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Abstract. In the setting of secure multiparty computation, a set of n parties with
private inputs wish to jointly compute some functionality of their inputs. One of the
most fundamental results of secure computation was presented by Ben-Or, Goldwasser,
and Wigderson (BGW) in 1988. They demonstrated that any n-party functionality can
be computed with perfect security, in the private channels model. When the adversary is
semi-honest, this holds as long as t < n/2 parties are corrupted, and when the adversary
is malicious, this holds as long as t < n/3 parties are corrupted. Unfortunately, a full
proof of these results was never published. In this paper, we remedy this situation and
provide a full proof of security of the BGW protocol. This includes a full description of
the protocol for themalicious setting, including the construction of a new subprotocol for
the perfect multiplication protocol that seems necessary for the case of n/4 ≤ t < n/3.
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1. Introduction

1.1. Background: Secure Computation

In the setting of secure multiparty computation, a set of n parties with possibly private
inputs wish to securely compute some function of their inputs in the presence of adver-
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sarial behavior. Loosely speaking, the security requirements from such a computation
are that nothing is learned from the protocol other than the output (privacy), that the
output is distributed according to the prescribed functionality (correctness), that parties
cannot choose their inputs as a function of the others’ inputs (independence of inputs),
and that all parties receive output (fairness and guaranteed output delivery). The actual
definition [4,8,20,22,29] formalizes this by comparing the result of a real protocol exe-
cution with the result of an ideal execution in an ideal model where an incorruptible
trusted party carries out the computation for the parties. This definition has come to be
known as the “ideal/real simulation paradigm.”
There are many different settings within which secure computation has been consid-

ered. Regarding the adversary, one can consider semi-honest adversaries (who follow the
protocol specification but try to learn more than they should by inspecting the protocol
transcript) or malicious adversaries (who may follow an arbitrary strategy). In addition,
an adversary may be limited to polynomial time (as in the computational setting) or
unbounded (as in the information-theoretic setting). Finally, the adversary may be static
(meaning that the set of corrupted parties is fixed before the protocol execution begins)
or adaptive (meaning that the adversary can adaptively choose to corrupt throughout the
protocol execution).
Wide reaching feasibility results regarding secure multiparty computation were pre-

sented in the mid- to late 1980s. The first feasibility results for secure computation were
in the computational setting and were provided by Yao [34] for the two-party case, and
by Goldreich et al. [21] for the multiparty case. These results begged the question as
to whether it is possible to avoid computational hardness assumptions, that is, provide
analogous results for the information-theoretic setting. This question was answered in
the affirmative by Ben-Or et al. [7], Chaum et al. [14] who showed that when less than
a third of the parties are corrupted, it is possible to securely compute any functionality
in the information-theoretic setting, assuming an ideal private channel between each
pair of parties. The protocol of Ben-Or et al. [7] achieved perfect security, while the
protocol of Chaum et al. [14] achieved statistical security. These results were followed
by Rabin and Ben-Or [31], Beaver [3] who showed that if the parties are also given an
ideal broadcast channel, then it is possible to securely compute any functionality with
statistical security assuming only an honest majority.

1.2. The BGW Protocol

Our focus is on the results of Ben-Or, Goldwasser, and Wigderson (BGW) [7], who
showed that every functionality can be computed with perfect security in the presence
of semi-honest adversaries controlling a minority of parties, and in the presence of mali-
cious adversaries controlling less than a third of the parties. The discovery that secure
computation can be carried out information theoretically, and the techniques used by
BGW, was highly influential. In addition, as we shall see, the fact that security is per-
fect—informally meaning that there is a zero probability of cheating by the adversary—
provides real security advantages over protocols that have a negligible probability of
failure (cf. [24]). For this reason, we focus on the BGW protocol [7] rather than on [14].

On a high level, the BGW protocol works by having the parties compute the desired
function f (from n inputs to n outputs) by securely emulating the computation of an
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arithmetic circuit computing f . In this computation, the parties compute shares of the
output of a circuit gate given shares of the input wires of that gate. To be more exact, the
parties first share their inputs with each other using Shamir’s secret sharing [32]; in the
case of malicious adversaries, a verifiable secret-sharing protocol (cf. [15,21]) is used.
The parties then emulate the computation of each gate of the circuit, computing Shamir-
shares of the gate’s output from the Shamir-shares of the gate’s inputs. As we shall see,
this secret sharing has the property that addition gates in the circuit can be emulated
using local computation only. Thus, the parties only interact in order to emulate the
computation of multiplication gates; this step is the most involved part of the protocol.
Finally, the parties reconstruct the secrets from the shares of the output wires of the
circuit in order to obtain their output.
We proceed to describe the protocol in a bit more detail. Shamir’s secret sharing

enables the sharing of a secret s among n parties, so that any subset of t + 1 or more
parties can efficiently reconstruct the secret, and any subset of t or less parties learn no
information whatsoever about the secret. Let F be a finite field of size greater than n, let
α1, . . . , αn be n distinct nonzero field elements, and let s ∈ F. Then, in order to share
s, a polynomial p(x) ∈ F[x] of degree t with constant term s is randomly chosen, and
the share of the i th party Pi is set to p(αi ). By interpolation, given any t + 1 points, it
is possible to reconstruct p and compute s = p(0). Furthermore, since p is random, its
values at any t or less of the αi ’s give no information about s.

Now, let n denote the number of parties participating in the multiparty computation,
and let t be a bound on the number of corrupted parties. The first step of the BGW
protocol is for all parties to share their inputs using Shamir’s secret-sharing scheme.
In the case of semi-honest adversaries, plain Shamir sharing with a threshold t < n/2
is used, and in the case of malicious adversaries verifiable secret sharing (VSS) with a
threshold t < n/3 is used. A verifiable secret-sharing protocol is needed for the case of
malicious adversaries in order to prevent cheating, and the BGW paper was also the first
to construct a perfect VSS protocol.
Next, the parties emulate the computation of the gates of the circuit. The first observa-

tion is that addition gates can be computed locally. That is, given shares p(αi ) and q(αi )

of the two input wires to an addition gate, it holds that r(αi ) = p(αi ) + q(αi ) is a valid
sharing of the output wire. This is due to the fact that the polynomial r(x) defined by the
sum of the shares has the same degree as both p(x) and q(x), and r(0) = p(0) + q(0).

Regarding multiplication gates, observe that by computing r(αi ) = p(αi ) · q(αi ), the
parties obtain shares of a polynomial r(x) with constant term p(0) · q(0) as desired.
However, the degree of r(x) is 2t , since the degrees of p(x) and q(x) are both t . Since
reconstruction works as long as the polynomial used for the sharing is of degree t , this
causes a problem. Thus, the multiplication protocol works by reducing the degree of
the polynomial r(x) back to t . In the case of semi-honest parties, the degree reduction
can be carried out as long as t < n/2 (it is required that t < n/2 since otherwise the
degree of r(x) = p(x) ·q(x)will be greater than or equal to n, which is not fully defined
by the n parties’ shares). In the case of malicious parties, the degree reduction is much
more complex and works as long as t < n/3. In order to obtain some intuition as to
why t < n/3 is needed, observe that Shamir’s secret sharing can also be viewed as a
Reed–Solomon code of the polynomial [28].With a polynomial of degree t , it is possible
to correct up (n − t − 1)/2 errors. Setting t < n/3, we have that n ≥ 3t + 1, and so
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(n − t − 1)/2 ≥ t errors can be corrected. This means that if up to t malicious parties
send incorrect values, the honest parties can use error correction and recover. Indeed,
the BGW protocol in the case of malicious adversaries relies heavily on the use of error
correction in order to prevent the adversary from cheating.
We remark that t < n/3 is not merely a limitation of the way the BGW protocol

works. In particular, the fact that at most t < n/3 corruptions can be tolerated in the
malicious model follows immediately from the fact that at most t < n/3 corruptions
can be tolerated for Byzantine agreement [30]. In contrast, given a broadcast channel, it
is possible to securely compute any functionality with information-theoretic (statistical)
security for any t < n/2 [3,31].

1.3. Our Results

Despite the importance of the BGW result, a full proof of its security has never appeared
(and this is also the state of affairs regarding [14]). In addition, a full description of the
protocol in the malicious setting was also never published. In this paper, we remedy this
situation and provide a full description and proof of the BGW protocols, for both the
semi-honest andmalicious settings.We prove security relative to the ideal/real definition
of security for multiparty computation. This also involves carefully defining the func-
tionalities and subfunctionalities that are used in order to achieve the result, as needed
for presenting a modular proof. Our main result is a proof of the following informally
stated theorem:

Theorem 1. (basic security of the BGW protocol—informally stated) Consider a syn-
chronous network with pairwise private channels and a broadcast channel. Then:

1. Semi-honest: For every n-ary functionality f , there exists a protocol for computing
f with perfect security in the presence of a static semi-honest adversary controlling
up to t < n/2 parties;

2. Malicious: For every n-ary functionality f , there exists a protocol for computing
f with perfect security in the presence of a static malicious adversary controlling
up to t < n/3 parties.

The communication complexity of the protocol is O(poly(n) · |C |) where C is an arith-
metic circuit computing f , and the round complexity is linear in the depth of the circuit
C.

All of our protocols are presented in amodelwith pairwise private channels and secure
broadcast. Since we only consider the case of t < n/3 malicious corruptions, secure
broadcast can be achieved in a synchronous network with pairwise channels by running
Byzantine Generals [18,25,30]. In order to obtain (expected) round complexity linear in
the depth of |C |, an expected constant-round Byzantine Generals protocol of Feldman
and Micali [18] (with composition as in [6,27]) is used.

Security Under Composition Theorem 1 is proven in the classic setting of a static
adversary and stand-alone computation, where the latter means that security is proven
for the case that only a single protocol execution takes place at a time. Fortunately,
it was shown in [24] that any protocol that is perfectly secure and has a black-box
nonrewinding simulator is also secure under universal composability [9] (meaning that
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security is guaranteed to hold when many arbitrary protocols are run concurrently with
the secure protocol). Since our proof of security satisfies this condition, we obtain the
following corollary, which relates to a far more powerful adversarial setting:

Corollary 2. (UC information-theoretic security of the BGW protocol) Consider a
synchronous network with private channels. Then, for every n-ary functionality f , there
exists a protocol for computing f with perfect universally composable security in the
presence of an static semi-honest adversary controlling up to t < n/2 parties, and there
exists a protocol for computing f with perfect universally composable security in the
presence of a static malicious adversary controlling up to t < n/3 parties.

Corollary 2 refers to information-theoretic security in the ideal private channelsmodel.
We now derive a corollary to the computational model with authenticated channels only.
In order to derive this corollary, we first observe that information-theoretic security
implies security in the presence of polynomial-time adversaries (this holds as long as
the simulator is required to run in time that is polynomial in the running time of the
adversary, as advocated in [20, Sec. 7.6.1]). Furthermore, the ideal private channels of
the information-theoretic setting can be replaced with computationally secure channels
that can be constructed over authenticated channels using semantically secure public-key
encryption [23,33]. We have:

Corollary 3. (UC computational security of the BGW protocol) Consider a synchro-
nous networkwith authenticated channels. Assuming the existence of semantically secure
public-key encryption, for every n-ary functionality f , there exists a protocol for com-
puting f with universally composable security in the presence of a static malicious
adversary controlling up to t < n/3 parties.

We stress that unlike the UC-secure computational protocols of Canetti et al. [13]
(that are secure for any t < n), the protocols of Corollary 3 are in the plain model,
with authenticated channels but with no other trusted setup (in particular, no common
reference string). Although well-accepted folklore, Corollaries 2 and 3 have never been
proved. Thus, our work also constitutes the first full proof that universally composable
protocols exist in the plain model (with authenticated channels) for any functionality, in
the presence of static malicious adversaries controlling any t < n/3 parties.

Adaptive Security with Inefficient Simulation We also conclude security for the case of
adaptive corruptions (see, [8,11]). In [10] it was shown that any protocol that is proven
perfectly secure under the security definition of Dodis and Micali [16] is also secure
in the presence of adaptive adversaries, alas with inefficient simulation. We use this to
derive security in the presence of adaptive adversaries, albeit with the weaker guarantee
provided by inefficient simulation (in particular, this does not imply adaptive security in
the computational setting). See Sect. 8 for more details.1

1In previous versions of this paper [1] and in [2], wemistakenly stated that using [10] it is possible to obtain
full adaptive security with efficient simulation. However, this is actually not known, and [10] only proves that
perfect security under [16] implies adaptive security with inefficient simulation, which is significantly weaker.
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Organization In Sect. 2, we present a brief overview of the standard definitions of
perfectly secure multiparty computation and of the modular sequential composition
theorem that is used throughout in our proofs. Then, in Sect. 3, we describe Shamir’s
secret-sharing scheme and rigorously prove a number of useful properties of this scheme.
In Sect. 4 we present the BGW protocol for the case of semi-honest adversaries. An
overview of the overall construction appears in Sect. 4.1, and an overview of the multi-
plication protocol appears at the beginning of Sect. 4.3.
The BGW protocol for the case of malicious adversaries is presented in Sects. 5–

7. In Sect. 5 we present the BGW verifiable secret-sharing (VSS) protocol that uses
bivariate polynomials. This section includes background on Reed–Solomon encoding
and properties of bivariate polynomials that are needed for proving the security of the
VSS protocol. Next, in Sect. 6, we present the most involved part of the protocol—the
multiplication protocol for computing shares of the product of shares. This involves a
number of steps and subprotocols, some of which are new. The main tool for the BGW
multiplication protocol is a subprotocol for verifiably sharing the product of a party’s
shares. This subprotocol, along with a detailed discussion and overview, is presented in
Sect. 6.6. Our aim has been to prove the security of the original BGWprotocol. However,
where necessary, some changes were made to the multiplication protocol as described
originally in [7]. Finally, in Sect. 7, the final protocol for secure multiparty computation
is presented. The protocol is proven secure for any VSS and multiplication protocols
that securely realize the VSS and multiplication functionalities that we define in Sects. 5
and 6, respectively. In addition, an exact count of the communication complexity of the
BGW protocol for malicious adversaries is given. We conclude in Sect. 8 by showing
how to derive security in other settings (adaptive adversaries, composition, and the
computational setting).

2. Preliminaries and Definitions

In this section, we review the definition of perfect security in the presence of semi-honest
and malicious adversaries. We refer the reader to [20, Sec. 7.6.1] and [8] for more details
and discussion.
In the definitions below, we consider the stand-alone setting with a synchronous net-

work, and perfectly private channels between all parties. For simplicity, we will also
assume that the parties have a broadcast channel; as is standard, this can be implemented
using an appropriate Byzantine generals protocol [25,30]. Since we consider synchro-
nous channels and the computation takes place in clearly defined rounds, if a message
is not received in a given round, then this fact is immediately known to the party who
is supposed to receive the message. Thus, we can write “if a message is not received”
or “if the adversary does not send a message” and this is well defined. We consider sta-
tic corruptions meaning that the set of corrupted parties is fixed ahead of time, and the
stand-alone settingmeaning that only a single protocol execution takes place; extensions
to the case of adaptive corruptions and composition are considered in Sect. 8.

Basic Notation For a set A, we write a ∈R A when a is chosen uniformly from A. We
denote the number of parties by n, and a bound on the number of corrupted parties by
t . Let f : ({0, 1}∗)n → ({0, 1}∗)n be a possibly probabilistic n-ary functionality, where
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fi (x1, . . . , xn) denotes the i th element of f (x1, . . . , xn).We denote by I = {i1, . . . i�} ⊂
[n] the indices of the corrupted parties, where [n] denotes the set {1, . . . , n}. By the
above, |I | ≤ t . Let �x = (x1, . . . , xn), and let �xI and f I (�x) denote projections of the
corresponding n-ary sequence on the coordinates in I ; that is, �xI = (xi1 , . . . , xi� ) and
f I (�x) = ( fi1(�x), . . . , fi� (�x)). Finally, to ease the notation, we omit the index i when we
write the set {(i, ai )}ni=1 and simply write {ai }ni=1. Thus, for instance, the set of shares{(i1, f (αi1)), . . . , (i�, f (αi� ))} is denoted as { f (αi )}i∈I .

Terminology In this paper, we consider security in the presence of both semi-honest
and malicious adversaries. As in [20], we call security in the presence of a semi-honest
adversary controlling t parties t-privacy, and security in the presence of a malicious
adversary controlling t parties t-security. Since we only deal with perfect security in
this paper, we use the terms t-private and t-secure without any additional adjective, with
the understanding that the privacy/security is always perfect.

2.1. Perfect Security in the Presence of Semi-honest Adversaries

We are now ready to define security in the presence of semi-honest adversaries. Loosely
speaking, the definition states that a protocol is t-private if the view of up to t corrupted
parties in a real protocol execution can be generated by a simulator given only the
corrupted parties’ inputs and outputs.
The view of the i th party Pi during an execution of a protocol π on inputs �x , denoted

viewπ
i (�x), is defined to be (xi , ri ;mi1 , . . . ,mik ) where xi is Pi ’s private input, ri is its

internal coin tosses, andmi j is the j thmessage thatwas receivedby Pi in the protocol exe-
cution. For every I = {i1, . . . i�}, we denote viewπ

I (�x) = (viewπ
i1
(�x), . . . viewπ

i�
(�x)).

The output of all parties from an execution of π on inputs �x is denoted outputπ (�x);
observe that the output of each party can be computed from its own (private) view of the
execution.
We first present the definition for deterministic functionalities, since this is simpler

than the general case of probabilistic functionalities.

Definition 2.1. (t-privacy of n-party protocols—deterministic functionalities) Let
f : ({0, 1}∗)n → ({0, 1}∗)n be a deterministic n-ary functionality and letπ be a protocol.
We say that π is t-private for f if for every �x ∈ ({0, 1}∗)n where |x1| = · · · = |xn|,

outputπ (x1, . . . , xn) = f (x1, . . . , xn) (2.1)

and there exists a probabilistic polynomial-time algorithm S such that for every I ⊂ [n]
of cardinality at most t , and every �x ∈ ({0, 1}∗)n where |x1| = · · · = |xn|, it holds that:

{
S (I, �xI , f I (�x))

}
≡

{
viewπ

I (�x)
}

(2.2)

The above definition separately considers the issue of output correctness (Eq. 2.1)
and privacy (Eq. 2.2), where the latter captures privacy since the ability to generate the
corrupted parties’ view given only the input and output means that nothing more than
the input and output is learned from the protocol execution. However, in the case of
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probabilistic functionalities, it is necessary to intertwine the requirements of privacy
and correctness and consider the joint distribution of the output of S and of the parties;
see [8,20] for discussion. Thus, in the general case of probabilistic functionalities, the
following definition of t-privacy is used.

Definition 2.2. (t-privacy of n-party protocols—general case) Let f : ({0, 1}∗)n →({0, 1}∗)n be a probabilistic n-ary functionality and let π be a protocol. We say that π is
t-private for f if there exists a probabilistic polynomial-time algorithm S such that for
every I ⊂ [n] of cardinality at most t , and every �x ∈ ({0, 1}∗)n where |x1| = · · · = |xn|,
it holds that:

{
(S(I, �xI , f I (�x)), f (�x))

}
≡

{
(viewπ

I (�x),outputπ (�x))
}

. (2.3)

We remark that in the case of deterministic functionalities, the separate requirements
of Eqs. (2.1) and (2.2) actually imply the joint distribution of Eq. (2.3). This is due to
the fact that when f is deterministic, f (�x) is a single value and not a distribution.

Our Presentation—Deterministic Functionalities For the sake of simplicity and clar-
ity, we present the BGW protocol and prove its security for the case of deterministic
functionalities only. This enables us to prove the overall BGW protocol using Defini-
tion 2.1, which makes the proof significantly simpler. Fortunately, this does not limit
our result since it has already been shown that it is possible to t-privately compute
any probabilistic functionality using a general protocol for t-privately computing any
deterministic functionality; see [20, Sec. 7.3.1].

2.2. Perfect Security in the Presence of Malicious Adversaries

We now consider malicious adversaries that can follow an arbitrary strategy in order to
carry out their attack;we stress that the adversary is not required to be efficient in anyway.
Security is formalized by comparing a real protocol execution to an ideal model where
the parties just send their inputs to the trusted party and receive back outputs. See [8,20]
for details on how to define these real and ideal executions; we briefly describe themhere.

RealModel In the realmodel, the parties run the protocolπ .We consider a synchronous
network with private point-to-point channels, and an authenticated broadcast channel.
This means that the computation proceeds in rounds, and in each round parties can send
private messages to other parties and can broadcast a message to all other parties. We
stress that the adversary cannot read or modify messages sent over the point-to-point
channels, and that the broadcast channel is authenticated, meaning that all parties know
who sent the message and the adversary cannot tamper with it in any way. Nevertheless,
the adversary is assumed to be rushing, meaning that in every given round it can see
the messages sent by the honest parties before it determines the messages sent by the
corrupted parties.
Let π be a n-party protocol, letA be an arbitrary machine with auxiliary input z, and

let I ⊂ [n] be the set of corrupted parties controlled byA. We denote by REAL
π,A(z),I (�x)

the random variable consisting of the view of the adversary A and the outputs of the
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honest parties, following a real execution of π in the aforementioned real model, where
for every i ∈ [n], party Pi has input xi .

Ideal Model In the ideal model for a functionality f , the parties send their inputs to
an incorruptible trusted party who computes the output for them. We denote the ideal
adversary by S (since it is a “simulator”) and the set of corrupted parties by I . An
execution in the ideal model works as follows:

• Input stage: The adversary S for the ideal model receives auxiliary input z and
sees the inputs xi of the corrupted parties Pi (for all i ∈ I ). S can substitute any
xi with any x ′

i of its choice under the condition that |x ′
i | = |xi |.

• Computation: Each party sends its (possibly modified) input to the trusted party;
it denotes the inputs sent by x ′

1, . . . , x
′
n . The trusted party computes (y1, . . . , yn) =

f (x ′
1, . . . , x

′
n) and sends y j to Pj , for every j ∈ [n].

• Outputs: Each honest party Pj ( j /∈ I ) outputs y j , the corrupted parties output ⊥,
and the adversary S outputs an arbitrary function of its view.

Throughout the paper, we will refer to communication between the parties and the func-
tionality. For example, we will often write that a party sends its input to the functionality;
this is just shorthand for saying that the input is sent to the trusted party who computes
the functionality.
We denote by IDEAL f,S(z),I (�x) the outputs of the ideal adversary S controlling the

corrupted parties in I and of the honest parties after an ideal execution with a trusted
party computing f , upon inputs x1, . . . , xn for the parties and auxiliary input z for S.
We stress that the communication between the trusted party and P1, . . . , Pn is over an
ideal private channel.

Definition of Security Informally, we say that a protocol is secure if its real-world
behavior can be emulated in the ideal model. That is, we require that for every real-
model adversary A there exists an ideal model adversary S such that the result of a
real execution of the protocol with A has the same distribution as the result of an ideal
execution with S. This means that the adversarial capabilities of A in a real protocol
execution are just what S can do in the ideal model.

In the definition of security, we require that the idealmodel adversaryS run in time that
is polynomial in the running time of A, whatever the latter may be. As argued in [8,20]
this definitional choice is important since it guarantees that information-theoretic secu-
rity implies computational security. In such a case, we say that S is of comparable
complexity to A.

Definition 2.3. Let f : ({0, 1}∗)n → ({0, 1}∗)n be an n-ary functionality and let π be
a protocol. We say that π is t-secure for f if for every probabilistic adversary A in
the real model, there exists a probabilistic adversary S of comparable complexity in the
ideal model, such that for every I ⊂ [n] of cardinality at most t , every �x ∈ ({0, 1}∗)n
where |x1| = · · · = |xn|, and every z ∈ {0, 1}∗, it holds that:

{
IDEAL f,S(z),I (�x)

}
≡

{
REALπ,A(z),I (�x)

}
.
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Reactive Functionalities The above definition refers to functionalities that map inputs
to outputs in a single computation. However, some computations take place in stages,
and state is preserved between stages. Two examples of such functionalities are mental
poker (where cards are dealt and thrown and redealt [21]) and commitment schemes
(where there is a separate commitment and decommitment phase; see [9] for a definition
of commitments via an ideal functionality). Such functionalities are called reactive, and
the definition of security is extended to this case in the straightforward way by allowing
the trusted party to obtain inputs and send outputs in phases; see [20, Section 7.7.1.3].

2.3. Modular Composition

The sequential modular composition theorem [8] is an important tool for analyzing the
security of a protocol in a modular way. Let π f be a protocol for securely computing
f that uses a subprotocol πg for computing g. Then, the theorem states that it suffices
to consider the execution of π f in a hybrid model where a trusted third party is used to
ideally compute g (instead of the parties running the real subprotocol πg). This theorem
facilitates a modular analysis of security via the following methodology: First prove the
security of πg , and then prove the security of π f in a model allowing an ideal party for
g. The model in which π f is analyzed using ideal calls to g, instead of executing πg ,
is called the g-hybrid model because it involves both a real protocol execution and an
ideal trusted third party computing g.
More formally, in the hybrid model, the parties all have oracle tapes for some oracle

(trusted party) that computes the functionality g. Then, if the real protocol π f instructs
the parties to run the subprotocol πg using inputs u1, . . . , un , then each party Pi simply
writes ui to its outgoing oracle tape. Then, in the next round, it receives back the output
gi (u1, . . . , un) on its incoming oracle tape. We denote by HYBRID

g
π f ,A(z),I (�x) an execu-

tion of protocol π f where each call to πg is carried out using an oracle computing g.
See [8,20] for a formal definition of this model for both the semi-honest and malicious
cases, and for proofs that if π f is t-private (resp., t-secure) for f in the g-hybrid model,
and πg is t-private (resp., t-secure) for g, then π f when run in the real model using πg

is t-private (resp., t-secure) for f .

3. Shamir’s Secret-Sharing Scheme [32] and Its Properties

3.1. The Basic Scheme

A central tool in the BGW protocol is Shamir’s secret-sharing scheme [32]. Roughly
speaking, a (t + 1)-out-of-n secret-sharing scheme takes as input a secret s from some
domain, and outputs n shares,with the property that it is possible to efficiently reconstruct
s from every subset of t + 1 shares, but every subset of t or less shares reveals nothing
about the secret s. The value t +1 is called the threshold of the scheme. Note that in the
context of secure multiparty computation with up to t corrupted parties, the threshold
of t + 1 ensures that the corrupted parties (even when combining all t of their shares)
can learn nothing.
A secret-sharing scheme consist of two algorithm: The first algorithm, called the

sharing algorithm, takes as input the secret s and the parameters t + 1 and n, and
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outputs n shares. The second algorithm, called the reconstruction algorithm, takes as
input t + 1 or more shares and outputs a value s. It is required that the reconstruction of
shares generated from a value s yields the same value s.
Informally, Shamir’s secret-sharing scheme works as follows. Let F be a finite field

of size greater than n and let s ∈ F. The sharing algorithm defines a polynomial q(x) of
degree t inF[x], such that its constant term is the secret s and all the other coefficients are
selected uniformly and independently at random in F.2 Finally, the shares are defined
to be q(αi ) for every i ∈ {1, . . . , n}, where α1, . . . , αn are any n distinct nonzero
predetermined values in F. The reconstruction algorithm of this scheme is based on
the fact that any t + 1 points define exactly one polynomial of degree t . Therefore,
using interpolation it is possible to efficiently reconstruct the polynomial q(x) given any
subset of t + 1 points (αi , q(αi )) output by the sharing algorithm. Finally, given q(x) it
is possible to simply compute s = q(0). We will actually refer to reconstruction using
all n points, even though t + 1 suffice, since this is the way that we use reconstruction
throughout the paper.
In order to see that any subset of t or less shares reveals nothing about s, observe

that for every set of t points (αi , q(αi )) and every possible secret s′ ∈ F, there exists
a unique polynomial q ′(x) such that q ′(0) = s′ and q ′(αi ) = q(αi ). Since the polyno-
mial is chosen randomly by the sharing algorithm, there is the same likelihood that the
underlying polynomial is q(x) (and so the secret is s) and that the polynomial is q ′(x)
(and so the secret is s′). We now formally describe the scheme.

Shamir’s (t + 1)-out-of-n Secret-Sharing Scheme Let F be a finite field of order
greater than n, let α1, . . . , αn be any distinct nonzero elements of F, and denote
�α = (α1, . . . , αn). For a polynomial q Let eval�α(q(x)) = (q(α1), . . . , q(αn)).

• The sharing algorithm for α1, . . . , αn : Let share�α(s, t + 1) be the algorithm that
receives for input s and t + 1 where s ∈ F and t < n. Then, share�α chooses t
random values q1, . . . qt ∈R F, independently and uniformly distributed in F, and
defines the polynomial:

q(x) = s + q1x + · · · qt xt

where all calculations are in the field F. Finally, share�α outputs eval�α(q(x)) =
(q(α1), . . . , q(αn)), where q(αi ) is the share of party Pi .

• The reconstruction algorithm: Algorithm reconstruct�α(β1, . . . , βn) finds the
unique polynomial q(x) of degree t such that for every i = 1, . . . , n it holds
that q(αi ) = βi , when such a polynomial exists (this holds as long as β1, . . . , βn

all lie on a single polynomial). The algorithm then outputs the coefficients of the
polynomial q(x) (note that the original secret can be obtained by simply computing
s = q(0)).

By the above notation, observe that for every polynomial q(x) of degree t < n, it holds
that

reconstruct�α(eval�α(q(x))) = q(x). (3.1)

2Throughout, when we refer to a polynomial of degree t , we mean of degree at most t .
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Notation Let Ps,t be the set of all polynomials with degree less than or equal to t with
constant term s. Observe that for every two values s, s′ ∈ F, it holds that |Ps,t | =
|Ps′,t | = |F|t .

3.2. Basic Properties

In this section, we state some basic properties of Shamir’s secret sharing scheme (the
proofs of these claims are standard and appear in [1] for completeness).
In the protocol for secure computation, a dealer hides a secret s by choosing a poly-

nomial f (x) at random from Ps,t , and each party Pi receives a share, which is a point
f (αi ). In this context, the adversary controls a subset of at most t parties, and thus
receives at most t shares. We now show that any subset of at most t shares does not
reveal any information about the secret. In Sect. 3.1, we explained intuitively why the
above holds. This is formalized in the following claim that states that for every subset
I ⊂ [n] with |I | ≤ t and every two secrets s, s′, the distribution over the shares seen by
the parties Pi (i ∈ I ) when s is shared is identical to when s′ is shared.

Claim 3.1. For any set of distinct nonzero elements α1, . . . , αn ∈ F, any pair of values
s, s′ ∈ F, any subset I ⊂ [n] where |I | = � ≤ t , and every �y ∈ F

� it holds that:

Pr
f (x)∈RPs,t

[
�y = ({ f (αi )}i∈I

)] = Pr
g(x)∈RPs′,t

[
�y = ({g(αi )}i∈I

)] = 1

|F|�

where f (x) and g(x) are chosen uniformly and independently from Ps,t and Ps′,t ,
respectively.

As a corollary, we have that any � ≤ t points on a random polynomial are uniformly
distributed in the field F. This follows immediately from Claim 3.1 because stating
that every �y appears with probability 1/|F|� is equivalent to stating that the shares are
uniformly distributed. That is:

Corollary 3.2. For any secret s ∈ F, any set of distinct nonzero elements α1, . . . , αn ∈
F, and any subset I ⊂ [n] where |I | = � ≤ t , it holds that {{ f (αi )}i∈I } ≡
{U (1)

F
, . . . ,U (�)

F
}, where f (x) is chosenuniformlyat random fromPs,t andU (1)

F
, . . . ,U (�)

F

are � independent random variables that are uniformly distributed over F.

Multiple Polynomials In the protocol for secure computation, parties hide secrets and
distribute them using Shamir’s secret-sharing scheme. As a result, the adversary receives
m · |I | shares, { f1(αi ), . . . , fm(αi )}i∈I , for some valuem. The secrets f1(0), . . . , fm(0)
may not be independent. We therefore need to show that the shares that the adversary
receives for all secrets do not reveal any information about any of the secrets. Intuitively,
this follows from the fact that Claim3.1 is stated for any two secrets s, s′, and in particular
for two secrets that are known and may be related. The following claim can be proven
using standard facts from probability:
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Claim 3.3. For any m ∈ N, any set of nonzero distinct values α1, . . . , αn ∈ F, any two
sets of secrets (a1, . . . , am) ∈ F

m and (b1, . . . , bm) ∈ F
m, and any subset I ⊂ [n] of

size |I | ≤ t , it holds that:

{
{( f1(αi ), . . . , fm(αi ))}i∈I

}
≡

{
{(g1(αi ), . . . , gm(αi ))}i∈I

}

where for every j , f j (x), g j (x) are chosen uniformly at random from Pa j ,t and Pb j ,t ,
respectively.

Hiding the Leading Coefficient In Shamir’s secret-sharing scheme, the dealer creates
shares by constructing a polynomial of degree t , where its constant term is fixed and all
the other coefficients are chosen uniformly at random. In Claim 3.1 we showed that any
t or fewer points on such a polynomial do not reveal any information about the fixed
coefficient which is the constant term.
We now consider this claim when we choose the polynomial differently. In particular,

we now fix the leading coefficient of the polynomial (i.e., the coefficient of the mono-
mial xt ), and choose all the other coefficients uniformly and independently at random,
including the constant term. As in the previous section, it holds that any subset of t or
fewer points on such a polynomial do not reveal any information about the fixed coeffi-
cient, which in this case is the leading coefficient. We will need this claim for proving
the security of one of the subprotocols for the malicious case (in Sect. 6.6).
Let P lead

s,t be the set of all the polynomials of degree t with leading coefficient s.
Namely, the polynomials have the structure: f (x) = a0 + a1x + · · · at−1xt−1 + sxt .
The following claim is derived similarly to Corollary 3.2.

Claim 3.4. For any secret s ∈ F, any set of distinct nonzero elements α1, . . . , αn ∈ F,
and any subset I ⊂ [n] where |I | = � ≤ t , it holds that:

{
{ f (αi )}i∈I

}
≡

{
U (1)
F

, . . . ,U (�)

F

}

where f (x) is chosen uniformly at random from P lead
s,t and U (1)

F
, . . . ,U (�)

F
are � inde-

pendent random variables that are uniformly distributed over F.

3.3. Matrix Representation

In this section, we present a useful representation for polynomial evaluation. We define
the Vandermonde matrix for the values α1, . . . , αn . As is well known, the evaluation of
a polynomial at α1, . . . , αn can be obtained by multiplying the associated Vandermonde
matrix with the vector containing the polynomial coefficients.

