of an integer tag in the signatures. Note that there are
two variables k and m, which are not exactly specified in the description. We determine
k and m in Sect. 4.1
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KeyGen(λ) : Run G → (p,G,Gt, e) and choose v, u1, . . . , um, g1, . . . , gk, h, g
$← G, α

$← Zp.
Choose an integer Q. // We will specify Q later.
Output PK = {Q, v, u1, . . . , um, g1, . . . , gk, h, g, gα} and SK = {α}.

Sign(PK, M, SK) : Choose r
$← Zp and

−→
tag

$← (tag1, . . . , tagk)
$← [1, Q]k (k times canonical product set).

Compute σ1 = (v m
i=1 uMi

i )α(h k
i=1 gtagi

i )r and σ2 = g−r.
//Here M i means M to the power of i (mod p)

Output σ = (σ1, σ2,
−→
tag).

Verify(PK, M, σ) : Parse σ to (σ1, σ2,
−→
tag).

Check whether
−→
tag ∈ [1, Q]k. If not, abort and output 0.

Check whether e(σ1, g)e(σ2, h
k
i=1 gtagi

i ) ?= e(gα, v
m
i=1 uMi

i ).
Output 1 if the equation holds; otherwise, 0.

Fig. 3. Almost compact Diffie–Hellman based (EUF-wCMA secure) signature scheme.

The public key size is O(m + k). When Qk is smaller than p, we can consider a tag
vector to be an element ofZp, and thus, the signature size is two group elements and one
exponent. Our analysis shows that the public key is asymptotically almost compact in
the sense that it could be any function in ω(1). In Sect. 5.1, we will explain the tag-free
variants; by adding a constant factor in the public keys, we can remove the tag vectors
from the signatures and obtain shorter signatures.
Even if the proposed signature scheme is a simple generalization of the previous

scheme obtained via a combination of two techniques, the security analysis is more
challenging than the construct itself. The basic proof strategy of the previous scheme
(Fig. 2) is to guess the tag tag∗ of the forgery and then use the programmability of the
weak programmable hash function (v

∏m
i=1 u

Mi

i ) to sign for the signature with the same
tag.We cannot naively apply this proof strategy to the generalized construction due to the
following reason. If k is small, then m should be large since there will be many signing
queries associated with the same tag vector as that of the forgery −→

tag∗ ∈ [1, Q]k . Recall
that the public key size is O(m + k) so that large m leads large public keys. If k is large,
the simulator cannot naively guess −→

tag∗, with a non-negligible probability. That is, we
would fail to construct a polynomial-time reduction. We developed a proof technique
to resolve this problem. Surprisingly, we can remove the restriction Q ≥ q so that we
achieve the EUF-wCMA security for the main scheme.16

Basically, we use the prefix-guessing strategy [34] for polynomial-time reduction; just
guess a prefix of the target tag vector such that it is different from that of all other tag
vectors used in signing queries and it has the smallest length satisfying this property. If
the guess is correct, we can apply the technique of selectively secure schemes. In fact,
the prefix-guessing technique in [34] is used to guess a prefix of the target message, and
it is non-trivial to directly apply the same approach for random tag vectors. All message
queries and target messages are distinct in the EUF-CMA security model; therefore, it
is quite easy to define and guess the prefix of the target message that is different from
the message queries’ prefix of the same length and has the smallest length satisfying

16The security proof in the conference version [4,44] still has the same restriction Q ≥ q, and we explain
the reason of such the restriction in Sect. 4.2.
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this property. However, we cannot expect the random tag vectors to satisfy the same
property since these vectors are chosen at random and possibly have duplications. To
handle random tag vectors for the prefix guessing, we carefully separate the adversarial
types according to the relation between the prefix of the target tag vector and the tag
vectors used in the signing queries.

Theorem 1. If there is an adversary breaking the EUF-wCMA security of the proposed
signature scheme with ε success probability and T running time, then we can construct
a CDH problem solver B with ε′ success probability and T ′ running time, where

ε′ ≥ m + 1

kqQ
(ε − qm+1

(m + 1)!Qkm
− q

p
) and T ≈ T ′.

Proof. The goal of the proof is to construct a simulator B that solves the CDH problem
with running an EUF-wCMA attacker A of the proposed signature scheme.