Definition 3.5. (Vandermonde matrix for (α1, . . . , αn)) Let α1, . . . , αn be n distinct
nonzero elements in F. The Vandermonde matrix V�α for �α = (α1, . . . , αn) is the n × n

matrix over F defined by V�α[i, j] def= (αi )
j−1. That is,
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V�α
def=

⎛

⎜
⎜⎜⎜⎜⎜⎜
⎝

1 α1 . . . (α1)
n−1

1 α2 . . . (α2)
n−1

...
...

...

1 αn . . . (αn)
n−1

⎞

⎟
⎟⎟⎟⎟⎟⎟
⎠

(3.2)

The following fact from linear algebra will be of importance to us:

Fact 3.6. Let �α = (α1, . . . , αn), where all αi are distinct and nonzero. Then, V�α is
invertible.

Matrix Representation of Polynomial Evaluations Let V�α be the Vandermonde matrix
for �α and let q = q0 + q1x + · · ·+ qt xt be a polynomial where t < n. Define the vector

�q of length n as follows: �q def= (q0, . . . qt , 0, . . . , 0). Then, it holds that:

V�α · �q =

⎛

⎜⎜⎜
⎜⎜⎜⎜
⎝

1 α1 . . . (α1)
n−1

1 α2 . . . (α2)
n−1

...
...

...

1 αn . . . (αn)
n−1

⎞

⎟⎟⎟
⎟⎟⎟⎟
⎠

·

⎛

⎜⎜⎜
⎜⎜⎜⎜
⎝

q0
...

qt
0
...
0

⎞

⎟⎟⎟
⎟⎟⎟⎟
⎠

=

⎛

⎜⎜⎜
⎜⎜⎜⎜
⎝

q(α1)

...

...

q(αn)

⎞

⎟⎟⎟
⎟⎟⎟⎟
⎠

which is the evaluation of the polynomial q(x) on the points α1, . . . , αn .

4. The Protocol for Semi-honest Adversaries

4.1. Overview

We now provide a high-level overview of the protocol for t-privately computing any
deterministic functionality in the presence of a semi-honest adversary who controls
up to at most t < n/2 parties. Let F be a finite field of size greater than n and let
f : F

n → F
n be the functionality that the parties wish to compute. Note that we assume

that each party’s input and output is a single field element. This is only for the sake
of clarity of exposition, and the modifications to the protocol for the general case are
straightforward. Let C be an arithmetic circuit with fan-in of 2 that computes f . We
assume that all arithmetic operations in the circuit are carried out over F. In addition,
we assume that the arithmetic circuit C consists of three types of gates: addition gates,
multiplication gates, and multiplication-by-a-constant gates. Recall that since a circuit
is acyclic, it is possible to sort the wires so that for every gate the input wires come
before the output wires.
The protocol works by having the parties jointly propagate values through the circuit

from the input wires to the output wires, so that at each stage of the computation the
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parties obtain Shamir-shares of the value on the wire that is currently being computed.
In more detail, the protocol has three phases:

• The input-sharing stage: In this stage, each party creates shares of its input using
Shamir’s secret-sharing scheme using threshold t + 1 (for a given t < n/2), and
distributes the shares among the parties.

• The circuit emulation stage: In this stage, the parties jointly emulate the computation
of the circuit C , gate by gate. In each step, the parties compute shares of the output
of a given gate, based on the shares of the inputs to that gate that they already have.
The actions of the parties in this stage depends on the type of gate being computed:

1. Addition gate Given shares of the input wires to the gate, the output is computed
without any interaction by each party simply adding their local shares together.
Let the inputs to the gate be a and b and let the shares of the parties be defined
by two degree-t polynomials fa(x) and fb(x) (meaning that each party Pi holds
fa(αi ) and fb(αi )where fa(0) = a and fb(0) = b). Then the polynomial fa+b(x)
definedby shares fa+b(αi ) = fa(αi )+ fb(αi ), for every i , is a degree-t polynomial
with constant terma+b. Thus, each party simply locally adds its own shares fa(αi )

and fb(αi ) together, and the result is that the parties hold legal shares of the sum
of the inputs, as required.

2. Multiplication-by-a-constant gate This type of gate can also be computed without
any interaction. Let the input to the gate be a and let fa(x) be the t-degree poly-
nomial defining the shares, as above. The aim of the parties is to obtain shares of
the value c · a, where c is the constant of the gate. Then, each party Pi holding
fa(αi ) simply defines its output share to be fc·a(αi ) = c · fa(αi ). It is clear that
fc·a(x) is a degree-t polynomial with constant term c · a, as required.

3. Multiplication gate As in (1) above, let the inputs be a and b, and let fa(x)
and fb(x) be the polynomials defining the shares. Here, as in the case of an
addition gate, the parties can just multiply their shares together and define
h(αi ) = fa(αi ) · fb(αi ). The constant term of this polynomial is a ·b, as required.
However, h(x) will be of degree 2t instead of t ; after repeated multiplications
the degree will be n or greater and the parties’ n shares will not determine the
polynomial or enable reconstruction. In addition, h(x) generated in this way is not
a “random polynomial” but has a specific structure. For example, h(x) is typically
not irreducible (since it can be expressed as the product of fa(x) and fb(x)), and
this may leak information. Thus, local computation does not suffice for computing
a multiplication gate. Instead, the parties compute this gate by running an inter-
active protocol that t-privately computes the multiplication functionality Fmult ,
defined by

Fmult (( fa(α1), fb(α1)), . . . , ( fa(αn), fb(αn))) = ( fab(α1), . . . , fab(αn))

(4.1)

where fab(x) ∈R Pa·b,t is a randomdegree-t polynomial with constant term a ·b.3
3This definition of the functionality assumes that all of the inputs lie on the polynomials fa(x), fb(x)

and ignores the case that this does not hold. However, since we are dealing with the semi-honest case here,
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• The output reconstruction stage: At the end of the computation stage, the parties
hold shares of the output wires. In order to obtain the actual output, the parties send
their shares to one another and reconstruct the values of the output wires. Specifically,
if a given output wire defines output for party Pi , then all parties send their shares of
that wire value to Pi .

Organization of This Section In Sect. 4.2, we fully describe the above protocol and
prove its security in the Fmult -hybrid model. (Recall that in this model, the parties have
access to a trusted party who computes Fmult for them, and in addition exchange real
protocol messages.) We also derive a corollary for t-privately computing any linear
function in the plain model (i.e., without any use of the Fmult functionality), that is
used later in Sect. 4.3.3. Then, in Sect. 4.3, we show how to t-privately compute the
Fmult functionality for any t < n/2. This involves specifying and implementing two
functionalities F2t

rand and Fdeg
reduce; see the beginning of Sect. 4.3 for an overview of the

protocol for t-privately computing Fmult and for the definition of these functionalities.

4.2. Private Computation in the Fmult -Hybrid Model

In this section we present a formal description and proof of the protocol for t-privately
computing any deterministic functionality f in the Fmult -hybrid model. As we have
mentioned, it is assumed that each party has a single input in a known field F of size
greater than n, and that the arithmetic circuit C is over F. See Protocol 4.1 for the
description.
We now prove the security of Protocol 4.1. We remark that in the Fmult -hybrid model,

the protocol is actually t-private for any t < n. However, as we will see, in order to
t-privately compute the Fmult functionality, we will need to set t < n/2.

Theorem 4.2. Let F be a finite field, let f : F
n → F

n be an n-ary functionality, and let
t < n. Then, Protocol 4.1 is t-private for f in the Fmult -hybrid model, in the presence
of a static semi-honest adversary.

Proof. Intuitively, the protocol is t-private because the only values that the parties see
until the output stage are random shares. Since the threshold of the secret-sharing scheme
used is t + 1, it holds that no adversary controlling t parties can learn anything. The
fact that the view of the adversary can be simulated is due to the fact that t shares of
any two possible secrets are identically distributed; see Claim 3.1. This implies that the
simulator can generate the shares based on any arbitrary value, and the resulting view is
identical to that of a real execution. Observe that this is true until the output stage where
the simulator must make the random shares that were used match the actual output of the
corrupted parties. This is not a problem because, by interpolation, any set of t shares can
be used to define a t-degree polynomial with its constant term being the actual output.

Footnote 3 continued
the inputs are always guaranteed to be correct. This can be formalized using the notion of a partial function-
ality [20, Sec. 7.2].
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Since C computes the functionality f , it is immediate that outputπ (x1, . . . , xn) =
f (x1, . . . , xn), where π denotes Protocol 4.1. We now proceed to show the existence of
a simulator S as required by Definition 2.1. Before describing the simulator, we present
some necessary notation. Our proof works by inductively showing that the partial view
of the adversary at every stage is identical in the simulated and real executions. Recall
that the view of party Pi is the vector (xi , ri ;m1

i , . . . ,m
�
i ), where xi is the party’s input,

ri its random tape, mk
i is the kth message that it receives in the execution, and � is the

overall number of messages received (in our context here, we let mk
i equal the series of

messages that Pi receives when the parties compute gate Gk). For the sake of clarity, we
add to the view of each party the values σ 1

i , . . . , σ �
i , where σ k

i equals the shares on the
wires that Party Pi holds after the parties emulate the computation of gate Gk . That is,
we denote

viewπ
i (�x) =

(
xi , ri ;m1

i , σ
1
i , . . . ,m�

i , σ
�
i

)
.

We stress that since the σ k
i values can be efficiently computed from the party’s input,

random tape and incoming messages, the view including the σ k
i values is equivalent to

the view without them, and this is only a matter of notation.

PROTOCOL 4.1 (t-Private Computation in the Fmul t -Hybrid Model).

• Inputs: Each party Pi has an input xi ∈ F.
• Auxiliary input: Each party Pi has an arithmetic circuitC over the fieldF, such that for every

�x ∈ F
n it holds that C(�x) = f (�x), where f : Fn → F

n . The parties also have a description
of F and distinct nonzero values α1, . . . , αn in F.

• The protocol:
1. The input-sharing stage: Each party Pi chooses a polynomial qi (x) uni-

formly from the set Pxi ,t of all polynomials of degree t with constant
term xi . For every j ∈ {1, . . . , n}, Pi sends party Pj the value qi (α j ).
Each party Pi records the values q1(αi ), . . . , qn(αi ) that it received.

2. The circuit emulation stage: LetG1, . . . ,G� be a predetermined topological ordering
of the gates of the circuit. For k = 1, . . . , � the parties work as follows:

− Case 1—Gk is an addition gate: Let β
k
i and γ k

i be the shares of input wires held

by party Pi . Then, Pi defines its share of the output wire to be δki = βk
i + γ k

i .

− Case 2—Gk is a multiplication-by-a-constant gate with constant c: Let βk
i be

the share of the input wire held by party Pi . Then, Pi defines its share of the output
wire to be δki = c · βk

i .

− Case 3—Gk is a multiplication gate: Let βk
i and γ k

i be the shares of input

wires held by party Pi . Then, Pi sends (βk
i , γ k

i ) to the ideal functionality Fmult

of Eq. (4.1) and receives back a value δki . Party Pi defines its share of the output

wire to be δki .

3. The output reconstruction stage: Let o1, . . . , on be the output wires, where party
Pi ’s output is the value on wire oi . For every k = 1, . . . , n, denote by βk

1 , . . . , βk
n

the shares that the parties hold for wire ok . Then, each Pi sends Pk the share βk
i .

Upon receiving all shares, Pk computes reconstruct�α(βk
1 , . . . , βk

n ) and obtains a poly-
nomial gk (x) (note that t + 1 of the n shares suffice). Pk then defines its output to be
gk (0).
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We are now ready to describe the simulator S. Loosely speaking, S works by simply
sending random shares of arbitrary values until the output stage. Then, in the final output
stage S sends values so that the reconstruction of the shares on the output wires yield
the actual output.

The Simulator S
• Input: The simulator receives the inputs and outputs, {xi }i∈I and {yi }i∈I respectively,
of all corrupted parties.

• Simulation:

1. Simulating the input-sharing stage:

(a) For every i ∈ I , the simulatorS chooses a uniformly distributed random tape for
Pi ; this random tape and the input xi fully determines the degree-t polynomial
q ′
i (x) ∈ P xi ,t chosen by Pi in the protocol.

(b) For every j /∈ I , the simulator S chooses a random degree-t polynomial
q ′
k(x) ∈R P0,t with constant term 0.

(c) The view of the corrupted party Pi in this stage is then constructed by S to be
the set of values {q j (αi )} j /∈I (i.e., the share sent by each honest Pj to Pi ). The
view of the adversary A consists of the view of Pi for every i ∈ I .

2. Simulating the circuit emulation stage: For every Gk ∈ {G1, . . . ,G�}:
(a) Gk is an addition gate: Let { fa(αi )}i∈I and { fb(αi )}i∈I be the shares of the

input wires of the corrupted parties that were generated by S (initially these
are input wires and so the shares are defined by q ′

k(x) above). For every i ∈ I ,
the simulator S computes fa(αi ) + fb(αi ) = ( fa + fb)(αi ) which defines the
shares of the output wire of Gk .

(b) Gk is a multiplication-with-constant gate: Let { fa(αi )}i∈I be the shares of the
input wire and let c ∈ F be the constant of the gate. S computes c · fa(αi ) =
(c · fa)(αi ) for every i ∈ I which defines the shares of the output wire of Gk .

(c) Gk is a multiplication gate: S chooses a degree-t polynomial fab(x) uniformly
at random from P0,t (irrespective of the shares of the input wires), and defines
the shares of the corrupted parties of the output wire of Gk to be { fab(αi )}i∈I .
S adds the shares to the corrupted parties’ views.

3. Simulating the output reconstruction stage: Let o1, . . . , on be the output wires.
We now focus on the output wires of the corrupted parties. For every k ∈ I , the
simulator S has already defined |I | shares {β i

k}i∈I for the output wire ok . S thus
chooses a random polynomial g′

k(x) of degree t under the following constraints:

(a) g′
k(0) = yk , where yk is the corrupted Pk’s output (the polynomial’s constant

term is the correct output).
(b) For every i ∈ I , g′

k(αi ) = β i
k (i.e., the polynomial is consistent with the shares

that have already been defined).
(Note that if |I | = t , then the above constraints yield t + 1 equations, which in
turn fully determine the polynomial g′

k(x).However, if |I | < t , then S can carry
out the above by choosing t − |I | additional random points and interpolating.)
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Finally, S adds the shares {g′
k(α1), . . . , g′

k(αn)} to the view of the corrupted
party Pk .

4. S outputs the views of the corrupted parties and halts.

Denote by ṽiewπ
I (�x) the view of the corrupted parties up to the output reconstruc-

tion stage (and not including that stage). Likewise, we denote by S̃ (I, �xI , f I (�x)) the
view generated by the simulator up to but not including the output reconstruction
stage.
We begin by showing that the partial views of the corrupted parties up to the output

reconstruction stage in the real execution and simulation are identically distributed. �

Claim 4.3. For every �x ∈ F
n and every I ⊂ [n] with |I | ≤ t ,

{
ṽiewπ

I (�x)
}

≡
{
S̃ (I, �xI , f I (�x))

}

Proof. The only difference between the partial views of the corrupted parties in a
real and simulated execution is that the simulator generates the shares in the input-
sharing stage and inmultiplication gates from random polynomials with constant term 0,
instead of with the correct value defined by the actual inputs and circuit. Intuitively, the
distributions generated are the same since the shares are distributed identically, for every
possible secret.
Formally, we construct an algorithm H that receives as input n − |I | + � sets of

shares: n − |I | sets of shares {(i, β1
i )}i∈I , . . . , {(i, βn−|I |

i )}i∈I and � sets of shares
{(i, γ 1

i )}i∈I , . . . , {(i, γ �
i )}i∈I . Algorithm H generates the partial view of the corrupted

parties (up until but not including the output reconstruction stage) as follows:

• H uses the j th set of shares {β j
i }i∈I as the shares sent by the j th honest party to the

corrupted parties in the input-sharing stage (here j = 1, . . . , n − |I |),
• H uses the kth set of shares {γ k

i }i∈I are viewed as the shares received by the corrupted
parties from Fmult in the computation of the k gate Gk , if it is a multiplication gate
(here k = 1, . . . , �).

Otherwise, H works exactly as the simulator S.
It is immediate that if H receives shares that are generated from random polynomi-

als that all have constant term 0, then the generated view is exactly the same as the
partial view generated by S. In contrast, if H receives shares that are generated from
random polynomials that have constant terms as determined by the inputs and circuit
(i.e., the shares β

j
i are generated using the input of the j th honest party, and the shares

γ k
i are generated using the value on the output wire of Gk which is fully determined
by the inputs and circuit), then the generated view is exactly the same as the partial
view in a real execution. This is due to the fact that all shares are generated using
the correct values, like in a real execution. By Claim 3.1, these two sets of shares are
identically distributed and so the two types of views generated by H are identically dis-
tribution; that is, the partial views from the simulated and real executions are identically
distributed. �
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It remains to show that the output of the simulation after the output reconstruction
stage is identical to the viewof the corrupted parties in a real execution. For simplicity,we
assume that the output wires appear immediately after multiplication gates (otherwise,
they are fixed functions of these values).
Before proving this, we prove a claim that describes the processes of the real execution

and simulation in a more abstract way. The aim of the claim is to prove that the process
carried out by the simulator in the output reconstruction stage yields the same distribution
as in a protocol execution. We first describe two processes and prove that they yield
the same distribution, and later show how these are related to the real and simulation
processes.

Random variable X (s) Random variable Y (s)

(1) Choose q(x) ∈R Ps,t (1) Choose q ′(x) ∈R P0,t

(2) ∀i ∈ I , set βi = q(αi ) (2) ∀i ∈ I , set β ′
i = q ′(αi )

(3) – (3) Choose r(x) ∈R Ps,t s.t. ∀i ∈ I r(αi ) = β ′
i

(4) Output q(x) (4) Output r(x)

Observe that in Y (s), first the polynomial q ′(x) is chosen with constant term 0, and
then r(x) is chosen with constant term s, subject to it agreeing with q ′ on {αi }i∈I .
Claim 4.4. For every s ∈ F, it holds that {X (s)} ≡ {Y (s)}.

Intuitively, this follows from the fact that the points {q(αi )}i∈i are distributed identi-
cally to {q ′(αi )}i∈I . The formally proof of the claim follows from a standard probabilistic
argument, and appears in [1].

The random variables X (s) and Y (s) can be extended to X (�s) and Y (�s) for any �s ∈ F
m

(for some m ∈ N); the proof of the analogous claim then follows. From this claim, we
get:

Claim 4.5. If
{
ṽiewπ

I (�x)}≡
{
S̃ (I, �xI , f I (�x))

}
, then

{
viewπ

I (�x)}≡{S (I, �xI , f I (�x))}.

Proof. In the output reconstruction stage, for every k ∈ I , the corrupted parties receive
the points gk(α1), . . . , gk(αn) in the real execution, and the points g′

k(α1), . . . , g′
k(αn)

in the simulation. Equivalently, we can say that the corrupted parties receive the polyno-
mials {gk(x)}k∈I in a real execution, and the polynomials {g′

k(x)}k∈I in the simulation.

In the protocol execution, functionality Fmult chooses the polynomial f (k)
ab (x) for

the output wire of Pk uniformly at random in P yk ,t , and the corrupted parties receive
values βi = f (k)

ab (αi ) (for every i ∈ I ). Finally, as we have just described, in the output

stage, the corrupted parties receive the polynomials f (k)
ab (x) themselves. Thus, this is the

process X (yk). Extending to all k ∈ I , we have that this is the extended process X (�s)
with �s being the vector containing the corrupted parties’ output values {yk}k∈I .

In contrast, in the simulation of the multiplication gate leading to the output wire for
party Pk , the simulator S chooses the polynomial f (k)

ab (x) uniformly at random in P0,t
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(see Step 2c in the specification of S above), and the corrupted parties receive values
βi = f (k)

ab (αi ) (for every i ∈ I ). Then, in the output stage, S chose g′
k(x) at random from

P yk ,t under the constraint that g′
k(αi ) = βi for every i ∈ I . Thus, this is the process

Y (yk). Extending to all k ∈ I , we have that this is the extended process Y (�s) with �s
being the vector containing the corrupted parties’ output values {yk}k∈I . The claim thus
follows from Claim 4.4. �

Combining Claims 4.3 and 4.5 we have that {S (I, �xI , f I (�x))} ≡ {viewπ
I (�x)}, as

required. �

Privately Computing Linear Functionalities in the Real Model Theorem 4.2 states that
every function can be t-privately computed in the Fmult -hybrid model, for any t < n.
However, a look at Protocol 4.1 and its proof of security show that Fmult is only used for
computing multiplication gates in the circuit. Thus, Protocol 4.1 can actually be directly
used for privately computing any linear functionality f , since such functionalities can
be computed by circuits containing only addition and multiplication-by-constant gates.
Furthermore, the protocol is secure for any t < n; in particular, no honest majority is
needed. This yields the following corollary.

Corollary 4.6. Let t < n. Then, any linear functionality f can be t-privately computed
in the presence of a static semi-honest adversary. In particular, the matrix multiplication
functionality F A

mat (�x) = A · �x for matrix A ∈ F
n×n can be t-privately computed in the

presence of a static semi-honest adversary.

Corollary 4.6 is used below in order to compute the degree-reduction functionality,
which is used in order to privately compute Fmult .

4.3. Privately Computing the Fmult Functionality

We have shown how to t-privately compute any functionality in the Fmult -hybrid model.
In order to achieve private computation in the plain model, it remains to show how
to privately compute the Fmult functionality. We remark that the threshold needed to
privately compute Fmult is t < n/2, and thus the overall threshold for the generic BGW
protocol is t < n/2. Recall that the Fmult functionality is defined as follows:

Fmult (( fa(α1), fb(α1)), . . . , ( fa(αn), fb(αn))) =
(
fab(α1), . . . , fab(αn)

)

where fa(x) ∈ Pa,t , fb(x) ∈ Pb,t , and fab(x) is a random polynomial in Pa·b,t .
As we have discussed previously, the simple solution where each party locally multi-

plies its two shares does not work here, for two reasons. First, the resulting polynomial
is of degree 2t and not t as required. Second, the resulting polynomial of degree 2t
is not uniformly distributed amongst all polynomials with the required constant term.
Therefore, in order to privately compute the Fmult functionality, we first randomize the
degree-2t polynomial so that it is uniformly distributed, and then reduce its degree to t .
That is, Fmult is computed according to the following steps:

1. Each party locally multiplies its input shares.
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2. The parties run a protocol to generate a random polynomial in P0,2t , and each party
receives a share based on this polynomial. Then, each party adds its share of the
product (from the previous step) with its share of this polynomial. The resulting
shares thus define a polynomial which is uniformly distributed in Pa·b,2t .

3. The parties run a protocol to reduce the degree of the polynomial to t , with the
result being a polynomial that is uniformly distributed in Pa·b,t , as required. This
computation uses a t-private protocol for computing matrix multiplication. We have
already shown how to achieve this in Corollary 4.6.

The randomizing (i.e., selecting a random polynomial in P0,2t ) and degree-reduction
functionalities for carrying out the foregoing steps are formally defined as follows:

• The randomization functionality: The randomization functionality is defined as fol-
lows:

F2t
rand(λ, . . . , λ) = (r(α1), . . . , r(αn)),

where r(x) ∈R P0,2t is random, and λ denotes the empty string. We will show how
to t-privately compute this functionality in Sect. 4.3.2.

• The degree-reduction functionality: Let h(x) = h0 + · · · + h2t x2t be a polynomial,
and denote by trunct (h(x)) the polynomial of degree t with coefficients h0, . . . , ht .
That is, trunct (h(x)) = h0 + h1x + · · · + ht xt (observe that this is a deterministic
functionality). Formally, we define

Fdeg
reduce(h(α1), . . . , h(αn)) = (ĥ(α1), . . . , ĥ(αn))

where ĥ(x) = trunct (h(x)).
We will show how to t-privately compute this functionality in Sect. 4.3.3.

4.3.1. Privately Computing Fmult in the (F2t
rand , F

deg
reduce)-Hybrid Model

We now prove that Fmult is reducible to the functionalities F2t
rand and Fdeg

reduce; that is, we
construct a protocol that t-privately computes Fmult given access to ideal functionalities
Fdeg
reduce and F2t

rand . The full specification appears in Protocol 4.7.
Intuitively, this protocol is secure since the randomization step ensures that the poly-

nomial defining the output shares is random. In addition, the parties only see shares of
the randomized polynomial and its truncation. Since the randomized polynomial is of
degree 2t , seeing 2t shares of this polynomial still preserves privacy. Thus, the t shares
of the randomized polynomial together with the t shares of the truncated polynomial
(which is of degree t), still gives the adversary no information whatsoever about the
secret. (This last point is the crux of the proof.)
We therefore have:

Proposition 4.8. Let t < n/2. Then, Protocol 4.7 is t-private for Fmult in the
(F2t

rand , F
deg
reduce)-hybrid model, in the presence of a static semi-honest adversary.

Proof. The parties do not receive messages from other parties in the oracle-aided pro-
tocol, whereas they receive messages from the oracles only. Therefore, our simulator
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only needs to simulate the oracle response messages. Since the Fmult functionality is
probabilistic, we must prove its security using Definition 2.2.

In the real execution of the protocol, the corrupted parties’ inputs are { fa(αi )}i∈I
and { fb(αi )}i∈I . Then, in the randomize step of the protocol they receive shares σi of
a random polynomial of degree 2t with constant term 0. Denoting this polynomial by
r(x), we have that the corrupted parties receive the values {r(αi )}i∈I . Next, the parties
invoke the functionality Fdeg

reduce and receive back the values δi (these are points of the
polynomial trunct ( fa(x) · fb(x)+r(x))). These values are actually the parties’ outputs,
and thus the simulator must make the output of the call to Fdeg

reduce be the shares {δi }i∈I
of the corrupted parties outputs.

The Simulator S
• Input: The simulator receives as input I , the inputs of the corrupted parties

{(βi , γi )}i∈I , and their outputs {δi }i∈I .
• Simulation:

− S chooses |I | values uniformly and independently at random, {vi }i∈I .
− For every i ∈ I , the simulator defines the view of the party Pi to be:
(βi , γi , vi , δi ), where (βi , γi ) represents Pi ’s input, vi represents Pi ’s oracle
response from F2t

rand , and δi represents Pi ’s oracle response from Fdeg
reduce.

We now proceed to prove that the joint distribution of the output of all the parties,
together with the view of the corrupted parties is distributed identically to the output of
all parties as computed from the functionality Fmult and the output of the simulator. We
first show that the outputs of all parties are distributed identically in both cases. Then,
we show that the view of the corrupted parties is distributed identically, conditioned on
the values of the outputs (and inputs) of all parties.

The Outputs Since the inputs and outputs of all the parties lie on the same polynomials,
it is enough to show that the polynomials are distributed identically. Let fa(x), fb(x) be
the input polynomials. Let r(x) be the output of the F2t

rand functionality. Finally, denote

the truncated result by ĥ(x)
def= trunc( fa(x) · fb(x) + r(x)).

In the real execution of the protocol, the parties output shares of the polynomial
ĥ(x). From the way ĥ(x) is defined, it is immediate that ĥ(x) is a degree-t polynomial
that is uniformly distributed in Pa·b,t . (In order to see that it is uniformly distributed,

PROTOCOL 4.7 (t-Privately Computing Fmul t ).

• Input: Each party Pi holds values βi , γi , such that reconstruct�α(β1, . . . , βn) ∈ Pa,t and
reconstruct�α(γ1, . . . , γn) ∈ Pb,t for some a, b ∈ F.

• The protocol:
1. Each party locally computes si = βi · γi .
2. Randomize: Each party Pi sends λ to F2t

rand (formally, it writes λ on its oracle tape for

F2t
rand ). Let σi be the oracle response for party Pi .

3. Reduce the degree: Each party Pi sends (si + σi ) to Fdeg
reduce . Let δi be the oracle

response for Pi .

• Output: Each party Pi outputs δi .
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observe that with the exception of the constant term, all the coefficients of the degree-2t
polynomial fa(x) · fb(x) + r(x) are random. Thus the coefficients of x, . . . , xt in ĥ(x)
are random, as required.)
Furthermore, the functionality Fmult return shares for a random polynomial of degree

t with constant term fa(0) · fb(0) = a · b. Thus, the outputs of the parties from a real
execution and from the functionality are distributed identically.

The View of the Corrupted PartiesWe show that the view of the corrupted parties in the
real execution and the simulation are distributed identically, given the inputs and outputs
of all parties. Observe that the inputs and outputs define the polynomials fa(x), fb(x)
and fab(x). Now, the view that is output by the simulator is

{
{ fa(αi ), fb(αi ), vi , fab(αi )}i∈I

}

where all the vi values are uniformly distributed in F, and independent of fa(x), fb(x)
and fab(x). It remains to show that in a protocol execution the analogous values—which
are the outputs received by the corrupted parties from F2t

rand—are also uniformly dis-

tributed and independent of fa(x), fb(x) and ĥ(x) (where ĥ(x) is distributed identically
to a random fab(x), as already shown above).
In order to prove this, it suffices to prove that for every vector �y ∈ F

|I |,

Pr
[
�r = �y | fa(x), fb(x), ĥ(x)

]
= 1

|F||I | (4.2)

where �r = (r(αi1), . . . , r(αi| I |)) for I = {i1, . . . , i|I |}; that is, �r is the vector of outputs
from F2t

rand , computed from the polynomial r(x) ∈R P0,2t , that are received by the
corrupted parties.
We write r(x) = r1(x) + xt · r2(x), where r1(x) ∈R P0,t and r2(x) ∈R P0,t .

In addition, we write fa(x) · fb(x) = h1(x) + xt · h2(x), where h1(x) ∈ Pab,t and
h2(x) ∈ P0,t . Observe that:

ĥ(x) = trunc
(
fa(x) · fb(x) + r(x)

)

= trunc
(
h1(x) + r1(x) + xt · (h2(x) + r2(x))

)
= h1(x) + r1(x)

where the last equality holds since the constant term of both h2(x) and r2(x) is 0.
Rewriting Eq. (4.2), we need to prove that for every vector �y ∈ F

|I |,

Pr
[
�r = �y | fa(x), fb(x), h1(x) + r1(x)

]
= 1

|F||I |

where the kth element rk of �r is r1(αik ) + (αik )
t · r2(αik ). The claim follows since r2(x)

is random and independent of fa(x), fb(x), h1(x) and r1(x). Formally, for any given
yk ∈ F, the equality yk = r1(αik ) + (αik )

t · r2(αik ) holds if and only if r2(αik ) =
(αik )

−t · (yk − r1(αik )). Since αik , yk and r1(αik ) are all fixed by the conditioning, the
probability follows from Claim 3.1.
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We conclude that the view of the corrupted parties is identically distributed to the
output of the simulator, when conditioning on the inputs and outputs of all parties. �

4.3.2. Privately Computing F2t
rand in the Plain Model

Recall that the randomization functionality is defined as follows:

F2t
rand(λ, . . . , λ) = (r(α1), . . . , r(αn)), (4.3)

where r(x) ∈R P0,2t , and λ denotes the empty string. The protocol for implementing the
functionality works as follows. Each party Pi chooses a random polynomial qi (x) ∈R

P0,2t and sends the share qi (α j ) to every party Pj . Then, each party Pi outputs δi =∑n
k=1 qk(αi ). Clearly, the shares δ1, . . . , δn define a polynomial with constant term 0,

because all the polynomials in the sum have a zero constant term. Furthermore, the sum
of these random 2t-degree polynomials is a random polynomial in P0,2t , as required.
See Protocol 4.9 for a formal description.

PROTOCOL 4.9 (Privately Computing F2t
rand ).

• Input: The parties do not have inputs for this protocol.
• The protocol:

− Each party Pi chooses a random polynomial qi (x) ∈R P0,2t . Then, for every j ∈
{1, . . . , n} it sends si, j = qi (α j ) to party Pj .
− Each party Pi receives s1,i , . . . , sn,i and computes δi = ∑n

j=1 s j,i .

• Output: Each party Pi outputs δi .

We now prove that Protocol 4.9 is t-private for F2t
rand .

Claim 4.10. Let t < n/2. Then, Protocol 4.9 is t-private for the F2t
rand functionality,

in the presence of a static semi-honest adversary.

Proof. Intuitively, the protocol is secure because the only messages that the parties
receive are random shares of polynomials in P0,2t . The simulator can easily simulate
these messages by generating the shares itself. However, in order to make sure that
the view of the corrupted parties is consistent with the actual output provided by the
functionality, the simulator chooses the shares so that their sum equals δi , the output
provided by the functionality to each Pi .

The Simulator S
• Input: The simulator receives as input I and the outputs of the corrupted parties

{δi }i∈I .
• Simulation:

1. Fix � /∈ I
2. S chooses n − 1 random polynomials q ′

j (x) ∈ P0,2t for every j ∈ [n]\{�}. Note
that for i ∈ I , this involves setting the random tape of Pi so that it results in it
choosing q ′

i (x).
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3. S sets the values of the remaining polynomial q ′
�(x) on the points {αi }i∈I by

computing q ′
�(αi ) = δi − ∑

j =� q
′
j (αi ) for every i ∈ I .

4. S sets the incoming messages of corrupted party Pi in the protocol to be
(q ′

1(αi ), . . . , q ′
n(αi ); observe that all of these points are defined.

• Output: S sets the view of each corrupted Pi (i ∈ I ) to be the empty input λ, the
random tape determined in Step (2) of the simulation, and the incoming messages
determined in Step (4).

We now show that the view of the adversary (containing the views of all corrupted
parties) and the output of all parties in a real execution is distributed identically to the
output of the simulator and the output of all parties as received from the functionality in
an ideal execution.
In order to do this, consider an fictitious simulator S ′ who receives the polynomial

r(x) instead of the points {δi = r(αi )}i∈I . Simulator S ′ works in exactly the same way
as S except that it fully defines the remaining polynomial q ′

�(x) (and not just its values
on the points {αi }i∈I ) by setting q ′

�(x) = r(x) − ∑
j =� q

′
j (x). Then, S ′ computes the

values q ′
�(αi ) for every i ∈ I from q ′

�(x). The only difference between the simulator
S and the fictitious simulator S ′ is with respect to the value of the polynomial q ′

�(x)
on points outside of {αi }i∈I . The crucial point to notice is that S does not define these
points differently to S ′; rather S does not define them at all. That is, the simulation does
not require S to determine the value of q ′

�(x) on points outside of {αi }i∈I , and so the
distributions are identical.
Finally observe that the output distribution generated by S ′ is identical to the output

of a real protocol. This holds because in a real protocol execution random polynomials
q1(x), . . . , qn(x) are chosen and the output points are derived from

∑n
j=1 q j (x), whereas

in the fictitious simulation with S ′ the order is just reversed; i.e., first r(x) is chosen at
random and then q ′

1(x), . . . , q
′
n(x) are chosen at random under the constraint that their

sum equals r(x). Note that this uses the fact that r(x) is randomly chosen. �

4.3.3. Privately Computing Fdeg
reduce in the Plain Model

Recall that the Fdeg
reduce functionality is defined by

Fdeg
reduce(h(α1), . . . , h(αn)) = (ĥ(α1), . . . , ĥ(αn))

where ĥ(x) = trunct (h(x)) is the polynomial h(x) truncated to degree t (i.e., the
polynomial with coefficients h0, . . . , ht ).We begin by showing that in order to transform
a vector of shares of the polynomial h(x) to shares of the polynomial trunct (h(x)), it
suffices to multiply the input shares by a certain matrix of constants.

Claim 4.11. Let t < n/2. Then, there exists a constant matrix A ∈ F
n×n such that for

every degree-2t polynomial h(x) = ∑2t
j=0 h j · x j and truncated ĥ(x) = trunct (h(x)),

it holds that:

(
ĥ(α1), . . . , ĥ(αn)

)T = A ·
(
h(α1), . . . , h(αn)

)T
.
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Proof. Let �h = (h0, . . . , ht , . . . , h2t , 0, . . . 0) be a vector of length n, and let V�α
be the n × n Vandermonde matrix for �α = (α1, . . . , αn). As we have seen in
Sect. 3.3, V�α · �hT = (h(α1), . . . , h(αn))

T . Since V�α is invertible, we have that
�hT = V−1

�α · (h(α1), . . . , h(αn))
T . Similarly, letting �̂h = (ĥ0, . . . , ĥt , 0, . . . 0) we have

that
(
ĥ(α1), . . . , ĥ(αn)

)T = V�α · �̂h
T
.

Now, let T = {1, . . . , t}, and let PT be the linear projection of T ; i.e., PT is an n × n
matrix such that PT (i, j) = 1 for every i = j ∈ T , and PT (i, j) = 0 for all other

values. It thus follows that PT · �hT = �̂h
T
. Combining all of the above, we have that

(
ĥ(α1), . . . , ĥ(αn)

)T =V�α · �̂h
T

=V�α · PT · �hT =V�α · PT · V−1
�α · (h(α1), . . . , h(αn))

T .

The claim follows by setting A = V�α · PT · V−1
�α . �

By the above claim it follows that the parties can compute Fdeg
reduce by simply multi-

plying their shares with the constant matrix A from above. That is, the entire protocol
for t-privately computing Fdeg

reduce works by the parties t-privately computing the matrix
multiplication functionality F A

mat (�x) with the matrix A. By Corollary 4.6 (see the end of
Sect. 4.2), F A

mat (�x) can be t-privately computed for any t < n. Since the entire degree
reduction procedure consists of t-privately computing F A

mat (�x), we have the following
proposition:

Proposition 4.12. For every t < n/2, there exists a protocol that is t-private for
Fdeg
reduce, in the presence of a static semi-honest adversary.

4.4. Conclusion

In Sect. 4.3.1 we proved that there exists a t-private protocol for computing the Fmult

functionality in the (F2t
rand , F

deg
reduce)-hybridmodel, for any t < n/2. Then, in Sects. 4.3.2

and 4.3.3 we showed that F2t
rand and Fdeg

reduce, respectively, can be t-privately computed
(in the plain model) for any t < n/2. Finally, in Theorem 4.2 we showed that any n-
ary functionality can be privately computed in the Fmult -hybrid model, for any t < n.
Combining the above with the modular sequential composition theorem (described in
Sect. 2.3), we conclude that:

Theorem 4.13. Let F be a finite field, let f : F
n → F

n be an n-ary functionality, and
let t < n/2. Then, there exists a protocol that is t-private for f in the presence of a
static semi-honest adversary.

5. Verifiable Secret Sharing (VSS)

5.1. Background

Verifiable secret sharing (VSS), defined by Chor et al. [15], is a protocol for sharing
a secret in the presence of malicious adversaries. Recall that a secret-sharing scheme
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(with threshold t + 1) is made up of two stages. In the first stage (called sharing), the
dealer shares a secret so that any t + 1 parties can later reconstruct the secret, while any
subset of t or fewer parties will learn nothing whatsoever about the secret. In the second
stage (called reconstruction), a set of t + 1 or more parties reconstruct the secret. If we
consider Shamir’s secret-sharing scheme, much can go wrong if the dealer or some of
the parties aremalicious (e.g., consider the use of secret sharing in Sect. 4). First, in order
to share a secret s, the dealer is supposed to choose a random polynomial q(·) of degree
t with q(0) = s and then hand each party Pi its share q(αi ). However, nothing prevents
the dealer from choosing a polynomial of higher degree. This is a problem because it
means that different subsets of t + 1 parties may reconstruct different values. Thus,
the shared value is not well defined. Second, in the reconstruction phase each party Pi
provides its share q(αi ). However, a corrupted party can provide a different value, thus
effectively changing the value of the reconstructed secret, and the other parties have no
way of knowing that the provided value is incorrect. Thus, we must use a method that
either prevents the corrupted parties from presenting incorrect shares, or ensures that it
is possible to reconstruct the correct secret s given n − t correct shares, even if they are
mixed together with t incorrect shares (and no one knows which of the shares are correct
or incorrect). Note that in the context of multiparty computation, n parties participate in
the reconstruction and not just t + 1; this is utilized in the following construction.
The BGW protocol for verifiable secret sharing ensures that (for t < n/3) the shares

received by the honest parties are guaranteed to be q(αi ) for a well-defined degree-t
polynomialq, even if the dealer is corrupted. This “secure sharing step” is the challenging
part of the protocol. Given such a secure sharing, it is possible to use techniques from
the field of error-correcting codes in order to reconstruct q (and thus q(0) = s) as long
as n − t correct shares are provided and t < n/3. This is due to the fact that Shamir’s
secret-sharing scheme when looked at in this context is exactly a Reed–Solomon code,
and Reed–Solomon codes can efficiently correct up to t errors, for t < n/3.

5.2. The Reed–Solomon Code

We briefly describe the Reed–Solomon code, and its use in our context. First, recall that
a linear [n, k, d]-code over a field F of size q is a code of length n (meaning that each
codeword is a sequence of n field elements), of dimension k (meaning that there are
qk different codewords), and of distance d (meaning that every two codewords are of
Hamming distance at least d from each other).
We are interested in constructing a code of length n, dimension k = t+1, and distance

n − t . The Reed–Solomon code for these parameters is constructed as follows. Let F

be a finite field such that |F| > n, and let α1, . . . , αn be distinct field elements. Let
m = (m0, . . . ,mt ) be a message to be encoded, where each mi ∈ F. The encoding of
m is as follows:

1. Define a polynomial pm(x) = m0 + m1x + · · · + mt xt of degree t .
2. Compute the codeword C(m) = 〈pm(α1), . . . , pm(αn)〉.

It is well known that the distance of this code is n − t . (In order to see this, recall that
for any two different polynomials p1 and p2 of degree at most t , there are at most t
points α for which p1(α) = p2(α). Noting that m = m′ define different polynomials
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pm = pm′ , we have that C(m) and C(m′) agree in at most t places.) Let d(x, y) denote
the Hamming distance between words x, y ∈ F

n . The following is a well-known result
from the error-correcting code literature:

Theorem 5.1. The Reed–Solomon code is a linear [n, t + 1, n − t]-code over F. In
addition, there exists an efficient decoding algorithm that corrects up to n−t−1

2 errors.
That is, for every m ∈ F

t+1 and every x ∈ F
n such that d(x,C(m)) ≤ n−t−1

2 , the
decoding algorithm returns m.

Let t < n/3, and so n ≥ 3t + 1. Plugging this into Theorem 5.1, we have that it is
possible to efficiently correct up to 3t+1−t−1

2 = t errors.

Reed–Solomon and Shamir’s Secret Sharing Assume that n parties hold shares
{q(αi )}i∈[n] of a degree-t polynomial, as in Shamir’s secret-sharing scheme. That is,
the dealer distributed shares {q(αi )}i∈[n] where q ∈R Ps,t for a secret s ∈ F. We can
view the shares 〈q(α1), . . . , q(αn)〉 as a Reed–Solomon codeword. Now, in order for the
parties to reconstruct the secret from the shares, all parties can just broadcast their shares.
Observe that the honest parties provide their correct share q(αi ), whereas the corrupted
parties may provide incorrect values. However, since the number of corrupted parties is
t < n/3, it follows that at most t of the symbols are incorrect. Thus, the Reed–Solomon
reconstruction procedure can be run and the honest parties can all obtain the correct
polynomial q, and can compute q(0) = s.

We conclude that in such a case the corrupted parties cannot effectively cheat in
the reconstruction phase. Indeed, even if they provide incorrect values, it is pos-
sible for the honest parties to correctly reconstruct the secret (with probability 1).
Thus, the main challenge in constructing a verifiable secret-sharing protocol is how
to force a corrupted dealer to distribute shares that are consistent with some degree-t
polynomial.

5.3. Bivariate Polynomials

Bivariate polynomials are a central tool used by the BGW verifiable secret-sharing
protocol (in the sharing stage). We therefore provide a short background to bivariate
polynomials in this section.
A bivariate polynomial of degree t is a polynomial over two variables, each of

which has degree at most t . Such a polynomial can be written as follows:

f (x, y) =
t∑

i=0

t∑

j=0

ai, j · xi · y j .

Wedenote byBs,t the set of all bivariate polynomials of degree t andwith constant term s.
Note that the number of coefficients of a bivariate polynomial in Bs,t is (t + 1)2 − 1 =
t2 + 2t (there are (t + 1)2 coefficients, but the constant term is already fixed to be s).
Recall that when considering univariate polynomials, t + 1 points define a unique

polynomial of degree t . In this case, each point is a pair (αk, βk) and there exists a
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unique polynomial f such that f (αk) = βk for all t + 1 given points {(αk, βk)}t+1
k=1. The

analogous statement for bivariate polynomials is that t + 1 univariate polynomials of
degree t define a unique bivariate polynomial of degree t ; see Claim 5.2 below. For a
degree-t bivariate polynomial S(x, y), fixing the y-value to be some α defines a degree-t
univariate polynomial f (x) = S(x, α). Likewise, any t + 1 fixed values α1, . . . , αt+1
define t + 1 degree-t univariate polynomials fk(x) = S(x, αk). What we show now is
that like in the univariate case, this works in the opposite direction as well. Specifically,
given t + 1 values α1, . . . , αt+1 and t + 1 degree-t polynomials f1(x), . . . , ft+1(x)
there exists a unique bivariate polynomial S(x, y) such that S(x, αk) = fk(x), for every
k = 1, . . . , t + 1. This is formalized in the next claim, which is a variant of the classic
Lagrange interpolation theorem (a proof can also be found in [1,18]):

Claim 5.2. Let t be a nonnegative integer, let α1, . . . , αt+1 be t + 1 distinct elements
in F, and let f1(x), . . . , ft+1(x) be t + 1 polynomials of degree t. Then, there exists a
unique bivariate polynomial S(x, y) of degree t such that for every k = 1, . . . , t + 1 it
holds that S(x, αk) = fk(x).

Verifiable Secret Sharing Using Bivariate Polynomials The verifiable secret-sharing
protocol works by embedding a random univariate degree-t polynomial q(z) with
q(0) = s into the bivariate polynomial S(x, y). Specifically, S(x, y) is chosen at
random under the constraint that S(0, z) = q(z); the values q(α1), . . . , q(αn) are
thus the univariate Shamir-shares embedded into S(x, y). Then, the dealer sends each
party Pi two univariate polynomials as intermediate shares; these polynomials are
fi (x) = S(x, αi ) and gi (y) = S(αi , y). By the definition of these polynomials, it holds
that fi (α j ) = S(α j , αi ) = g j (αi ), and gi (α j ) = S(αi , α j ) = f j (αi ). Thus, any twopar-
ties Pi and Pj can verify that the univariate polynomials that they received are pairwise
consistent with each other by checking that fi (α j ) = g j (αi ) and gi (α j ) = f j (αi ). As
we shall see, this prevents the dealer from distributing shares that are not consistent with
a single bivariate polynomial. Finally, party Pi defines its output (i.e., “Shamir-share”)
as fi (0) = q(αi ), as required.
We begin by proving that pairwise consistency checks as described above suffice for

uniquely determining the bivariate polynomial S. Specifically:

Claim 5.3. Let K ⊆ [n] be a set of indices such that |K | ≥ t+1, let { fk(x), gk(y)}k∈K
be a set of pairs of degree-t polynomials, and let {αk}k∈K be distinct nonzero elements
in F. If for every i, j ∈ K, it holds that fi (α j ) = g j (αi ), then there exists a unique
bivariate polynomial S of degree-t in both variables such that fk(x) = S(x, αk) and
gk(y) = S(αk, y) for every k ∈ K.

Proof. Let L be any subset of K of cardinality exactly t + 1. By Claim 5.2, there
exists a unique bivariate polynomial S(x, y) of degree-t in both variables, for which
S(x, α�) = f�(x) for every � ∈ L . We now show if fi (α j ) = g j (αi ) for all i, j ∈ K ,
then for every k ∈ K it holds that fk(x) = S(x, αk) and gk(y) = S(αk, y).

By the consistency assumption, for every k ∈ K and � ∈ L we have that gk(α�) =
f�(αk). Furthermore, by the definition of S from abovewe have that f�(αk) = S(αk, α�).
Thus, for all k ∈ K and � ∈ L it holds that gk(α�) = S(αk, α�). Since both gk(y) and
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S(αk, y) are degree-t polynomials, and gk(α�) = S(αk, α�) for t+1 points α�, it follows
that gk(y) = S(αk, y) for every k ∈ K .
It remains to show that fk(x) = S(x, αk) for all k ∈ K (this trivially holds for all k ∈ L

by the definition of S from above, but needs to be proven for k ∈ K\L). By consistency,
for every j, k ∈ K , we have that fk(α j ) = g j (αk). Furthermore, we have already proven
that g j (αk) = S(α j , αk) for every j, k ∈ K . Therefore, fk(α j ) = S(α j , αk) for every
j, k ∈ K , implying that fk(x) = S(x, αk) for every k ∈ K (because they are degree-t
polynomials who have the same value on more than t points). This concludes the proof.

�

We now proceed to prove a “secrecy lemma” for bivariate polynomial secret shar-
ing. Loosely speaking, we prove that the shares { fi (x), gi (y)}i∈I (for |I | ≤ t) that
the corrupted parties receive do not reveal any information about the secret s. In fact,
we show something much stronger: for every two degree-t polynomials q1 and q2
such that q1(αi ) = q2(αi ) = fi (0) for every i ∈ I , the distribution over the shares
{ fi (x), gi (y)}i∈I received by the corrupted parties when S(x, y) is chosen based on
q1(z) is identical to the distribution when S(x, y) is chosen based on q2(z). An imme-
diate corollary of this is that no information is revealed about whether the secret equals
s1 = q1(0) or s2 = q2(0).

Claim 5.4. Let α1, . . . , αn ∈ F be n distinct nonzero values, let I ⊂ [n] with |I | ≤ t ,
and let q1 and q2 be two degree-t polynomials over F such that q1(αi ) = q2(αi ) for
every i ∈ I . Then,

{ {
(i, S1(x, αi ), S1(αi , y))

}

i∈I

}
≡

{ {
(i, S2(x, αi ), S2(αi , y))

}

i∈I

}

where S1(x, y) and S2(x, y) are degree-t bivariate polynomial chosen at random under
the constraints that S1(0, z) = q1(z) and S2(0, z) = q2(z), respectively.

Proof. We begin by defining probability ensembles S1 and S2, as follows:

S1 =
{
{(i, S1(x, αi ), S1(αi , y))}i∈I | S1 ∈R Bq1(0),t s.t. S1(0, z) = q1(z)

}

S2 =
{
{(i, S2(x, αi ), S2(αi , y))}i∈I | S2 ∈R Bq2(0),t s.t. S2(0, z) = q2(z)

}

Given this notation, an equivalent formulation of the claim is that S1 ≡ S2.
In order to prove that this holds, we first show that for any set of pairs of degree-

t polynomials Z = {(i, fi (x), gi (y))}i∈I , the number of bivariate polynomials in the
support of S1 that are consistent with Z equals the number of bivariate polynomials in the
support ofS2 that are consistentwith Z , where consistencymeans that fi (x) = S(x, αi )

and gi (y) = S(αi , y).
First note that if there exist i, j ∈ I such that fi (α j ) = g j (αi ) then there does not

exist any bivariate polynomial in the support of S1 or S2 that is consistent with Z . Also,
if there exists an i ∈ I such that fi (0) = q1(αi ), then once again there is no polynomial
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from S1 or S2 that is consistent (this holds for S1 since fi (0) = S(0, αi ) = q1(αi ) should
hold, and it holds similarly for S2 because q1(αi ) = q2(αi ) for all i ∈ I ).
Let Z = {(i, fi (x), gi (y))}i∈I be a set of degree-t polynomials such that for every

i, j ∈ I it holds that fi (α j ) = g j (αi ), and in addition for every i ∈ I it holds that
fi (0) = q1(αi ) = q2(αi ). We begin by counting how many such polynomials exist in
the support ofS1.We have that Z contains |I | degree-t polynomials { fi (x)}i∈I , and recall
that t + 1 such polynomials fi (x) fully define a degree-t bivariate polynomial. Thus,
we need to choose t + 1− |I | more polynomials f j (x) ( j = i) that are consistent with
q1(z) and with {gi (y)}i∈I . In order for a polynomial f j (x) to be consistent in this sense,
it must hold that f j (αi ) = gi (α j ) for every i ∈ I , and in addition that f j (0) = q1(α j ).
Thus, for each such f j (x) that we add, |I |+1 values of f j are already determined. Since
the values of f j at t + 1 points determine a degree-t univariate polynomial, it follows
that an additional t − |I | points can be chosen in all possible ways and the result will

be consistent with Z . We conclude that there exist
(|F|t−|I |)(t+1−|I |)

ways to choose S1
according to S1 that will be consistent. (Note that if |I | = t then there is just one way.)
The important point here is that the exact same calculation holds for S2 chosen according
to S2, and thus exactly the same number of polynomials from S1 are consistent with Z
as from S2.
Now, let Z = {(i, fi (x), gi (y))}i∈I be a set of |I | pairs of univariate degree-t poly-

nomials. We have already shown that the number of polynomials in the support of S1
that are consistent with Z equals the number of polynomials in the support of S2 that
are consistent with Z . Since the polynomials S1 and S2 (in S1 and S2, respectively) are
chosen randomly among those consistent with Z , it follows that the probability that Z
is obtained is exactly the same in both cases, as required. �

5.4. The Verifiable Secret-Sharing Protocol

In the VSS functionality, the dealer inputs a polynomial q(x) of degree t , and each party
Pi receives its Shamir-share q(αi ) based on that polynomial.4 The “verifiable” part is
that if q is of degree greater than t , then the parties reject the dealer’s shares and output
⊥. The functionality is formally defined as follows:

FUNCTIONALITY 5.5 (The BGW FVSS functionality).

FV SS (q(x), λ, . . . , λ) =
{

(q(α1), . . . , q(αn)) if deg(q) ≤ t
(⊥, . . . , ⊥) otherwise

Observe that the secret s = q(0) is only implicitly defined in the functionality; it is
however well defined. Thus, in order to share a secret s, the functionality is used by
having the dealer first choose a random polynomial q ∈R Ps,t (where Ps,t is the set of
all degree-t univariate polynomials with constant term s) and then run FV SS with input
q(x).

4This is a specific VSS definition that is suited for the BGW protocol. We remark that it is possible to
define VSS in a more general and abstract way (like a multiparty “commitment”). However, since we will
need to compute on the shares q(α1), . . . , q(αn), these values need to be explicitly given in the output.
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The Protocol Idea We present the VSS protocol of BGWwith the simplification of the
complaint phase suggested by Feldman [17]. The protocol uses private point-to-point
channels between each pair of parties and an authenticated broadcast channel (meaning
that the identity of the broadcaster is given). The protocol works by the dealer selecting a
randombivariate polynomial S(x, y) of degree t under the constraint that S(0, z) = q(z).
The dealer then sends each party Pi two polynomials that are derived from S(x, y): the
polynomial fi (x) = S(x, αi ) and the polynomial gi (y) = S(αi , y). As we have shown
in Claim 5.4, t pairs of polynomials fi (x), gi (y) received by the corrupted parties reveal
nothing about the constant term of S (i.e., the secret being shared). In addition, given
these polynomials, the parties can verify that they have consistent inputs. Specifically,
since gi (α j ) = S(αi , α j ) = f j (αi ), it follows that each pair of parties Pi and Pj can
check that their polynomials fulfill fi (α j ) = g j (αi ) and gi (α j ) = f j (αi ) by sending
each other these points. If all of these checks pass, then by Claim 5.3 it follows that
all the polynomials are derived from a single bivariate polynomial S(x, y), and thus the
sharing is valid and the secret is fully determined.
The problem that arises is what happens if the polynomials are not all consistent; i.e., if

Pj receives from Pi values fi (α j ), gi (α j ) such that f j (αi ) = gi (α j )or g j (αi ) = fi (α j ).
This can happen if the dealer is corrupted, or if Pi is corrupted. In such a case, Pj issues
a “complaint” by broadcasting its inconsistent values ( j, i, f j (αi ), g j (αi )) defined by
the shares f j (x), g j (y) it received from the dealer. Then, the dealer checks whether
these values are correct, and if they are not, then it is required to broadcast the correct
polynomials for that complaining party. We stress that in this case the dealer broadcasts
the entire polynomials f j (x) and g j (y) defining Pj ’s share, and this enables all other
parties Pk to verify that these polynomials are consistent with their own shares, thus
verifying their validity. Note that if the values broadcast are correct (e.g., in the case that
the dealer is honest and Pi sent Pj incorrect values), then the dealer does not broadcast
Pj ’s polynomials. This ensures that an honest dealer does not reveal the shares of honest
parties.
This strategy is sound since if the dealer is honest, then all honest parties will have

consistent values. Thus, the only complaints will be due to corrupted parties complaining
falsely (in which case the dealer will broadcast the corrupted parties polynomials, which
gives them no more information), or due to corrupted parties sending incorrect values
to honest parties (in which case the dealer does not broadcast anything, as mentioned).
In contrast, if the dealer is not honest, then all honest parties will reject and output ⊥
unless it resends consistent polynomials to all, thereby guaranteeing that S(x, y) is fully
defined again, as required. This complaint resolution must be carried out carefully in
order to ensure that security is maintained. We defer more explanation about how this
works until after the full specification, given in Protocol 5.6.

The Security of Protocol 5.6 Before we prove that Protocol 5.6 is t-secure for the
FV SS functionality, we present an intuitive argument as to why this holds. First, con-
sider the case that the dealer is honest. In this case, all of the polynomials received by
the parties are consistent (i.e., for every pair Pi , Pj it holds that fi (α j ) = g j (αi ) and
f j (αi ) = gi (α j )). Thus, an honest party Pj only broadcasts a complaint if a corrupted
party sends it incorrect values and the values included in that complaint are known
already to the adversary. However, if this occurs then the dealer will not send a reveal
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PROTOCOL 5.6 (Securely Computing FV SS ).

• Input: The dealer D = P1 holds a polynomial q(x) of degree at most t (if not, then the
honest dealer just aborts at the onset). The other parties P2, . . . , Pn have no input.

• Common input: The description of a field F and n nonzero elements α1, . . . , αn ∈ F.
• The protocol:

1. Round 1 (send shares)—the dealer:

(a) The dealer selects a uniformly distributed bivariate polynomial S(x, y) ∈ Bq(0),t ,
under the constraint that S(0, z) = q(z).

(b) For every i ∈ {1, . . . , n}, the dealer defines the polynomials fi (x)
def= S(x, αi )

and gi (y)
def= S(αi , y). It then sends to each party Pi the polynomials fi (x)

and gi (y).

2. Round 2 (exchange subshares)—each party Pi :

(a) Store the polynomials fi (x) and gi (y) that were received from the dealer. (If
fi (x) or gi (y) is of degree greater than t then truncate it to be of degree t .)

(b) For every j ∈ {1, . . . , n}, send fi (α j ) and gi (α j ) to party Pj .

3. Round 3 (broadcast complaints)—each party Pi :

(a) For every j ∈ {1, . . . , n}, let (u j , v j ) denote the values received from player
Pj in Round 2 (these are supposed to be u j = f j (αi ) and v j = g j (αi )).
If u j = gi (α j ) or v j = fi (α j ), then broadcast complaint(i, j, fi (α j ), gi (α j )).

(b) If no parties broadcast a complaint, then every party Pi outputs fi (0) and halts.

4. Round 4 (resolve complaints)—the dealer: For every complaint message received,
do the following:

(a) Upon viewing a message complaint(i, j, u, v) broadcast by Pi , check that u =
S(α j , αi ) and v = S(αi , α j ). (Note that if the dealer and Pi are honest, then it
holds that u = fi (α j ) and v = gi (α j ).) If the above condition holds, then do
nothing. Otherwise, broadcast reveal(i, fi (x), gi (y)).

5. Round 5 (evaluate complaint resolutions)—each party Pi :

(a) For every j = k, party Pi marks ( j, k) as a joint complaint if it viewed two
messages complaint(k, j, u1, v1) and complaint( j, k, u2, v2) broadcast by Pk
and Pj , respectively, such that u1 = v2 or v1 = u2. If there exists a joint
complaint ( j, k) for which the dealer did not broadcast reveal(k, fk (x), gk (y))
nor reveal( j, f j (x), g j (y)), then go to Step 6 (and do not broadcast consistent).
Otherwise, proceed to the next step.

(b) Consider the set of reveal( j, f j (x), g j (y)) messages sent by the dealer (truncat-
ing the polynomials to degree t if necessary as in Step 2a):

i. If there exists a message in the set with j = i then reset the stored polyno-
mials fi (x) and gi (y) to the new polynomials that were received, and go to
Step 6 (without broadcasting consistent).

ii. If there exists amessage in the setwith j = i and forwhich fi (α j ) = g j (αi )
or gi (α j ) = f j (αi ), then go to Step 6 (without broadcasting consistent).

If the set of reveal messages does not contain a message that fulfills either one of
the above conditions, then proceed to the next step.

(c) Broadcast the message consistent.

6. Output decision (if there were complaints)—each party Pi : If at least n − t parties
broadcast consistent, output fi (0). Otherwise, output ⊥.
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of the honest party’s polynomials (because its values are correct). Furthermore, if any
corrupted party Pi broadcasts a complaint with incorrect values (u, v), the dealer can
send the correct reveal message (this provides no additional information to the adver-
sary since the reveal message just contains the complainant’s shares). In such a case,
the check carried out by each honest party Pj in Step 5(b)ii will pass and so every hon-
est party will broadcast consistent. Thus, at least n − t parties broadcast consistent
(since there are at least n − t honest parties), and so every honest party Pj outputs
f j (0) = S(0, α j ) = q(α j ), where the last equality is due to the way the dealer chooses
S(x, y).
Next, consider the case that the dealer is corrupted. In this case, the honest parties may

receive polynomials that are not consistent with each other; that is, honest Pj and Pk may
receive polynomials f j (x), g j (y) and fk(x), gk(y) such that either f j (αk) = gk(α j ) or
fk(α j ) = g j (αk). However, in such a case both honest parties complain, and the dealer
must send a valid revealmessage (in the sense described below) or no honest party will
broadcast consistent. In order for n − t parties to broadcast consistent, there must be
at least (n − t) − t = t + 1 honest parties that broadcast consistent. This implies that
these t + 1 or more honest parties all received polynomials f j (x) and g j (y) in the first
round that are pairwise consistent with each other and with all of the “fixed” values in
the revealmessages. Thus, by Claim 5.3 the polynomials f j (x) and g j (y) of these t +1
(or more) parties are all derived from a unique degree-t bivariate polynomial S(x, y),
meaning that f j (x) = S(x, α j ) and g j (y) = S(α j , y). (The parties who broadcasted
consistent are those that make up the set K in Claim 5.3.)
The above suffices to argue that the polynomials of all the honest parties that broadcast

consistent are derived from a unique S(x, y). It remains to show that if at least t + 1
honest parties broadcast consistent, then the polynomials of all the other honest parties
that do not broadcast consistent are also derived from the same S(x, y). Assume that
this is not the case. That is, there exists an honest party Pj such that f j (x) = S(x, α j )

(an analogous argument can be made with respect to g j (x) and S(α j , y)). Since f j (x)
is of degree-t this implies that f j (αk) = S(αk, α j ) for at most t points αk . Thus, Pj ’s
points are pairwise consistent with at most t honest parties that broadcast consistent
(since for all of these parties gk(y) = S(αk, y)). This implies that there must have
been a joint complaint between Pj and an honest party Pk who broadcasted consistent,
and so this complaint must have been resolved by the dealer broadcasting polynomials
f j (x) and g j (y) such that f j (αk) = gk(α j ) for all Pk who broadcasted consistent
(otherwise, they would not have broadcasted consistent).We now proceed to the formal
proof.

Theorem 5.7. Let t < n/3. Then, Protocol 5.6 is t-secure for the FV SS functionality
in the presence of a static malicious adversary.

Proof. Let A be an adversary in the real world. We show the existence of a simulator
SIM such that for any set of corrupted parties I and for all inputs, the output of all
parties and the adversary A in an execution of the real protocol with A is identical to
the outputs in an execution with SIM in the ideal model. We separately deal with the
case that the dealer is honest and the case that the dealer is corrupted. Loosely speaking,
when the dealer is honest we show that the honest parties always accept the dealt shares,



A Full Proof of the BGW Protocol 93

and in particular that the adversary cannot falsely generate complaints that will interfere
with the result. In the case that the dealer is corrupted the proof is more involved and
consists of showing that if the dealer resolves complaints so that at least n − t parties
broadcast consistent, then this implies that at the end of the protocol all honest parties
hold consistent shares, as required. �

Case 1: The Dealer is Honest

In this case in an ideal execution, the dealer sends q(x) to the trusted party and each
honest party Pj receives q(α j ) from the trusted party, outputs it, and never outputs
⊥. Observe that none of the corrupted parties have input and so the adversary has no
influence on the output of the honest parties. We begin by showing that this always holds
in a real execution as well; i.e., in a real execution each honest party Pj always outputs
q(α j ) and never outputs ⊥.

Since the dealer is honest, it chooses a bivariate polynomial as described in the protocol
and sends each party the prescribed values. In this case, an honest party Pj always outputs
either f j (0) = S(0, α j ) = q(α j ) or ⊥. This is due to the fact that its polynomial f j (x)
will never be changed, because it can only be changed if a reveal( j, f ′

j (x), g j (y))
message is sent with f ′

j (x) = f j (x). However, an honest dealer never does this. Thus,
it remains to show that Pj never outputs ⊥. In order to see this, recall that an honest
party outputs f j (0) and not ⊥ if and only if at least n − t parties broadcast consistent.
Thus, it suffices to show that all honest parties broadcast consistent. An honest party
Pj broadcasts consistent if and only if the following conditions hold:

1. The dealer resolves all conflicts: Whenever a pair of complaint messages
complaint(k, �, u1, v1) and complaint(�, k, u2, v2) were broadcast such that
u1 = v2 and v1 = u2 for some k and �, the dealer broadcasts a reveal mes-
sage for � or k or both in Step 4a (or else Pj would not broadcast consistent as
specified in Step 5a).

2. The dealer did not broadcast reveal( j, f j (x), g j (y)). (See Step 5(b)i.)
3. Every revealed polynomial fits Pj ’s polynomials: Whenever the dealer broadcasts

a message reveal(k, fk(x), gk(y)), it holds that gk(α j ) = f j (αk) and fk(α j ) =
g j (αk). (See Step 5(b)ii.)

Since the dealer is honest, whenever there is a conflict between two parties, the dealer
will broadcast a reveal message. This is due to the fact that if u1 = v2 or u2 = v1, it
cannot hold that both (u1, v1) and (u2, v2) are consistent with S(x, y) (i.e., it cannot be
that u1 = S(α�, αk) and v1 = S(αk, α�) as well as u2 = S(αk, α�) and v2 = S(α�, αk)).
Thus, by its instructions, the dealer will broadcast at least one reveal message, and so
condition (1) holds. In addition, it is immediate that since the dealer is honest, condition
(3) also holds. Finally, the dealer broadcasts a reveal( j, f j (x), g j (y)) message if and
only if Pj sends a complaint with an incorrect pair (u, v); i.e., Pj broadcast ( j, k, u, v)

where either u = f j (αk) or v = g j (αk). However, since both the dealer and Pj are
honest, any complaint sent by Pj will be with the correct (u, v) values. Thus, the dealer
will not broadcast a reveal of Pj ’s polynomials and condition (2) also holds.Weconclude
that every honest party broadcasts consistent and so all honest parties Pj output f j (0) =
q(α j ), as required.
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Since the outputs of the honest parties are fully determined by the honest dealer’s
input, it remains to show the existence of an ideal model adversary/simulator SIM that
can generate the view of the adversaryA in an execution of the real protocol, given only
the outputs q(αi ) of the corrupted parties Pi for every i ∈ I .

The Simulator SIM
• SIM invokes A on the auxiliary input z.
• Interaction with the trusted party: SIM receives the output values {q(αi )}i∈I .
• Generating the view of the corrupted parties: SIM chooses any polynomial q ′(x)
under the constraint that q ′(αi ) = q(αi ) for every i ∈ I . Then, SIM runs all honest
parties (including the honest dealer) in an interaction with A, with the dealer input
polynomial as q ′(x).

• SIM outputs whatever A outputs, and halts.

We now prove that the distribution generated by SIM is as required. First, observe
that all that the corrupted parties see in the simulation by SIM is determined by the
adversary and the sequence of polynomial pairs {( fi (x), gi (y))}i∈I , where fi (x) and
gi (y) are selected based on q ′(x), as described in the protocol. In order to see this, note
that the only information sent after Round 1 are parties’ complaints, complaint resolu-
tions, and consistentmessages. However, when the dealer is honest any complaint sent
by an honest party Pj can only be due it receiving incorrect (ui , vi ) from a corrupted
party Pi (i.e., where either ui = f j (αi ) or vi = g j (αi ) or both). Such a complaint is
of the form ( j, i, f j (αi ), g j (αi )), which equals ( j, i, gi (α j ), fi (α j )) since the dealer is
honest, and so this complaint is determined by ( fi (x), gi (x)) where i ∈ I . In addition,
since the honest parties’ complaints always contain correct values, the dealer can only
send reveal messages reveal(i, fi (x), gi (x)) where i ∈ I ; once again this information
is already determined by the polynomial pairs of Round 1. Thus, all of the messages
sent by SIM in the simulation can be computed from the sequence {( fi (x), gi (y))}i∈I
only. Next, observe that the above is also true for a real protocol execution as well.
Thus, the only difference between the real and ideal executions is whether the sequence
{( fi (x), gi (y))}i∈I is based on the real polynomial q(x) or the simulator-chosen poly-
nomial q ′(x). However, by Claim 5.4 these distributions (i.e., {( fi (x), gi (y))}i∈I ) of are
identical). This completes the proof of the case that the dealer is honest.