Simulation Description. The simulator B first takes an uniform instance of the CDH
problem, (g, ga, gb) ∈ G

3, and the bilinear group description (G,Gt , e) over which the
CDH instance is defined. For the sake of simplicity, let A = ga and B = gb.B receives a
list L of q messages M1, . . . , Mq fromA. For i ∈ [1, q], B uniformly generates random
tag vectors −→

tagi in advance that will be used in the i-th signing query on Mi .

Adversarial Types:Next,B define the adversarial types according to the relation between
the target tag vector and the set {−→tagi }. To this end, we need some preliminaries. We
begin with defining useful notation. Let T and T i be sets [1, Q] and [1, Q]i (i times
canonical product set), respectively. For j ∈ [1, q], let −→

tag j ∈ T k be the tag vector
(randomly chosen by the simulator) of the signature on the j th message (queried by the
adversary). Let −→tag∗ = (s∗

1 , . . . , s
∗
k ) ∈ T k be the tag vector of the forgery output by the

adversary. For −→
tag ∈ T k and i ≤ k, let −→

tag(i) ∈ T i be the first i entries of −→
tag (e.g.,−→

tag = (tag1, . . . , tagk) and
−→
tag(i) = (tag1, . . . , tagi )). For fixed {−→tagi }i∈[1,q], Si is

defined as

{
ˆtag ∈ T i | ∃ at least (m + 1) distinct j1, . . . , jm+1 ∈ [1, q]
such that ˆtag = −→

tag(i)
j1

= . . . = −→
tag(i)

jm+1

}
.

Let us consider an example to help the readers understand the definition of Si .
Example. Suppose that

−→
tag(i)

1 = . . . = −→
tag(i)

m+2 
= −→
tag(i)

j for j ∈ [m + 3, q],
−→
tag(i+1)

1 = . . . = −→
tag(i+1)

m+1 
= −→
tag(i+1)

j for j ∈ [m + 2, q],
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and −→
tag(i)

m+3, . . . ,
−→
tag(i)

q are distinct. Then,

{−→
tag(i)

j ∈ Si for j ∈ [1,m + 2]
−→
tag(i)

j 
∈ Si for j ∈ [m + 3, q], ,

{−→
tag(i+1)

j ∈ Si+1 for j ∈ [1,m + 1]
−→
tag(i+1)

j 
∈ Si+1 for j ∈ [m + 2, q],

and |Si | = |Si+1| = 1.
We can easily see that |Si+1| ≤ |Si |. Let n be the largest integer in [1, k] such that Sn 
= ∅.
If we choose m, k, and Q appropriately, we can show that n < k with overwhelming
probability,where the probability is takenover the choice of {−→tagi }i∈[1,q].More precisely,
we can prove the following generalized birthday lemma.

Lemma 2. (Generalized Birthday Lemma) Pr−→
tag1,...,

−→
tagq

$←T k
[|Si | ≥ �]

<
( qm+1

(m+1)!Qim

)�
.17

If we set i = k and � = 1, Lemma 2 implies that |Sk | = 0 (that is, n < k) with at least

1 − qm+1

(m+1)!Qkm probability. We provide the proof of Lemma 2 in “Appendix.”
Then, we are ready to define the adversarial type, which follows.

Type-1 : −→
tag∗(1) 
∈ S1.

Type-2 : −→
tag∗(1) ∈ S1, and

−→
tag∗(2) 
∈ S2.

...

Type-i : −→
tag∗(i−1) ∈ Si−1, and

−→
tag∗(i) 
∈ Si .

...

Type-k : −→
tag∗(k−1) ∈ Sk−1, and

−→
tag∗(k) 
∈ Sk .

Type-(k + 1) : −→
tag∗(k) ∈ Sk .

If |Sk | ≥ 1, then the simulator aborts. For this case, we say that an event E1 occurs.
Otherwise (that is, |Sk | < 1), we know that there is an integer n < k such that every
adversary should be only one of n + 1 types. Note that we do not require the condition
on the public parameter Q ≥ q.