Case 2: The Dealer is Corrupted

In this case, the adversary A controls the dealer. Briefly speaking, the simulator SIM
just plays the role of all honest parties. Recall that all actions of the parties, apart
from the dealer, are deterministic and that these parties have no inputs. If the simulated
execution is such that the parties output ⊥, the simulator sends an invalid polynomial
(say q(x) = x2t ) to the trusted party. Otherwise, the simulator uses the fact that it sees
all “shares” sent by A to honest parties in order to interpolate and find the polynomial
q(x), which it then sends to the trusted party computing the functionality. That is, here
the simulator invokes the trusted party after simulating an execution of the protocol. We
now formally describe the simulator:
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The Simulator SIM
1. SIM invokes A on its auxiliary input z.
2. SIM plays the role of all the n − |I | honest parties interacting withA, as specified

by the protocol, running until the end.
3. Let num be the number of (honest and corrupted) parties Pj that broadcast

consistent in the simulation:

(a) If num < n− t , then SIM sends the trusted party the polynomial q ′(x) = x2t

as the dealer input (this causes the trusted party to send ⊥ as output to all
parties in the ideal model).

(b) If num ≥ n − t , then SIM defines a degree-t polynomial q ′(x) as follows.
Let K ⊂ [n]\ I be the set of all honest parties that broadcast consistent in
the simulation. SIM finds the unique degree-t bivariate polynomial S that
is guaranteed to exist by Claim 5.3 for this set K (later we will show why
Claim 5.3 can be used). Then, SIM defines q ′(x) = S(0, x) and sends it to
the trusted party (we stress that q ′(x) is not necessarily equal to the polynomial
q(x) that the dealer—equivalently P1—receives as input).
SIM receives the output {q ′(αi )}i∈I of the corrupted parties from the trusted
party. (Since these values are already known to SIM, they are not used.
Nevertheless, SIM must send q ′(x) to the trusted party since this results in
the honest parties receiving their output from FV SS .)

4. SIM halts and outputs whatever A outputs.

Observe that all parties, as well as the simulator, are deterministic since the only party
who tosses coins in the protocol is the honest dealer (where here the dealer is played by
A and we can assume thatA is deterministic because its auxiliary input can contain the
“best” random coins for its attack). Thus, the outputs of all parties are fully determined
both in the real execution of the protocol with A and in the ideal execution with SIM.
We therefore show that the outputs of the adversary and the parties in a real execution
with A are equal to the outputs in an ideal execution with SIM.

First, observe that the simulator plays the role of all the honest parties in an ideal
execution, following the exact protocol specification. Since the honest parties have no
input, the messages sent by the simulator in the ideal execution are exactly the same
as those sent by the honest parties in a real execution of the protocol. Thus, the value
that is output by A in a real execution equals the value that is output by A in the ideal
execution with SIM. It remains to show that the outputs of the honest parties are also
the same in the real and ideal executions. Let outputJ denote the outputs of the parties
Pj for all j ∈ J . We prove:

Claim 5.8. Let J = [n]\I be the set of indices of the honest parties. For every adversary
A controlling I including the dealer, every polynomial q(x) and every auxiliary input
z ∈ {0, 1}∗ for A, it holds that:

outputJ (REALπ,A(z),I (q(x), λ, . . . , λ))=outputJ (IDEALFV SS ,S(z),I (q(x), λ, . . . , λ)).
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Proof. Let �x = (q(x), λ, . . . , λ) be the vector of inputs.We separately analyze the case
that in the real execution some honest party outputs ⊥ and the case where no honest
party outputs ⊥.

Case 1: There exists a j ∈ J such that output j (REALπ,A(z),I (q(x), λ, . . . , λ)) = ⊥.We
show that in this case all the honest parties output⊥ in both the real and ideal executions.
Let j be such that output j (REALπ,A(z),I (�x)) = ⊥. By the protocol specification, an
honest party Pj outputs ⊥ (in the real world) if and only if it receives less than n − t
“consistent” messages over the broadcast channel. Since these messages are broadcast,
it holds that all the parties receive the same messages. Thus, if an honest Pj output ⊥
in the real execution, then each honest party received less than n − t such “consistent”
messages, and so every honest party outputs ⊥ (in the real execution).

We now claim that in the ideal execution, all honest parties also output ⊥. The output
of the honest parties in the ideal execution is determined by the trusted third party,
based on the input sent by SIM. It follows by the specification of SIM that all honest
parties output ⊥ if and only if SIM sends x2t to the trusted third party. As we have
mentioned, the simulator SIM follows the instructions of the honest parties exactly
in the simulation. Thus, if in a real execution with A less than n − t parties broadcast
consistent, then the same is also true in the simulationwithSIM. (We stress that exactly
the same messages are sent byA and the honest parties in a real protocol execution and
in the simulation withSIM.) Now, by the instructions ofSIM, if less than n−t parties
broadcast consistent, then num < n − t , and SIM sends q(x) = x2t to the trusted
party. We conclude that all honest parties output ⊥ in the ideal execution as well.

Case 2: For every j ∈ J it holds that output j (REALπ,A(z),I (�x)) = ⊥. By what we have
discussed above, this implies that in the simulation with SIM, at least n − t parties
broadcast consistent. Since n ≥ 3t + 1 this implies that at least 3t + 1 − t ≥ 2t + 1
parties broadcast consistent. Furthermore, since there are at most t corrupted parties,
we have that at least t + 1 honest parties broadcast consistent.

Recall that an honest party Pj broadcasts consistent if and only if the following
conditions hold (cf. the case of honest dealer):

1. The dealer resolves all conflicts (Step 5a of the protocol).
2. The dealer did not broadcast reveal( j, f j (x), g j (y)) (Step 5(b)i of the protocol).
3. Every revealed polynomial fits Pj ’s polynomials (Step 5(b)ii of the protocol).

Let K ⊂ [n] be the set of honest parties that broadcast consistent as in Step 3b of
SIM. For each of these parties the above conditions hold. Thus, for every i, j ∈ K
it holds that fi (α j ) = g j (αi ) and so Claim 5.3 can be applied. This implies that there
exists a unique bivariate polynomial S such that S(x, αk) = fk(x) and S(αk, y) = gk(y)
for every k ∈ K . Since S is unique, it also defines a unique polynomial q ′(x) = S(0, x).
Now, since SIM sends q ′(x) to the trusted party in an ideal execution, we have that all
honest parties Pj output q ′(α j ) in an ideal execution. We now prove that the same also
holds in a real protocol execution.
We stress that the polynomial q ′(x) is defined as a deterministic function of the

transcript of messages sent by A in a real or ideal execution. Furthermore, since the
execution is deterministic, the exact same polynomial q ′(x) is defined in both the real
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and ideal executions. It therefore remains to show that each honest party Pj outputs
q ′(α j ) in a real execution. We first observe that any honest party Pk for k ∈ K clearly
outputs q ′(αk). This follows from the fact that by the protocol description, each party Pi
that does not output⊥ outputs fi (0). Thus, each such Pk outputs fk(0). We have already
seen that q ′(x) is the unique polynomial that passes through the points (αk, fk(0)) and
thus q ′(αk) = fk(0) for every k ∈ K .
It remains to show that every honest party Pj for j /∈ K also outputs q ′(α j ); i.e.,

it remains to show that every honest party Pj who did not broadcast consistent also
outputs q ′(α j ). Let f ′

j (x) and g′
j (x) be the polynomials that Pj holds after the possible

replacement in Step 5(b)i of the protocol (note that these polynomials may be different
from the original polynomials that Pj received from the dealer at the first stage). We
stress that this party Pj did not broadcast consistent, and therefore we cannot rely on
the conditions above. However, for every party Pk (k ∈ K ) who broadcast consistent,
we are guaranteed that the polynomials fk(x) and gk(y) are consistent with the values
of the polynomials of Pj ; that is, it holds that fk(α j ) = g′

j (αk) and gk(α j ) = f ′
j (αk).

This follows from the fact that all conflicts are properly resolved (and so if they were
inconsistent then a reveal message must have been sent to make them consistent). This
implies that for t +1 points k ∈ K , it holds that f ′

j (αk) = S(αk, α j ), and so since f ′
j (x)

is a polynomial of degree t (by the truncation instruction; see the protocol specification)
it follows that f ′

j (x) = S(x, α j ) (because both are degree-t polynomials in x). Thus,
f ′
j (0) = S(0, α j ) and we have that Pj outputs S(0, α j ). This completes the proof

because q ′(α j ) = S(0, α j ), as described above. �
This completes the proof of Theorem 5.7. �

Efficiency We remark that in the case that no parties behavemaliciously in Protocol 5.6,
the protocol merely involves the dealer sending two polynomials to each party, and each
party sending two field elements to every other party. Specifically, if no party broadcasts
a complaint, then the protocol can conclude immediately after Round 3.

6. Multiplication in the Presence of Malicious Adversaries

6.1. High-Level Overview

In this section, we show how to securely compute shares of the product of shared values,
in the presence of a malicious adversary controlling any t < n/3 parties. We use the
simplification of the original multiplication protocol of Ben-Or et al. [7] that appears
in [19]. We start with a short overview of the simplification of Gennaro et al. [19] in the
semi-honest model, and then we show how to move to the malicious case.
Assume that the values on the input wires are a and b, respectively, and that each party

holds degree-t shares ai and bi . Recall that the values ai ·bi define a (non random) degree-
2t polynomial that hides a · b. The semi-honest multiplication protocol of Ben-Or et al.
[7] works by first rerandomizing this degree-2t polynomial, and then reducing its degree
to degree-t while preserving the constant term which equals a · b (see Sect. 4.3). Recall
also that the degree-reduction works by running the BGW protocol for a linear function,
where the first step involves each party sharing its input by a degree-t polynomial. In



98 G. Asharov, Y. Lindell

our case, the parties’ inputs are themselves shares of a degree-2t polynomial, and thus
each party “subshares” its share.
ThemethodofGennaro et al. [19] simplifies this protocol by replacing the twodifferent

stages of rerandomization and degree reduction with a single step. The simplification
is based on an observation that a specific linear combination of all the subshares of all
ai · bi defines a random degree-t polynomial that hides a · b (where the randomness of
the polynomial is derived from the randomness of the polynomials used to define the
subshares). Thus, the protocol involves first subsharing the share product values ai · bi ,
and then carrying out a local linear combination of the obtained subshares.
The main problem and difficulty that arises in the case of malicious adversaries is

that corrupted parties may not subshare the correct values ai · bi . We therefore need
a mechanism that forces the corrupted parties to distribute the correct values, without
revealing any information. Unfortunately, it is not possible to simply have the parties
VSS subshare their share products ai · bi and then use error correction to correct any
corrupt values. This is due to the fact that the shares ai ·bi lie on a degree-2t polynomial,
which in turn defines a Reed–Solomon code of parameters [n, 2t +1, n−2t]. For such a
code, it is possible to correct up to n−2t−1

2 errors (see Sect. 5.2); plugging in n = 3t + 1
we have that it is possible to correct up to t

2 errors. However, there are t corrupted
parties and so incorrect values supplied by more than half of them cannot be corrected.5

The BGW protocol therefore forces the parties to distribute correct values, using the
following steps:

1. The parties first distribute subshares of their input shares on each wire (rather
than the subshares of the product of their input shares) to all other parties in a
verifiable way. That is, each party Pi distributes subshares of ai and subshares of
bi . Observe that the input shares are points on degree-t polynomials. Thus, these
shares constitute a Reed–Solomon code with parameters [n, t+1, n− t] for which
it is possible to correct up to t errors. There is therefore enough redundancy to
correct errors, and so any incorrect values provided by corrupted parties can be
corrected. This operation is carried out using the Fsubshare

V SS functionality, described
in Sect. 6.4.

2. Next, each party distributes subshares of the product ai · bi . The protocol for
subsharing the product uses the separate subshares of ai and bi obtained in the
previous step, in order to verify that the correct product ai · bi is shared. Stated
differently, this step involves a protocol for verifying that a party distributes shares
of ai ·bi (via a degree-t polynomial), given shares of ai and shares of bi (via degree-
t polynomials). This step is carried out using the Fmult

V SS functionality, described in
Sect. 6.6. In order to implement this step, we introduce a new functionality called
Feval in Sect. 6.5.

5We remark that in the case of t < n/4 (i.e., n ≥ 4t + 1), the parties can correct errors directly on degree-
2t polynomials. Therefore, the parties can distribute subshares of the products ai · bi , and correct errors on
these shares using (a variant of) the Fsubshare

V SS functionality directly. Thus, overall, the case of t < n/4 is

significantly simpler, since there is no need for the Fmult
V SS subprotocol that was mentioned in the second step

described above. A full specification of this simplification is described in “Appendix”; the description assumes
familiarity with the material appearing in Sects. 6.2, 6.3, 6.4 and 6.7, and therefore should be read after these
sections.
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3. Finally, after the previous step, all parties verifiably hold (degree-t) subshares of
all the products ai ·bi of every party. As described above, shares of the product a ·b
can be obtained by computing a linear function of the subshares obtained in the
previous step. Thus, each party just needs to carry out a local computation on the
subshares obtained. This is described in Sect. 6.7.

Before we show how to securely compute the Fsubshare
V SS functionality, we present

relevant preliminaries in Sects. 6.2 and 6.3. Specifically, in Sect. 6.2 we introduce the
notion of corruption-aware functionalities. These are functionalities whose behavior
may depend on which parties are corrupted. We use this extension of standard function-
alities in order to prove the BGW protocol in a modular fashion. Next, in Sect. 6.3 we
present a subprotocol for securely computing matrix multiplication over a shared vector.
This will be used in the protocol for securely computing Fsubshare

V SS , which appears in
Sect. 6.4.

6.2. Corruption-Aware Functionalities and Their Use

In the standard definition of secure computation (see Sect. 2.2 and [8,20]) the function-
ality defines the desired input/output behavior of the computation. As such, it merely
receives inputs from the parties and provides outputs. However, in some cases, we wish
to provide the corrupted parties, equivalently the adversary, with some additional power
over the honest parties.
In order to see why we wish to do this, consider the input-sharing phase of the BGW

protocol, where each party distributes its input using secret sharing. This is achieved
by running n executions of VSS where in the i th copy party Pi plays the dealer with
a polynomial qi (x) defining its input. The question that arises now is what security is
obtained when running these VSS invocations in parallel, and in particular we need to
define the ideal functionality that such parallel VSS executions fulfills. Intuitively, the
security of the VSS protocol guarantees that all shared values are independent. Thus,
one could attempt to define the “parallel VSS” functionality as follows:

FUNCTIONALITY 6.1 (Parallel VSS (naive attempt)—Fn
V SS).

1. The parallel Fn
V SS functionality receives inputs q1(x), . . . , qn(x) from parties P1, . . . , Pn ,

respectively. If Pi did not send a polynomial qi (x), or deg(qi ) > t , then Fn
V SS defines

qi (x) = ⊥ for every x .
2. For every i = 1, . . . , n, the functionality Fn

V SS sends (q1(αi ), . . . , qn(αi )) to party Pi .

This is the naive extension of the single FV SS functionality (Functionality 5.5), and
at first sight seems to be the appropriate ideal functionality for a protocol consisting of
n parallel executions of Protocol 5.6 for computing FV SS . However, we now show that
this protocol does not securely compute the parallel VSS functionality as defined.
Recall that the adversary is rushing, whichmeans that it can receive the honest parties’

messages in a given round before sending its own. In this specific setting, the adversary
can see the corrupted parties’ shares of the honest parties’ polynomials before it chooses
the corrupted parties’ input polynomials (since these shares of the honest parties’ poly-
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nomials are all sent to the corrupted parties in the first round of Protocol 5.6). Thus, the
adversary can choose the corrupted parties’ polynomials in a way that is related to the
honest parties’ polynomials. To be specific, let Pj be an honest party with input q j (x),
and let Pi be a corrupted party. Then, the adversary can first see Pi ’s share q j (αi ), and
then choose qi (x) so that qi (αi ) = q j (αi ), for example. In contrast, the adversary in the
ideal model with Fn

V SS cannot achieve this effect since it receives no information about
the honest parties’ polynomials before all input polynomials, including those of the cor-
rupted parties, are sent to the trusted party. Thus, n parallel executions of Protocol 5.6
does not securely compute Fn

V SS as defined in Functionality 6.1.
Despite the above, we stress that in many cases (and, in particular, in the application

of parallel VSS in the BGW protocol) this adversarial capability is of no real concern.
Intuitively, this is due to the fact that q j (αi ) is actually independent of the constant term
q j (0) and so making qi (αi ) depend on q j (αi ) is of no consequence in this application.
Nevertheless, the adversary can set qi (x) in this way in the real protocol (due to rushing),
but cannot do so in the ideal model with functionality Fn

V SS (as in Functionality 6.1).
Therefore, the protocol consisting of n parallel calls to FV SS does not securely compute
the Fn

V SS functionality. Thus, one has to either modify the protocol or change the func-
tionality definition, or both. Observe that the fact that in some applications we don’t care
about this adversarial capability is immaterial: The problem is that the protocol does not
securely compute Functionality 6.1 and thus something has to be changed.
One possible modification to both the protocol and functionality is to run the FV SS

executions sequentially in the real protocol and define an ideal (reactive) functionality
where each party Pi first receives its shares q1(αi ), . . . , qi−1(αi ) from the previous VSS
invocations before sending its own input polynomial qi (x). This solves the aforemen-
tioned problem since the ideal (reactive) functionality allows each party to make its
polynomial depend on shares previously received. However, this results in a protocol
that is not constant round, which is a significant disadvantage.
Another possible modification is to leave the protocol unmodified (with n parallel

calls to FV SS), and change the ideal functionality as follows. First, the honest parties
send their input polynomials q j (x) (for every j /∈ I ). Next, the corrupted parties receive
their shares on these polynomials (i.e., q j (αi ) for every j /∈ I and i ∈ I ), and finally the
corrupted parties send their polynomials qi (x) (for every i ∈ I ) to the trusted party. This
reactive functionality captures the capability of the adversary to choose the corrupted
parties’ polynomials based on the shares q j (αi ) that it views on the honest parties’
polynomials, but nothing more. Formally, we define:
This modification to the definition of Fn

V SS solves our problem. However, the stan-
dard definition of security, as referred in Sect. 2.2, does not allow us to define a func-
tionality in this way. This is due to the fact that the standard formalism does not dis-
tinguish between honest and malicious parties. Rather, the functionality is supposed
to receive inputs from each honest and corrupt party in the same way, and in par-
ticular does not “know” which parties are corrupted. We therefore augment the stan-
dard formalism to allow corruption-aware functionalities (CA functionalities) that
receive the set I of the identities of the corrupted parties as additional auxiliary
input when invoked. We proceed by describing the changes required to the standard
(stand-alone) definition of security of Sect. 2.2 in order to incorporate corruption
awareness.
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FUNCTIONALITY 6.2 (Corruption-aware parallel VSS—Fn
V SS).

Fn
V SS receives a set of indices I ⊆ [n] and works as follows:
1. Fn

V SS receives an input polynomial q j (x) from every honest Pj ( j /∈ I ).
2. Fn

V SS sends the (ideal model) adversary the corrupted parties’ shares {q j (αi )} j /∈I for every
i ∈ I , based on the honest parties’ polynomials.

3. Fn
V SS receives from the (ideal model) adversary an input polynomial qi (x) for every i ∈ I .

4. Fn
V SS sends the shares (q1(α j ), . . . , qn(α j )) to every party Pj ( j = 1, . . . , n). If

deg(qi (x)) > t then ⊥ is sent in place of qi (α j ).
6

Definition The formal definition of security for a corruption-aware functionality is the
same as Definition 2.3 with the sole change being that f is a function of the subset of
corrupted parties and the inputs; formally, f : 2[n] × ({0, 1}∗)n → ({0, 1}∗)n . We denote
by f I (�x) = f (I, �x) the function f with the set of corrupted parties fixed to I ⊂ [n].
Then, we require that for every subset I (of cardinality at most t), the distribution
IDEAL f I ,S(z),I (�x) is distributed identically to REAL

π,A(z),I (�x). We stress that in the ideal
model, the subset I that is given to a corruption-aware functionality as auxiliary input
(upon initialization) is the same subset I of corrupted parties that the adversary controls.
Moreover, the functionality receives this subset I at the very start of the ideal process,
in the exact same way as the (ideal model) adversary receives the auxiliary input z,
the honest parties receive their inputs, and so on. We also stress that the honest parties
(both in the ideal and real models) do not receive the set I , since this is something that
is of course not known in reality (and so the security notion would be nonsensical).
Formally,

Definition 6.3. Let f : 2[n] × ({0, 1}∗)n → ({0, 1}∗)n be a corruption-aware n-ary
functionality and let π be a protocol. We say that π is t-secure for f if for every
probabilistic adversary A in the real model, there exists a probabilistic adversary S of
comparable complexity in the ideal model, such that for every I ⊂ [n] of cardinality at
most t , every �x ∈ ({0, 1}∗)n where |x1| = · · · = |xn|, and every z ∈ {0, 1}∗, it holds
that: {IDEAL f I ,S(z),I (�x)} ≡ {REAL

π,A(z),I (�x)}.

We stress that since we only consider static adversaries here, the set I is fully deter-
mined before the execution begins, and thus this is well defined.
This idea of having the behavior of the functionality depend on the adversary and/or the

identities of the corrupted parties was introduced by Canetti [9] in order to provide more
flexibility in defining functionalities, and is heavily used in the universal composability
framework.7

6It actually suffices to send the shares (q1(α j ), . . . , qn(α j )) only to parties Pj for j /∈ I since all other
parties have already received these values. Nevertheless, we present it in this way for the sake of clarity.

7In the UC framework, the adversary can communicate directly with the ideal functionality and it is
mandated that the adversary notifies the ideal functionality (i.e., trusted party) of the identities of all corrupted
parties. Furthermore, ideal functionalities often utilize this information (i.e., they are corruption aware) since
the way that the universal composability framework is defined typically requires functionalities to treat the
inputs of honest and corrupted parties differently. See Section 6 of the full version of [9] for details.
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The Hybrid Model and Modular Composition In the hybrid model, where the parties
have oracle tapes for some ideal functionality (trusted party), in addition to regular com-
munication tapes, the sameconvention for corruption awareness is followedas in the ideal
model. Specifically, an execution in the GI -hybrid model, denoted HYBRID

GI
f,A(z),I (�x), is

parameterized by the set I of corrupted parties, and this set I is given to functionality
G upon initialization of the system just like the auxiliary input is given to the adversary.
As mentioned above, I is fixed ahead of time and so this is well defined. We stress again
that the honest parties do not know the set of indices I , and real messages sent by honest
parties and their input to the ideal functionality are independent of I .
In more detail, in an ideal execution the behavior of the trusted party depends heavily

on the set of corrupted parties I , and in some sense, its exact code is fixed only after we
determine the set of corrupted parties I . In contrast, in a real execution the specification
of the protocol is independent of the set I , and the code that the honest parties execute is
fixed ahead of time and is the same one for any set of corrupted parties I . An execution in
the hybrid model is something in between: the code of the honest parties is independent
of I and is fixed ahead of time (like in the real model); however, the code of the aiding
functionality is fixed only after we set I (as in the ideal model).

Throughout our proof of security of theBGWprotocol formalicious adversaries, some
of the functionalities we use are corruption aware and some are not; in particular, as we
will describe, our final functionality for secure computation with the BGW protocol is
not corruption aware. In order to be consistent with respect to the definition, we work
with corruption-aware functionalities only and remark that any ordinary functionality
f (that is not corruption aware) can be rewritten as a fictitiously corruption-aware
functionality f I where the functionality just ignores the auxiliary input I . An important
observation is that a protocol that securely computes this fictitiously corruption-aware
functionality, securely computes the original functionality in the standard model (i.e.,
when the functionality does not receive the set I as an auxiliary input). This holds also
for protocols that use corruption-aware functionalities as subprotocols (as we will see,
this is the case with the final BGW protocol). This observation relies on the fact that a
protocol is always corruption unaware, and that the simulator knows the set I in both
the corruption aware and the standard models. Thus, the simulator is able to simulate the
corruption-aware subprotocol, even in the standard model. Indeed, since the corruption-
aware functionality f I ignores the set I , and since the simulator knows I in both models,
the two ensembles IDEAL f I ,S(z),I (�x) (in the corruption-awaremodel) and IDEAL f,S(z),I (�x)
(in the standard model) are identical. Due to this observation, we are able to conclude
that the resulting BGW protocol securely computes any standard (not corruption-aware)
functionality in the standard model, even though it uses corruption-aware subprotocols.

Regarding composition, the sequentialmodular composition theorems of [8,20] do not
consider corruption-aware functionalities. Nevertheless, it is straightforward to see that
the proofs hold also for this case, with no changewhatsoever. Thus, themethod described
in Sect. 2.3 for proving security in a modular way can be used with corruption-aware
functionalities as well.

Discussion The augmentation of the standard definition with corruption-aware func-
tionalities enables more flexibility in protocol design. Specifically, it is possible to model
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the situation where corrupted parties can learn more than just the specified output, or can
obtain some other “preferential treatment” (like in the case of parallel VSS where they
are able to set their input polynomials as a partial function of the honest parties’ input).
In some sense, this implies a weaker security guarantee than in the case where all parties
(honest and corrupted) receive the same treatment. However, since the ideal functionality
is specified so that the “weakness” is explicitly stated, the adversary’s advantage is well
defined.
This approach is not foreign to modern cryptography and has been used before. For

example, secure encryption is defined while allowing the adversary a negligible prob-
ability of learning information about the plaintext. A more significant example is the
case of two-party secure computation. In this case, the ideal model is defined so that the
corrupted party explicitly receives the output first and can then decide whether or not
the honest party also receives output. This is weaker than an ideal model in which both
parties receive output and so “complete fairness” is guaranteed. However, since com-
plete fairness cannot be achieved (in general) without an honest majority, this weaker
ideal model is used, and the security weakness is explicitly modeled.
In the context of this paper, we use corruption awareness in order to enable a modular

analysis of the BGW protocol. In particular, for some of the subprotocols used in the
BGW protocol, it seems hard to define an appropriate ideal functionality that is not cor-
ruption aware. Nevertheless, our final result regarding the BGW protocol is for standard
functionalities. That is, when we state that every functionality can be securely computed
by BGW (with the appropriate corruption threshold), we refer to regular functionalities
and not to corruption-aware ones.
The reason why the final BGW protocol works for corruption unaware functionalities

only is due to the fact that the protocol emulates the computation of a circuit that
computes the desired functionality. However, not every corruption-aware functionality
can be computed by a circuit that receives inputs from the parties only, without also
having the identities of the set of corrupted parties as auxiliary input. Since the real
protocol is never allowed to be “corruption aware,” this means that such functionalities
cannot be realized by the BGW protocol. We remark that this is in fact inherent, and
there exist corruption-aware functionalities that cannot be securely computed by any
protocol. In particular, consider the functionality that just announces to all parties who
is corrupted. Since a corrupted party may behave like an honest one, it is impossible to
securely compute such a functionality.
Finally, we note that since we already use corruption awareness anyhow in our def-

initions of functionalities (for the sake of feasibility and/or efficiency), we sometimes
also use it in order to simplify the definition of a functionality. For example, consider
a secret-sharing reconstruction functionality. As we have described in Sect. 5.2, when
t < n/3, it is possible to use Reed–Solomon error correction to reconstruct the secret,
even when up to t incorrect shares are received. Thus, an ideal functionality for recon-
struction can be formally defined by having the trusted party run the Reed–Solomon
error correction procedure. Alternatively, we can define the ideal functionality so that it
receive shares from the honest parties only, and reconstructs the secret based on these
shares only (which are guaranteed to be correct). This latter formulation is corruption
aware, and has the advantage of making it clear that the adversary cannot influence the
outcome of the reconstruction in any way.
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Convention For the sake of clarity, we will describe (corruption-aware) functionalities
as having direct communication with the (ideal) adversary. In particular, the corrupted
parties will not send input or receive output, and all such communication will be between
the adversary and functionality. This is equivalent to having the corrupted parties send
input as specified by the adversary.
Moreover, we usually omit the set of corrupted parties I in the notation of a corruption-

aware functionality (i.e., we write G instead of GI ). However, in the definition of any
corruption-aware functionality, we add an explicit note that the functionality receives
as auxiliary input the set of corrupted parties I . In addition, for any protocol in the
corruption-aware hybrid model, we add an “aiding ideal functionality initialization”
step, to explicitly emphasize that the aiding ideal functionalities receive the set I upon
initialization.

6.3. Matrix Multiplication in the Presence of Malicious Adversaries

We begin by showing how to securely compute the matrix multiplication functionality,
that maps the input vector �x to �x · A for a fixed matrix A, where the i th party holds xi
and all parties receive the entire vector �x · A as output. Beyond being of interest in its
own right, this serves as a good warm-up to secure computation in the malicious setting.
In addition, we will explicitly use this as a subprotocol in the computation of Fsubshare

V SS
in Sect. 6.4.
The basic matrix multiplication functionality is defined by a matrix A ∈ F

n×m ,
and the aim of the parties is to securely compute the length-m vector (y1, . . . , ym) =
(x1, . . . , xn) · A, where x1, . . . , xn ∈ F are their respective inputs. (Indeed, the case
m = 1 is also of interest, but we shall need m = 2t .) We will actually need to define
something more involved, but we begin by explaining how one can securely compute
the basic functionality. Note first that matrix multiplication is a linear functionality
(i.e., it can be computed by circuits containing only addition and multiplication-by-
constant gates). Thus, we can use the same methodology as was described at the end
of Sect. 4.2 for privately computing any linear functionality, in the semi-honest model.
Specifically, the inputs are first shared. Next, each party locally computes the linear
functionality on the shares it received. Finally, the parties send their resulting shares
in order to reconstruct the output. The difference here in the malicious setting is sim-
ply that the verifiable secret-sharing functionality is used for sharing the inputs, and
Reed–Solomon decoding (as described in Sect. 5.2) is used for reconstructing the out-
put. Thus, the basic matrix multiplication functionality can be securely computed as
follows:

1. Input-sharing phaseEach party Pi chooses a randompolynomial gi (x) under the con-
straint that gi (0) = xi . Then, Pi shares its polynomial gi (x)using the ideal FV SS func-
tionality. After all polynomials are shared, party Pi has the shares g1(αi ), . . . , gn(αi ).

2. Matrix multiplication emulation phase Given the shares from the previous step, each
party computes its Shamir-share of the output vector of the matrix multiplication by
computing �yi = (g1(αi ), . . . , gn(αi )) · A. Note that:
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�yi = (g1(αi ), . . . , gn(αi )) · A = [g1(αi ), g2(αi ), . . . , gn(αi )] ·

⎡

⎢⎢
⎢
⎢
⎣

a1,1 . . . a1,m

a2,1 . . . a2,m
...

...

an,1 . . . an,m

⎤

⎥⎥
⎥
⎥
⎦

and so the j th element in �yi equals ∑n
�=1 g�(αi ) · a�, j . Denoting the j th element

in �yi by yij , we have that y1j , . . . , y
n
j are Shamir-shares of the j th element of �y =

(g1(0), . . . , gn(0)) · A.
3. Output reconstruction phase:

(a) Each party Pi sends its vector �yi to all other parties.
(b) Each party Pi reconstructs the secrets from all the shares received, thereby

obtaining �y = (g1(0), . . . , gn(0)) · A. This step involves running (local) error
correction on the shares, in order to neutralize any incorrect shares sent by the
malicious parties. Observe that the vectors sent in the protocol constitute the
rows in the matrix

⎡

⎢⎢
⎢⎢
⎣

← �y1 →
← �y2 →

...

← �yn →

⎤

⎥⎥
⎥⎥
⎦

=

⎡

⎢⎢
⎢⎢
⎣

∑n
�=1 g�(α1) · a�,1 · · · ∑n

�=1 g�(α1) · a�,m
∑n

�=1 g�(α2) · a�,1 · · · ∑n
�=1 g�(α2) · a�,m

...
...

∑n
�=1 g�(αn) · a�,1 · · · ∑n

�=1 g�(αn) · a�,m

⎤

⎥⎥
⎥⎥
⎦

and the j th column of the matrix constitutes Shamir-shares on the polynomial
with constant term

∑n
�=1 g�(0) · a j,�, which is the j th element in the output.

Thus, Reed–Solomon error correction can be applied to the columns in order
to correct any incorrect shares and obtain the correct output.

The above protocol computes the correct output: The use of FV SS in the first step prevents
any malicious corrupted party from sharing an invalid polynomial, while the use of error
correction in the last step ensures that the corrupted parties cannot adversely influence
the output.
However, as we have mentioned, we need matrix multiplication in order to secure

compute the Fsubshare
V SS functionality in Sect. 6.4. In this case, the functionality that is

needed is a little more involved than basic matrix multiplication. First, instead of each
party Pi inputting a value xi , we need its input to be a degree-t polynomial gi (x) and
the constant term gi (0) takes the place of xi .8 Next, in addition to obtaining the result
�y = (g1(0), . . . , gn(0)) · A of the matrix multiplication, each party Pi also outputs the
shares g1(αi ), . . . , gn(αi ) that it received on the input polynomials of the parties. Based
on the above, one could define the functionality as

F A
mat (g1, . . . , gn) =

( (�y, {g�(α1)}n�=1

)
,
(�y, {g�(α2)}n�=1

)
. . . ,

(�y, {g�(αn)}n�=1

))
,

8This is needed because in Fsubshare
V SS the parties need to output gi (x) and so need to know it. It would be

possible to have the functionality choose gi (x) and provide it in the output, but then exactly the same issue
would arise. This is explained in more detail in the next paragraph.



106 G. Asharov, Y. Lindell

where �y = (g1(0), . . . , gn(0)) · A. Although this looks like a very minor difference,
as we shall see below, it significantly complicates things. In particular, we will need to
define a corruption-aware variant of this functionality.
We now explain why inputting polynomials g1(x), . . . , gn(x) rather than values

x1, . . . , xn (and likewise outputting the shares) makes a difference. In the protocol
that we described above for matrix multiplication, each party Pi sends its shares �yi
of the output. Now, the vectors �y1, . . . , �yn are fully determined by the input polyno-
mials g1(x), . . . , gn(x). However, in the ideal execution, the simulator only receives a
subset of the shares and cannot simulate all of them. (Note that the simulator cannot
generate random shares since the �yi vectors are fully determined by the input.) To be
concrete, consider the case that only party P1 is corrupted. In this case, the ideal adver-
sary receives as output �y = (g1(0), . . . , gn(0)) · A and the shares g1(α1), . . . , gn(α1). In
contrast, the real adversary sees all of the vectors �y2, . . . , �yn sent by the honest parties
in the protocol. However, these vectors (or messages) are a deterministic function of the
input polynomials g1(x), . . . , gn(x) and of the fixed matrix A. Thus, the simulator in
the ideal model must be able to generate the exact messages sent by the honest parties
(recall that the distinguisher knows all of the inputs and outputs and so can verify that the
output transcript is truly consistent with the inputs). But, it is impossible for a simulator
who is given only �y and the shares g1(α1), . . . , gn(α1) to generate these exact messages,
since it doesn’t have enough information. In an extreme example, consider the case that
m = n, the matrix A is the identity matrix, and the honest parties’ polynomials are ran-
dom. In this case, �yi = (g1(αi ), . . . , gn(αi )). By the properties of random polynomials,
the simulator cannot generate �yi for i = 1 given only �y = (g1(0), . . . , gn(0)), the shares
(g1(α1), . . . , gn(α1)) and the polynomial g1(x).
One solution to the above is to modify the protocol by somehow adding random-

ness, thereby making the �yi vectors not a deterministic function of the inputs. However,
this would add complexity to the protocol and turns out to be unnecessary. Specifi-
cally, we only construct this protocol for its use in securely computing Fsubshare

V SS , and
the security of the protocol for computing Fsubshare

V SS is maintained even if the adver-
sary explicitly learns the vector of m polynomials �Y (x) = (Y1(x), . . . , Ym(x)) =
(g1(x), . . . , gn(x)) · A. (Denoting the j th column of A by (a1, j , . . . , an, j )

T , we have
that Y j (x) = ∑n

�=1 g�(x) · a�, j .) We therefore modify the functionality definition so
that the adversary receives �Y (x), thereby making it corruption aware (observe that the
basic output (g1(0), . . . , gn(0)) · A is given by �Y (0)). Importantly, given this additional
information, it is possible to simulate the protocol based on the methodology described
above (VSS sharing, local computation, and Reed–Solomon reconstruction), and prove
its security.
Before formally defining the F A

mat functionality, we remark that we also use corruption
awareness in order to deal with the fact that the first step of the protocol for computing
F A
mat involves running parallel VSS invocations, one for each party to distribute shares

of its input polynomial. As we described in Sect. 6.2 this enables the adversary to choose
the corrupted parties’ polynomials gi (x) (for i ∈ I ) after seeing the corrupted parties’
shares on the honest parties’ polynomials (i.e., g j (αi ) for every j /∈ I and i ∈ I ). We
therefore model this capability in the functionality definition.
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FUNCTIONALITY 6.4 (Functionality FA
mat for matrix multiplication, with A ∈ F

n×m).
The F A

mat -functionality receives as input a set of indices I ⊆ [n] and works as follows:
1. F A

mat receives the inputs of the honest parties {g j (x)} j /∈I ; if a polynomial g j (x) is not

received or its degree is greater than t , then F A
mat resets g j (x) = 0.

2. F A
mat sends shares {g j (αi )} j /∈I ;i∈I to the (ideal) adversary.

3. F A
mat receives the corrupted parties’ polynomials {gi (x)}i∈I from the (ideal) adversary; if a

polynomial gi (x) is not received or its degree is greater than t , then F A
mat resets gi (x) = 0.

4. F A
mat computes �Y (x) = (Y1(x), . . . , Ym (x)) = (g1(x), . . . , gn(x)) · A.

5. (a) For every j /∈ I , functionality F A
mat sends party Pj the entire length-m vector �y = �Y (0),

together with Pj ’s shares (g1(α j ), . . . , gn(α j )) on the input polynomials.

(b) In addition, functionality F A
mat sends the (ideal) adversary its output: the vector of poly-

nomials �Y (x), and the corrupted parties’ outputs (�y together with (g1(αi ), . . . , gn(αi )),
for every i ∈ I ).

Wehave already described the protocol intended to securely compute Functionality 6.4
and motivated its security. We therefore proceed directly to the formal description of the
protocol (see Protocol 6.5) and its proof of security.We recall that since all our analysis is
performed in the corruption-awaremodel,wedescribe the functionality in the corruption-
aware hybrid model. Thus, although the FV SS functionality (Functionality 5.5) is a
standard functionality, we refer to it as a “fictitiously corruption-aware” functionality,
as described in Sect. 6.2.
The figure below illustrates Step 5 of Protocol 6.5. Each party receives a vector from

every other party. These vectors (placed as rows) all form a matrix, whose columns are
at most distance t from codewords who define the output.

Theorem 6.6. Let t < n/3. Then, Protocol 6.5 is t-secure for the F A
mat functionality

in the FV SS-hybrid model, in the presence of a static malicious adversary.

Proof. We begin by describing the simulator S. The simulator S interacts externally
with the trusted party computing F A

mat , and internally invokes the (hybrid model) adver-
sary A, hence simulating an execution of Protocol 6.5 for A. As such, S has external
communicationwith the trusted party computing F A

mat , and internal communicationwith
the real adversaryA. As part of the internal communication withA, the simulator hands
A messages that A expects to see from the honest parties in the protocol execution. In
addition, S simulates the interaction of A with the ideal functionality FV SS and hands
it the messages it expects to receives from FV SS in Protocol 6.5. S works as follows:

1. S internally invokes A with the auxiliary input z.
2. External interaction with Functionality 6.4 (Step 2): After the honest parties send

their inputs to the trusted party computing F A
mat , the simulator S receives shares

{g j (αi )} j ∈I,i∈I on its (external) incoming communication tape from F A
mat .

3. Internal simulation of Steps 1 and 2 in Protocol 6.5: S internally simulates the ideal
Fn
V SS invocation, as follows:
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PROTOCOL 6.5 (Securely computing FA
mat in the FVSS-hybrid model).

• Inputs: Each party Pi holds a polynomial gi (x).
• Common input: A field description F, n distinct nonzero elements α1, . . . , αn ∈ F, and a

matrix A ∈ F
n×m .

• Aiding ideal functionality initialization: Upon invocation, the trusted party computing the
corruption-aware parallel VSS functionality Fn

V SS (i.e., Functionality 6.2) is given the set of
corrupted parties I .

• The protocol:

1. Each party Pi checks that its input polynomial is of degree-t ; if not, it resets gi (x) = 0.
It then sends its polynomial gi (x) to Fn

V SS as its private input.
2. Each party Pi receives the values g1(αi ), . . . , gn(αi ) as output from Fn

V SS . If any value
equals ⊥, then Pi replaces it with 0.

3. Denote �xi = (g1(αi ), . . . , gn(αi )). Then, each party Pi locally computes �yi =
�xi · A (equivalently, for every k = 1, . . . ,m, each Pi computes Yk (αi ) =∑n

�=1 g�(αi ) · a�,k where (a1,k , . . . , an,k )
T is the kth column of A, and stores

�yi = (Y1(αi ), . . . , Ym (αi ))).
4. Each party Pi sends �yi to every Pj (1 ≤ j ≤ n).

5. For every j = 1, . . . , n, denote the vector received by Pi from Pj by �̂Y (α j ) =
(Ŷ1(α j ), . . . , Ŷm (α j )). (If any value is missing, it replaces it with 0. We stress that
different parties may hold different vectors if a party is corrupted.) Each Pi works as
follows:

− For every k = 1, . . . ,m, party Pi locally runs the Reed–Solomon decoding pro-
cedure (withd = 2t+1) on thepossibly corrupted codeword (Ŷk (α1), . . . , Ŷk (αn))

to get the codeword (Yk (α1), . . . , Yk (αn)); see Fig. 1. It then reconstructs the poly-
nomial Yk (x) and computes yk = Yk (0).

• Output: Pi outputs (y1, . . . , ym ) as well as the shares g1(αi ), . . . , gn(αi ).

Fig. 1. The vectors received by Pi form a matrix; error correction is run on the columns .

(a) S simulates Step 2 of Fn
V SS and hands the adversaryA the shares {g j (αi )} j /∈I ;i∈I

it expects to receive (where the g j (αi ) values are those received from F A
mat above).

(b) S simulates Step 3 of Fn
V SS and receives from A the polynomials {gi (x)}i∈I that

A sends as the corrupted parties’ inputs to Fn
V SS . If deg(gi (x)) > t , then S

replaces it with the constant polynomial gi (x) = 0.
(c) S simulates Step 4 of Fn

V SS and internally hands A the outputs {(g1(αi ), . . . ,

gn(αi ))}i∈I ; if any polynomial gk(x) is such that deg(gk(x)) > t , then ⊥ is
written instead of gk(αi ).

4. External interaction with Functionality 6.4 (Step 3): S externally sends the trusted
party computing F A

mat the polynomials {gi (x)}i∈I as the inputs of the corrupted
parties.
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5. External interaction with Functionality 6.4 (Step 5): At this point, the functionality
F A
mat has all the parties’ inputs, and so it computes the vector of polynomials �Y (x) =

(g1(x), . . . , gn(x)) · A, and S receives back the following output from F A
mat :

(a) The vector of polynomials �Y (x) = (g1(x), . . . , gn(x)) · A,
(b) The output vector �y = (y1, . . . , ym), and
(c) The shares (g1(αi ), . . . , gn(αi )) for every i ∈ I .

6. Internal simulation of Step 4 in Protocol 6.5: For every j ∈ I and i ∈ I , simulator
S internally hands the adversary A the vector �y j = (Y1(α j ), . . . ,Ym(α j )) as the
vector that honest party Pj sends to all other parties in Step 4 of Protocol 6.5.

7. S outputs whatever A outputs and halts.

We now prove that for every I ⊂ [n] with |I | ≤ t :

{
IDEALF A

mat ,S(z),I (�x)
}

z∈{0,1}∗;�x∈Fn
≡

{
HYBRID

FV SS
π,A(z),I (�x)

}

z∈{0,1}∗;�x∈Fn
. (6.1)

In order to see why this holds, observe first that in the FV SS-hybrid model, the honest
parties actions in the protocol are deterministic (the randomness in the real protocol is
“hidden” inside the protocol for securely computing FV SS), as is the simulator S and
the ideal functionality F A

mat . Thus, it suffices to separately show that the view of the
adversary is identical in both cases, and the outputs of the honest parties are identical
in both cases.
By inspection of the protocol and simulation, it follows that the shares {(g1(αi ), . . . ,

gn(αi ))}i∈I of the corrupted parties on the honest parties inputs and the vector of poly-
nomials �Y (x) as received by S, provide it all the information necessary to generate the
exact messages that the corrupted parties would receive in a real execution of Proto-
col 6.5. Thus, the view of the adversary is identical in the ideal execution and in the
protocol execution.
Next, we show that the honest party’s outputs are identical in both distributions.

In order to see this, it suffices to show that the vector of polynomials �Y (x) =
(Y1(x), . . . ,Ym(x)) computed by F A

mat in Step 4 of the functionality specification is
identical to the vector of polynomials (Y1(x), . . . ,Ym(x)) computed by each party in
Step 5 of Protocol 6.5 (since this defines the outputs). First, the polynomials of the honest
parties are clearly the same in both cases. Furthermore, since the adversary’s view is
the same it holds that the polynomials gi (x) sent by S to the trusted party computing
F A
mat are exactly the same as the polynomials used by A in Step 1 of Protocol 6.5. This

follows from the fact that the FV SS functionality is used in this step and so the polyno-
mials of the corrupted parties obtained by S from A are exactly the same as used in the
protocol. Now, observe that each polynomial Yk(x) computed by the honest parties is
obtained by applying Reed–Solomon decoding to the word (Ŷk(α1), . . . , Ŷk(αn)). The
crucial point is that the honest parties compute the values Ŷk(αi ) correctly, and so for
every j /∈ I it holds that Ŷk(α j ) = Yk(α j ). Thus, at least n − t elements of the word
(Ŷk(α1), . . . , Ŷk(αn)) are “correct" and so the polynomial Yk(x) reconstructed by all the
honest parties in the error correction is the same Yk(x) as computed by F A

mat (irrespective
of what the corrupted parties send). This completes the proof. �



110 G. Asharov, Y. Lindell

6.4. The Fsubshare
V SS Functionality for Sharing Shares

Defining the Functionality We begin by defining the Fsubshare
V SS functionality. Infor-

mally speaking, this functionality is a way for a set of parties to verifiably give out shares
of values that are themselves shares. Specifically, assume that the parties P1, . . . , Pn hold
values f (α1), . . . , f (αn), respectively, where f is a degree-t polynomial either chosen
by one of the parties or generated jointly in the computation. The aim is for each party
to share its share f (αi )—and not any other value—with all other parties (see Fig. 2).
In the semi-honest setting, this can be achieved simply by having each party Pi choose
a random polynomial gi (x) with constant term f (αi ) and then send each Pj the share
gi (α j ). However, in the malicious setting, it is necessary to force the corrupted parties
to share the correct value and nothing else; this is the main challenge. We stress that
since there are more than t honest parties, their shares fully determine f (x), and so
the “correct” share of a corrupted party is well defined. Specifically, letting f (x) be
the polynomial defined by the honest parties’ shares, the aim here is to ensure that a
corrupted Pi provides shares using a degree-t polynomial with constant term f (αi ).

The functionality definition is such that if a corrupted party Pi does not provide a valid
input (i.e., it does not input a degree-t polynomial gi (x) such that gi (0) = f (αi )), then
Fsubshare
V SS defines a new polynomial g′

i (x) that is the constant polynomial g′
i (x) = f (αi )

for all x , and uses g′
i (x) in place of gi (x) in the outputs. This ensures that the constant

term of the polynomial is always f (αi ), as required.
We define Fsubshare

V SS as a corruption-aware functionality (see Sect. 6.2). Among other
reasons, this is due to the fact that the parties distributes subshares of their shares. As
we described in Sect. 6.2, this enables the adversary to choose the corrupted parties’
polynomials gi (x) (for i ∈ I ) after seeing the corrupted parties’ shares of the honest
parties’ polynomials (i.e., g j (αi ) for every j /∈ I and i ∈ I ).
In addition, in the protocol the parties invoke the F A

mat functionality (Functionality 6.4)
with (the transpose of) the parity-check matrix H of the appropriate Reed–Solomon
code (this matrix is specified below where we explain its usage in the protocol). This
adds complexity to the definition of Fsubshare

V SS because additional information revealed
by F A

mat to the adversary needs to be revealed by Fsubshare
V SS as well. In the sequel,

we denote the matrix multiplication functionality with (the transpose of) the parity-
check matrix H by FH

mat . Recall that the adversary’s output from FH
mat includes �Y (x) =

(g1(x), . . . , gn(x)) · HT ; see Step 5 in Functionality 6.4. Thus, in order to simulate the

Fig. 2. The subsharing process: Pi distributes shares of its share f (αi ) .
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FUNCTIONALITY 6.7 (Functionality Fsubshare
V SS for subsharing shares).

Fsubshare
V SS receives a set of indices I ⊆ [n] and works as follows:
1. Fsubshare

V SS receives the inputs of the honest parties {β j } j /∈I . Let f (x) be the unique degree-t
polynomial determined by the points {(α j , β j )} j /∈I .9

2. For every j /∈ I , functionality Fsubshare
V SS chooses a random degree-t polynomial g j (x)

under the constraint that g j (0) = β j = f (α j ).
3. Fsubshare

V SS sends the shares {g j (αi )} j /∈I ;i∈I to the (ideal) adversary.
4. Fsubshare

V SS receives polynomials {gi (x)}i∈I from the (ideal) adversary; if a polynomial gi (x)

is not received or if gi (x) is of degree higher than t , then Fsubshare
V SS sets gi (x) = 0.

5. Fsubshare
V SS determines the output polynomials g′

1(x), . . . , g
′
n(x):

(a) For every j /∈ I , functionality Fsubshare
V SS sets g′

j (x) = g j (x).

(b) For every i ∈ I , if gi (0) = f (αi ) then Fsubshare
V SS sets g′

i (x) = gi (x). Otherwise it sets
g′
i (x) = f (αi ) (i.e., g

′
i (x) is the constant polynomial equalling f (αi ) everywhere).

6. (a) For every j ∈ I , functionality Fsubshare
V SS sends the polynomial g′

j (x) and the shares

(g′
1(α j ), . . . , g

′
n(α j )) to party Pj .

(b) Functionality Fsubshare
V SS sends the (ideal) adversary the vector of polynomials �Y (x) =

(g1(x), . . . , gn(x)) · HT , where H is the parity-check matrix of the appropriate Reed-
Solomon code (see below). In addition, it sends the corrupted parties’ outputs g′

i (x)
and (g′

1(αi ), . . . , g
′
n(αi )) for every i ∈ I .

call to FH
mat , the ideal adversary needs this information. We deal with this in the same

way as in Sect. 6.3 (for FH
mat ), by having the functionality Fsubshare

V SS provide the ideal
adversary with the additional vector of polynomials (g1(x), . . . , gn(x)) · HT . As we
will see later, this does not interfere with our use of Fsubshare

V SS in order to achieve secure
multiplication (which is our ultimate goal). Although it is too early to really see why
this is the case, we nevertheless remark that when H is the parity-check matrix of the
Reed–Solomon code, the vector (g1(0), . . . , gn(0)) · HT can be determined based on
the corrupted parties’ inputs (because we know that the honest parties’ values are always
“correct”), and the vector (g1(x), . . . , gn(x)) ·HT is random under this constraint. Thus,
these outputs can be simulated.

Background to Implementing Fsubshare
V SS Let G ∈ F

(t+1)×n be the generator matrix for
a (generalized) Reed–Solomon code of length n = 3t + 1, dimension k = t + 1 and
distance d = 2t+1. Inmatrix notation, the encoding of a vector �a = (a0, . . . , at ) ∈ F

t+1

is given by �a · G, where:

9If all of the points sent by the honest parties lie on a single degree-t polynomial, then this guarantees that
f (x) is the unique degree-t polynomial for which f (α j ) = β j for all j /∈ I . If not all the points lie on a single
degree-t polynomial, then no security guarantees are obtained. However, since the honest parties all send their
prescribed input, in our applications, f (x) will always be as desired. This can be formalized using the notion
of a partial functionality [20, Sec. 7.2]. Alternatively, it can be formalized by as follows: In the case that the
condition does not hold, the ideal functionality gives all of the honest parties’ inputs to the adversary and
lets the adversary single-handedly determine all of the outputs of the honest parties. This makes any protocol
vacuously secure (since anything can be simulated).
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G
def=

⎛

⎜⎜
⎝

1 1 . . . 1
α1 α2 . . . αn
...

...
...

αt
1 αt

2 . . . αt
n

⎞

⎟⎟
⎠ . (6.2)

Letting f (x) = ∑t
�=0 a� · x� be a degree-t polynomial, the Reed–Solomon encoding of

�a = (a0, . . . , at ) is the vector 〈 f (α1), . . . , f (αn)〉. Let H ∈ F
2t×n be the parity-check

matrix of G; that is, H is a rank 2t matrix such that G · HT = 0(t+1)×2t . We stress that
H is full determined by α1, . . . , αn and thus is a constant matrix, known to all parties.
The syndrome of a word �β ∈ F

n is given by S( �β) = �β · HT ∈ F
2t . A basic fact from

error-correcting codes is that, for any codeword �β = �a · G, it holds that S( �β) = 02t .
Moreover, for every error vector �e ∈ {0, 1}n , it holds that S( �β + �e) = S(�e). If �e is
of distance at most t from �0 (i.e.,

∑
ei ≤ t), then it is possible to correct the vector

�β + �e and to obtain the original vector �β. An important fact is that a subprocedure of
the Reed–Solomon decoding algorithm can extract the error vector �e from the syndrome
vector S(�e) alone. That is, given a possibly corrupted codeword �γ = �β+�e, the syndrome
vector is computed as S( �γ ) = �γ · HT = S(�e) and is given to this subprocedure, which
returns �e. From �e and �γ , the codeword �β can be extracted easily.

The Protocol In the protocol, each party Pi chooses a random polynomial gi (x) whose
constant term equals its input share βi ; let �β = (β1, . . . , βn). Recall that the input shares
are the shares of some polynomial f (x). Thus, for all honest parties Pj it is guaranteed
that g j (0) = β j = f (α j ). In contrast, there is no guarantee regarding the values gi (0)
for corrupted Pi . Let �γ = (g1(0), . . . , gn(0)). It follows that �γ is a word that is at most
distance t from the vector �β = ( f (α1), . . . , f (αn)), which is aReed–Solomon codeword
of length n = 3t + 1. Thus, it is possible to correct the word �γ using Reed–Solomon
error correction. The parties send the chosen polynomials (g1(x), . . . , gn(x)) to FH

mat
(i.e., Functionality 6.4 for matrix multiplication with the transpose of the parity-check
matrix H described above), which hands each party Pi the output (g1(αi ), . . . , gn(αi ))

and (s1, . . . , s2t ) = �γ ·HT , where the latter equals the syndrome S( �γ ) of the input vector
�γ . Each party uses the syndrome in order to locally carry out error correction and obtain
the error vector �e = (e1, . . . , en) = �γ − �β. Note that �e has the property that for every i
it holds that gi (0)− ei = f (αi ), and �e can be computed from the syndrome alone, using
the subprocedure mentioned above. This error vector now provides the honest parties
with all the information that they need to compute the output. Specifically, if ei = 0,
then this implies that Pi used a “correct” polynomial gi (x) for which gi (0) = f (αi ),
and so the parties can just output the shares gi (α j ) that they received as output from
FH
mat . In contrast, if ei = 0 then the parties know that Pi is corrupted, and can all

send each other the shares gi (α j ) that they received from FH
mat . This enables them

to reconstruct the polynomial gi (x), again using Reed–Solomon error correction, and
compute gi (0) − ei = f (αi ). Thus, they obtain the actual share of the corrupted party
and can set g′

i (x) = f (αi ), as required in the functionality definition. See Protocol 6.8
for the full description.
One issue that must be dealt with in the proof of security is due to the fact that

the syndrome �γ · HT is revealed in the protocol, and is seemingly not part of the
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PROTOCOL 6.8 (Securely computing Fsubshare
V SS in the FH

mat -hybrid model).

• Inputs: Each party Pi holds a value βi ; we assume that the points (α j , β j ) of the honest

parties all lie on a single degree-t polynomial (see the definition of Fsubshare
V SS above and

Footnote 9 therein).
• Common input: Afield descriptionF and n distinct nonzero elementsα1, . . . , αn ∈ F, which

determine thematrix H ∈ F
2t×n which is the parity-checkmatrix of the Reed–Solomon code

(with parameters as described above).
• Aiding ideal functionality initialization: Upon invocation, the trusted party computing the

corruption-aware functionality FH
mat receives the set of corrupted parties I .

• The protocol:

1. Each party Pi chooses a random degree-t polynomial gi (x) under the constraint that
gi (0) = βi

2. The parties invoke the FH
mat functionality (i.e., Functionality 6.4 for matrix multi-

plication with the transpose of the parity-check matrix H ). Each party Pi inputs the
polynomial gi (x) from the previous step, and receives from FH

mat as output the shares
g1(αi ), . . . , gn(αi ) and the length 2t vector �s = (s1, . . . , s2t ) = (g1(0), . . . , gn(0)) ·
HT . Recall that �s is the syndrome vector of the possible corrupted codeword �γ =
(g1(0), . . . , gn(0)).10

3. Each party locally runs the Reed–Solomon decoding procedure using �s only, and
receives back an error vector �e = (e1, . . . , en).

4. For every k such that ek = 0: each party Pi sets g
′
k (αi ) = gk (αi ).

5. For every k such that ek = 0:

(a) Each party Pi sends gk (αi ) to every Pj .
(b) Each party Pi receives gk (α1), . . . , gk (αn); if any value is missing, it sets it to 0.

Pi runs theReed–Solomon decoding procedure on the values to reconstruct gk (x).
(c) Each party Pi computes gk (0), and sets g

′
k (αi ) = gk (0) − ek (which equals

f (αk )).

• Output: Pi outputs gi (x) and g′
1(αi ), . . . , g

′
n(αi ).

output. However, recall that the adversary receives the vector of polynomials �Y (x) =
(g1(x), . . . , gn(x)) ·HT from Fsubshare

V SS and the syndrome is just �Y (0). This is therefore
easily simulated.

Theorem 6.9. Let t < n/3. Then, Protocol 6.8 is t-secure for the Fsubshare
V SS function-

ality in the FH
mat -hybrid model, in the presence of a static malicious adversary.

Proof. We begin by describing the simulator S. The simulator interacts externally with
the ideal functionality Fsubshare

V SS , while internally simulating the interaction of A with
the honest parties and FH

mat .

1. S internally invokes A with the auxiliary input z.
2. External interaction with Functionality 6.7 (Step 3): After the honest parties send

their polynomials {g j (x)} j ∈I to the trusted party computing Fsubshare
V SS , simulator S

receives the shares {g j (αi )} j ∈I,i∈I from Fsubshare
V SS .

10The corrupted parties also receive the vector of polynomials (g1(x), . . . , gn(x)) · HT as output from
FH
mat . However, in the protocol, we only specify the honest parties’ instructions.



114 G. Asharov, Y. Lindell

3. Internal simulation of Step 2 in Protocol 6.8: S begins to internally simulate the
invocation of FH

mat .

(a) Internal simulation of Step 2 in Functionality 6.4: S sends A the shares
{g j (αi )} j ∈I,i∈I as its first output from the simulated call to FH

mat in the protocol.
(b) Internal simulation of Step 3 in Functionality 6.4: S internally receives from A

the polynomials {gi (x)}i∈I that A sends to FH
mat in the protocol ().

4. External interaction with Functionality 6.7 (Step 4): S externally sends the Fsubshare
V SS

functionality the polynomials {gi (x)}i∈I that were received in the previous step. For
the rest of the execution, if deg(gi ) > t for some i ∈ I , S resets gi (x) = 0.

5. External interaction with Functionality 6.7 (Step 6b): S externally receives its
output from Fsubshare

V SS , which is comprised of the vector of polynomials �Y (x) =
(g1(x), . . . , gn(x)) · HT , and the corrupted parties’ outputs: polynomials {g′

i (x)}i∈I
and the shares {g′

1(αi ), . . . , g′
n(αi )}i∈I . Recall that g′

j (x) = g j (x) for every j ∈ I .
Moreover, for every i ∈ I , if gi (0) = f (αi ) then g′

i (x) = gi (x), and g′
i (x) = f (α j )

otherwise.
6. Continue internal simulation of Step 2 in Protocol 6.8 (internally simulate Step 5

of Functionality 6.4): S concludes the internal simulation of FH
mat by preparing the

output that the internal A expects to receive from FH
mat in the protocol, as follows:

(a) A expects to receive the vector of polynomials �Y (x) = (g1(x), . . . , gn(x))·HT

from FH
mat ; however,S received this exact vector of polynomials from Fsubshare

V SS
and so just hands it internally to A.

(b) In addition, A expects to receive the corrupted parties’ outputs �y = �Y (0) and
the shares {(g1(αi ), . . . , gn(αi ))}i∈I . Simulator S can easily compute �y =
�Y (0) since it has the actual polynomials �Y (x). In addition, S already received
the shares {g j (αi )} j /∈I ;i∈I from Fsubshare

V SS and can compute the missing shares
using the polynomials {gi (x)}i∈I . Thus, S internally hands A the values �y =
�Y (0) and {(g1(αi ), . . . , gn(αi ))}i∈I , as expected by A.

7. Internal simulation of Step 5a in Protocol 6.8: S proceeds with the simulation of the
protocol as follows. S computes the error vector �e = (e1, . . . , en) by running the
Reed–Solomon decoding procedure on the syndrome vector �s, that it computes as
�s = �Y (0) (using �Y (x) that it received from Fsubshare

V SS ). Then, for every i ∈ I for
which ei = 0 and for every j /∈ I , S internally simulates Pj sending gi (α j ) to all
parties.

8. S outputs whatever A outputs and halts.

We now prove that for every I ⊂ [n] with |I | ≤ t :

{
IDEALFsubshare

V SS ,S(z),I (�x)
}

z∈{0,1}∗;�x∈Fn
≡

{
HYBRID

FH
mat

π,A(z),I (�x)
}

z∈{0,1}∗;�x∈Fn
.

Themain point to notice is that the simulator has enough information to perfectly emulate
the honest parties’ instructions. The only difference is that in a real protocol execution,
the honest parties Pj choose the polynomials g j (x), whereas in an ideal execution the
functionality Fsubshare

V SS chooses the polynomials g j (x) for every j /∈ I . However, in both
cases they are chosen at random under the constraint that g j (0) = β j . Thus, the distri-
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butions are identical. Apart from that, S has enough information to generate the exact
messages that the honest parties would send. Finally, since all honest parties receive the
same output from F A

mat in the protocol execution, and this fully determines �e, we have
that all honest parties obtain the exact same view in the protocol execution and thus all
output the exact same value. Furthermore, by the error correction procedure, for every
k such that ek = 0, they reconstruct the same gk(x) sent by A to F A

mat and so all define
g′
k(α j ) = gk(0) − ek .

A Fictitious Simulator S ′ In order to prove that the output distribution generated by S is
identical to the output distribution of a real execution, we construct a fictitious simulator
S ′ who generates the entire output distribution of both the honest parties and adversary
as follows. For every j /∈ I , simulator S ′ receives for input a random polynomial g j (x)
under the constraint that g j (0) = β j . Then, S ′ invokes the adversary A and emulates
the honest parties and the aiding functionality FH

mat in a protocol execution with A,
using the polynomials g j (x). Finally, S ′ outputs whatever A outputs, together with the
output of each honest party. (Note that S ′ does not interact with a trusted party and is a
stand-alone machine.)

The Output Distributions It is clear that the output distribution generated by S ′ is
identical to the output distribution of the adversary and honest parties in a real execution,
since the polynomials g j (x) are chosen randomly exactly like in a real execution and the
rest of the protocol is emulated byS ′ exactly according to the honest parties’ instructions.

It remains to show that the output distribution generated by S ′ is identical to the out-
put distribution of an ideal execution with S and a trusted party computing Fsubshare

V SS .
First, observe that both S ′ and S are deterministic machines. Thus, it suffices to sepa-
rately show that the adversary’s view is identical in both cases (given the polynomials
{g j (x)} j /∈I ), and the outputs of the honest parties are identical in both case (again, given
the polynomials {g j (x)} j /∈I ). Now, the messages generated by S and S ′ forA are iden-
tical throughout. This holds because the shares {g j (αi )} j /∈I ;i∈I of the honest parties that
A receives from FH

mat are the same (S receives them from Fsubshare
V SS and S ′ generates

them itself from the input), as is the vector �Y (x) = (g1(x), . . . , gn(x)) · HT and the
rest of the output from FH

mat for A. Finally, in Step 7 of the specification of S above,
the remainder of the simulation after FH

mat is carried out by running the honest parties’
instructions. Thus, the messages are clearly identical and A’s view is identical in both
executions by S and S ′.
We now show that the output of the honest parties’ as generated by S ′ is identical to

their output in the ideal execution with S and the trusted party, given the polynomials
{g j (x)} j /∈I . In the ideal executionwithS, the output of eachhonest party Pj is determined
by the trusted party computing Fsubshare

V SS to be g′
j (x) and (g′

1(α j ), . . . , g′
n(α j )). For every

j /∈ I , Fsubshare
V SS sets g′

j (x) = g j (x). Likewise, since the inputs of all the honest parties
lie on the same degree-t polynomial, denoted f (and so f (α j ) = β j for every j /∈ I ),
we have that the error correction procedure of Reed–Solomon decoding returns an error
vector �e = (e1, . . . , en) such that for every k for which gk(0) = f (αk) it holds that
ek = 0. In particular, this holds for every j /∈ I . Furthermore, FH

mat guarantees that all
honest parties receive the same vector �s and so the error correction yields the same error
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vector �e for every honest party. Thus, for every j, � /∈ I we have that each honest party
P� sets g′

j (α�) = g j (α�), as required.
Regarding the corrupted parties’ polynomials gi (x) for i ∈ I , the trusted party com-

puting Fsubshare
V SS sets g′

i (x) = gi (x) if gi (0) = f (αi ), and sets g′
i (x) to be a constant

polynomial equaling f (αi ) everywhere otherwise. This exact output is obtained by the
honest parties for the same reasons as above: all honest parties receive the same �s and
thus the same �e. If ei = 0 then all honest parties Pj set g′

i (α j ) = gi (α j ), whereas
if ei = 0 then the error correction enables them to reconstruct the polynomial gi (x)
exactly and compute f (αi ) = gi (0). Then, by the protocol every honest Pj sets its share
g′
i (α j ) = f (αi ) − ei , exactly like the trusted party. This completes the proof. �

6.5. The Feval Functionality for Evaluating a Shared Polynomial

In the protocol for verifying themultiplication of shares presented in Sect. 6.6 (The Fmult
V SS

functionality), the parties need to process “complaints” (which are claims by some of
the parties that others supplied incorrect values). These complaints are processed by
evaluating some shared polynomials at the point of the complaining party. Specifically,
given shares f (α1), . . . , f (αn), of a polynomial f , the parties need to compute f (αk)

for a predetermined k, without revealing anything else. (To be more exact, the shares of
the honest parties define a unique degree-t polynomial f , and the parties should obtain
f (αk) as output.)
We begin by formally defining this functionality. The functionality is parameterized by

an index k that determines at which point the polynomial is to be evaluated. In addition,
we define the functionality to be corruption-aware in the sense that the polynomial is
reconstructed from the honest party’s inputs alone (and the corrupted parties’ shares are
ignored). We mention that it is possible to define the functionality so that it runs the
Reed–Solomon error correction procedure on the input shares. However, defining it as
we do makes it more clear that the corrupted parties can have no influence whatsoever
on the output. See Functionality 6.10 for a full specification.

FUNCTIONALITY 6.10 (Functionality Fk
eval for evaluating a polynomial on αk).

Fk
eval receives a set of indices I ⊆ [n] and works as follows:
1. The Fk

eval functionality receives the inputs of the honest parties {β j } j /∈I . Let f (x) be the
unique degree-t polynomial determined by the points {(α j , β j )} j /∈I . (If not all the points lie
on a single degree-t polynomial, then no security guarantees are obtained; see Footnote 9.)

2. (a) For every j ∈ I , Fk
eval sends the output pair ( f (α j ), f (αk )) to party Pj .

(b) For every i ∈ I , Fk
eval sends the output pair ( f (αi ), f (αk )) to the (ideal) adversary, as

the output of Pi .