Prefix Guessing: Then, the simulator guesses a prefix of the target tag vector as follows:
it guesses adversary type, say type-i , with at least 1

k . Next step of the simulator is to

guess −→
tag∗(i). To this end, the simulator guesses −→

tag∗(i−1) (if i > 1 only) and tag∗
i ,

respectively, where −→
tag∗(i−1) is a prefix vector consisting of the first (i − 1) entries of

the target tag vector −→
tag∗ and tag∗

i is the i-th entry of
−→
tag∗. For −→

tag∗(i−1), the simulator

randomly chooses a tag vector in the set {−→tag j } j∈[1,q] and then sets its (i − 1)-th prefix
as the simulator’s guess−→

tag∗(i−1); that is, the simulator guesses −→
tag∗(i−1) as a randomly

chosen vector from {−→tag(i−1)
j } j∈[1,q]. For tag∗

i , the simulator uniformly guesses it from

17In the conference version [4], we fully used the advantage of Lemma 2. However, in this version, the
special case (i = k and � = 1) of Lemma 2 is sufficient for our new security proof.
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its domain [1, Q]. We will argue that the simulator’s guess of −→
tag∗(i) is correct with

at least m+1
qQ later. In the following description, let us assume that B’s guesses for the

adversarial type i and −→
tag∗(i) are correct, so that the variable i denotes adversarial type.

Let us briefly explain the remaining part of the simulation. The important property of
the prefix guessing B did above is that there are at most m tag vectors −→

tag j ’s such that

their i-th prefixes are equal to the i-th prefix of the target tag vector, that is, −→
tag(i)

j =
−→
tag∗(i) since for the type-i adversary, −→

tag∗(i) 
∈ Si . (For the type-(n + 1) adversary,
Sn+1 = ∅.) By using this property, we can simulate public key and all signatures on
Mi ’s; for signatures with tag vectors having prefixes different from

−→
tag∗(i), we will use

the technique for selectively secure signature scheme (e.g.,Boneh–Boyen signatures [9]),
and for signatures with tag vectors (at most m) having the same prefix as −→

tag∗(i), we
will use the (weak) programmable hashes [32] in simulation.

KeyGen:We know that the i-prefix of the target tag vector,−→tag∗(i) is not contained in Si ,
and so there exist at mostm distinct tag vectors whose i-prefix is equal to−→

tag∗(i) among
q tag vectors for signing queries. Let I be the set of indices for such tag vectors. Then,
|I | ≤ m. We first define a polynomial f (X) having as roots messages Mj for j ∈ I ; that
is, f (X) := ∏

j∈I (X−Mj ). If I is an empty set,we just define f (X) = 1.We can rewrite

f (X) by
∑m

j=0 x j X
j for some coefficients x0, . . . , xm ∈ Zp. Note that x j = 0 for

j > |I |. Next,B uniformly chooses integers y0, . . . , ym, z1, . . . , zi , w1, . . . , wk
$← Zp.

We define another polynomial Y (X) := ∑m
j=0 y j X

j and vectors −→z = (z1, . . . , zi ) and−→w = (w1, . . . , wk). Lastly, B generates a public key PK = {v, u1, . . . , um, g1, . . .,gk ,
h, g, gα} as in Fig. 4. Then, the unknown b = logg B is implicitly set as the corresponding
secret key.

Sign: B generates signatures on M1, . . . , Mq as follows. For the j-th signing query, B
first checks whether j ∈ I and then B separately behaves as follows:
If j ∈ [1, q] \ I , then B checks whether the equality 〈(−→tag(i)

j − −→
tag∗(i)),

−→z 〉 = 0 holds.

(Recall that B already chose all tag vectors −→
tag1, . . . ,

−→
tagq in advance before the prefix-

guessing phase.) If the equality holds, thenB aborts the simulation and outputs a random
element. For this case, we say that an event E2 occurs. Otherwise, B chooses a random

integer r ′ $← Zp and computes a signature as follows.

σ j1 = B
Y (Mj )−(w0+〈−→tag j ,

−→w 〉) Y (M j )

〈(−→tag(i)j −−→
tag∗(i)),−→z 〉 · (A〈(−→tag(i)

j −−→
tag∗(i)),

−→z 〉gw0+〈−→tag j ,
−→w 〉)r ′

(1)

and σ j2 = B

f (M j )

〈(−→tag(i)j −−→
tag∗(i)),−→z 〉 · g−r ′

. (2)

v = Ax0gy0 , uj = Axjgyj for j ∈ [1,m], h = A
−→
tag∗(i),− →z gw0

gj =
Azjgwj for j ∈ [1, i]
gwj for j ∈ [i+ 1, k] , g = g, gα = B

Fig. 4. Public key simulation.
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If j ∈ I , B chooses r
$← Zp and computes a signature as follows.

σ j1 = BY (Mj )(gw0+〈−→tag j ,
−→w 〉)r and σ j2 = g−r . (3)

Lastly, B defines the j-th signature σ j on Mj by (σ j1, σ j2,
−→
tag j ).

Response: B sends A the public key PK = (v, u1, . . . , um , h, g1, . . . , gk, g, gα) along
with signatures σ1, . . . , σq .

Extraction from ForgeryAt the end of interaction,B receives a message M∗ along with a
forgery σ ∗ = (σ ∗

1 , σ ∗
2 ,

−→
tag∗) on M∗ from A such that M∗ 
∈ L . If Verify(PK , M∗, σ ∗)

= 0, B aborts. Otherwise, f (M∗) = ∑m
i=0 xi (M

∗)i 
= 0 since M∗ 
∈ L and all f ’s roots
are contained in L . Finally, B outputs

(σ ∗
1 · B−Y (M∗) · (σ ∗

2 )w0+〈−→tag∗,−→w 〉)
1

f (M∗) (4)

as the solution of the CDH instance (g, ga, gb).

Analysis of the Reduction Algorithm B
Distribution of simulation.We show that the simulated transcript (public key and signing
queries) between A and B is indistinguishable from the real transcript on the condition
that the simulator does not abort. Since y0, . . . , ym , andw0, . . . , wk are uniformly chosen
from Zp and the CDH instance is also uniformly generated, the public key simulated
by B is identical to those of the output of the KeyGen algorithm. Next, we consider the
distribution of simulated signatures for signing queries. All the tag vectors are uniformly
and independently chosen in advance at the beginning of the simulation, and we can
assume that each randomly chosen tag vector is assigned to the corresponding message
at the generating time. Therefore, that the distribution of the tag vectors is identical to the
real transcript, except for the case of the simulation fail events E1 and E2. Although the
simulator used the tag vectors before the signing phase (that is, during the prefix-guessing
phase), it does not matter; the tag vectors are used only for guessing the prefix of the
target tag vector, which is embedded into public key and signatures, and we can show
that, regardless of the correctness of the prefix guessing, the distribution of signatures
is identical to the real one. Let us focus on the other parts in signatures except for tag
vectors. For j ∈ [1, q] \ I , we argue that the randomness r used in the j-th signature

query is distributed as if r = − f (Mj )b

〈(−→tag(i)
j −−→

tag∗(i)),
−→z 〉 + r ′;

σ j1 = B
Y (Mj )−(w0+〈−→tag j ,

−→w 〉) Y (M j )

〈(−→tag(i)j −−→
tag∗(i)),−→z 〉 ·

(
A〈(−→tag(i)

j −−→
tag∗(i)),

−→z 〉gw0+〈−→tag j ,
−→w 〉)r ′

= BY (Mj ) ·
(
gab

) f (Mj ) ·
(
A〈(−→tag(i)

j −−→
tag∗(i)),

−→z 〉gw0+〈−→tag j ,
−→w 〉)

− f (M j )b

〈(−→tag(i)j −−→
tag∗(i)),−→z 〉

·
(
A〈(−→tag(i)

j −−→
tag∗(i)),

−→z 〉gw0+〈−→tag j ,
−→w 〉)r ′

=
( m∏
t=0

(Axt gyt )M
t
j

)b ·
(
A〈(−→tag(i)

j −−→
tag∗(i)),

−→z 〉)zt gw0+〈−→tag j ,
−→w 〉)r
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=
( m∏
t=0

(Axt gyt )M
t
j

)b ·
(
A−〈−→tag∗(i),

−→z 〉gw0 ·
i∏

t=1

(Azt gwt )tag jt ·
k∏

t=i+1

(gwt )tag jt
)r

=
(
v

m∏
t=1

u
Mt

j
t

)b ·
(
h

k∏
t=1

g
tag jt
t

)r

and σ j2 = B

f (M j )

〈(−→tag(i)j −−→
tag∗(i)),−→z 〉 · g−r ′ = g−r .