Equivalently, in function notation, we have:

Fk
eval

(
β1, . . . , βn

)
=

(
(( f (α1), f (αk)), . . . , ( f (αn), f (αk))

)

where f is the result of Reed–Solomon decoding on (β1, . . . , βn). We remark that
although each party Pi already holds f (αi ) as part of its input, we need the output
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to include this value in order to simulate (specifically, the simulator needs all of the
corrupted parties’ shares { f (αi )}i∈I ). This will not make a difference in its use, since
f (αi ) is anyway supposed to be known to Pi .

Background We show that the share f (αk) can be obtained by a linear combination

of all the input shares (β1, . . . , βn). The parties’ inputs are a vector �β def= (β1, . . . , βn)

where for every j /∈ I it holds that β j = f (α j ). Thus, the parties’ inputs are computed
by

�β = V�α · �f T ,

where V�α is the Vandermonde matrix (see Eq. 3.2), and �f is the vector of coefficients for
the polynomial f (x). We remark that �f is of length n and is padded with zeroes beyond
the (t + 1)th entry. Let �αk = (1, αk, (αk)

2, . . . , (αk)
n−1) be the kth row of V�α . Then the

output of the functionality is

f (αk) = �αk · �f T .

We have:

�αk · �f T = �αk ·
(
V−1

�α · V�α
)

· �f T =
(
�αk · V−1

�α
)

·
(
V�α · �f T

)
=

(
�αk · V−1

�α
)

· �βT

(6.3)

and so there exists a vector of fixed constants (�αk · V−1
�α ) such that the inner product

of this vector and the inputs yields the desired result. In other words, Fk
eval is simply a

linear function of the parties’ inputs.

The Protocol Since Fk
eval is a linear function of the parties’ inputs (which are them-

selves shares), it would seem that it is possible to use the same methodology for securely
computing F A

mat (or even directly use F A
mat ). However, this would allow corrupted par-

ties to input any value they wish in the computation. In contrast, the linear function
that computes Fk

eval (i.e., the linear combination of Eq. 6.3) must be computed on the
correct shares, where “correct” means that they all lie on the same degree-t polynomial.
This problem is solved by having the parties subshare their input shares using a more
robust input-sharing stage that guarantees that all the parties input their “correct share.”
Fortunately, we already have a functionality that fulfills this exact purpose: the Fsubshare

V SS
functionality of Sect. 6.4. Therefore, the protocol consists of a robust input-sharing phase
(i.e., an invocation of Fsubshare

V SS ), a computation phase (which is noninteractive), and an
output reconstruction phase. See Protocol 6.11 for the full description.

Informally speaking, the security of the protocol follows from the fact that the parties
only see subshares that reveal nothing about the original shares. Then, they see n shares
of a random polynomial Q(x) whose secret is the value being evaluated, enabling them
to reconstruct that secret. Since the secret is obtained by the simulator/adversary as the
legitimate output in the ideal model, this can be simulated perfectly.
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PROTOCOL 6.11 (Securely computing Fk
eval in the Fsubshare

V SS -hybrid model).

• Inputs: Each party Pi holds a value βi ; we assume that the points (α j , β j ) for every honest

Pj all lie on a single degree-t polynomial f (see the definition of Fk
eval above and Footnote 9).• Common input: The description of a fieldF and n distinct nonzero elements α1, . . . , αn ∈ F.

• Aiding ideal functionality initialization: Upon invocation, the trusted party computing the
corruption-aware functionality Fsubshare

V SS receives the set of corrupted parties I .
• The protocol:

1. The parties invoke the Fsubshare
V SS functionality with each party Pi using βi as its private

input. At the end of this stage, each party Pi holds g
′
1(αi ), . . . , g

′
n(αi ), where all the

g′
i (x) are of degree t , and for every i it holds that g

′
i (0) = f (αi ).

2. Each party Pi locally computes: Q(αi ) = ∑n
�=1 λ� · g′

�
(αi ), where (λ1, . . . , λn) =

�αk · V−1
�α . Each party Pi sends Q(αi ) to all Pj .

3. Each party Pi receives all the shares Q̂(α j ) from each other party 1 ≤ j ≤ n (if
any value is missing, replace it with 0). Note that some of the parties may hold dif-
ferent values if a party is corrupted. Then, given the possibly corrupted codeword
(Q̂(α1), . . . , Q̂(αn)), each party runs the Reed–Solomon decoding procedure and
receives the codeword (Q(α1), . . . , Q(αn)). It then reconstructs Q(x) and computes
Q(0).

• Output: Each party Pi outputs (βi , Q(0)).

The main subtlety that needs to be dealt with in the proof of security is due to the
fact that the Fsubshare

V SS functionality actually “leaks” some additional information to the
adversary, beyond the vectors (g′

1(αi ), . . . , g′
n(αi )) for all i ∈ I . Namely, the adversary

also receives the vector of polynomials �Y (x) = (g1(x), . . . , gn(x)) · HT , where H is
the parity-check matrix for the Reed–Solomon code, and gi (x) is the polynomial sent by
the adversary to Fsubshare

V SS for the corrupted Pi and may differ from g′
i (x) if the constant

term of gi (x) is incorrect (for honest parties g′
j (x) = g j (x) always). The intuition as to

why this vector of polynomials �Y (x) can be simulated is due to the fact that the syndrome
depends only on the error vector which describes the difference between the gi (0)’s and
f (αi )’s. Details follow. Let �γ = (γ1, . . . , γn) be the inputs of the parties (where for
i /∈ I it may be the case that γi = f (αi )). (We denote the “correct” input vector by
�β—meaning �β = ( f (α1), . . . , f (αn))—and the actual inputs used by the parties by
�γ .) The vector �γ defines a word that is of distance at most t from the valid codeword
( f (α1), . . . , f (αn)). Thus, there exists an error vector �e of weight at most t such that
�γ − �e = ( f (α1), . . . , f (αn)) = �β. The syndrome function S(�x) = �x · HT has the
property that S( �γ ) = S( �β + �e) = S(�e); stated differently, (β1, . . . , βn) · HT = �e · HT .
Now, �e is actually fully known to the simulator. This is because for every i ∈ I it receives
f (αi ) from Fk

eval , and so when A sends gi (x) to Fsubshare
V SS in the protocol simulation,

the simulator can simply compute ei = gi (0) − f (αi ). Furthermore, for all j /∈ I , it
is always the case that e j = 0. Thus, the simulator can compute �e · HT = �β · HT =
(g1(0), . . . , gn(0)) · HT = �Y (0) from the corrupted parties’ input and output only (and
the adversary’s messages).
We have shown that the simulator can compute �Y (0). In addition, the simulator

has the values g1(αi ), . . . , gn(αi ) for every i ∈ I and so can compute �Y (αi ) =
(g1(αi ), . . . , gn(αi )) · HT . As we will show, the vector of polynomials �Y (x) is a series
of random degree-t polynomials under the constraints �Y (0) and { �Y (αi )}i∈I that S can
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compute. (Actually, when |I | = t there are t + 1 constraints and so this vector is fully
determined. In this case, its actually values are known to the simulator; otherwise, the
simulator can just choose random polynomials that fulfill the constraints.) Finally, the
same is true regarding the polynomial Q(x): the simulator knows |I | + 1 constraints
(namely Q(0) = f (αk) and Q(αi ) = ∑n

�=1 λ� ·g′
�(αi )), and can choose Q to be random

under these constraints in order to simulate the honest parties sending Q(α j ) for every
j /∈ I . We now formally prove this.

Theorem 6.12. Let t < n/3. Then, Protocol 6.11 is t-secure for the Fk
eval functionality

in the Fsubshare
V SS -hybrid model, in the presence of a static malicious adversary.

Proof. The simulator interacts externally with a trusted party computing Fk
eval , while

internally simulating the interaction of A with the trusted party computing Fsubshare
V SS

and the honest parties. We have already provided the intuition behind how the simulator
works, and thus proceed directly to its specification.

The Simulator S
1. External interaction with Functionality 6.10 (Step 2b): S receives the ideal adver-

sary’s output {( f (αi ), f (αk))}i∈I from Fk
eval (recall that the corrupted parties have

no input in Fk
eval and so it just receives output).

2. S internally invokesA with the auxiliary input z, and begins to simulate the protocol
execution.

3. Internal simulation of Step 1 in Protocol 6.11: S internally simulates the Fsubshare
V SS

invocations:

(a) Internal simulation of Step 3 in the Fsubshare
V SS functionality: S simulatesA

receiving the shares {g j (αi )} j /∈I ;i∈I : For every j ∈ I , S chooses uniformly at
randoma polynomial g j (x) fromP0,t , and sendsA the values

{
g j (αi )

}
j ∈I ;i∈I .

(b) Internal simulation of Step 4 in the Fsubshare
V SS functionality: S internally

receives from A the inputs {gi (x)}i∈I of the corrupted parties to Fsubshare
V SS .

If for any i ∈ I ,A did not send some polynomial gi (x), then S sets gi (x) = 0.
(c) For every i ∈ I , S checks that deg(gi ) ≤ t and that gi (0) = f (αi ). If this

check passes, S sets g′
i (x) = gi (x). Otherwise, S sets g′

i (x) = f (αi ). (Recall
that S has f (αi ) from its output from Fk

eval .)
(d) For every j /∈ I , S sets g′

j (x) = g j (x).

(e) Internal simulation of Step 6b in the Fsubshare
V SS functionality: S internally gives

the adversary A the outputs, as follows:
i. The vector of polynomials �Y (x), which is chosen as follows:

• S sets (e1, . . . , en) such that e j = 0 for every j /∈ I , and ei = gi (0)− f (αi )

for every i ∈ I .
• S chooses �Y (x) to be a random vector of degree-t polynomials under the
constraints that �Y (0) = (e1, . . . , en) ·HT , and for every i ∈ I it holds that
�Y (αi ) = (g1(αi ), . . . , gn(αi )) · HT .

Observe that if |I | = t , then all of the polynomials in �Y (x) are fully determined
by the above constraints.
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ii. The polynomials and values g′
i (x) and

{
g′
1(αi ), . . . , g′

n(αi )
}
for every i ∈ I

4. S simulates the sending of the shares Q(α j ):

(a) Internal simulation of Step 2 in Protocol 6.11: S chooses a random polynomial
Q(x) of degree t under the constraints that:

• Q(0) = f (αk).
• For every i ∈ I , Q(αi ) = ∑n

�=1 γ� · g′
�(αi ).

(b) For every j ∈ I , S internally simulates honest party Pj sending the value
Q(α j ).

5. S outputs whatever A outputs and halts.

We now prove that for every I ⊆ [n], such that |I | ≤ t ,

{
IDEALFk

eval ,S(z),I (
�β)

}

�β∈Fn ,z∈{0,1}∗ ≡
{
HYBRID

Fsubshare
V SS

π,A(z),I (
�β)

}

�β∈Fn ,z∈{0,1}∗
.

There are three differences between the simulation with S and A, and an execution
of Protocol 6.11 withA. First, S chooses the polynomials g j (x) to have constant terms
of 0 instead of constant terms f (α j ) for every j /∈ I . Second, S computes the vector
of polynomials �Y (x) based on the given constraints, rather that it being computed by
Fsubshare
V SS based on the polynomials (g1(x), . . . , gn(x)). Third, S chooses a random

polynomial Q(x) under the described constraints in Step 4a of S, rather than it being
computed as a function of all the polynomials g′

1(x), . . . , g
′
n(x).

We eliminate these differences one at a time, by introducing three fictitious simulators.

The Fictitious SimulatorS1 SimulatorS1 is exactly the same asS, except that it receives
for input the values β j = f (α j ), for every j = 1, . . . , n (rather than just j ∈ I ). In
addition, for every j /∈ I , instead of choosing g j (x) ∈R P0,t , the fictitious simulator
S1 chooses g j (x) ∈R P f (α j ),t . We stress that S1 runs in the ideal model with the same
trusted party running Fk

eval as S, and the honest parties receive output as specified by
Fk
eval when running with the ideal adversary S or S1.
We claim that for every I ⊆ [n], such that |I | ≤ t ,

{
IDEALFk

eval ,S1(z, �β),I (
�β)

}

�β∈Fn ,z∈{0,1}∗ ≡
{
IDEALFk

eval ,S(z),I (
�β)

}

�β∈Fn ,z∈{0,1}∗

In order to see that the above holds, observe that both S and S1 can work when given the
points of the inputs shares {g j (αi )}i∈I, j ∈I and they don’t actually need the polynomials
themselves. Furthermore, the only difference between S and S1 is whether these points
are derived from polynomials with zero constant terms, or with the “correct” ones. That
is, there exists a machineM that receives points {g j (αi )}i∈I ; j /∈I and runs the simulation
strategy with A while interacting with Fk

eval in an ideal execution, such that:

• If g j (0) = 0 then the joint output of M and the honest parties in the ideal execu-
tion is exactly that of IDEALFk

eval ,S(z),I (
�β); i.e., an ideal execution with the original

simulator.
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• If g j (0) = f (α j ) then the joint output of M and the honest parties in the ideal
execution is exactly that of IDEALFk

eval ,S1(z, �β),I (
�β); i.e., an ideal execution with the

fictitious simulator.

By Claim 3.3, the points {g j (αi )}i∈I ; j /∈I when g j (0) = 0 are identically distributed to
the points {g j (αi )}i∈I ; j /∈I when g j (0) = f (α j ). Thus, the joint outputs of the adversary
and honest parties in both simulations are identical.

The Fictitious Simulator S2 Simulator S2 is exactly the same as S1, except that it
computes the vector of polynomials �Y (x) in the same way that Fsubshare

V SS computes it in
the real execution. Specifically, for every j /∈ I , S2 chooses random polynomials g j (x)
under the constraint that g j (0) = f (α j ) just like honest parties. In addition, for every
i ∈ I , it uses the polynomials gi (x) sent by A. We claim that for every I ⊆ [n], such
that |I | ≤ t ,

{
IDEALFk

eval ,S2(z, �β),I (
�β)

}

�β∈Fn ,z∈{0,1}∗ ≡
{
IDEALFk

eval ,S1(z, �β),I (
�β)

}

�β∈Fn ,z∈{0,1}∗

This follows from the aforementioned property of the syndrome function S(�x) = �x ·HT .
Specifically, let �γ be the parties’ actually inputs (for j /∈ I we are given that γ j = f (α j ),
but nothing is guaranteed about the value of γi for i ∈ I ), and let �e = (e1, . . . , en) be the
error vector (for which γi = f (αi ) + ei ). Then, S( �γ ) = S(�e). If |I | = t , then the con-
straints fully define the vector of polynomials �Y (x), and by the property of the syndrome
these constraints are identical in both simulations by S1 and S2. Otherwise, if |I | < t ,
thenS1 chooses �Y (x) at random under t+1 constraints, whereasS2 computes �Y (x) from
the actual values. Consider each polynomial Y�(x) separately (for � = 1, . . . , 2t − 1).
Then, for each polynomial there is a set of t+1 constraints and each is chosen at random
under those constraints. Consider the random processes X (s) and Y (s) before Claim 4.4
in Sect. 4.2 (where the value “s” here for Y�(x) is the �th value in the vector �e · HT ).
Then, by Claim 4.4, the distributions are identical.

The Fictitious Simulator S3 Simulator S3 is the same as S2, except that it computes
the polynomial Q(x) using the polynomials g′

1(x), . . . , g
′
n(x) instead of under the con-

straints. The fact that this is identical follows the exact same argument regarding �Y�(x)
using Claim 4.4 in Sect. 4.2. Thus,

{
IDEALFk

eval ,S3(z, �β),I (
�β)

}

�β∈Fn ,z∈{0,1}∗ ≡
{
IDEALFk

eval ,S2(z, �β),I (
�β)

}

�β∈Fn ,z∈{0,1}∗

Observe that the view of A in IDEALFk
eval ,S3(z, �β),I (

�β) is exactly the same as in a real
execution. It remains to show that the honest parties output the same in both this execution
and in the Fsubshare

V SS -hybrid execution of Protocol 6.11. Observe thatS3 (andS1/S2) send
no input to the trusted party in the ideal model. Thus, we just need to show that the honest
parties always output f (αk) in a real execution, when f is the polynomial defined by
the input points {β j } j /∈I of the honest parties. However, this follows immediately from
the guarantees provided the Fsubshare

V SS functionality and by the Reed–Solomon error
correction procedure. In particular, the only values received by the honest parties in a
real execution are as follows:
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1. Each honest Pj receives g′
1(α j ), . . . , g′

n(α j ), where it is guaranteed by Fsubshare
V SS

that for every i = 1, . . . , n we have g′
i (0) = f (αi ). Thus, these values are always

correct.
2. Each honest Pj receives values (Q̂(α1), . . . , Q̂(αn)). Now, since n − t of these

values are sent by honest parties, it follows that this is a vector that is of distance at
most t from the codeword (Q(α1), . . . , Q(αn)). Thus, the Reed–Solomon correc-
tion procedure returns this codeword to every honest party, implying that the correct
polynomial Q(x) is reconstructed, and the honest party outputs Q(0) = f (αk), as
required.

This completes the proof. �

6.6. The Fmult
V SS Functionality for Sharing a Product of Shares

The Fmult
V SS functionality enables a set of parties who have already shared degree-t poly-

nomials A(x) and B(x) to obtain shares of a random degree-t polynomial C(x) under
the constraint that C(0) = A(0) · B(0). See Sect. 6.1 for how this functionality is used
in the overall multiplication protocol. We now formally describe the functionality.

FUNCTIONALITY 6.13 (Functionality Fmul t
V SS for sharing a product of shares).

Fmult
V SS receives a set of indices I ⊆ [n] and works as follows:
1. The Fmult

V SS functionality receives an input pair (a j , b j ) from every honest party Pj ( j /∈ I ).
(The dealer P1 also has polynomials A(x), B(x) such that A(α j ) = a j and B(α j ) = b j ,
for every j /∈ I .)

2. Fmult
V SS computes the unique degree-t polynomials A and B such that A(α j ) = a j and

B(α j ) = b j for every j /∈ I (if no such A or B exist of degree-t , then Fmult
V SS behaves

differently as in Footnote 9).
3. If the dealer P1 is honest (1 /∈ I ), then:

(a) Fmult
V SS chooses a random degree-t polynomial C under the constraint that C(0) =

A(0) · B(0).
(b) Outputs for honest: Fmult

V SS sends the dealer P1 the polynomial C(x), and for every
j /∈ I it sends C(α j ) to Pj .

(c) Outputs for adversary: Fmult
V SS sends the shares (A(αi ), B(αi ),C(αi )) to the (ideal)

adversary, for every i ∈ I .

4. If the dealer P1 is corrupted (1 ∈ I ), then:

(a) Fmult
V SS sends (A(x), B(x)) to the (ideal) adversary.

(b) Fmult
V SS receives a polynomial C as input from the (ideal) adversary.

(c) If either deg(C) > t or C(0) = A(0) · B(0), then Fmult
V SS resets C(x) = A(0) · B(0);

that is, the constant polynomial equalling A(0) · B(0) everywhere.
(d) Outputs for honest: Fmult

V SS sendsC(α j ) to Pj , for every j /∈ I . (There is nomore output
for the adversary in this case.)

We remark that although the dealing party P1 is supposed to already have A(x), B(x)
as part of its input and each party Pi is also supposed to already have A(αi ) and B(αi )

as part of its input, this information is provided as output in order to enable simulation.
Specifically, the simulator needs to know the corrupted parties “correct points” in order
to properly simulate the protocol execution. In order to ensure that the simulator has this
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information (since the adversary is not guaranteed to have its correct points as input), it
is provided by the functionality. In our use of Fmult

V SS in the multiplication protocol, this
information is always known to the adversary anyway, and so there is nothing leaked by
having it provided again by the functionality.
Aswe havementioned, this functionality is used once the parties already hold shares of

a and b (where a and b are the original shares of the dealer). The aim of the functionality
is for them to now obtain shares of a · b via a degree-t polynomial C such that C(0) =
A(0) · B(0) = a · b. We stress that a and b are not values on the wires, but rather are the
shares of the dealing party of the original values on the wires.

The Protocol Idea Let A(x) and B(x) be polynomials such that A(0) = a and B(0) =
b; i.e., A(x) and B(x) are the polynomials used to share a and b. The idea behind the
protocol is for the dealer to first define a sequence of t polynomials D1(x), . . . , Dt (x),

all of degree-t , such that C(x)
def= A(x) · B(x) − ∑t

�=1 x
� · D�(x) is a random degree-t

polynomial with constant term equaling a · b; recall that since each of A(x) and B(x)
are of degree t , the polynomial A(x) · B(x) is of degree 2t . We will show below how
the dealer can choose D1(x), . . . , Dt (x) such that all the coefficients from t + 1 to
2t in A(x) · B(x) are canceled out, and the resulting polynomial C(x) is of degree-
t (and random). The dealer then shares the polynomials D1(x), . . . , Dt (x), and each
party locally computes its share of C(x). An important property is that the constant
term of C(x) equals A(0) · B(0) = a · b for every possible choice of polynomials
D1(x), . . . , Dt (x). This is due to the fact that each D�(x) ismultiplied by x� (with � ≥ 1)
and so these do not affect C(0). This guarantees that even if the dealer is malicious and
does not choose the polynomials D1(x), . . . , Dt (x) correctly, the polynomialC(x)must
have the correct constant term (but it will not necessarily be of degree t , as we explain
below).
In more detail, after defining D1(x), . . . , Dt (x), the dealer shares them all using

FV SS ; this ensures that all polynomials are of degree-t and all parties have correct
shares. Since each party already holds a valid share of A(x) and B(x), this implies
that each party can locally compute its share of C(x). Specifically, given A(α j ), B(α j )

and D1(α j ), . . . , Dt (α j ), party Pj can simply compute C(α j ) = A(α j ) · B(α j ) −∑t
�=1(α j )

� · D�(α j ). The crucial properties are that (a) if the dealer is honest, then all
the honest parties hold valid shares of a random degree-t polynomial with constant term
a · b, as required, and (b) if the dealer is malicious, all honest parties are guaranteed
to hold valid shares of a polynomial with constant term a · b (but with no guarantee
regarding the degree). Thus, all that remains is for the parties to verify that the shares
that they hold for C(x) define a degree-t polynomial.
It may be tempting to try to solve this problem by having the dealer share C(x)

using FV SS , and then having each party check that the share that it received from this
FV SS equals the value C(α j ) that it computed from its shares A(α j ), B(α j ), D1(α j ),

. . . , Dt (α j ). To be precise, denote by C(α j ) the share received from FV SS , and denote
by C ′(α j ) the share obtained from computing A(α j ) · B(α j ) − ∑t

�=1(α j )
� · D�(α j ). If

C ′(α j ) = C(α j ), then like in Protocol 5.6 for VSS, the parties broadcast complaints.
If more than t complaints are broadcast then the honest parties know that the dealer is
corrupted (more than t complaints are needed since the corrupted parties can falsely
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complain when the dealer is honest). They can then broadcast their input shares to
reconstruct A(x), B(x) and all define their output shares to be a ·b = A(0) · B(0). Since
FV SS guarantees that the polynomial shared is of degree-t and we already know that the
computed polynomial has the correct constant term, this seems to provide the guarantee
that the parties hold shares of a degree-t polynomial with constant term A(0) · B(0).
However, the assumption that t + 1 correct shares (as is guaranteed by viewing at
most t complaints) determines that the polynomial computed is of degree-t , or that the
polynomial shared with VSS has constant term A(0) ·B(0) is false. This is due to the fact
that it is possible for the dealer to define the polynomials D1(x), . . . , Dt (x) so thatC(x)
is a degree 2t polynomial that agrees with some other degree-t polynomial C ′(x) on up
to 2t of the honest parties’ points α j , but for whichC ′(0) = a ·b. A malicious dealer can
then shareC ′(x) using FV SS and no honest parties would detect any cheating.11 Observe
that at least one honest party would detect cheating and would complain (because C(x)
can only agree withC ′(x) on 2t of the points, and there are at least 2t+1 honest parties).
However, this is not enough to act upon because, as described, when the dealer is honest
up to t of the parties could present fake complaints because they are malicious.
We solve this problem by having the parties unequivocally verify every complaint to

check if it is legitimate. If the complaint is legitimate, then they just reconstruct the initial
shares a and b and all output the constant share a · b. In contrast, if the complaint is not
legitimate, the parties just ignore it. This guarantees that if no honest parties complain
(legitimately), then the degree-t polynomial C ′(x) shared using FV SS agrees with the
computed polynomial C(x) on at least 2t + 1 points. Since C(x) is of degree at most
2t , this implies that C(x) = C ′(x) and so it is actually of degree-t , as required.

In order to unequivocally verify complaints, we use the Fk
eval functionality defined

in Sect. 6.5 to reconstruct all of the input shares A(αk), B(αk), D1(αk), . . . , Dt (αk)

and C ′(αk) of the complainant. Given all of the these shares, all the parties can locally
compute C ′(αk) = A(αk) · B(αk) − ∑t

�=1(αk)
� · D�(αk) and check whether C ′(αk) =

C(αk) or not. If equality holds, then the complaint is false, and is ignored. Otherwise,
the complaint is valid (meaning that the dealer is corrupted), and the parties proceed to
publicly reconstruct a · b. This methodology therefore provides a way to fully verify
whether a complaint was valid or not. (We remark that the parties are guaranteed to have
valid shares of all the polynomials C ′(x), D1(x), . . . , Dt (x) since they are shared using
FV SS , and also shares of A(x) and B(x) by the assumption on the inputs. Thus, they can
use Fk

eval to obtain all of the values A(αk), B(αk), D1(αk), . . . , Dt (αk), and C ′(αk), as
required.)
Observe that if the dealer is honest, then no party can complain legitimately. In addi-

tion, when the dealer is honest and an illegitimate complaint is sent by a corrupted
party, then this complaint is verified using Feval which reveals nothing more than the
complainants shares. Since the complainant in this case is corrupted, and so its share is

11An alternative strategy could be to run the verification strategy of Protocol 5.6 for VSS on the shares
C(α j ) that the parties computed in order to verify that {C(α j )}nj=1 define a degree-t polynomial. The problem
with this strategy is that if C(x) is not a degree-t polynomial, then the protocol for FV SS changes the points
that the parties receive so that it is a degree-t polynomial. However, in this process, the constant term of the
resulting polynomial may also change. Thus, there will no longer be any guarantee that the honest parties hold
shares of a polynomial with the correct constant term.
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already known to the adversary, this reveals no additional information.

Constructing the Polynomial C(x) As we have mentioned above, the protocol works
by having the dealer choose t polynomials D1(x), . . . , Dt (x) that are specially designed
so that C(x) = A(x) · B(x) − ∑t

�=1 x
� · D�(x) is a uniformly distributed polynomial

in Pa·b,t , where a = A(0) and b = B(0). We now show how the dealer chooses these
polynomials. The dealer first defines the polynomial D(x):

D(x)
def= A(x) · B(x) = a · b + d1x + · · · + d2t x

2t

(D(x) is of degree 2t since both A(x) and B(x) are of degree-t). Next it defines the
polynomials:

Dt (x) = rt,0 + rt,1x + · · · + rt,t−1x
t−1 + d2t x

t

Dt−1(x) = rt−1,0 + rt−1,1x + · · · + rt−1,t−1x
t−1 + (

d2t−1 − rt,t−1
) · xt

Dt−2(x) = rt−2,0 + rt−2,1x + · · · + rt−2,t−1x
t−1 + (

d2t−2 − rt−1,t−1 − rt,t−2
) · xt

...

D1(x) = r1,0 + r1,1x + · · · r1,t−1x
t−1 + (

dt+1 − rt,1 − rt−1,2 − . . . − r2,t−1
)
xt

where all ri, j ∈R F are random values, and the di values are the coefficients from
D(x) = A(x) · B(x).12 That is, in each polynomial D�(x) all coefficients are random
expect for the t th coefficient, which equals the (t+�)th coefficient of D(x).More exactly,
for 1 ≤ � ≤ t polynomial D�(x) is defined by:

D�(x) = r�,0 + r�,1 · x + · · · + r�,t−1 · xt−1 +
(

dt+� −
t∑

m=�+1

rm,t+�−m

)

· xt

and the polynomial C(x) is computed by:

C(x) = D(x) −
t∑

�=1

x� · D�(x).

Before proceeding, we show that when the polynomials D1(x), . . . , Dt (x) are chosen
in this way, it holds thatC(x) is a degree-t polynomial with constant term A(0) · B(0) =
a ·b. Specifically, the coefficients in D(x) for powers greater than t cancel out. For every
polynomial D�(x), we have that: D�(x) = r�,0 + r�,1 · x +· · ·+ r�,t−1 · xt−1 + R�,t · xt ,
where

R�,t = dt+� −
t∑

m=�+1

rm,t+�−m . (6.4)

12The naming convention for the ri, j values is as follows. In the first t − 1 coefficients, the first index in
every ri, j value is the index of the polynomial and the second is the place of the coefficient. That is, ri, j is

the j th coefficient of polynomial Di (x). The values for the t
th coefficient are used in the other polynomials

as well, and are chosen to cancel out; see below.
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Table 1. Coefficients of the polynomial
∑t

�=1 x
� · D�(x).

x x2 x3 … xt xt+1 xt+2 … x2t−2 x2t−1 x2t

Dt rt,0 rt,1 rt,2 … rt,t−2 rt,t−1 Rt,t
Dt−1 … rt−1,1 rt−1,2 rt−1,3 … rt−1,t−1 Rt−1,t
Dt−2 … rt−2,2 rt−2,3 rt−2,4 … Rt−2,t
... . .

. ...
...

... . .
.

D3 r3,0 … r3,t−3 r3,t−2 r3,t−1 …
D2 r2,0 r2,1 … r2,t−2 r2,t−1 R2,t
D1 r1,0 r1,1 r1,2 … r1,t−1 R1,t

(Observe that the sum of the indices (i, j) of the ri, j values inside the sum is always
t + � exactly.) We now analyze the structure of the polynomial

∑t
�=1 x

� · D�(x). First,
observe that it is a polynomial of degree 2t with constant term 0 (the constant term is
0 since � ≥ 1). Next, the coefficient of the monomial x� is the sum of the coefficients
of the �th column in Table 1; in the table, the coefficients of the polynomial D�(x) are
written in the �th row and are shifted � places to the right since D�(x) is multiplied by
x�.
We will now show that for every k = 1, . . . , t the coefficient of the monomial xt+k

in the polynomial
∑t

�=1 x
� · D�(x) equals dt+k . Now, the sum of the (t + k)th column

of the above table (for 1 ≤ k ≤ t) is

Rk,t + rk+1,t−1 + rk+2,t−2 + · · · + rt,k = Rk,t +
t∑

m=k+1

rm,t+k−m .

Combining this with the definition of Rk,t in Eq. (6.4), we have that all of the ri, j values
cancel out, and the sum of the (t+k)th column is just dt+k .We conclude that the (t+k)th
coefficient of C(x) = D(x) − ∑t

�=1 x
� · D�(x) equals dt+k − dt+k = 0, and thus C(x)

is of degree t , as required. The fact that C(0) = a · b follows immediately from the fact
that each D�(x) is multiplied by x� and so this does not affect the constant term of D(x).
Finally, observe that the coefficients of x, x2, . . . , xt are all random (since for every
i = 1, . . . , t the value ri,0 appears only in the coefficient of xi ). Thus, the polynomial
C(x) also has random coefficients everywhere except for the constant term.

The protocol See Protocol 6.14 for a full specification in the (FV SS, F1
eval , . . . , F

n
eval)-

hybrid model. From here on, we write the Feval -hybrid model to refer to all n function-
alities F1

eval , . . . , F
n
eval .

We have the following theorem:

Theorem 6.15. Let t < n/3. Then, Protocol 6.14 is t-secure for the Fmult
V SS functionality

in the (FV SS, Feval)-hybrid model, in the presence of a static malicious adversary.
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PROTOCOL 6.14 (Securely computing Fmul t
V SS in the FVSS-Feval -hybrid model).

• Input:
1. The dealer P1 holds two degree-t polynomials A and B.
2. Each party Pi holds a pair of shares ai and bi such that ai = A(αi ) and bi = B(αi ).

• Common input: A field description F and n distinct nonzero elements α1, . . . , αn ∈ F.
• Aiding ideal functionality initialization: Upon invocation, the trusted party computing the

(fictitiously corruption-aware) functionality FV SS and the corruption-aware functionality
Feval receives the set of corrupted parties I .• The protocol:
1. Dealing phase:

(a) The dealer P1 defines the degree-2t polynomial D(x) = A(x) · B(x); denote
D(x) = a · b + ∑2t

�=1 d� · x�.

(b) P1 chooses t2 values {rk, j } uniformly and independently at random fromF, where
k = 1, . . . , t , and j = 0, . . . , t − 1.

(c) For every � = 1, . . . , t , the dealer P1 defines the polynomial D�(x):

D�(x) =
⎛

⎝
t−1∑

m=0

r�,m · xm
⎞

⎠ +
⎛

⎝d�+t −
t∑

m=�+1

rm,t+�−m

⎞

⎠ · xt .

(d) P1 computes the polynomial:

C(x) = D(x) −
t∑

�=1

x� · D�(x).

(e) P1 invokes FV SS as dealer with input C(x); each party Pi receives C(αi ).
(f) P1 invokes FV SS as dealer with input D�(x) for every � = 1, . . . , t ; each party

Pi receives D�(αi ).

2. Verify phase: Each party Pi works as follows:

(a) If any of the C(αi ), D�(αi ) values equals ⊥ then Pi proceeds to the reject phase
(note that if one honest party received ⊥ then all did).

(b) Otherwise, Pi computes c′i = ai · bi − ∑t
�=1(αi )

� · D�(αi ). If c
′
i = C(αi ) then

Pi broadcasts (complaint, i).
(c) If any party Pk broadcast (complaint, k) then go to the complaint resolution

phase. Otherwise, go to the output stage (and output C(αi )).

3. Complaint resolution phase: Set reject = false. Then, run the following for every
(complaint, k) message:

(a) Run t + 3 invocations of Fk
eval : in the first (resp., second) invocation each party

Pi inputs ai (resp., bi ), in the third invocation each Pi inputs C(αi ), and in the
(� + 3)th invocation each Pi inputs D�(αi ) for � = 1, . . . , t .

(b) Let A(αk ), B(αk ), C̃(αk ), D̃1(αk ), . . . , D̃t (αk ) be the respective outputs that
all parties receive from the invocations. Compute C̃ ′(αk ) = A(αk ) · B(αk ) −∑t

�=1 αk
� · D̃�(αk ). (We denote these polynomials by C̃, D̃�, . . . since if the

dealer is not honest they may differ from the specified polynomials above.)
(c) If C̃(αk ) = C̃ ′(αk ), then set reject = true.