We can see that r is uniformly distributed according to r ′ since r ′ is uniformly and
independently chosen fromZp. Consequently, we showed that the simulated distribution
of σ j1 and σ j2 is identical to that of the output of Sign algorithm.
For j ∈ I , we argue that the simulated signature is distributed with the randomness

r ;

σ j1 = BY (Mj ) ·
(
gw0+〈−→tag j ,

−→w 〉)r

= BY (Mj ) ·
(
gab

) f (Mj ) ·
(
A〈(−→tag(i)

j −−→
tag∗(i)),

−→z 〉gw0+〈−→tag j ,
−→w 〉)r

=
( m∏
t=0

(Axt gyt )M
t
j

)b ·
(
A−〈−→tag∗(i),

−→z 〉gw0

i∏
t=1

(Azt gwt )tag jt

k∏
i=i+1

(gwt )tag jt )r

=
(

v

m∏
t=1

u
Mt

j
t

)b (
h

k∏
t=1

g
tag jt
t

)r

.

In the second equality, we used the fact that f (Mj ) = 0 and −→
tag(i)

j = −→
tag∗(i) for

j ∈ I . We know that σ j2 = g−r . Since r is an uniformly chosen integer, the simulated
distribution of σ j1 and σ j2 is identical to that of the output of Sign algorithm.
We note that the generation of public key and signatures is based on the simulator’s

guessing −→
tag∗(i) for the prefix of the target vector, and the above argument is still valid

even when the simulator’s guessing is wrong. Therefore, the simulated transcript is
identical to the real transcript when neither E1 nor E2 occurs.

CDH Solution Extraction. We show that the CDH solution B outputs is valid on the
condition that two events E1 and E2 do not occur and the simulator’s guessing −→

tag∗(i) is
correct. If A outputs a valid forgery (σ ∗

1 , σ ∗
2 ,

−→
tag∗), then it satisfies the verification

equation so that it is of the form σ ∗
1 = (v

∏m
t=1 u

M∗t
t )α(h

∏k
t=1 g

tag∗
t

t )r and σ ∗
2 =

g−r for some r . From the simulator’s public key setting, we know that σ ∗
1 is equal

to (gab) f (M
∗)(gb)Y (M∗)(gr )w0+〈−→tag∗,−→w 〉 so that B outputs

(
σ ∗
1 · B−Y (M∗) · (σ ∗

2 )w0+〈−→tag∗,−→w 〉) 1
f (M∗) = gab.

Simulation Halt. From Lemma 2, we obtain that the probability Pr[E1] =
Pr−→

tag1,...,
−→
tagq

$←T k
[|Sk | ≥ 1] is less than qm+1

(m+1)!Qkm . For Pr[E2], we obtain that Pr[E2] =
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Prz1,...,zi
[∃ j ∈ [1, q] \ I such that Σ i

t=1(tag jt − tag∗
t )zt = 0

]
<

q
p from the union

bound. We argue that Pr[E2] is independent from the adversarial behaviors; all zt ’s are
completely hidden from the adversarial view since those are masked by wt ’s in public
key.

Simulator’s guess. We show that the simulator’s guess is correct with at least m+1
kqQ

probability. The simulator’s prefix guessing consists of three steps. First, it guesses the
adversarial types with 1

k probability; since this guess is completely independent from all
other process of the simulator and is also hidden from the adversarial view, it is correct
with 1

k probability. Next, we consider the conditional probability that the simulator’s

guess of −→
tag∗(i−1) is correct once its guess of the adversarial type is correct as i . If

i > 1, then −→
tag∗(i−1) ∈ Si−1 so that there are at least m + 1 tag vectors in {−→tag j } j∈[1,q]

such that −→tag(i−1)
j = −→

tag∗(i−1). Hence, the probability that the simulator chooses such a

tag vector −→
tag j satisfying the equality −→

tag(i−1)
j = −→

tag∗(i−1) is more than m+1
q . Finally,

the simulator can guess tag∗
i with

1
Q . Since all probabilities are independent, the overall

probability to correctly guess the prefix of the target tag vector is at least m+1
kqQ .

Success Probability. For the success probability Pr[SA] = ε, we can bound B’s success
probability Pr[SB] as follows.