If reject = false, then go to the output stage (and output C(αi )). Else, go to the reject
phase.

4. Reject phase:

(a) Every party Pi broadcasts the pair (ai , bi ). Let �a = (a1, . . . , an) and �b =
(b1, . . . , bn) be the broadcast values (where zero is used for any value not broad-
cast). Then, Pi computes A′(x) and B′(x) to be the outputs of Reed–Solomon
decoding on �a and �b, respectively.

(b) Every party Pi sets C(αi ) = A′(0) · B′(0).
• Output: Every party Pi outputs C(αi ).
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Proof. We separately prove the security of the protocol when the dealer is honest and
when the dealer is corrupted.

Case 1: The Dealer P1 is Honest The simulator interacts externally with Fmult
V SS , while

internally simulating the interaction of A with the honest parties and FV SS, Feval in
Protocol 6.14. Since the dealer is honest, in all invocations of FV SS the adversary has
no inputs to these invocations and just receives shares. Moreover, as specified in the
Fmult
V SS functionality, the ideal adversary/simulator S has no input to Fmult

V SS and it just
receives the correct input shares (A(αi ), B(αi )) and the output shares C(αi ) for every
i ∈ I . The simulator S simulates the view of the adversary by choosing random degree-t
polynomials D2(x), . . . , Dt (x), and then choosing D1(x) randomly under the constraint
that for every i ∈ I it holds that

αi · D1(αi ) = A(αi ) · B(αi ) − C(αi ) −
t∑

�=2

αi
� · D�(αi ).

This computation yields D1(αi ), . . . , Dt (αi ) of the correct distribution since

C(x) = D(x) −
t∑

�=1

x� · D�(x) = A(x) · B(x) − x · D1(x) −
t∑

�=2

x� · D�(x)

implying that

x · D1(x) = A(x) · B(x) − C(x) −
t∑

�=2

x� · D�(x).

As we will see, the polynomials D�(x) chosen by an honest dealer have the same dis-
tribution as those chosen by S (they are random under the constraint that C(αi ) =
A(αi ) · B(αi ) − ∑t

�=1(αi )
� · D�(αi ) for all i ∈ I ). In order to simulate the com-

plaints, observe that no honest party broadcasts a complaint. Furthermore, for every
(complaint, i) value broadcast by a corrupted Pi (i ∈ I ), the complaint resolution phase
can easily be simulated sinceS knows the correct values Ã(αi ) = A(αi ), B̃(αi ) = B(αi ),
C̃(αi ) = C(αi ). Furthermore, for every � = 1, . . . , t , S uses D̃�(αi ) = D�(αi ) as cho-
sen initially in the simulation as the output from Fi

eval . We now formally describe the
simulator.

The Simulator S
1. S internally invokes the adversary A with the auxiliary input z.
2. External interaction with Functionality 6.13 (Step 3c): S externally receives from

Fmult
V SS the values (A(αi ), B(αi ),C(αi )) for every i ∈ I . (Recall that the adversary

has no input to Fmult
V SS in the case that the dealer is honest.)

3. S chooses t − 1 random degree-t polynomials D2(x), . . . , Dt (x).
4. For every i ∈ I , S computes:

D1(αi ) = (αi )
−1 ·

(

A(αi ) · B(αi ) − C(αi ) −
t∑

�=2

(αi )
� · D�(αi )

)
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5. Internal simulation of Steps 1e and 1f in Protocol 6.14: S simulates the FV SS

invocations, and simulates every corrupted party Pi (for every i ∈ I ) internally
receiving outputs C(αi ), D1(αi ), . . . , Dt (αi ) from FV SS in the respective invoca-
tions.

6. Internal simulation of Steps 2 and 3 in Protocol 6.14: For every k ∈ I for which
A instructs the corrupted party Pk to broadcast a (complaint, k) message, S
simulates the complaint resolution phase (Step 3 of Protocol 6.14) by internally
simulating the t + 3 invocations of Fk

eval : For every i ∈ I , the simulator inter-
nally hands the adversary (A(αi ), A(αk)), (B(αi ), B(αk)), (C(αi ),C(αk)) and
{(D�(αi ), D�(αk))}t�=1 as Pi ’s outputs from the respective invocation of Fk

eval .
7. S outputs whatever A outputs, and halts.

We prove that for every for every I ⊆ [n], every z ∈ {0, 1}∗ and all vectors of
inputs �x ,

{
IDEALFmult

V SS ,S(z),I (�x)
}

≡
{
HYBRID

FV SS ,Feval
π,A(z),I (�x)

}
.

We begin by showing that the outputs of the honest parties are distributed identically
in an ideal execution with S and in a real execution of the protocol withA (the protocol
is actually run in the (FV SS, Feval)-hybrid model, but we say “real” execution to make
for a less cumbersome description). Then, we show that the view of the adversary is
distributed identically, when the output of the honest parties is given.

TheHonest Parties’Outputs Weanalyze the distribution of the output of honest parties.
Let the inputs of the honest parties be shares of the degree-t polynomials A(x) and
B(x). Then, in the ideal model the trusted party chooses a polynomial C(x) that is
distributed uniformly at random in P A(0)·B(0),t , and sends each party Pj the output
(A(α j ), B(α j ),C(α j )).
In contrast, in a protocol execution, the honest dealer chooses D1(x), . . . , Dt (x) and

then derives C(x) from D(x) = A(x) · B(x) and the polynomial D1(x), . . . , Dt (x);
see Steps 1a to 1d in Protocol 6.14. It is immediate that the polynomial C computed
by the dealer in the protocol is such that C(0) = A(0) · B(0) and that each honest
party Pj outputs C(α j ). This is due to the fact that, since the dealer is honest, all the
complaints that are broadcasted are resolved with the result that C̃(αk) = C̃ ′(αk), and so
the reject phase is never reached. Thus, the honest parties output shares of a polynomial
C(x) with the correct constant term. It remains to show that C(x) is of degree-t and is
uniformly distributed in P A(0)·B(0),t . In the discussion above, we have already shown
that deg(C) ≤ t , and that every coefficient of C(x) is random, except for the constant
term.
We conclude that C(x) as computed by the honest parties is uniformly distributed in

P A(0)·B(0),t and so the distribution over the outputs of the honest parties in a real protocol
execution is identical to their output in an ideal execution.

The Adversary’S View We now show that the view of the adversary is identical in the
real protocol and ideal executions, given the honest parties’ inputs and outputs. Fix the
honest parties’ input shares (A(α j ), B(α j )) and output shares C(α j ) for every j /∈ I .
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Observe that these values fully determine the degree-t polynomials A(x), B(x),C(x)
since there are more than t points. Now, the view of the adversary in a real protocol
execution is comprised of the shares

{D1(αi )}i∈I , . . . , {Dt (αi )}i∈I , {C(αi )}i∈I (6.5)

received from the FV SS invocations, and of the messages from the complaint resolution
phase. In the complaint resolution phase, the adversary merely sees some subset of the
shares in Eq. (6.5). This is due to the fact that in this corruption case where the dealer is
honest, only corrupted parties complain. Since C(x) is fixed (since we are conditioning
over the input and output of the honest parties), we have that it suffices for us to show
that the D1(αi ), . . . , Dt (αi ) values are identically distributed in an ideal execution and
in a real protocol execution.
Formally, denote by DS

1 (x), . . . , DS
t (x) the polynomials chosen by S in the simula-

tion, and by D1(x), . . . , Dt (x) the polynomials chosen by the honest dealer in a protocol
execution. Then, it suffices to prove that

{
DS
1 (αi ), . . . , D

S
t (αi ) | A(x), B(x),C(x)

}

i∈I
≡

{
D1(αi ), . . . , Dt (αi ) | A(x), B(x),C(x)

}

i∈I (6.6)

In order to prove this, we show that for every � = 1, . . . , t ,

{
DS

� (αi ) | A(x), B(x),C(x), DS
�+1(αi ), . . . , D

S
t (αi )

}

i∈I
≡

{
D�(αi ) | A(x), B(x),C(x), D�+1(αi ), . . . , Dt (αi )

}

i∈I . (6.7)

Combining all of the above (from � = t downto � = 1), we derive Eq. (6.6).
We begin by proving Eq. (6.7) for � > 1, and leave the case of � = 1 for the

end. Let � ∈ {2, . . . , t}. It is clear that the points {DS
� (αi )}i∈I are uniformly dis-

tributed, because the simulator S chose DS
� (x) uniformly at random, and indepen-

dently of A(x), B(x),C(x) and DS
�+1(x), . . . , D

S
t (x). In contrast, in the protocol, there

seems to be dependence between D�(x) and the polynomials A(x), B(x),C(x) and
D�+1(x), . . . , Dt (x). In order to see that this is not a problem, note that

D�(x) = r�,0 + r�,1 · x + · · · + r�,t−1 · xt−1 +
(

d�+t −
t∑

m=�+1

rm,t+�−m

)

· xt

where the values r�,0, . . . , r�,t−1 are all random and do not appear in any of the polyno-
mials D�+1(x), . . . , Dt (x), nor of course in A(x) or B(x); see Table 1. Thus, the only
dependency is in the t th coefficient (since the values rm,t+�−m appear in the polyno-
mials D�+1(x), . . . , Dt (x)). However, by Claim 3.4 it holds that if D�(x) is a degree-t
polynomial in which its first t coefficients are uniformly distributed, then any t points
{D�(αi )}i∈I are uniformly distributed. Finally, regarding the polynomial C(x) observe
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that the mth coefficient of C(x), for 1 ≤ m ≤ t in the real protocol includes the random
value r1,m−1 (that appears in no other polynomials; see Table 1), and the constant term
is always A(0) · B(0). Since r1,m−1 are random and appear only in D1(x), this implies
that D�(x) is independent of C(x). This completes the proof of Eq. (6.7) for � > 1.
It remains now to prove Eq. (6.7) for the case � = 1; i.e., to show that

the points {DS
1 (αi )}i∈I and {D1(αi )}i∈I are identically distributed, conditioned on

A(x), B(x),C(x) and all the points {D2(αi ), . . . , Dt (αi )}i∈I . Observe that the poly-
nomial D1(x) chosen by the dealer in the real protocol is fully determined by C(x) and
D2(x), . . . , Dt (x). Indeed, an equivalent way of describing the dealer is for it to choose
all D2(x), . . . , Dt (x) as before, to choose C(x) uniformly at random in Pa·b,t and then
to choose D1(x) as follows:

D1(x) = x−1 ·
(

A(x) · B(x) − C(x) −
t∑

k=2

xk · Dk(x)

)

. (6.8)

Thus, once D2(x), . . . , Dt (x), A(x), B(x),C(x) are fixed, the polynomial D1(x) is fully
determined. Likewise, in the simulation, the points {D1(αi )}i∈I are fully determined
by {D2(αi ), . . . , Dt (αi ), A(αi ), B(αi ),C(αi )}i∈I . Thus, the actual values {D1(αi )}i∈I
are the same in the ideal execution and real protocol execution, when condition-
ing as in Eq. (6.7). (Intuitively, the above proof shows that the distribution over
the polynomials in a real execution is identical to choosing a random polynomial
C(x) ∈ P A(0)·B(0),t and random points D2(αi ), . . . , Dt (αi ), and then choosing ran-
dom polynomials D2(x), . . . , Dt (x) that pass through these points, and determining
D1(x) so that Eq. (6.8) holds.)
We conclude that the view of the corrupted parties in the protocol is identically dis-

tributed to the adversary’s view in the ideal simulation, given the outputs of the honest
parties. Combining this with the fact that the outputs of the honest parties are identically
distributed in the protocol and ideal executions, we conclude that the joint distributions
of the adversary’s output and the honest parties’ outputs in the ideal and real executions
are identical.

Case 2—The Dealer is Corrupted In the case that the dealer P1 is corrupted, the
ideal adversary sends a polynomial C(x) to the trusted party computing Fmult

V SS . If the
polynomial is of degree at most t and has the constant term A(0) · B(0), then this
polynomial determines the output of the honest parties. Otherwise, the polynomial C(x)
determining the output shares of the honest parties is the constant polynomial equaling
A(0) · B(0) everywhere.
Intuitively, the protocol is secure in this corruption case because any deviation by a

corrupted dealer from the prescribed instructions is unequivocally detected in the verify
phase via the Feval invocations. Observe also that in the (FV SS, Feval)-hybrid model,
the adversary receives no messages from the honest parties except for those sent in the
complaint phase. However, the adversary already knows the results of these complaints
in any case. In particular, since the adversary (in the ideal model) knows A(x) and
B(x), and it dealt the polynomials C(x), D1(x), . . . , Dt (x), it knows exactly where a
complaint will be sent and it knows the values revealed by the Fk

eval calls.
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We now formally describe the simulator (recall that the ideal adversary receives the
polynomials A(x), B(x) from Fmult

V SS ; this is used to enable the simulation).

The Simulator S
1. S internally invokes A with the auxiliary input z.
2. External interaction with Functionality 6.13 (Step 4a): S externally receives the poly-

nomials A(x), B(x) from Fmult
V SS .

3. Internal simulation of Steps 1e and 1fin Protocol 6.14: S internally receives the
polynomials C(x), D1(x), . . . , Dt (x) thatA instructs the corrupted dealer to use in
the FV SS invocations.

4. If deg(C) > t or if deg(D�) > t for some 1 ≤ � ≤ t , then S proceeds to Step 8 below
(simulating reject).

5. Internal simulation of Steps 2 and 3 in Protocol 6.14: For every k /∈ I such that
C(αk) = A(αk) · B(αk) − ∑t

�=1(αk)
� · D�(αk), the simulator S simulates the

honest party Pk broadcasting the message (complaint, k). Then, S internally sim-
ulates the “complaint resolution phase.” In this phase, S uses the polynomials
A(x), B(x),C(x) and D1(x), . . . , Dt (x) in order to compute the values output in
the Fk

eval invocations. If there exists such a k /∈ I as above, then S proceeds to Step 8
below.

6. For every (complaint, k) message (with k ∈ I ) that was internally broadcast by
the adversary A in the name of a corrupted party Pk , the simulator S uses the
polynomials A(x), B(x),C(x) and D1(x), . . . , Dt (x) in order to compute the values
output in the Fk

eval invocations, as above. Then, if there exists an i ∈ I such that
C(αk) = A(αk) · B(αk) − ∑t

�=1(αk)
� · D�(αk), simulator S proceeds to Step 8

below.
7. External interaction with Functionality 6.13 (Step 4b): If S reaches this point, then it

externally sends the polynomial C(x) obtained from A above to Fmult
V SS . It then skips

to Step 9 below.
8. Internal simulation of Step 4 in Protocol 6.14: S simulates a reject, as follows:

(a) S externally sends Ĉ(x) = xt+1 to the trusted party computing Fmult
V SS (i.e., S

sends a polynomial Ĉ such that deg(Ĉ) > t).
(b) S internally simulates every honest party Pj broadcasting a j = A(α j ) and

b j = B(α j ) as in the reject phase.

9. S outputs whatever A outputs, and halts.

The simulator obtains A(x), B(x) from Fmult
V SS and can therefore compute the actual

inputs a j = A(α j ) and b j = B(α j ) held by all honest parties Pj ( j /∈ I ). Therefore, the
view of the adversary in the simulation is clearly identical to its view in a real execution.
We now show that the output of the honest parties in the idealmodel and in a real protocol
execution are identical, given the view of the corrupted parties/adversary. We have two
cases in the ideal model/simulation:

1. Case 1—S does not simulate reject (S does not run Step 8) This case occurs if

(a) All the polynomials C(x), D1(x), . . . , Dt (x) are of degree-t , and
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(b) For every j /∈ I , it holds that C(α j ) = A(α j ) · B(α j ) − ∑t
�=1(α j )

� · D�(α j ),
and

(c) If any corrupt Pi broadcast (complaint, i) then C(αi ) = A(αi ) · B(αi ) −∑t
�=1(αi )

� · D�(αi ).

The polynomials obtained by S fromA in the simulation are the same polynomials
used byA in the FV SS calls in the real protocol. Thus, in this case, in the protocol
execution it is clear that each honest party Pj will output C(α j ).
In contrast, in the ideal model, each honest Pj will outputs C(α j ) as long as
deg(C) ≤ t and C(0) = A(0) · B(0). Now, let C ′(x) = A(x) · B(x) − ∑t

�=1 x
� ·

D�(x). By the definition of C ′ and the fact that each D�(x) is guaranteed to be of
degree-t , we have that C ′(x) is of degree at most 2t . Furthermore, in this case, we
know that for every j /∈ I , it holds that C(α j ) = A(α j ) · B(α j ) − ∑t

�=1(α j )
� ·

D�(α j ) = C ′(α j ). Thus, C(x) = C ′(x) on at least 2t + 1 points {α j } j /∈I . This
implies that C(x) = C ′(x), and in particular C(0) = C ′(0). Since C ′(0) =
A(0) · B(0) irrespective of the choice of the polynomials D1(x), . . . , Dt (x), we
conclude that C(0) = A(0) · B(0). The fact that C(x) is of degree-t follows from
the conditions of this case. Thus, we conclude that in the ideal model, every honest
party Pj also outputs C(α j ), exactly as in a protocol execution.

2. Case 2—S simulates reject (S runs Step 8) This case occurs if any of (a), (b)
or (c) above do not hold. When this occurs in a protocol execution, all honest
parties run the reject phase in the real execution and output the value A(0) · B(0).
Furthermore, in the ideal model, in any of these cases the simulator S sends the
polynomial Ĉ(x) = xt+1 to Fmult

V SS . Now, upon input of C(x) with deg(C) > t ,
functionality Fmult

V SS sets C(x) = A(0) · B(0) and so all honest parties output the
value A(0) · B(0), exactly as in a protocol execution.

This concludes the proof. �

6.7. The Fmult Functionality and Its Implementation

We are finally ready to show how to securely compute the product of shared values, in
the presence of malicious adversaries. As we described in the high-level overview in
Sect. 6.1, the multiplication protocol works by first having each party share subshares
of its two input shares (using Fsubshare

V SS ), and then share the product of the shares (using
Fmult
V SS and the subshares obtained from Fsubshare

V SS ). Finally, given shares of the product
of each party’s two input shares, a sharing of the product of the input values is obtained
via a local computation of a linear function by each party.

The Functionality We begin by defining the multiplication functionality for the case
of malicious adversaries. In the semi-honest setting, the Fmult functionality was defined
as follows:

Fmult

(
( fa(α1), fb(α1)), . . . , ( fa(αn), fb(αn))

)
=

(
fab(α1), . . . , fab(αn)

)

where fab is a random degree-t polynomial with constant term fa(0) · fb(0) = a ·b.
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In the malicious setting, we need to define the functionality with more care. First,
the corrupted parties are able to influence the output and determine the shares of the
corrupted parties in the output polynomial. In order to see why this is the case, recall that
the multiplication works by the parties running Fmult

V SS multiple times (in each invocation
a different party plays the dealer) and then computing a linear function of the subshares
obtained. Since each corrupted party can choose which polynomial C(x) is used in
Fmult
V SS when it is the dealer, the adversary can single-handedly determine the shares of

the corrupted parties in the final polynomial that hides the product of the values. This
is similar to the problem that arises when running FV SS in parallel, as described in
Sect. 6.2. In addition, there is no dealer, and the corrupted parties have no control over
the resulting polynomial, beyond choosing their own shares. We model this by defining
the Fmult multiplication functionality as a reactive corruption-aware functionality. See
Functionality 6.16 for a full specification.

FUNCTIONALITY 6.16 (Functionality Fmul t for emulating a multiplication gate).
Fmult receives a set of indices I ⊆ [n] and works as follows:

1. The Fmult functionality receives the inputs of the honest parties {(β j , γ j )} j /∈I . Let
fa(x), fb(x) be the unique degree-t polynomials determined by the points {(α j , β j )} j /∈I ,
{(α j , γ j )} j /∈I , respectively. (If such polynomials do not exist then no security is guaranteed;
see Footnote 9.)

2. Fmult sends {( fa(αi ), fb(αi ))}i∈I to the (ideal) adversary.13
3. Fmult receives points {δi }i∈I from the (ideal) adversary (if some δi is not received, then it

is set to equal 0).
4. Fmult chooses a random degree-t polynomial fab(x) under the constraints that:

(a) fab(0) = fa(0) · fb(0), and
(b) For every i ∈ I , fab(αi ) = δi .

(such a degree-t polynomial always exists since |I | ≤ t).
5. The functionality Fmult sends the value fab(α j ) to every honest party Pj ( j ∈ I ).

Before proceeding,we remark that the Fmult functionality is sufficient for use in circuit
emulation. Specifically, the only difference between it and the definition ofmultiplication
in the semi-honest case is the ability of the adversary to determine its own values.
However, since fab is of degree-t , the ability of A to determine t values of fab reveals
nothing about fab(0) = a · b. A formal proof of this is given in Sect. 7.

The Protocol Idea We are now ready to show how to multiply in the Fsubshare
V SS and

Fmult
V SS hybrid model. Intuitively, the parties first distribute subshares of their shares and

subshares of the product of their shares, using Fsubshare
V SS and Fmult

V SS , respectively. Note
that Fmult

V SS assumes that the parties alreadyhold correct subshares,; this is achievedbyfirst
running Fsubshare

V SS on the input shares. Next, we use the method from Gennaro et al. [19]
to have the parties directly compute shares of the product of the values on the input wires,
from the subshares of the product of their shares. This method is based on the following

13As with Feval and Fmult
V SS , the simulator needs to receive the correct shares of the corrupted parties in

order to simulate, and so this is also received as output. Since this information is anyway given to the corrupted
parties, this makes no difference to the use of the functionality for secure computation.
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observation. Let fa(x) and fb(x) be two degree-t polynomials such that fa(0) = a and
fb(0) = b, and let h(x) = fa(x) · fb(x) = a ·b+h1 · x+h2 · x2+· · ·+h2t · x2t . Letting
V�α be the Vandermonde matrix for �α, and recalling that V�α is invertible, we have that

V�α ·

⎛

⎜⎜
⎜⎜⎜⎜⎜
⎜⎜
⎝

ab
h1
...

h2t
0
...

0

⎞

⎟⎟
⎟⎟⎟⎟⎟
⎟⎟
⎠

=

⎛

⎜⎜
⎝

h(α1)

h(α2)
...

h(αn)

⎞

⎟⎟
⎠ and so

⎛

⎜⎜
⎜⎜⎜⎜⎜
⎜⎜
⎝

ab
h1
...

h2t
0
...

0

⎞

⎟⎟
⎟⎟⎟⎟⎟
⎟⎟
⎠

= V−1
�α ·

⎛

⎜⎜
⎝

h(α1)

h(α2)
...

h(αn)

⎞

⎟⎟
⎠ .

Let λ1, . . . , λn be the first row of V−1
�α . It follows that

a · b = λ1 · h(α1) + · · · + λn · h(αn)

= λ1 · fa(α1) · fb(α1) + · · · + λn · fa(αn) · fb(αn).

Thus the parties simply need to compute a linear combination of the products fa(α�) ·
fb(α�) for � = 1, . . . , n. Using Fsubshare

V SS and Fmult
V SS , as described above, the parties first

distribute random shares of the values fa(α�) · fb(α�), for every � = 1, . . . , n. That is,
let C1(x), . . . ,Cn(x) be random degree-t polynomials such that for every � it holds that
C�(0) = fa(α�) · fb(α�); the polynomial C�(x) is shared using Fmult

V SS where P� is the
dealer (since P�’s input shares are fa(α�) and fb(α�)). Then, the result of the sharing via
Fmult
V SS is that each party Pi holdsC1(αi ), . . . ,Cn(αi ). Thus, each Pi can locally compute

Q(αi ) = ∑n
�=1 λ� · C�(αi ) and we have that the parties hold shares of the polynomial

Q(x) = ∑n
�=1 λ� ·C�(x). By the fact thatC�(0) = fa(α�) · fb(α�) for every �, it follows

that

Q(0) =
n∑

�=1

λ� · C�(0) =
n∑

�=1

λ� · fa(α�) · fb(α�) = a · b. (6.9)

Furthermore, since all the C�(x) polynomials are of degree-t , the polynomial Q(x) is
also of degree-t , implying that the parties hold a valid sharing of a · b, as required. Full
details of the protocol are given in Protocol 6.17.
The correctness of the protocol is based on the above discussion. Intuitively, the proto-

col is secure since the invocations of Fsubshare
V SS and Fmult

V SS provide shares to the parties that
reveal nothing. However, recall that the adversary’s output from Fsubshare

V SS includes the
vector of polynomials �Y (x) = (g1(x), . . . , gn(x)) · HT , where g1, . . . , gn are the poly-
nomials defining the parties’ input shares, and H is the parity-check matrix of the appro-
priate Reed–Solomon code; see Sect. 6.4. In the context of Protocol 6.17, this means that
the adversary also obtains the vectors of polynomials �YA(x) = (A1(x), . . . , An(x))·HT

and �YB(x) = (B1(x), . . . , Bn(x)) · HT . Thus, we must also show that these vectors can
be generated by the simulator for the adversary. The strategy for doing so is exactly as
in the simulation of Feval in Sect. 6.5. We prove the following:
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PROTOCOL 6.17. (Computing Fmul t in the (Fsubshare
V SS , Fmul t

V SS )-hybrid model).

• Input: Each party Pi holds ai , bi , where ai = fa(αi ), bi = fb(αi ) for some polynomials
fa(x), fb(x) of degree t , which hide a, b, respectively. (If not all the points lie on a single
degree-t polynomial, then no security guarantees are obtained. See Footnote 9.)

• Common input: A field description F and n distinct nonzero elements α1, . . . , αn ∈ F.
• Aiding ideal functionality initialization: Upon invocation, the trusted party computing the

corruption-aware functionalities Fsubshare
V SS and Fmult

V SS receives the set of corrupted parties
I .

• The protocol:

1. The parties invoke the Fsubshare
V SS functionality with each party Pi using ai as its private

input. Each party Pi receives back shares A1(αi ), . . . , An(αi ), and a polynomial Ai (x).
(Recall that for every i , the polynomial Ai (x) is of degree-t and Ai (0) = fa(αi ) = ai .)

2. The parties invoke the Fsubshare
V SS functionality with each party Pi using bi as its private

input. Each party Pi receives back shares B1(αi ), . . . , Bn(αi ), and a polynomial Bi (x).
3. For every i = 1, . . . , n, the parties invoke the Fmult

V SS functionality as follows:

(a) Inputs: In the i th invocation, party Pi plays the dealer. All parties Pj (1 ≤ j ≤ n)

send Fmult
V SS their shares Ai (α j ), Bi (α j ).

(b) Outputs: The dealer Pi receivesCi (x)whereCi (x) ∈R P Ai (0)·Bi (0),t , and every
party Pj (1 ≤ j ≤ n) receives the value Ci (α j ).

4. At this stage, each party Pi holds values C1(αi ), . . . ,Cn(αi ), and locally computes
Q(αi ) = ∑n

�=1 λ� · C�(αi ), where (λ1, . . . , λn) is the first row of the matrix V−1
�α .

• Output: Each party Pi outputs Q(αi ).

Theorem 6.18. Let t < n/3. Then, Protocol 6.17 is t-secure for the Fmult functionality
in the (Fsubshare

V SS , Fmult
V SS )-hybrid model, in the presence of a static malicious adversary.

Proof. As we have mentioned, in our analysis here we assume that the inputs of the
honest parties all lie on two polynomials of degree t ; otherwise (vacuous) security is
immediate as described in Footnote 9. We have already discussed the motivation behind
the protocol and therefore proceed directly to the simulator. The simulator externally
interacts with the trusted party computing Fmult , internally invokes the adversaryA, and
simulates the honest parties in Protocol 6.17 and the interaction with the Fsubshare

V SS and
Fmult
V SS functionalities.

The Simulator S
1. S internally invokes A with the auxiliary input z.
2. External interaction with Functionality 6.16 (Step 2): S externally receives from the

trusted party computing Fmult the values ( fa(αi ), fb(αi )), for every i ∈ I .
3. Internal simulation of Step 1 in Protocol 6.17: S simulates the first invocation of

Fsubshare
V SS , as follows:

(a) For every j /∈ I , S chooses a polynomial A j (x) ∈R P0,t uniformly at random.
(b) Internal simulation of Step 3 in Functionality 6.7:S internally handsA the values

{A j (αi )} j /∈I ;i∈I as if coming from Fsubshare
V SS .

(c) Internal simulation of Step 4 in Functionality 6.7: S internally receives from
A a set of polynomials {Ai (x)}i∈I (i.e., the inputs of the corrupted parties to
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Fsubshare
V SS ). If any polynomial is missing, then S sets it to be the constant polyno-

mial 0.
(d) Internal simulation of Step 5b in Functionality 6.7: For every i ∈ I , S performs

the following checks:

i. S checks that Ai (0) = fa(αi ), and
ii. S checks that the degree of Ai (x) is t .

If both checks pass, then it sets A′
i (x) = Ai (x). Otherwise, S sets A′

i (x) to be
the constant polynomial that equals fa(αi ) everywhere (recall that S received
fa(αi ) from Fmult in Step 6.7 and so can carry out this check and set the output
to be these values if necessary).
For every j /∈ I , S sets A′

j (x) = A j (x).

(e) S computes the vector of polynomials �YA(x) that A expects to receive from
Fsubshare
V SS (in a real execution, �YA(x) = (A1(x), . . . , An(x)) · HT ). In order

to do this, S first computes the error vector �eA = (eA1 , . . . , eAn ) as follows: for
every j /∈ I it sets eAj = 0, and for every i ∈ I it sets eAi = Ai (0) − f (αi ).

Then, S chooses a vector of random polynomials �YA(x) = (Y1(x), . . . ,Yn(x))
under the constraints that (a) �YA(0) = (eA1 , . . . , eAn ) · HT , and (b) �YA(αi ) =
(A1(αi ), . . . , An(αi )) · HT for every i ∈ I .

(f) Internal simulation of Step 6b in Functionality 6.7:S internally handsA its output
from Fsubshare

V SS .Namely, it hands the adversaryA the polynomials {A′
i (x)}i∈I , the

shares {A′
1(αi ), . . . , A′

n(αi )}i∈I , and the vector of polynomials �YA(x) computed
above.

4. Internal simulation of Step 1 in Protocol 6.17 (cont.): S simulates the second invoca-
tion of Fsubshare

V SS . This simulation is carried out in an identical way using the points
{ fb(αi )}i∈I . Let B1(x), . . . , Bn(x) and B ′

1(x), . . . , B
′
n(x) be the polynomials used

by S in the simulation of this step (and soA receives from S as output from Fsubshare
V SS

the values {B ′
i (x)}i∈I , {B ′

1(αi ), . . . , B ′
n(αi )}i∈I and �YB(x) computed analogously to

above).
At this point S holds a set of degree-t polynomials {A′

�(x), B
′
�(x)}�∈[n], where for

every j /∈ I it holds that A′
j (0) = B ′

j (0) = 0, and for every i ∈ I it holds that
A′
i (0) = fa(αi ) and B ′

i (0) = fb(αi ).
5. Internal simulation of Step 3 in Protocol 6.17: For every j ∈ I , S simulates the Fmult

V SS
invocation where the honest party Pj is dealer:

(a) S chooses a uniformly distributed polynomial C ′
j (x) ∈R P0,t .

(b) S internally hands the adversaryA the shares {(A′
j (αi ), B ′

j (αi ),C ′
j (αi ))}i∈I ,

as if coming from Fmult
V SS (Step 3c in Functionality 6.13).

6. Internal simulation of Step 3 in Protocol 6.17 (cont.): For every i ∈ I , S simulates
the Fmult

V SS invocation where the corrupted party Pi is dealer:

(a) Internal simulation of Step 4a of Functionality 6.13: S internally hands the
adversary A the polynomials (A′

i (x), B
′
i (x)) as if coming from Fmult

V SS .
(b) Internal simulation of Step 4b of Functionality 6.13: S internally receives from

A the input polynomial Ci (x) of the corrupted dealer that A sends to Fmult
V SS .
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i. If the input is a polynomial Ci such that deg(Ci ) ≤ t and Ci (0) = A′
i (0) ·

B ′
i (0) = fa(αi ) · fb(αi ), then S sets C ′

i (x) = Ci (x).
ii. Otherwise, S sets C ′

i (x) to be the constant polynomial equaling fa(αi ) ·
fb(αi ) everywhere.

At this point, S holds polynomials C ′
1(x), . . . ,C

′
n(x), where for every j ∈ I it holds

that C ′
j (0) = 0 and for every i ∈ I it holds that C ′

j (0) = fa(αi ) · fb(αi ).
7. External interaction with Functionality 6.16 (Step 3): For every i ∈ I , the simulator

S computes Q(αi ) = ∑n
�=1 λ� ·C ′

�(αi ), where C ′
1(x), . . . ,C

′
n(x) are as determined

by S above, and sends the set {Q(αi )}i∈I to the Fmult functionality (this is the set
{δi }i∈I in Step 3 of Functionality 6.16).

8. S outputs whatever A outputs.

The differences between the simulation with S and A, and a real execution of
Protocol 6.17 with A are as follows. First, for every j /∈ I , S chooses the poly-
nomials A′

j (x), B
′
j (x), and C ′

j (x) to have constant terms of 0 instead of constant

terms fa(α j ), fb(α j ), and fa(α j ) · fb(α j ), respectively. Second, the vectors �YA(x) and
�YB(x) are computed by S using the error vector, and not using the actual polynomials
A1(x), . . . , An(x) and B1(x), . . . , Bn(x), as computed by Fsubshare

V SS in the protocol exe-
cution. Third, in an ideal execution the output shares are generated by Fmult choosing a
random degree-t polynomial fab(x) under the constraints that fab(0) = fa(0) · fb(0),
and fab(αi ) = δi for every i ∈ I . In contrast, in a real execution, the output shares are
derived from the polynomial Q(x) = ∑n

�=1 λ� · C ′
�(x). Apart from these differences,

the executions are identical since S is able to run the checks of the Fsubshare
V SS and Fmult

V SS
functionalities exactly as they are specified.
Our proof proceeds by constructing intermediate fictitious simulators to bridge

between the real and ideal executions.

The Fictitious Simulator S1 Let S1 be exactly the same as S, except that it receives
for input the values fa(α j ), fb(α j ), for every j /∈ I . Then, instead of choosing
A′
j (x) ∈R P0,t , B ′

j (x) ∈R P0,t , and C ′
j (x) ∈R P0,t , the fictitious simulator S1 chooses

A′
j (x) ∈R P fa(α j ),t , B ′

j (x) ∈R P fb(α j ),t , and C ′
j (x) ∈R P fa(α j )· fb(α j ),t . We stress that

S1 runs in the ideal model with the same trusted party running Fmult as S, and the honest
parties receive output as specified by Fmult when running with the ideal adversary S or
S1.