Pr[SB] = m + 1

kqQ
Pr[SA ∧ ¬E1 ∧ ¬E2]

≥ m + 1

kqQ
(Pr[SA] − Pr[E1 ∨ E2])

>
m + 1

kqQ

(
ε − qm+1

(m + 1)!Qkm
− q

p

)

�

4.1. Parameter Selection

If we choose Q = poly(λ) and m = k = ω(1), where poly is an arbitrary polynomial,
then we can show that the simulator’s success probability

m + 1

kqQ

(
ε − qm+1

(m + 1)!Qkm
− q

p

)

is non-negligible, where ε is non-negligible and q denotes the maximum number of
allowed signing queries, which is a polynomial in λ. For example, if Q = λ, m = k =
log log λ, then qm+1

Qkm = q1+log log λ

λ(log log λ)2
is clearly a negligible function in λ, under the condition

that q is a polynomial in λ. Therefore, we obtain the asymptotic result Pr[SB] ∼ 1
qλ

ε,
with the parameter selection m = k = ω(1) and Q = λ.

Although, for any polynomial q, qm+1

(m+1)!Qkm can be negligible with m = k = ω(1)
and Q = poly(λ), it is not exponentially small. In practice, one may want to consider
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Table 2. Concrete PK size of EUF-wCMA secure signature scheme in Fig. 3.

λ m k PK size

80 5 18 27τG
128 6 25 35τG
192 7 33 44τG
256 8 40 52τG

τG is the size of group element

sub-exponential or exponential-time adversaries. To this end, we can choose m = k =
Θ(

√
λ

log λ
) and Q = λ so that qm+1

(m+1)!Qkm is exponentially small in λ.18 In this case, we

still have the sublinear public keyΘ(
√

λ
log λ

)while preserving the reduction loss O(λq).

In particular, for a concrete security parameter, we can yield reasonably short public
keys. More precisely, for concrete security parameter λ ∈ {80, 128, 192, 256}, we can
minimizem+k with constraint qm+1

(m+1)!λkm ≤ 1
2λ and q ≤ 2λ.We give example parameters

satisfying these conditions in Table 2. Finally, after transforming via Lemma 1, we have
an EUF-CMA secure signature scheme with a public key size of 29 group elements
(including two additional group elements for a Chameleon hash function) for 80-bit
security, which is much shorter than the public key size (164 group elements) of the
Waters signature scheme for the same security parameter; note that the reduction loss of
both schemes is the same O(λq). Further, the transformed EUF-CMA secure signatures
are still short (two group elements and two exponents).

4.2. Note on the Security Proof in [4,44]

Contrary to the security analysis in this paper, the security proof in [44] and the first
part of [4] prevents only the adversaries with bounded signing queries. We explain the
proof strategy in [4,44] and the reason why it inherently requires the restriction of the
adversarial model.
Overall proof strategy is almost the same as that in this paper. The main difference is

the prefix-guessing phase for −→
tag∗(i) satisfying −→

tag∗(i−1) ∈ Si−1 and
−→
tag∗(i) 
∈ Si when

assuming the type-i adversary. In [4,44], for type-i adversary, the simulator naively
guesses −→

tag∗(i) by uniformly choosing −→
tag∗(i−1) from Si−1 and tag∗

i from T , where−→
tag∗(i) = (

−→
tag∗(i−1), tag∗

i ) ∈ T i . Then, the simulator’s guess is correct at least the
probability 1

|Si−1|·|T | . To bound the size of Si−1, we use Lemma 2, so that we obtain

Pr[|Si−1| > λ] <
( qm+1

(m+1)!Q(i−1)m

)λ. To make the right-hand side of the inequality neg-
ligible for arbitrary adversarial type i , it is necessary to set Q > q. If this probability
becomes negligible by setting parameters Q and m appropriately and so we ignore it,
then the simulator succeeds in guessing −→

tag∗(i) with high probability 1
|Si−1|·|T | ≥ 1

λQ .
The remaining part of the proof is essentially the same as given in this paper. If Q ≤ q,
one cannot bound the size of Si−1 sufficiently small so that this proof approach cannot

18The other term q
p is already exponentially small in λ.
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guarantee non-negligible success probability in the simulator’s guess. Therefore, this

approach necessarily requires Q > q and loses
( qm+1

(m+1)!Q(i−1)m

)λ probability, compared
to the proof given in this paper; that is, the maximum allowable signing queries q should
be bounded by the size of tag Q at the parameter generation time.
In a nutshell, our prefix guessing for −→

tag∗(i−1) ∈ Si−1 is done by randomly choos-
ing from {−→tag(i−1)

j } j∈[1,q] but that in [4,44] is done by randomly choosing from Si−1.
Therefore, in our security proof, we do not need to bound |Si−1| so that we can remove
the undesirable requirement Q > q.

5. Extensions

In this section, we provide two extensions of the main construction. We give an EUF-
wCMA secure variant of the main scheme that has shorter signatures (two group ele-
ments). Next, an instantiation using asymmetric pairings (type-2 pairings or type-3 pair-
ings) instead of symmetric pairings (type-1 pairings) is considered.

5.1. Tag Compression Using Pseudorandom Functions

In this subsection, we introduce a trick for tag compression using (non-adaptive) pseudo-
random functions (PRF). Note that similar techniques are used in the RSA-based signa-
tures [30,33,34,48] to compress random prime numbers used in each signature. If we
use this trick, we can reduce the signature size of EUF-wCMA secure scheme to two
group elements by augmenting signing/verification costs and adding constant factor in
public key size.
Each signature has a tag vector that is uniformly chosen from its domain. Thus, a

signer can use PRF mapping from messages to tag vectors and publishes the PRF the
signer used alongwith its key. Even though the signer publishes the PRF key (in theweak
securitymodel),we can use the fact that the distribution of tag vectors is indistinguishable
from the uniform distribution. In some application, short signatures are important even
though public key size and signing/verifying costs increase. Then, the signature scheme
with tag compression technique is appropriate in such applications.
Let PRF : {0, 1}∗ → {0, 1}k�log Q� be a pseudorandom function family. The signer

randomly chooses a PRF key K , uses PRFK (M) as the tag vector associated with the
signature of M , and publishes the description of PRF and the key K of PRF as a part
of PK . Then, we can remove tag vectors from signatures since everyone who knows
a message and PK can compute the corresponding tag vector. Hence, the resulting
EUF-wCMA secure signature scheme has shorter signatures (two group elements).

5.2. Instantiation Using Asymmetric Pairings

Although we described our construction using type-1 pairings in Sect. 3, we can easily
modify our construction to be instantiated using type-2 pairings or type-3 parings as
in Fig. 5. The scheme using type-1 parings and its security proof does not use pair-
ing’s symmetry property. Our main idea to achieve short public key is prefix guessing
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KeyGen(λ) : Run G → (p,G1,G2,Gt, e).

Choose v, u1, . . . , um, g1, . . . , gk, h, α
$← Zp, g

$← G2, g
$← G1, and pick a PRF key

K at random.
Compute v = gv, ui = gui , gi = ggi , h = gh.
Output PK = {v, u1, . . . , um, g1, . . . , gk, h, g ∈ G2, g

α ∈ G1, K} and
SK = {v, u1, . . . , um, g1, . . . , gk, h, α ∈ Zp, g ∈ G1},

where PRF : {0, 1}∗ → {0, 1}k logQ be a pseudorandom function family.

Sign(PK, M, SK) : Uniformly choose t
$← Zp

Compute PRFK(M) = (tag1, . . . , tagk),
σ1 = g (v+ m

i=1 uiMi)α+(h+ k
i=1 gitagi)t and σ2 = g t ∈ G1.

Output σ = (σ1, σ2).
Verify(PK, M, σ) : Parse σ to (σ1, σ2).

Compute PRFK(M) = (tag1, . . . , tagk).
Check whether e(σ1, g)e(σ2, h

k
i=1 gtagi

i ) ?= e(g α, v
m
i=1 uMi

i ).
Output 1 if the above equation holds; otherwise, 0.