The Ideal Executions with S and S1 We begin by showing that the joint output of the
adversary and honest parties is identical in the original simulation by S and the fictitious
simulation by S1. That is,

{
IDEALFmult ,S(z),I (�x)

}
�x∈({0,1}∗)n ,z∈{0,1}∗ ≡ {

IDEALFmult ,S1(z′),I (�x)
}

�x∈({0,1}∗)n ,z∈{0,1}∗

where z′ contains the same z as A receives, together with the fa(α j ), fb(α j ) values
for every j /∈ I . In order to see that the above holds, observe that both S and S1
can work when given the points of the inputs shares {(A′

j (αi ), B ′
j (αi ))}i∈I, j ∈I and the

outputs shares {C ′
j (αi )}i∈I ; j /∈I and they don’t actually need the polynomials themselves.
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Furthermore, the only difference between S and S1 is whether these polynomials are
chosen with zero constant terms, or with the “correct” ones. That is, there exists a
machine M that receives points {A′

j (αi ), B ′
j (αi )i∈I ; j /∈I , {C ′

j (αi )}i∈I ; j /∈I and runs the
simulation strategy with A while interacting with Fmult in an ideal execution, such
that:

• If A′
j (0) = B ′

j (0) = C ′
j (0) = 0 then the joint output of M and the honest parties

in the ideal execution is exactly that of IDEALFmult ,S(z),I (�x); i.e., an ideal execution
with the original simulator.

• If A′
j (0) = fa(α j ), B ′

j (0) = fb(α j ) and C ′
j (0) = fa(α j ) · fb(α j ) then the

joint output of M and the honest parties in the ideal execution is exactly that
of IDEALFmult ,S1(z′),I (�x); i.e., an ideal execution with the fictitious simulator S1.

By Claim 3.3, the points {A′
j (αi ), B ′

j (αi ),C ′
j (αi )}i∈I ; j /∈I when A′

j (0) = B ′
j (0) =

C ′
j (0) = 0 are identically distributed to the points {A′

j (αi ), B ′
j (αi ),C ′

j (αi )}i∈I ; j /∈I
when A′

j (0) = fa(α j ), B ′
j (0) = fb(α j ) and C ′

j (0) = fa(α j ) · fb(α j ). Thus, the joint
outputs of the adversary and honest parties in both simulations are identical.

The Fictitious Simulator S2 Let S2 be exactly the same as S1, except that instead
of computing �YA(x) and �YB(x) via the error vectors (eA1 , . . . , eAn ) and (eB1 , . . . , eBn ),
it computes them like in a real execution. Specifically, it uses the actual polynomials
A1(x), . . . , An(x); observe that S2 has these polynomials since it chose them.14 The
fact that

{
IDEALFmult ,S2(z′),I (�x)

}
�x∈({0,1}∗)n ,z∈{0,1}∗ ≡ {

IDEALFmult ,S1(z′),I (�x)
}

�x∈({0,1}∗)n ,z∈{0,1}∗

follows from exactly the same argument as in Feval regarding the construction of the
vector of polynomials �Y (x), using the special property of the syndrome function.

An Ideal Execution with S2 and a Real Protocol Execution It remains to show that the
joint outputs of the adversary and honest parties are identical in a real protocol execution
and in an ideal execution with S2:

{
HYBRID

Fsubshare
V SS ,Fmult

V SS
π,A(z),I (�x)

}

�x∈({0,1}∗)n ,z∈{0,1}∗
≡{

IDEALFmult ,S2(z′),I (�x)
}

�x∈({0,1}∗)n ,z∈{0,1}∗ .

The only difference between these two executions is the way the polynomial defining
the output is chosen. Recall that in an ideal execution the output shares are generated
by Fmult choosing a random degree-t polynomial fab(x) under the constraints that
fab(0) = fa(0) · fb(0), and fab(αi ) = δi for every i ∈ I . In contrast, in a real execution,

14We remark that the original S could not work in this way since our proof that the simulations by S
and S1 are identical uses the fact that the points {A′

j (αi ), B
′
j (αi )i∈I ; j /∈I , {C ′

j (αi )}i∈I ; j /∈I alone suffice for
simulation. This is true when computing �YA(x) and �YB (x) via the error vectors, but not when computing them
from the actual polynomials as S2 does.
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the output shares are derived from the polynomial Q(x) = ∑n
�=1 λ� · C ′

�(x). However,
by the way that S2 is defined, we have that each δi = Q(αi ) = ∑n

�=1 λ� ·C ′
�(αi ) where

all polynomials C ′
1(x), . . . ,C

′
n(x) are chosen with the correct constant terms. Thus, it

remains to show that the following distributions are identical:

• Ideal withS2: Choose a degree-t polynomial fab(x) at randomunder the constraints
that fab(0) = fa(0) · fb(0), and fab(αi ) = Q(αi ) = ∑n

�=1 λ� · C ′
�(αi ) for every

i ∈ I .
• Real execution: Compute fab(x) = Q(x) = ∑n

�=1 λ� · C ′
�(x).

We stress that in both cases, the polynomials C ′
1(x), . . . ,C

′
n(x) have exactly the same

distribution.
Observe that if |I | = t , then the constraints in the ideal execution with S2 fully define

fab(x) to be exactly the same polynomial as in the real execution (this is due to the fact
that the constraints define t + 1 points on a degree-t polynomial).
If |I | < t , then the polynomial fab(x) in the ideal execution with S2 can be chosen

by choosing t − |I | random values β� ∈R F (for � /∈ I ) and letting fab(x) be the unique
polynomial fulfilling the given constraints and passing through the points (α�, β�). Con-
sider now the polynomial fab(x) generated in a real execution. Fix any j /∈ I . By the
way that Protocol 6.17 works, C ′

j (x) is a random polynomial under the constraint that
C ′

j (0) = fa(α j )· fb(α j ). By Corollary 3.2, given points {(αi ,C ′
j (αi ))}i∈I and a “secret”

s = C ′
j (0), it holds that any subset of t − |I | points of {C ′

j (α�)}�/∈I are uniformly dis-
tributed (note that none of the points in {C ′

j (α�)}�/∈I are seen by the adversary). This
implies that for any t − |I | points α� (with � /∈ I ) the points fab(α�) in the polynomial
fab(x) computed in a real execution are uniformly distributed. This is therefore exactly
the same as choosing t − |I | values β� ∈R F at random (with � /∈ I ), and setting fab to
be the unique polynomial such that fab(α�) = β� in addition to the above constraints.
Thus, the polynomials fab(x) computed in an ideal execution with S2 and in a real

execution are identically distributed. This implies that the HYBRID
Fsubshare
V SS ,Fmult

V SS
π,A(z),I (�x) and

IDEALFmult ,S2(z′),I (�x) distributions are identical, as required. �

Securely Computing Fmult in the Plain Model The following corollary is obtained by
combining the following:

• Theorem 5.7 (securely compute FV SS in the plain model),
• Theorem 6.6 (securely compute F A

mat in the FV SS-hybrid model),
• Theorem 6.9 (securely compute Fsubshare

V SS in the F A
mat -hybrid model),

• Theorem 6.12 (securely compute Feval in the Fsubshare
V SS -hybrid model),

• Theorem 6.15 (securely compute Fmult
V SS in the FV SS, Feval -hybrid model), and

• Theorem 6.18 (securely compute Fmult in the Fsubshare
V SS , Fmult

V SS -hybrid model)

and using the modular sequential composition theorem of [8]. We have:

Corollary 6.19. Let t < n/3. Then, there exists a protocol that is t-secure for Fmult

functionality in the plain model with private channels, in the presence of a static mali-
cious adversary.
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More Efficient Constant-Round Multiplication [2]. The protocol that we have presented
is very close to that described by BGW. However, it is possible to use these techniques
to achieve a more efficient multiplication protocol. For example, observe that if the
parties already hold shares of all other parties’ shares, then these can be used directly
in Fmult

V SS without running Fsubshare
V SS at all. Now, the verifiable secret-sharing protocol

of Ben-Or et al. [7] presented in Sect. 5 is based on bivariate polynomials, and so
all parties do indeed receive shares of all other parties’ shares. This means that it is
possible to modify Protocol 6.17 so that the parties proceed directly to Fmult

V SS without
using Fsubshare

V SS at all. Furthermore, the output of each party Pi in Fmult
V SS is the share

C(αi ) received via the FV SS functionality; see Protocol 6.14. Once again, using VSS
based on bivariate polynomials, this means that the parties can actually output the shares
of all other parties’ shares as well. Applying the linear computation of Q(x) to these
bivariate shares, we conclude that it is possible to include the shares of all other parties
as additional output from Protocol 6.17. Thus, the next time that Fmult is called, the
parties will again already have the shares of all other parties’ shares and Fsubshare

V SS need
not be called. This is a significant efficiency improvement. (Note that unless some of the
parties behave maliciously, Fmult

V SS itself requires t + 1 invocations of FV SS and nothing
else. With this efficiency improvement, we have that the entire cost of Fmult is n · (t +1)
invocations of FV SS .) See [2] for more details on this and other ways to further utilize the
properties of bivariate secret sharing in order to obtain simpler and much more efficient
multiplication protocols.
We remark that there exist protocols that are not constant round and have far more

efficient communication complexity; see [5] for such a protocol. In addition, in the case
of t < n/4, there is a much more efficient solution for constant-round multiplication
presented in BGW itself; see “Appendix” for a brief description.

7. Secure Computation in the (FVSS,Fmult)-Hybrid Model

7.1. Securely Computing any Functionality

In this section we show how to t-securely compute any functionality f in the
(FV SS, Fmult )-hybrid model, in the presence of a malicious adversary controlling any
t < n/3 parties. We also assume that all inputs are in a known field F (with |F| > n),
and that the parties all have an arithmetic circuit C over F that computes f . As in the
semi-honest case, we assume that f : F

n → F
n and so the input and output of each party

is a single field element.
The protocol here is almost identical to Protocol 4.1 for the semi-honest case; the

only difference is that the verifiable secret-sharing functionality FV SS is used in the input
stage, and the Fmult functionality used formultiplication gates in the computation stage is
the corruption-aware one defined for the case ofmalicious adversaries (see Sect. 6.7). See
Sect. 5.4 for the definition of FV SS (Functionality 5.5), and see Functionality 6.16 for the
definition of Fmult . Observe that the definition of FV SS is such that the effect is identical
to that of Shamir secret sharing in the presence of semi-honest adversaries. Furthermore,
the correctness of Fmult ensures that at every intermediate stage the (honest) parties hold
correct shares on the wires of the circuit. In addition, observe that Fmult reveals nothing
to the adversary except for its points on the input wires, which it already knows. Thus,
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PROTOCOL 7.1 (t-Secure Computation of f in the (Fmul t , FVSS)-Hybrid Model).

• Inputs: Each party Pi has an input xi ∈ F.
• Common input: Each party Pi holds an arithmetic circuit C over a field F of size greater

than n, such that for every �x ∈ F
n it holds that C(�x) = f (�x), where f : Fn → F

n . The
parties also hold a description of F and distinct nonzero values α1, . . . , αn in F.

• Aiding ideal functionality initialization: Upon invocation, the trusted parties computing
the (fictitiously corruption-aware) functionality FV SS and the corruption-aware functionality
Fmult receive the set of corrupted parties I .

• The protocol:

1. The input-sharing stage:

(a) Each party Pi chooses a polynomial qi (x) uniformly at random from the set
Pxi ,t of degree-t polynomials with constant term xi . Then, Pi invokes the FV SS
functionality as dealer, using qi (x) as its input.

(b) Each party Pi records the values q1(αi ), . . . , qn(αi ) that it received from the
FV SS functionality invocations. If the output from FV SS is ⊥ for any of these
values, Pi replaces the value with 0.

2. The circuit emulation stage: LetG1, . . . ,G� be a predetermined topological ordering
of the gates of the circuit. For k = 1, . . . , � the parties work as follows:

· Case 1—Gk is an addition gate: Let βk
i and γ k

i be the shares of input wires held

by party Pi . Then, Pi defines its share of the output wire to be δki = βk
i + γ k

i .

· Case 2—Gk is a multiplication-by-a-constant gate with constant c: Let β
k
i be the

share of the input wire held by party Pi . Then, Pi defines its share of the output
wire to be δki = c · βk

i .

· Case 3—Gk is a multiplication gate: Let βk
i and γ k

i be the shares of input wires

held by party Pi . Then, Pi sends (βk
i , γ k

i ) to the ideal functionality Fmult and

receives back a value δki . Party Pi defines its share of the output wire to be δki .

3. The output reconstruction stage:

(a) Let o1, . . . , on be the output wires, where party Pi ’s output is the value on wire
oi . For every i = 1, . . . , n, denote by βi

1, . . . , β
i
n the shares that the parties hold

for wire oi . Then, each Pj sends Pi the share βi
j .

(b) Upon receiving all shares, Pi runs the Reed–Solomon decoding procedure on the
possible corrupted codeword (βi

1, . . . , β
i
n) to obtain a codeword (β̃i

1, . . . , β̃
i
n).

Then, Pi computes reconstruct�α(β̃i
1, . . . , β̃

i
n) and obtains a polynomial gi (x).

Finally, Pi then defines its output to be gi (0).

the adversary learns nothing in the computation stage, and after this stage the parties
all hold correct shares on the circuit-output wires. The protocol is therefore concluded
by having the parties send their shares on the output wires to the appropriate recipients
(i.e., if party Pj is supposed to receive the output on a certain wire, then all parties send
their shares on that wire to Pj ). This step introduces a difficulty that does not arise in
the semi-honest setting; some of the parties may send incorrect values on these wires.
Nevertheless, as we have seen, this can be easily solved since it is guaranteed that more
than two-thirds of the shares are correct and so each party can apply Reed–Solomon
decoding to ensure that the final output obtained is correct. See Protocol 7.1 for full
details.
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We now prove that Protocol 7.1 can be used to securely compute any functionality.We
stress that the theoremholds for regular functionalities only, and not for corruption-aware
functionalities (see Sect. 6.2). This is because not every corruption-aware functionality
can be computed by a circuit that receives inputs from the parties only, without having
the set of identities of the corrupted parties as auxiliary input (such a circuit is what is
needed for Protocol 7.1).

Theorem 7.2. Let f : F
n → F

n be any n-ary functionality, and let t < n/3. Then,
Protocol 7.1 (with auxiliary input C to all parties) is t-secure for f in the (FV SS, Fmult )-
hybrid model, in the presence of a static malicious adversary.

Proof. Intuitively, security here follows from the fact that a corrupted party in Proto-
col 7.1 cannot do anything but choose its input as it wishes. In order to see this, observe
that the entire protocol is comprised of FV SS and Fmult calls, and in the latter the adver-
sary receives no information in its output and has no influence whatsoever on the outputs
of the honest parties. Finally, the adversary cannot affect the outputs of the honest par-
ties due to the Reed–Solomon decoding carried out in the output stage. The simulator
internally invokesA and simulates the honest parties in the protocol executions and the
invocations of FV SS and Fmult functionalities and externally interacts with the trusted
party computing f . We now formally describe the simulator.

The Simulator S
• S internally invokes A with its auxiliary input z.
• The input-sharing stage:

1. For every j ∈ I , S chooses a uniformly distributed polynomial q j (x) ∈R P0,t

(i.e., degree-t polynomialwith constant term0),and for every i ∈ I , it internally
sends the adversaryA the shares q j (αi )as it expects from the FV SS invocations.

2. For every i ∈ I , S internally obtains from A the polynomial qi (x) that
it instructs Pi to send to the FV SS functionality when Pi is the dealer. If
deg(qi (x)) ≤ t , S simulates FV SS sending qi (α�) to P� for every � ∈ I .
Otherwise, S simulates FV SS sending⊥ to P� for every � ∈ I , and resets qi (x)
to be a constant polynomial equaling zero everywhere.

3. For every j ∈ {1, . . . , n}, denote the circuit-input wire that receives Pj ’s input
by w j . Then, for every i ∈ I , simulator S stores the value q j (αi ) as the share
of Pi on the wire w j .

• Interaction with the trusted party:

1. S externally sends the trusted party computing f the values {xi = qi (0)}i∈I
as the inputs of the corrupted parties.

2. S receives from the trusted party the outputs {yi }i∈I of the corrupted parties.

• The circuit emulation stage: Let G1, . . . ,G� be the gates of the circuit according
to their topological ordering. For k = 1, . . . , �:

1. Case 1—Gk is an addition gate: Let βk
i and γ k

i be the shares that S has stored
for the input wires to Gk for the party Pi . Then, for every i ∈ I , S computes
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the value δki = βk
i + γ k

i as the share of Pi for the output wire of Gk and stores
this values.

2. Case 2—Gk is a multiplication-by-a-constant gate with constant c: Let βk
i be

the share that S has stored for the input wire to Gk for Pi . Then, for every
i ∈ I , S computes the value δki = c · βk

i as the share of Pi for the output wire
of Gk and stores this value.

3. Case 3—Gk is a multiplication gate: S internally simulates the trusted party
computing Fmult forA, as follows. Letβk

i and γ k
i be the shares thatS has stored

for the input wires to Gk for the party Pi . Then, S first hands {(βk
i , γ

k
i )}i∈I to

A as if coming from Fmult (see Step 2 of Functionality 6.16) Next, it obtains
fromA values {δki }i∈I as the input of the corrupted parties for the functionality
Fmult (See step 3 of Functionality 6.16). If any δki is not sent, thenS sets δki = 0.
Finally, S stores δki as the share of Pi for the output wire of Gk . (Note that
the adversary has no output from Fmult beyond receiving its own (βk

i , γ
k
i )

values.)

• The output reconstruction stage: For every i ∈ I , simulator S works as follows.
Denote by oi the circuit-output wire that contains the output of party Pi , and let
{β i

�}�∈I be the shares that S has stored for wire oi for all corrupted parties P�

(� ∈ I ). Then, S chooses a random polynomial q ′
i (x) under the constraint that

q ′
i (α�) = β i

� for all � ∈ I , and q ′
i (0) = yi , where yi is the output of Pi received

by S from the trusted party computing f . Finally, for every j /∈ I , S simulates the
honest party Pj sending q ′

i (α j ) to Pi .

A Fictitious Simulator S ′ We begin by constructing a fictitious simulator S ′ that works
exactly like S except that it receives as input all of the input values �x = (x1, . . . , xn),
and chooses the polynomials q j (x) ∈R P x j ,t of the honest parties with the correct
constant term instead of with constant term 0. Apart from this, S ′ works exactly like S
and interacts with a trusted party computing f in the ideal model.

The Original and Fictitious Simulations We now show that the joint output of the
adversary and honest parties is identical in the original and fictitious simulations. That
is,

{
IDEAL f,S(z),I (�x)

}
�x∈({0,1}∗)n ,z∈{0,1}∗ ≡ {

IDEAL f,S ′(�x,z),I (�x)
}

�x∈({0,1}∗)n ,z∈{0,1}∗ . (7.1)

This follows immediately from the fact that both S and S ′ can work identically when
receiving the points {q j (αi )}i∈I ; j /∈I externally. Furthermore, the only difference between
them is if q j (αi ) ∈R P0,t or q j (αi ) ∈R P x j ,t , for every j /∈ I . Thus, there exists a
single machine M that runs in the ideal model with a trusted party computing f , and
that receives points {q j (αi )}i∈I ; j /∈I and runs the simulation using these points. Observe
that if q j (αi ) ∈R P0,t for every j /∈ I , then the joint output ofM and the honest parties
in the ideal execution is exactly the same as in the ideal execution with S. In contrast,
if q j (αi ) ∈R P x j ,t for every j /∈ I , then the joint output of M and thehonest parties
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in the ideal execution is exactly the same as in the ideal execution with the fictitious
simulator S ′. By Claim 3.3, these points are identically distributed in both cases, and
thus the joint output ofM and the honest parties is identically distributed in both cases;
Eq. (7.1) follows.

The Fictitious Simulation and a Protocol Execution We now proceed to show that:

{
IDEAL f,S ′(�x,z),I (�x)

}
�x∈({0,1}∗)n ,z∈{0,1}∗ ≡

{
HYBRID

FV SS ,Fmult
π,A(z),I (�x)

}

�x∈({0,1}∗)n ,z∈{0,1}∗ .

We first claim that the output of the honest parties is identically distributed in the real
execution and the alternative simulation. This follows immediately from the fact that the
inputs to FV SS fully determine the inputs �x , which in turn fully determine the output of
the circuit. In order to see this, observe that Fmult always sends shares of the product of
the input shares (this holds as long as the honest parties send “correct” inputs which they
always do), and the local computation in the case of multiplication-by-a-constant and
addition gates is trivially correct. Thus, the honest parties all hold correct shares of the
outputs on the circuit-output wires. Finally, by the Reed–Solomon decoding procedure
(with code length n and dimension t + 1), it is possible to correct up to n−t

2 > 3t−t
2 = t

errors. Thus, the values sent by the corrupted parties in the output stage have no influence
whatsoever on the honest parties’ outputs.
Next, we show that the view of the adversary A in the fictitious simulation with S ′

is identical to its view in real protocol execution, conditioned on the honest parties’
outputs {y j } j /∈I . It is immediate that these views are identical up to the output stage.
This is because S ′ uses the same polynomials as the honest parties in the input stage,
and in the computation stage A receives no output at all (except for its values on the
input wires for multiplication gates which are already known). It thus remains to show
that the values {q ′

i (α j )}i∈I ; j /∈I received byA from S ′ in the output stage are identically
distributed to the values received by A from the honest parties Pj .

Assume for simplicity that the output wire comes directly from a multiplication gate.
Then, Fmult chooses the polynomial that determines the shares on the wire at random,
under the constraint that it has the correct constant term (which in this case we know is
yi , since we have already shown that the honest parties’ outputs are correct). Since this
is exactly how S ′ chooses the value, we have that the distributions are identical. This
concludes the proof. �

Putting It All Together We conclude with a corollary that considers the plain model
with private channels. The corollary is obtained by combining Theorem 5.7 (securely
computing FV SS in the plain model), Corollary 6.19 (securely computing Fmult in the
plain model) and Theorem 7.2 (securely computing f in the FV SS, Fmult -hybrid model),
and using the modular sequential composition theorem of [8]:

Corollary 7.3. For every functionality f : F
n → F

n and t < n/3, there exists a
protocol that is t-secure for f in the plain model with private channels, in the presence
of a static malicious adversary.
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7.2. Communication and Round Complexity

We begin by summarizing the communication complexity of the BGW protocol (as
presented here) in the case of malicious adversaries. We consider both the cost in the
“optimistic case” where no party deviates from the protocol specification, and in the
“pessimistic case” where some party does deviate. We remark that since the protocol
achieves perfect security, nothing can be gained by deviating, except possible to make
the parties run longer. Thus, in general, one would expect that the typical cost of running
the protocol is the “optimistic cost.” In addition, we separately count the number of
field elements sent over the point-to-point private channels, and the number of elements
sent over a broadcast channel. (The “BGW” row in the table counts the overall cost of
computing a circuit C with |C | multiplication gates.)

Protocol Optimistic cost Pessimistic cost

FV SS O(n2) over pt-2-pt O(n2) over pt-2-pt
No broadcast O(n2) broadcast

Fsubshare
V SS O(n3) over pt-2-pt O(n3) over pt-2-pt

No broadcast O(n3) broadcast
Feval O(n3) over pt-2-pt O(n3) over pt-2-pt

No broadcast O(n3) broadcast
Fmult
V SS O(n3) over pt-2-pt O(n5) over pt-2-pt

No broadcast O(n5) broadcast
Fmult O(n4) over pt-2-pt O(n6) over pt-2-pt

No broadcast O(n6) broadcast
BGW O(|C | · n4) over pt-2-pt O(|C | · n6) over pt-2-pt

No broadcast O(|C | · n6) broadcast

Regarding round complexity, since we use the sequential composition theorem, all
calls to functionalities must be sequential. However, in Sect. 8 we will see that all
subprotocols can actually be run concurrently, and thus in parallel. In this case, we have
that all the protocols for computing FV SS , Fsubshare

V SS , Feval , Fmult
V SS and Fmult have a

constant number of rounds. Thus, each level of the circuit C can be computed in O(1)
rounds, and the overall round complexity is linear in the depth of the circuit C . This
establishes the complexity bounds stated in Theorem 1.

8. Adaptive Security, Composition and the Computational Setting

Our proof of the security of the BGW protocol in the semi-honest and malicious cases
relates to the stand-alone model and to the case of static corruptions. In addition, in
the information-theoretic setting, we consider perfectly secure private channels. In this
section, we show that our proof of security for the limited stand-alone model with
static corruptions suffices for obtaining security in the much more complex settings
of composition and adaptive corruptions (where the latter is for a weaker variant; see
below). This is made possible due to the fact that the BGW protocol is perfectly secure,
and not just statistically secure.
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Security Under Composition In [24, Theorem3] it was proven that any protocol that
computes a functionality f with perfect security and has a straight-line black-box simu-
lator (as is the case with all of our simulators), securely computes f under the definition
of (static) universal composability [9] (or equivalently, concurrent general composi-
tion [26]). Using the terminology UC-secure to mean secure under the definition of
universal composability, we have the following corollary:

Corollary 8.1. For every functionality f , there exists a protocol for UC-securely com-
puting f in the presence of static semi-honest adversaries that corrupt up to t < n/2
parties, in the private channels model. Furthermore, there exists a protocol for UC-
securely computing f in the presence of static malicious adversaries that corrupt up to
t < n/3 parties, in the private channels model.

Composition in the Computational Setting There are two differences between the
information-theoretic and computational settings. First, in the information-theoretic set-
ting there are ideally private channels, whereas in the computational setting it is typically
only assumed that there are authenticated channels. Second, in the information-theoretic
setting, the adversary does not necessarily run in polynomial time. Nevertheless, as advo-
cated by [20, Sec. 7.6.1] and adopted in Definition 2.3, we consider simulators that run
in time that is polynomial in the running time of the adversary. Thus, if the real adversary
runs in polynomial time, then so does the simulator, as required for the computational
setting. This is also means that it is possible to replace the ideally private channels with
public-key encryption. We state our corollary here for computational security for the
most general setting of UC-security (although an analogous corollary can of course be
obtained for the more restricted stand-alone model as well). The corollary is obtained
by replacing the private channels in Corollary 8.1 with UC-secure channels that can be
constructed using semantically secure public-key encryption [9,12]. We state the corol-
lary only for the case of malicious adversaries since the case of semi-honest adversaries
has already been proven in [13] for any t < n.

Corollary 8.2. Assuming the existence of semantically secure public-key encryption,
for every functionality f , there exists a protocol for UC-securely computing f in the
presence of static malicious adversaries that corrupt up to t < n/3 parties, in the
authenticated channels model.

We stress that the above protocol requires no common reference string or other setup
(beyond that required for obtaining authenticated channels). This is the first full proof
of the existence of such a UC-secure protocol.

Adaptive Security with Inefficient Simulation In general, security in the presence of a
static adversary does not imply security in the presence of an adaptive adversary, even
for perfectly secure protocols [10]. This is true, for example, for the definition of security
of adaptive adversaries that appears in [8]. However, there is an alternative definition of
security (for static and adaptive adversaries) due to Dodis and Micali [16] that requires
a straight-line black-box simulator, and also the existence of a committal round at which
point the transcript of the protocol fully defines all of the parties’ inputs. Furthermore, it
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was shown in [10] that security in the presence of static adversaries in the strong sense
of Dodis and Micali [16] does imply security in the presence of adaptive adversaries
(also in the strong sense of Dodis and Micali [16]), as long as the simulator is allowed
to be inefficient (i.e., the simulator is not required to be of comparable complexity to
the adversary; see Definition 2.3). It turns out that all of the protocols in this paper meet
this definition. Thus, applying the result of Canetti et al. [10] we can conclude that all
of the protocols in this paper are secure in the presence of adaptive adversaries with
inefficient simulation, under the definition of Dodis andMicali [16]. Finally, we observe
that any protocol that is secure in the presence of adaptive adversaries under the definition
of Dodis and Micali [16] is also secure in the presence of adaptive adversaries under
the definition of Canetti [8]. We therefore obtain security in the presence of adaptive
adversaries with inefficient simulation “for free.” This is summarized as follows.

Corollary 8.3. For every functionality f , there exists a protocol for securely computing
f in the presence of adaptive semi-honest adversaries that corrupt up to t < n/2
parties with, in the private channels model (with inefficient simulation). Furthermore,
there exists a protocol for securely computing f in the presence of adaptive malicious
adversaries that corrupt up to t < n/3 parties, in the private channels model (with
inefficient simulation).
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9. Appendix: Multiplication in the Case of t < n/4

In this section, we describe how to securely compute shares of the product of shared
values, in the presence of a malicious adversary controlling only t < n/4 parties. This
is much simpler than the case of t < n/3, since in this case there is enough redundancy
to correct errors in polynomials with degree-2t . Due to this, it is similar in spirit to the
semi-honest multiplication protocol, using the simplification of Gennaro et al. [19]. In
this appendix, we provide a full description of this simpler and more efficient protocol,
without a proof of security. In our presentation here, we assume familiarity with the
material appearing in Sects. 6.2, 6.3, 6.4 and 6.7.

High-Level Description of the Protocol Recall that the multiplication protocol works
by having the parties compute a linear function of the product of their shares. That is,
each party locally multiplies its two shares, and then subshares the result using a degree-
t polynomial. The final result is then a specific linear combination of these subshares.
Similarly to the case of t < n/3 we need a mechanism that verifies that the corrupted
parties have shared the correct products. In this case where t < n/4, this can be achieved
by directly using the error correction property of the Reed–Solomon code, since we can
correct degree-2t polynomials.
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The high-level protocol is as follows:

• Each party holds inputs ai and bi , which are shares of two degree-t polynomials
that hide values a and b, respectively.

• Each party locally computes the product ai ·bi . The parties then distribute subshares
of ai · bi to all other parties in a verifiable way using a variant of the Fsubshare

V SS .
Observe that the products are points on degree-2t polynomials. Thus, these shares
constitute a Reed–Solomon code with parameters [4t +1, 2t +1, 2t +1] for which
it is possible to correct up to t errors. There is therefore enough redundancy to
correct errors, unlike the case where t < n/3 where t errors can not necessarily
be corrected on a 2t-degree polynomial. This enables us to design a variant of the
Fsubshare
V SS functionality (Sect. 6.4) that works directly on the products ai · bi .

• At this point, all parties verifiably hold (degree-t) subshares of the product of the
input shares of every party. As shown in [19], shares of the product of the values on
the wires can be obtained by computing a linear function of the subshares obtained
in the previous step.

In the following,we showhow to slightlymodify the Fsubshare
V SS functionality (Sect. 6.4)

to work with the case of t < n/4 (as we will explain, the protocol actually remains the
same). In addition, we provide a full specification for the protocol that implements the
multiplication functionality, Fmult ; i.e., the modifications to Protocol 6.17.
We stress that in the case that t < n/3 it is not possible to run Fsubshare

V SS directly on
the products ai · bi of the input shares since they define a degree-2t polynomial and so
at most n−2t−1

2 = t/2 errors can be corrected. Thus, it is necessary to run Fsubshare
V SS

separately on ai and bi , and then use the Fmult functionality to achieve a sharing of
ai · bi . It follows that in this case of t < n/4, there is no need for the involved Fmult

V SS
functionality, making the protocol simpler and more efficient.

The Fsubshare
V SS Functionality and Protocol We reconsider the definition of the Fsubshare

V SS
functionality, and present the necessary modifications for the functionality. Here, we
assume that the inputs of the 3t + 1 honest parties {(α j , β j )} j ∈I define a degree-2t
polynomial instead of a degree-t polynomial. The definition of the functionality remains
unchanged except for this modification.
We now proceed to show that Protocol 6.8 that implements the Fsubshare

V SS functionality
works as is also for this case, where the inputs are shares of a degree-2t polynomial. In
order to see this, recall that there are two steps in the protocol that may be affected by the
change of the inputs and should be reconsidered: (1) the parity-check matrix H , which
is the parameter for the FH

mat -functionality, and (2) Step 3, where each party locally
computed the error vector using the syndrome vector (the output of the FH

mat ), and the
error correction procedure of the Reed–Solomon code. These steps could conceivably
be different since in this case the parameters of the Reed–Solomon codes are different.
Regarding the parity-check matrix, the same matrix is used for both cases. Recall that
the case of t < n/3 defines a Reed–Solomon code with parameters [3t+1, t+1, 2t+1],
and the case of t < n/4 defines a code with parameters [4t+1, 2t+1, 2t+1]. Moreover,
recall that a Reed–Solomon code with parameters [n, k, n − k + 1] has a parity-check
matrix H ∈ F

(n−k)×n . In the case of n = 3t+1we have that k = t+1 and so n−k = 2t .
Likewise, in the case of n = 4t + 1, we have that k = 2t + 1 and so n − k = 2t . It
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follows that in both case, the parity-check matrix H is of dimension 2t × n, and so is the
same (of course, for different values of t a different matrix is used, but what we mean is
that the protocol description is exactly the same). Next, in Step 3 of the protocol, each
party locally executes the Reed–Solomon error correction procedure given the syndrome
vector that is obtained using FH

mat . This procedure depends on the distance of the code.
However, this is 2t + 1 in both cases and so the protocol description remains exactly the
same.

The Protocol for Fmult We now proceed to the specification of the functionality Fmult .
As we have mentioned, this protocol is much simpler than Protocol 6.17 since the parties
can run the Fsubshare

V SS functionality directly on the product of their inputs, instead of first
running it on ai , then on bi , and then using Fmult to obtain a sharing of ai · bi . The
protocol is as follows:

PROTOCOL 9.1 (Computing Fmul t in the Fsubshare
V SS -hybrid model (with t < n/4)).

• Input: Each party Pi holds ai , bi , where ai = fa(αi ), bi = fb(αi ) for some polynomials
fa(x), fb(x) of degree t , which hide a, b, respectively. (If not all the points lie on a single
degree-t polynomial, then no security guarantees are obtained. See Footnote 9.)

• Common input: A field description F and n distinct nonzero elements α1, . . . , αn ∈ F.
• The protocol:

1. Each party locally computes ci = ai · bi .
2. The parties invoke the Fsubshare

V SS functionality with each party Pi using ci as its private
input. Each party Pi receives back sharesC1(αi ), . . . ,Cn(αi ), and a polynomialCi (x).
(Recall that for every i , the polynomialCi (x) is of degree-t andCi (0) = ci = ai ·bi =
fa(αi ) · fb(αi ))

3. Each party locally computes Q(αi ) = ∑n
j=1 λ j · C j (αi ), where (λ1, . . . , λn) is the

first row of the matrix V−1
�α (see Sect. 6.7).

• Output: Each party Pi outputs Q(αi ).
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