Fig. 5. Instantiation using asymmetric pairings and PRF.

via dividing adversarial types according to tag vectors in the security proof, and this
technique is independent of pairing’s types. Therefore, we can prove the security of
the instantiation using asymmetric pairings by following the same proof strategy used
for the scheme with type-1 pairings. For type-2 pairings, the security can be reduced
to the co-CDHP: given an efficiently computable homomorphic map φ : G2 → G1
and g′, gb ∈ G1, g, ga ∈ G2 such that g′ = φ(g), compute g′ab. For type-3 pair-
ings, the security of the proposed signature scheme can be reduced to the co-CDHP∗:
given g′, g′a, g′b ∈ G1, g, ga ∈ G2, compute g′ab. Note that the security of the Waters
signature scheme using asymmetric pairings is also based on the same problems [1,15].
Although the overall security proof for type-2 and type-3 pairings is essentially the

same as that for type-1 pairing, let us briefly sketch to enhance confidence. For both
the co-CDHP and the co-CDHP∗, the simulator begins with g′, g′b ∈ G1, g, ga ∈ G2.
Let A = ga and B = g′B . First, we observe all public keys are elements in G2 except
g′α ∈ G1 and a signature consists of elements in G1. The first prefix-guessing phase is
the same since we do not require pairings there yet. From Fig. 4, we can see that the
simulator can generate all public keys using g, A ∈ G2 and B ∈ G1 since all exponents
are chosen by the simulator. Similarly, from Eqs. (1) and (3), we can check that the
simulator can answer to all signature queries by using g′, B ∈ G1. (Again, the simulator
knows all exponents used there.) At the end of interaction, the simulator can extract g′ab,
which is a solution of either co-CDHP or co-CDHP∗ according to the given problem
instance, by using σ ∗

1 , σ ∗
2 , B ∈ G1 as in the Eq. 4. The analysis for the distribution of

the transcripts and the success probability of the simulation will be exactly the same as
that for type-1 pairing in Sect. 4.

Acknowledgements

The author would like to thank Dennis Hofheinz for insightful discussions about the
asymptotic security of the proposed signature scheme, Shota Yamada for helpful com-
ments on the early version of this paper, and anonymous reviewers of the Journal of



Short Signatures from Diffie–Hellman 757

Cryptology for invaluable comments and constructive suggestions. This work was sup-
ported by 2014 Research Fund of Myongji University.

Appendix: Proof of Lemma 2

In this subsection, we prove Lemma 2. Let F be the set of all functions from [1, q] to
T i . For −→y ∈ T i and f ∈ F , let | f −1(

−→y )| be the number of the distinct pre-images of−→y . Let T f be the set of all
−→y ∈ Im( f ) such that | f −1(

−→y )| ≥ m + 1, where Im( f )
means the set of all images of f . Then, we can consider Pr−→

tag1,...,
−→
tagq

$←T k
[|Si | ≥ j] as

Pr
f

$←F

[|T f | ≥ j].

To compute Pr
f

$←F
[|T f | ≥ j], we count all functions f such that |T f | ≥ j and then

divide the result by |T i |q (the number of all elements in F). In fact, we count the number
of f such that |T f | ≥ j , allowing duplications, so that we compute the upper bound of
Pr

f
$←F

[|T f | ≥ j]. To define an f , we choose j distinct subsets A1, . . . , A j of sizem+1

from [1, q] and j distinct vectors −→y 1, . . . ,
−→y j from T i , and then set f (a) = −→y t for

all a ∈ At and t ∈ [1, j]. For other integers a ∈ [1, q] \ (A1 ∪ . . . ∪ A j ), we arbitrarily
define f (a). This way of defining a function covers all f such that |T f | ≥ j . We count
all f that are defined as above. Then, the number of such f is bounded by

( j−1∏
t=0

(
q − t (m + 1)

m + 1

)
· (|T i | − t)

)
· (|T i |)(q− j (m+1)),

where the notation
(·
·
)
denotes the binomial coefficient.

Therefore, we can obtain the desired result as follows:

Pr
−→s 1,...,

−→s q
$←Sk

[|Si | ≥ j] = Pr
f

$←F

[|T f | ≥ j]

<

( ∏ j−1
t=0

(q−t (m+1)
m+1

) · (Qi − t)
)

· (Qi )(q− j (m+1))

|T i |q

<

(
qm+1

(m+1)!
) j

Qi j+i(q− j (m+1))

Qiq

=
(

qm+1

(m + 1)!Qim

) j

.

Remark 3. The result in Lemma 2 is similar as the lemma given in [30] called “gener-
alized birthday bound.” Note that Lemma 2 is more general than “generalized birthday
bound”; e.g., if we set i = 1 and j = 1, then the result in Lemma 2 provides a more
tighter upper bound than “generalized birthday bound” given in [30].
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